1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/TargetParser/Triple.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <cstddef> 103 #include <iterator> 104 #include <limits> 105 #include <optional> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 153 const SDValue *Parts, unsigned NumParts, 154 MVT PartVT, EVT ValueVT, const Value *V, 155 std::optional<CallingConv::ID> CC); 156 157 /// getCopyFromParts - Create a value that contains the specified legal parts 158 /// combined into the value they represent. If the parts combine to a type 159 /// larger than ValueVT then AssertOp can be used to specify whether the extra 160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 161 /// (ISD::AssertSext). 162 static SDValue 163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 164 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 165 std::optional<CallingConv::ID> CC = std::nullopt, 166 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 167 // Let the target assemble the parts if it wants to 168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 169 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 170 PartVT, ValueVT, CC)) 171 return Val; 172 173 if (ValueVT.isVector()) 174 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 175 CC); 176 177 assert(NumParts > 0 && "No parts to assemble!"); 178 SDValue Val = Parts[0]; 179 180 if (NumParts > 1) { 181 // Assemble the value from multiple parts. 182 if (ValueVT.isInteger()) { 183 unsigned PartBits = PartVT.getSizeInBits(); 184 unsigned ValueBits = ValueVT.getSizeInBits(); 185 186 // Assemble the power of 2 part. 187 unsigned RoundParts = llvm::bit_floor(NumParts); 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 } 426 427 // Promoted vector extract 428 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 429 } 430 431 // Trivial bitcast if the types are the same size and the destination 432 // vector type is legal. 433 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 434 TLI.isTypeLegal(ValueVT)) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 if (ValueVT.getVectorNumElements() != 1) { 438 // Certain ABIs require that vectors are passed as integers. For vectors 439 // are the same size, this is an obvious bitcast. 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } else if (ValueVT.bitsLT(PartEVT)) { 443 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 444 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 445 // Drop the extra bits. 446 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 447 return DAG.getBitcast(ValueVT, Val); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 458 unsigned ValueSize = ValueSVT.getSizeInBits(); 459 if (ValueSize == PartEVT.getSizeInBits()) { 460 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 461 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 462 // It's possible a scalar floating point type gets softened to integer and 463 // then promoted to a larger integer. If PartEVT is the larger integer 464 // we need to truncate it and then bitcast to the FP type. 465 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 466 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 467 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 468 Val = DAG.getBitcast(ValueSVT, Val); 469 } else { 470 Val = ValueVT.isFloatingPoint() 471 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 472 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 473 } 474 } 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 std::optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void 488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 489 unsigned NumParts, MVT PartVT, const Value *V, 490 std::optional<CallingConv::ID> CallConv = std::nullopt, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 // Let the target split the parts if it wants to 493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 494 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 495 CallConv)) 496 return; 497 EVT ValueVT = Val.getValueType(); 498 499 // Handle the vector case separately. 500 if (ValueVT.isVector()) 501 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 502 CallConv); 503 504 unsigned OrigNumParts = NumParts; 505 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 506 "Copying to an illegal type!"); 507 508 if (NumParts == 0) 509 return; 510 511 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 512 EVT PartEVT = PartVT; 513 if (PartEVT == ValueVT) { 514 assert(NumParts == 1 && "No-op copy with multiple parts!"); 515 Parts[0] = Val; 516 return; 517 } 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 521 // If the parts cover more bits than the value has, promote the value. 522 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 523 assert(NumParts == 1 && "Do not know what to promote to!"); 524 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 525 } else { 526 if (ValueVT.isFloatingPoint()) { 527 // FP values need to be bitcast, then extended if they are being put 528 // into a larger container. 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 530 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 531 } 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 } else if (PartBits == ValueVT.getSizeInBits()) { 541 // Different types of the same size. 542 assert(NumParts == 1 && PartEVT != ValueVT); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 545 // If the parts cover less bits than value has, truncate the value. 546 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 547 ValueVT.isInteger() && 548 "Unknown mismatch!"); 549 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 550 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 551 if (PartVT == MVT::x86mmx) 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 // The value may have changed - recompute ValueVT. 556 ValueVT = Val.getValueType(); 557 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 558 "Failed to tile the value with PartVT!"); 559 560 if (NumParts == 1) { 561 if (PartEVT != ValueVT) { 562 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 563 "scalar-to-vector conversion failed"); 564 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Expand the value into multiple parts. 572 if (NumParts & (NumParts - 1)) { 573 // The number of parts is not a power of 2. Split off and copy the tail. 574 assert(PartVT.isInteger() && ValueVT.isInteger() && 575 "Do not know what to expand to!"); 576 unsigned RoundParts = llvm::bit_floor(NumParts); 577 unsigned RoundBits = RoundParts * PartBits; 578 unsigned OddParts = NumParts - RoundParts; 579 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 580 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 581 582 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 583 CallConv); 584 585 if (DAG.getDataLayout().isBigEndian()) 586 // The odd parts were reversed by getCopyToParts - unreverse them. 587 std::reverse(Parts + RoundParts, Parts + NumParts); 588 589 NumParts = RoundParts; 590 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 591 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 592 } 593 594 // The number of parts is a power of 2. Repeatedly bisect the value using 595 // EXTRACT_ELEMENT. 596 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 597 EVT::getIntegerVT(*DAG.getContext(), 598 ValueVT.getSizeInBits()), 599 Val); 600 601 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 602 for (unsigned i = 0; i < NumParts; i += StepSize) { 603 unsigned ThisBits = StepSize * PartBits / 2; 604 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 605 SDValue &Part0 = Parts[i]; 606 SDValue &Part1 = Parts[i+StepSize/2]; 607 608 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 609 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 610 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 611 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 612 613 if (ThisBits == PartBits && ThisVT != PartVT) { 614 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 615 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 616 } 617 } 618 } 619 620 if (DAG.getDataLayout().isBigEndian()) 621 std::reverse(Parts, Parts + OrigNumParts); 622 } 623 624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 625 const SDLoc &DL, EVT PartVT) { 626 if (!PartVT.isVector()) 627 return SDValue(); 628 629 EVT ValueVT = Val.getValueType(); 630 EVT PartEVT = PartVT.getVectorElementType(); 631 EVT ValueEVT = ValueVT.getVectorElementType(); 632 ElementCount PartNumElts = PartVT.getVectorElementCount(); 633 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 634 635 // We only support widening vectors with equivalent element types and 636 // fixed/scalable properties. If a target needs to widen a fixed-length type 637 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 638 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 639 PartNumElts.isScalable() != ValueNumElts.isScalable()) 640 return SDValue(); 641 642 // Have a try for bf16 because some targets share its ABI with fp16. 643 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 644 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 645 "Cannot widen to illegal type"); 646 Val = DAG.getNode(ISD::BITCAST, DL, 647 ValueVT.changeVectorElementType(MVT::f16), Val); 648 } else if (PartEVT != ValueEVT) { 649 return SDValue(); 650 } 651 652 // Widening a scalable vector to another scalable vector is done by inserting 653 // the vector into a larger undef one. 654 if (PartNumElts.isScalable()) 655 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 656 Val, DAG.getVectorIdxConstant(0, DL)); 657 658 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 659 // undef elements. 660 SmallVector<SDValue, 16> Ops; 661 DAG.ExtractVectorElements(Val, Ops); 662 SDValue EltUndef = DAG.getUNDEF(PartEVT); 663 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 664 665 // FIXME: Use CONCAT for 2x -> 4x. 666 return DAG.getBuildVector(PartVT, DL, Ops); 667 } 668 669 /// getCopyToPartsVector - Create a series of nodes that contain the specified 670 /// value split into legal parts. 671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 672 SDValue Val, SDValue *Parts, unsigned NumParts, 673 MVT PartVT, const Value *V, 674 std::optional<CallingConv::ID> CallConv) { 675 EVT ValueVT = Val.getValueType(); 676 assert(ValueVT.isVector() && "Not a vector"); 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 const bool IsABIRegCopy = CallConv.has_value(); 679 680 if (NumParts == 1) { 681 EVT PartEVT = PartVT; 682 if (PartEVT == ValueVT) { 683 // Nothing to do. 684 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 685 // Bitconvert vector->vector case. 686 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 687 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 688 Val = Widened; 689 } else if (PartVT.isVector() && 690 PartEVT.getVectorElementType().bitsGE( 691 ValueVT.getVectorElementType()) && 692 PartEVT.getVectorElementCount() == 693 ValueVT.getVectorElementCount()) { 694 695 // Promoted vector extract 696 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 697 } else if (PartEVT.isVector() && 698 PartEVT.getVectorElementType() != 699 ValueVT.getVectorElementType() && 700 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 701 TargetLowering::TypeWidenVector) { 702 // Combination of widening and promotion. 703 EVT WidenVT = 704 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 705 PartVT.getVectorElementCount()); 706 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 707 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 708 } else { 709 // Don't extract an integer from a float vector. This can happen if the 710 // FP type gets softened to integer and then promoted. The promotion 711 // prevents it from being picked up by the earlier bitcast case. 712 if (ValueVT.getVectorElementCount().isScalar() && 713 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 714 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 715 DAG.getVectorIdxConstant(0, DL)); 716 } else { 717 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 718 assert(PartVT.getFixedSizeInBits() > ValueSize && 719 "lossy conversion of vector to scalar type"); 720 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 721 Val = DAG.getBitcast(IntermediateType, Val); 722 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 723 } 724 } 725 726 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 727 Parts[0] = Val; 728 return; 729 } 730 731 // Handle a multi-element vector. 732 EVT IntermediateVT; 733 MVT RegisterVT; 734 unsigned NumIntermediates; 735 unsigned NumRegs; 736 if (IsABIRegCopy) { 737 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 738 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 739 RegisterVT); 740 } else { 741 NumRegs = 742 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 743 NumIntermediates, RegisterVT); 744 } 745 746 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 747 NumParts = NumRegs; // Silence a compiler warning. 748 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 749 750 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 751 "Mixing scalable and fixed vectors when copying in parts"); 752 753 std::optional<ElementCount> DestEltCnt; 754 755 if (IntermediateVT.isVector()) 756 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 757 else 758 DestEltCnt = ElementCount::getFixed(NumIntermediates); 759 760 EVT BuiltVectorTy = EVT::getVectorVT( 761 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 762 763 if (ValueVT == BuiltVectorTy) { 764 // Nothing to do. 765 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 766 // Bitconvert vector->vector case. 767 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 768 } else { 769 if (BuiltVectorTy.getVectorElementType().bitsGT( 770 ValueVT.getVectorElementType())) { 771 // Integer promotion. 772 ValueVT = EVT::getVectorVT(*DAG.getContext(), 773 BuiltVectorTy.getVectorElementType(), 774 ValueVT.getVectorElementCount()); 775 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 776 } 777 778 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 779 Val = Widened; 780 } 781 } 782 783 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 784 785 // Split the vector into intermediate operands. 786 SmallVector<SDValue, 8> Ops(NumIntermediates); 787 for (unsigned i = 0; i != NumIntermediates; ++i) { 788 if (IntermediateVT.isVector()) { 789 // This does something sensible for scalable vectors - see the 790 // definition of EXTRACT_SUBVECTOR for further details. 791 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 792 Ops[i] = 793 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 794 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 795 } else { 796 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 797 DAG.getVectorIdxConstant(i, DL)); 798 } 799 } 800 801 // Split the intermediate operands into legal parts. 802 if (NumParts == NumIntermediates) { 803 // If the register was not expanded, promote or copy the value, 804 // as appropriate. 805 for (unsigned i = 0; i != NumParts; ++i) 806 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 807 } else if (NumParts > 0) { 808 // If the intermediate type was expanded, split each the value into 809 // legal parts. 810 assert(NumIntermediates != 0 && "division by zero"); 811 assert(NumParts % NumIntermediates == 0 && 812 "Must expand into a divisible number of parts!"); 813 unsigned Factor = NumParts / NumIntermediates; 814 for (unsigned i = 0; i != NumIntermediates; ++i) 815 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 816 CallConv); 817 } 818 } 819 820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 821 EVT valuevt, std::optional<CallingConv::ID> CC) 822 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 823 RegCount(1, regs.size()), CallConv(CC) {} 824 825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 826 const DataLayout &DL, unsigned Reg, Type *Ty, 827 std::optional<CallingConv::ID> CC) { 828 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 829 830 CallConv = CC; 831 832 for (EVT ValueVT : ValueVTs) { 833 unsigned NumRegs = 834 isABIMangled() 835 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 836 : TLI.getNumRegisters(Context, ValueVT); 837 MVT RegisterVT = 838 isABIMangled() 839 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 840 : TLI.getRegisterType(Context, ValueVT); 841 for (unsigned i = 0; i != NumRegs; ++i) 842 Regs.push_back(Reg + i); 843 RegVTs.push_back(RegisterVT); 844 RegCount.push_back(NumRegs); 845 Reg += NumRegs; 846 } 847 } 848 849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 850 FunctionLoweringInfo &FuncInfo, 851 const SDLoc &dl, SDValue &Chain, 852 SDValue *Glue, const Value *V) const { 853 // A Value with type {} or [0 x %t] needs no registers. 854 if (ValueVTs.empty()) 855 return SDValue(); 856 857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 858 859 // Assemble the legal parts into the final values. 860 SmallVector<SDValue, 4> Values(ValueVTs.size()); 861 SmallVector<SDValue, 8> Parts; 862 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 863 // Copy the legal parts from the registers. 864 EVT ValueVT = ValueVTs[Value]; 865 unsigned NumRegs = RegCount[Value]; 866 MVT RegisterVT = isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv( 868 *DAG.getContext(), *CallConv, RegVTs[Value]) 869 : RegVTs[Value]; 870 871 Parts.resize(NumRegs); 872 for (unsigned i = 0; i != NumRegs; ++i) { 873 SDValue P; 874 if (!Glue) { 875 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 876 } else { 877 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 878 *Glue = P.getValue(2); 879 } 880 881 Chain = P.getValue(1); 882 Parts[i] = P; 883 884 // If the source register was virtual and if we know something about it, 885 // add an assert node. 886 if (!Register::isVirtualRegister(Regs[Part + i]) || 887 !RegisterVT.isInteger()) 888 continue; 889 890 const FunctionLoweringInfo::LiveOutInfo *LOI = 891 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 892 if (!LOI) 893 continue; 894 895 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 896 unsigned NumSignBits = LOI->NumSignBits; 897 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 898 899 if (NumZeroBits == RegSize) { 900 // The current value is a zero. 901 // Explicitly express that as it would be easier for 902 // optimizations to kick in. 903 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 904 continue; 905 } 906 907 // FIXME: We capture more information than the dag can represent. For 908 // now, just use the tightest assertzext/assertsext possible. 909 bool isSExt; 910 EVT FromVT(MVT::Other); 911 if (NumZeroBits) { 912 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 913 isSExt = false; 914 } else if (NumSignBits > 1) { 915 FromVT = 916 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 917 isSExt = true; 918 } else { 919 continue; 920 } 921 // Add an assertion node. 922 assert(FromVT != MVT::Other); 923 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 924 RegisterVT, P, DAG.getValueType(FromVT)); 925 } 926 927 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 928 RegisterVT, ValueVT, V, CallConv); 929 Part += NumRegs; 930 Parts.clear(); 931 } 932 933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 934 } 935 936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 937 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 938 const Value *V, 939 ISD::NodeType PreferredExtendType) const { 940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 941 ISD::NodeType ExtendKind = PreferredExtendType; 942 943 // Get the list of the values's legal parts. 944 unsigned NumRegs = Regs.size(); 945 SmallVector<SDValue, 8> Parts(NumRegs); 946 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumParts = RegCount[Value]; 948 949 MVT RegisterVT = isABIMangled() 950 ? TLI.getRegisterTypeForCallingConv( 951 *DAG.getContext(), *CallConv, RegVTs[Value]) 952 : RegVTs[Value]; 953 954 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 955 ExtendKind = ISD::ZERO_EXTEND; 956 957 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 958 NumParts, RegisterVT, V, CallConv, ExtendKind); 959 Part += NumParts; 960 } 961 962 // Copy the parts into the registers. 963 SmallVector<SDValue, 8> Chains(NumRegs); 964 for (unsigned i = 0; i != NumRegs; ++i) { 965 SDValue Part; 966 if (!Glue) { 967 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 968 } else { 969 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 970 *Glue = Part.getValue(1); 971 } 972 973 Chains[i] = Part.getValue(0); 974 } 975 976 if (NumRegs == 1 || Glue) 977 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 978 // flagged to it. That is the CopyToReg nodes and the user are considered 979 // a single scheduling unit. If we create a TokenFactor and return it as 980 // chain, then the TokenFactor is both a predecessor (operand) of the 981 // user as well as a successor (the TF operands are flagged to the user). 982 // c1, f1 = CopyToReg 983 // c2, f2 = CopyToReg 984 // c3 = TokenFactor c1, c2 985 // ... 986 // = op c3, ..., f2 987 Chain = Chains[NumRegs-1]; 988 else 989 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 990 } 991 992 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 993 unsigned MatchingIdx, const SDLoc &dl, 994 SelectionDAG &DAG, 995 std::vector<SDValue> &Ops) const { 996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 997 998 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 999 if (HasMatching) 1000 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 1001 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1002 // Put the register class of the virtual registers in the flag word. That 1003 // way, later passes can recompute register class constraints for inline 1004 // assembly as well as normal instructions. 1005 // Don't do this for tied operands that can use the regclass information 1006 // from the def. 1007 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1008 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1009 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 1010 } 1011 1012 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1013 Ops.push_back(Res); 1014 1015 if (Code == InlineAsm::Kind_Clobber) { 1016 // Clobbers should always have a 1:1 mapping with registers, and may 1017 // reference registers that have illegal (e.g. vector) types. Hence, we 1018 // shouldn't try to apply any sort of splitting logic to them. 1019 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1020 "No 1:1 mapping from clobbers to regs?"); 1021 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1022 (void)SP; 1023 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1024 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1025 assert( 1026 (Regs[I] != SP || 1027 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1028 "If we clobbered the stack pointer, MFI should know about it."); 1029 } 1030 return; 1031 } 1032 1033 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1034 MVT RegisterVT = RegVTs[Value]; 1035 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1036 RegisterVT); 1037 for (unsigned i = 0; i != NumRegs; ++i) { 1038 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1039 unsigned TheReg = Regs[Reg++]; 1040 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1041 } 1042 } 1043 } 1044 1045 SmallVector<std::pair<unsigned, TypeSize>, 4> 1046 RegsForValue::getRegsAndSizes() const { 1047 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1048 unsigned I = 0; 1049 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1050 unsigned RegCount = std::get<0>(CountAndVT); 1051 MVT RegisterVT = std::get<1>(CountAndVT); 1052 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1053 for (unsigned E = I + RegCount; I != E; ++I) 1054 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1055 } 1056 return OutVec; 1057 } 1058 1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1060 AssumptionCache *ac, 1061 const TargetLibraryInfo *li) { 1062 AA = aa; 1063 AC = ac; 1064 GFI = gfi; 1065 LibInfo = li; 1066 Context = DAG.getContext(); 1067 LPadToCallSiteMap.clear(); 1068 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1069 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1070 *DAG.getMachineFunction().getFunction().getParent()); 1071 } 1072 1073 void SelectionDAGBuilder::clear() { 1074 NodeMap.clear(); 1075 UnusedArgNodeMap.clear(); 1076 PendingLoads.clear(); 1077 PendingExports.clear(); 1078 PendingConstrainedFP.clear(); 1079 PendingConstrainedFPStrict.clear(); 1080 CurInst = nullptr; 1081 HasTailCall = false; 1082 SDNodeOrder = LowestSDNodeOrder; 1083 StatepointLowering.clear(); 1084 } 1085 1086 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1087 DanglingDebugInfoMap.clear(); 1088 } 1089 1090 // Update DAG root to include dependencies on Pending chains. 1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1092 SDValue Root = DAG.getRoot(); 1093 1094 if (Pending.empty()) 1095 return Root; 1096 1097 // Add current root to PendingChains, unless we already indirectly 1098 // depend on it. 1099 if (Root.getOpcode() != ISD::EntryToken) { 1100 unsigned i = 0, e = Pending.size(); 1101 for (; i != e; ++i) { 1102 assert(Pending[i].getNode()->getNumOperands() > 1); 1103 if (Pending[i].getNode()->getOperand(0) == Root) 1104 break; // Don't add the root if we already indirectly depend on it. 1105 } 1106 1107 if (i == e) 1108 Pending.push_back(Root); 1109 } 1110 1111 if (Pending.size() == 1) 1112 Root = Pending[0]; 1113 else 1114 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1115 1116 DAG.setRoot(Root); 1117 Pending.clear(); 1118 return Root; 1119 } 1120 1121 SDValue SelectionDAGBuilder::getMemoryRoot() { 1122 return updateRoot(PendingLoads); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getRoot() { 1126 // Chain up all pending constrained intrinsics together with all 1127 // pending loads, by simply appending them to PendingLoads and 1128 // then calling getMemoryRoot(). 1129 PendingLoads.reserve(PendingLoads.size() + 1130 PendingConstrainedFP.size() + 1131 PendingConstrainedFPStrict.size()); 1132 PendingLoads.append(PendingConstrainedFP.begin(), 1133 PendingConstrainedFP.end()); 1134 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1135 PendingConstrainedFPStrict.end()); 1136 PendingConstrainedFP.clear(); 1137 PendingConstrainedFPStrict.clear(); 1138 return getMemoryRoot(); 1139 } 1140 1141 SDValue SelectionDAGBuilder::getControlRoot() { 1142 // We need to emit pending fpexcept.strict constrained intrinsics, 1143 // so append them to the PendingExports list. 1144 PendingExports.append(PendingConstrainedFPStrict.begin(), 1145 PendingConstrainedFPStrict.end()); 1146 PendingConstrainedFPStrict.clear(); 1147 return updateRoot(PendingExports); 1148 } 1149 1150 void SelectionDAGBuilder::visit(const Instruction &I) { 1151 // Set up outgoing PHI node register values before emitting the terminator. 1152 if (I.isTerminator()) { 1153 HandlePHINodesInSuccessorBlocks(I.getParent()); 1154 } 1155 1156 // Add SDDbgValue nodes for any var locs here. Do so before updating 1157 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1158 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1159 // Add SDDbgValue nodes for any var locs here. Do so before updating 1160 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1161 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1162 It != End; ++It) { 1163 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1164 dropDanglingDebugInfo(Var, It->Expr); 1165 if (It->Values.isKillLocation(It->Expr)) { 1166 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1167 continue; 1168 } 1169 SmallVector<Value *> Values(It->Values.location_ops()); 1170 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1171 It->Values.hasArgList())) 1172 addDanglingDebugInfo(It, SDNodeOrder); 1173 } 1174 } 1175 1176 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1177 if (!isa<DbgInfoIntrinsic>(I)) 1178 ++SDNodeOrder; 1179 1180 CurInst = &I; 1181 1182 // Set inserted listener only if required. 1183 bool NodeInserted = false; 1184 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1185 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1186 if (PCSectionsMD) { 1187 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1188 DAG, [&](SDNode *) { NodeInserted = true; }); 1189 } 1190 1191 visit(I.getOpcode(), I); 1192 1193 if (!I.isTerminator() && !HasTailCall && 1194 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1195 CopyToExportRegsIfNeeded(&I); 1196 1197 // Handle metadata. 1198 if (PCSectionsMD) { 1199 auto It = NodeMap.find(&I); 1200 if (It != NodeMap.end()) { 1201 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1202 } else if (NodeInserted) { 1203 // This should not happen; if it does, don't let it go unnoticed so we can 1204 // fix it. Relevant visit*() function is probably missing a setValue(). 1205 errs() << "warning: loosing !pcsections metadata [" 1206 << I.getModule()->getName() << "]\n"; 1207 LLVM_DEBUG(I.dump()); 1208 assert(false); 1209 } 1210 } 1211 1212 CurInst = nullptr; 1213 } 1214 1215 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1216 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1217 } 1218 1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1220 // Note: this doesn't use InstVisitor, because it has to work with 1221 // ConstantExpr's in addition to instructions. 1222 switch (Opcode) { 1223 default: llvm_unreachable("Unknown instruction type encountered!"); 1224 // Build the switch statement using the Instruction.def file. 1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1226 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1227 #include "llvm/IR/Instruction.def" 1228 } 1229 } 1230 1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1232 DILocalVariable *Variable, 1233 DebugLoc DL, unsigned Order, 1234 RawLocationWrapper Values, 1235 DIExpression *Expression) { 1236 if (!Values.hasArgList()) 1237 return false; 1238 // For variadic dbg_values we will now insert an undef. 1239 // FIXME: We can potentially recover these! 1240 SmallVector<SDDbgOperand, 2> Locs; 1241 for (const Value *V : Values.location_ops()) { 1242 auto *Undef = UndefValue::get(V->getType()); 1243 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1244 } 1245 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1246 /*IsIndirect=*/false, DL, Order, 1247 /*IsVariadic=*/true); 1248 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1249 return true; 1250 } 1251 1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1253 unsigned Order) { 1254 if (!handleDanglingVariadicDebugInfo( 1255 DAG, 1256 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1257 ->getVariable(VarLoc->VariableID) 1258 .getVariable()), 1259 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1260 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1261 VarLoc, Order); 1262 } 1263 } 1264 1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1266 unsigned Order) { 1267 // We treat variadic dbg_values differently at this stage. 1268 if (!handleDanglingVariadicDebugInfo( 1269 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1270 DI->getWrappedLocation(), DI->getExpression())) { 1271 // TODO: Dangling debug info will eventually either be resolved or produce 1272 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1273 // between the original dbg.value location and its resolved DBG_VALUE, 1274 // which we should ideally fill with an extra Undef DBG_VALUE. 1275 assert(DI->getNumVariableLocationOps() == 1 && 1276 "DbgValueInst without an ArgList should have a single location " 1277 "operand."); 1278 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1283 const DIExpression *Expr) { 1284 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1285 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1286 DIExpression *DanglingExpr = DDI.getExpression(); 1287 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1288 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1289 << "\n"); 1290 return true; 1291 } 1292 return false; 1293 }; 1294 1295 for (auto &DDIMI : DanglingDebugInfoMap) { 1296 DanglingDebugInfoVector &DDIV = DDIMI.second; 1297 1298 // If debug info is to be dropped, run it through final checks to see 1299 // whether it can be salvaged. 1300 for (auto &DDI : DDIV) 1301 if (isMatchingDbgValue(DDI)) 1302 salvageUnresolvedDbgValue(DDI); 1303 1304 erase_if(DDIV, isMatchingDbgValue); 1305 } 1306 } 1307 1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1309 // generate the debug data structures now that we've seen its definition. 1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1311 SDValue Val) { 1312 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1313 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1314 return; 1315 1316 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1317 for (auto &DDI : DDIV) { 1318 DebugLoc DL = DDI.getDebugLoc(); 1319 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1320 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1321 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1322 DIExpression *Expr = DDI.getExpression(); 1323 assert(Variable->isValidLocationForIntrinsic(DL) && 1324 "Expected inlined-at fields to agree"); 1325 SDDbgValue *SDV; 1326 if (Val.getNode()) { 1327 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1328 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1329 // we couldn't resolve it directly when examining the DbgValue intrinsic 1330 // in the first place we should not be more successful here). Unless we 1331 // have some test case that prove this to be correct we should avoid 1332 // calling EmitFuncArgumentDbgValue here. 1333 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1334 FuncArgumentDbgValueKind::Value, Val)) { 1335 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1336 << "\n"); 1337 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1338 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1339 // inserted after the definition of Val when emitting the instructions 1340 // after ISel. An alternative could be to teach 1341 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1342 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1343 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1344 << ValSDNodeOrder << "\n"); 1345 SDV = getDbgValue(Val, Variable, Expr, DL, 1346 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1347 DAG.AddDbgValue(SDV, false); 1348 } else 1349 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1350 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1351 } else { 1352 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1353 auto Undef = UndefValue::get(V->getType()); 1354 auto SDV = 1355 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1356 DAG.AddDbgValue(SDV, false); 1357 } 1358 } 1359 DDIV.clear(); 1360 } 1361 1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1363 // TODO: For the variadic implementation, instead of only checking the fail 1364 // state of `handleDebugValue`, we need know specifically which values were 1365 // invalid, so that we attempt to salvage only those values when processing 1366 // a DIArgList. 1367 Value *V = DDI.getVariableLocationOp(0); 1368 Value *OrigV = V; 1369 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1370 DIExpression *Expr = DDI.getExpression(); 1371 DebugLoc DL = DDI.getDebugLoc(); 1372 unsigned SDOrder = DDI.getSDNodeOrder(); 1373 1374 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1375 // that DW_OP_stack_value is desired. 1376 bool StackValue = true; 1377 1378 // Can this Value can be encoded without any further work? 1379 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1380 return; 1381 1382 // Attempt to salvage back through as many instructions as possible. Bail if 1383 // a non-instruction is seen, such as a constant expression or global 1384 // variable. FIXME: Further work could recover those too. 1385 while (isa<Instruction>(V)) { 1386 Instruction &VAsInst = *cast<Instruction>(V); 1387 // Temporary "0", awaiting real implementation. 1388 SmallVector<uint64_t, 16> Ops; 1389 SmallVector<Value *, 4> AdditionalValues; 1390 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1391 AdditionalValues); 1392 // If we cannot salvage any further, and haven't yet found a suitable debug 1393 // expression, bail out. 1394 if (!V) 1395 break; 1396 1397 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1398 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1399 // here for variadic dbg_values, remove that condition. 1400 if (!AdditionalValues.empty()) 1401 break; 1402 1403 // New value and expr now represent this debuginfo. 1404 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1405 1406 // Some kind of simplification occurred: check whether the operand of the 1407 // salvaged debug expression can be encoded in this DAG. 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1409 LLVM_DEBUG( 1410 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1411 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1412 return; 1413 } 1414 } 1415 1416 // This was the final opportunity to salvage this debug information, and it 1417 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1418 // any earlier variable location. 1419 assert(OrigV && "V shouldn't be null"); 1420 auto *Undef = UndefValue::get(OrigV->getType()); 1421 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1422 DAG.AddDbgValue(SDV, false); 1423 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1424 << "\n"); 1425 } 1426 1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1428 DIExpression *Expr, 1429 DebugLoc DbgLoc, 1430 unsigned Order) { 1431 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1432 DIExpression *NewExpr = 1433 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1434 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1435 /*IsVariadic*/ false); 1436 } 1437 1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1439 DILocalVariable *Var, 1440 DIExpression *Expr, DebugLoc DbgLoc, 1441 unsigned Order, bool IsVariadic) { 1442 if (Values.empty()) 1443 return true; 1444 SmallVector<SDDbgOperand> LocationOps; 1445 SmallVector<SDNode *> Dependencies; 1446 for (const Value *V : Values) { 1447 // Constant value. 1448 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1449 isa<ConstantPointerNull>(V)) { 1450 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1451 continue; 1452 } 1453 1454 // Look through IntToPtr constants. 1455 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1456 if (CE->getOpcode() == Instruction::IntToPtr) { 1457 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1458 continue; 1459 } 1460 1461 // If the Value is a frame index, we can create a FrameIndex debug value 1462 // without relying on the DAG at all. 1463 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1464 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1465 if (SI != FuncInfo.StaticAllocaMap.end()) { 1466 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1467 continue; 1468 } 1469 } 1470 1471 // Do not use getValue() in here; we don't want to generate code at 1472 // this point if it hasn't been done yet. 1473 SDValue N = NodeMap[V]; 1474 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1475 N = UnusedArgNodeMap[V]; 1476 if (N.getNode()) { 1477 // Only emit func arg dbg value for non-variadic dbg.values for now. 1478 if (!IsVariadic && 1479 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1480 FuncArgumentDbgValueKind::Value, N)) 1481 return true; 1482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1484 // describe stack slot locations. 1485 // 1486 // Consider "int x = 0; int *px = &x;". There are two kinds of 1487 // interesting debug values here after optimization: 1488 // 1489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1491 // 1492 // Both describe the direct values of their associated variables. 1493 Dependencies.push_back(N.getNode()); 1494 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1495 continue; 1496 } 1497 LocationOps.emplace_back( 1498 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1499 continue; 1500 } 1501 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 // Special rules apply for the first dbg.values of parameter variables in a 1504 // function. Identify them by the fact they reference Argument Values, that 1505 // they're parameters, and they are parameters of the current function. We 1506 // need to let them dangle until they get an SDNode. 1507 bool IsParamOfFunc = 1508 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1509 if (IsParamOfFunc) 1510 return false; 1511 1512 // The value is not used in this block yet (or it would have an SDNode). 1513 // We still want the value to appear for the user if possible -- if it has 1514 // an associated VReg, we can refer to that instead. 1515 auto VMI = FuncInfo.ValueMap.find(V); 1516 if (VMI != FuncInfo.ValueMap.end()) { 1517 unsigned Reg = VMI->second; 1518 // If this is a PHI node, it may be split up into several MI PHI nodes 1519 // (in FunctionLoweringInfo::set). 1520 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1521 V->getType(), std::nullopt); 1522 if (RFV.occupiesMultipleRegs()) { 1523 // FIXME: We could potentially support variadic dbg_values here. 1524 if (IsVariadic) 1525 return false; 1526 unsigned Offset = 0; 1527 unsigned BitsToDescribe = 0; 1528 if (auto VarSize = Var->getSizeInBits()) 1529 BitsToDescribe = *VarSize; 1530 if (auto Fragment = Expr->getFragmentInfo()) 1531 BitsToDescribe = Fragment->SizeInBits; 1532 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1533 // Bail out if all bits are described already. 1534 if (Offset >= BitsToDescribe) 1535 break; 1536 // TODO: handle scalable vectors. 1537 unsigned RegisterSize = RegAndSize.second; 1538 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1539 ? BitsToDescribe - Offset 1540 : RegisterSize; 1541 auto FragmentExpr = DIExpression::createFragmentExpression( 1542 Expr, Offset, FragmentSize); 1543 if (!FragmentExpr) 1544 continue; 1545 SDDbgValue *SDV = DAG.getVRegDbgValue( 1546 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1547 DAG.AddDbgValue(SDV, false); 1548 Offset += RegisterSize; 1549 } 1550 return true; 1551 } 1552 // We can use simple vreg locations for variadic dbg_values as well. 1553 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1554 continue; 1555 } 1556 // We failed to create a SDDbgOperand for V. 1557 return false; 1558 } 1559 1560 // We have created a SDDbgOperand for each Value in Values. 1561 // Should use Order instead of SDNodeOrder? 1562 assert(!LocationOps.empty()); 1563 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1564 /*IsIndirect=*/false, DbgLoc, 1565 SDNodeOrder, IsVariadic); 1566 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1571 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1572 for (auto &Pair : DanglingDebugInfoMap) 1573 for (auto &DDI : Pair.second) 1574 salvageUnresolvedDbgValue(DDI); 1575 clearDanglingDebugInfo(); 1576 } 1577 1578 /// getCopyFromRegs - If there was virtual register allocated for the value V 1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1581 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1582 SDValue Result; 1583 1584 if (It != FuncInfo.ValueMap.end()) { 1585 Register InReg = It->second; 1586 1587 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1588 DAG.getDataLayout(), InReg, Ty, 1589 std::nullopt); // This is not an ABI copy. 1590 SDValue Chain = DAG.getEntryNode(); 1591 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1592 V); 1593 resolveDanglingDebugInfo(V, Result); 1594 } 1595 1596 return Result; 1597 } 1598 1599 /// getValue - Return an SDValue for the given Value. 1600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1601 // If we already have an SDValue for this value, use it. It's important 1602 // to do this first, so that we don't create a CopyFromReg if we already 1603 // have a regular SDValue. 1604 SDValue &N = NodeMap[V]; 1605 if (N.getNode()) return N; 1606 1607 // If there's a virtual register allocated and initialized for this 1608 // value, use it. 1609 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1610 return copyFromReg; 1611 1612 // Otherwise create a new SDValue and remember it. 1613 SDValue Val = getValueImpl(V); 1614 NodeMap[V] = Val; 1615 resolveDanglingDebugInfo(V, Val); 1616 return Val; 1617 } 1618 1619 /// getNonRegisterValue - Return an SDValue for the given Value, but 1620 /// don't look in FuncInfo.ValueMap for a virtual register. 1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1622 // If we already have an SDValue for this value, use it. 1623 SDValue &N = NodeMap[V]; 1624 if (N.getNode()) { 1625 if (isIntOrFPConstant(N)) { 1626 // Remove the debug location from the node as the node is about to be used 1627 // in a location which may differ from the original debug location. This 1628 // is relevant to Constant and ConstantFP nodes because they can appear 1629 // as constant expressions inside PHI nodes. 1630 N->setDebugLoc(DebugLoc()); 1631 } 1632 return N; 1633 } 1634 1635 // Otherwise create a new SDValue and remember it. 1636 SDValue Val = getValueImpl(V); 1637 NodeMap[V] = Val; 1638 resolveDanglingDebugInfo(V, Val); 1639 return Val; 1640 } 1641 1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1643 /// Create an SDValue for the given value. 1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1646 1647 if (const Constant *C = dyn_cast<Constant>(V)) { 1648 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1649 1650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1651 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1652 1653 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1654 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1655 1656 if (isa<ConstantPointerNull>(C)) { 1657 unsigned AS = V->getType()->getPointerAddressSpace(); 1658 return DAG.getConstant(0, getCurSDLoc(), 1659 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1660 } 1661 1662 if (match(C, m_VScale())) 1663 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1664 1665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1666 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1667 1668 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1669 return DAG.getUNDEF(VT); 1670 1671 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1672 visit(CE->getOpcode(), *CE); 1673 SDValue N1 = NodeMap[V]; 1674 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1675 return N1; 1676 } 1677 1678 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1679 SmallVector<SDValue, 4> Constants; 1680 for (const Use &U : C->operands()) { 1681 SDNode *Val = getValue(U).getNode(); 1682 // If the operand is an empty aggregate, there are no values. 1683 if (!Val) continue; 1684 // Add each leaf value from the operand to the Constants list 1685 // to form a flattened list of all the values. 1686 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1687 Constants.push_back(SDValue(Val, i)); 1688 } 1689 1690 return DAG.getMergeValues(Constants, getCurSDLoc()); 1691 } 1692 1693 if (const ConstantDataSequential *CDS = 1694 dyn_cast<ConstantDataSequential>(C)) { 1695 SmallVector<SDValue, 4> Ops; 1696 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1697 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1698 // Add each leaf value from the operand to the Constants list 1699 // to form a flattened list of all the values. 1700 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1701 Ops.push_back(SDValue(Val, i)); 1702 } 1703 1704 if (isa<ArrayType>(CDS->getType())) 1705 return DAG.getMergeValues(Ops, getCurSDLoc()); 1706 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1707 } 1708 1709 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1710 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1711 "Unknown struct or array constant!"); 1712 1713 SmallVector<EVT, 4> ValueVTs; 1714 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1715 unsigned NumElts = ValueVTs.size(); 1716 if (NumElts == 0) 1717 return SDValue(); // empty struct 1718 SmallVector<SDValue, 4> Constants(NumElts); 1719 for (unsigned i = 0; i != NumElts; ++i) { 1720 EVT EltVT = ValueVTs[i]; 1721 if (isa<UndefValue>(C)) 1722 Constants[i] = DAG.getUNDEF(EltVT); 1723 else if (EltVT.isFloatingPoint()) 1724 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1725 else 1726 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1727 } 1728 1729 return DAG.getMergeValues(Constants, getCurSDLoc()); 1730 } 1731 1732 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1733 return DAG.getBlockAddress(BA, VT); 1734 1735 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1736 return getValue(Equiv->getGlobalValue()); 1737 1738 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1739 return getValue(NC->getGlobalValue()); 1740 1741 VectorType *VecTy = cast<VectorType>(V->getType()); 1742 1743 // Now that we know the number and type of the elements, get that number of 1744 // elements into the Ops array based on what kind of constant it is. 1745 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1746 SmallVector<SDValue, 16> Ops; 1747 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1748 for (unsigned i = 0; i != NumElements; ++i) 1749 Ops.push_back(getValue(CV->getOperand(i))); 1750 1751 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1752 } 1753 1754 if (isa<ConstantAggregateZero>(C)) { 1755 EVT EltVT = 1756 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1757 1758 SDValue Op; 1759 if (EltVT.isFloatingPoint()) 1760 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1761 else 1762 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1763 1764 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1765 } 1766 1767 llvm_unreachable("Unknown vector constant"); 1768 } 1769 1770 // If this is a static alloca, generate it as the frameindex instead of 1771 // computation. 1772 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1773 DenseMap<const AllocaInst*, int>::iterator SI = 1774 FuncInfo.StaticAllocaMap.find(AI); 1775 if (SI != FuncInfo.StaticAllocaMap.end()) 1776 return DAG.getFrameIndex( 1777 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1778 } 1779 1780 // If this is an instruction which fast-isel has deferred, select it now. 1781 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1782 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1783 1784 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1785 Inst->getType(), std::nullopt); 1786 SDValue Chain = DAG.getEntryNode(); 1787 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1788 } 1789 1790 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1791 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1792 1793 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1794 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1795 1796 llvm_unreachable("Can't get register for value!"); 1797 } 1798 1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1800 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1801 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1802 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1803 bool IsSEH = isAsynchronousEHPersonality(Pers); 1804 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1805 if (!IsSEH) 1806 CatchPadMBB->setIsEHScopeEntry(); 1807 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1808 if (IsMSVCCXX || IsCoreCLR) 1809 CatchPadMBB->setIsEHFuncletEntry(); 1810 } 1811 1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1813 // Update machine-CFG edge. 1814 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1815 FuncInfo.MBB->addSuccessor(TargetMBB); 1816 TargetMBB->setIsEHCatchretTarget(true); 1817 DAG.getMachineFunction().setHasEHCatchret(true); 1818 1819 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1820 bool IsSEH = isAsynchronousEHPersonality(Pers); 1821 if (IsSEH) { 1822 // If this is not a fall-through branch or optimizations are switched off, 1823 // emit the branch. 1824 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1825 TM.getOptLevel() == CodeGenOpt::None) 1826 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1827 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1828 return; 1829 } 1830 1831 // Figure out the funclet membership for the catchret's successor. 1832 // This will be used by the FuncletLayout pass to determine how to order the 1833 // BB's. 1834 // A 'catchret' returns to the outer scope's color. 1835 Value *ParentPad = I.getCatchSwitchParentPad(); 1836 const BasicBlock *SuccessorColor; 1837 if (isa<ConstantTokenNone>(ParentPad)) 1838 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1839 else 1840 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1841 assert(SuccessorColor && "No parent funclet for catchret!"); 1842 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1843 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1844 1845 // Create the terminator node. 1846 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1847 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1848 DAG.getBasicBlock(SuccessorColorMBB)); 1849 DAG.setRoot(Ret); 1850 } 1851 1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1853 // Don't emit any special code for the cleanuppad instruction. It just marks 1854 // the start of an EH scope/funclet. 1855 FuncInfo.MBB->setIsEHScopeEntry(); 1856 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1857 if (Pers != EHPersonality::Wasm_CXX) { 1858 FuncInfo.MBB->setIsEHFuncletEntry(); 1859 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1860 } 1861 } 1862 1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1864 // not match, it is OK to add only the first unwind destination catchpad to the 1865 // successors, because there will be at least one invoke instruction within the 1866 // catch scope that points to the next unwind destination, if one exists, so 1867 // CFGSort cannot mess up with BB sorting order. 1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1869 // call within them, and catchpads only consisting of 'catch (...)' have a 1870 // '__cxa_end_catch' call within them, both of which generate invokes in case 1871 // the next unwind destination exists, i.e., the next unwind destination is not 1872 // the caller.) 1873 // 1874 // Having at most one EH pad successor is also simpler and helps later 1875 // transformations. 1876 // 1877 // For example, 1878 // current: 1879 // invoke void @foo to ... unwind label %catch.dispatch 1880 // catch.dispatch: 1881 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1882 // catch.start: 1883 // ... 1884 // ... in this BB or some other child BB dominated by this BB there will be an 1885 // invoke that points to 'next' BB as an unwind destination 1886 // 1887 // next: ; We don't need to add this to 'current' BB's successor 1888 // ... 1889 static void findWasmUnwindDestinations( 1890 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1891 BranchProbability Prob, 1892 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1893 &UnwindDests) { 1894 while (EHPadBB) { 1895 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1896 if (isa<CleanupPadInst>(Pad)) { 1897 // Stop on cleanup pads. 1898 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1899 UnwindDests.back().first->setIsEHScopeEntry(); 1900 break; 1901 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1902 // Add the catchpad handlers to the possible destinations. We don't 1903 // continue to the unwind destination of the catchswitch for wasm. 1904 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1905 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1906 UnwindDests.back().first->setIsEHScopeEntry(); 1907 } 1908 break; 1909 } else { 1910 continue; 1911 } 1912 } 1913 } 1914 1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1916 /// many places it could ultimately go. In the IR, we have a single unwind 1917 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1918 /// This function skips over imaginary basic blocks that hold catchswitch 1919 /// instructions, and finds all the "real" machine 1920 /// basic block destinations. As those destinations may not be successors of 1921 /// EHPadBB, here we also calculate the edge probability to those destinations. 1922 /// The passed-in Prob is the edge probability to EHPadBB. 1923 static void findUnwindDestinations( 1924 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1925 BranchProbability Prob, 1926 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1927 &UnwindDests) { 1928 EHPersonality Personality = 1929 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1930 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1931 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1932 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1933 bool IsSEH = isAsynchronousEHPersonality(Personality); 1934 1935 if (IsWasmCXX) { 1936 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1937 assert(UnwindDests.size() <= 1 && 1938 "There should be at most one unwind destination for wasm"); 1939 return; 1940 } 1941 1942 while (EHPadBB) { 1943 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1944 BasicBlock *NewEHPadBB = nullptr; 1945 if (isa<LandingPadInst>(Pad)) { 1946 // Stop on landingpads. They are not funclets. 1947 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1948 break; 1949 } else if (isa<CleanupPadInst>(Pad)) { 1950 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1951 // personalities. 1952 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1953 UnwindDests.back().first->setIsEHScopeEntry(); 1954 UnwindDests.back().first->setIsEHFuncletEntry(); 1955 break; 1956 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1957 // Add the catchpad handlers to the possible destinations. 1958 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1959 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1960 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1961 if (IsMSVCCXX || IsCoreCLR) 1962 UnwindDests.back().first->setIsEHFuncletEntry(); 1963 if (!IsSEH) 1964 UnwindDests.back().first->setIsEHScopeEntry(); 1965 } 1966 NewEHPadBB = CatchSwitch->getUnwindDest(); 1967 } else { 1968 continue; 1969 } 1970 1971 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1972 if (BPI && NewEHPadBB) 1973 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1974 EHPadBB = NewEHPadBB; 1975 } 1976 } 1977 1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1979 // Update successor info. 1980 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1981 auto UnwindDest = I.getUnwindDest(); 1982 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1983 BranchProbability UnwindDestProb = 1984 (BPI && UnwindDest) 1985 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1986 : BranchProbability::getZero(); 1987 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1988 for (auto &UnwindDest : UnwindDests) { 1989 UnwindDest.first->setIsEHPad(); 1990 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1991 } 1992 FuncInfo.MBB->normalizeSuccProbs(); 1993 1994 // Create the terminator node. 1995 SDValue Ret = 1996 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1997 DAG.setRoot(Ret); 1998 } 1999 2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2001 report_fatal_error("visitCatchSwitch not yet implemented!"); 2002 } 2003 2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2006 auto &DL = DAG.getDataLayout(); 2007 SDValue Chain = getControlRoot(); 2008 SmallVector<ISD::OutputArg, 8> Outs; 2009 SmallVector<SDValue, 8> OutVals; 2010 2011 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2012 // lower 2013 // 2014 // %val = call <ty> @llvm.experimental.deoptimize() 2015 // ret <ty> %val 2016 // 2017 // differently. 2018 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2019 LowerDeoptimizingReturn(); 2020 return; 2021 } 2022 2023 if (!FuncInfo.CanLowerReturn) { 2024 unsigned DemoteReg = FuncInfo.DemoteRegister; 2025 const Function *F = I.getParent()->getParent(); 2026 2027 // Emit a store of the return value through the virtual register. 2028 // Leave Outs empty so that LowerReturn won't try to load return 2029 // registers the usual way. 2030 SmallVector<EVT, 1> PtrValueVTs; 2031 ComputeValueVTs(TLI, DL, 2032 PointerType::get(F->getContext(), 2033 DAG.getDataLayout().getAllocaAddrSpace()), 2034 PtrValueVTs); 2035 2036 SDValue RetPtr = 2037 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2038 SDValue RetOp = getValue(I.getOperand(0)); 2039 2040 SmallVector<EVT, 4> ValueVTs, MemVTs; 2041 SmallVector<uint64_t, 4> Offsets; 2042 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2043 &Offsets, 0); 2044 unsigned NumValues = ValueVTs.size(); 2045 2046 SmallVector<SDValue, 4> Chains(NumValues); 2047 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2048 for (unsigned i = 0; i != NumValues; ++i) { 2049 // An aggregate return value cannot wrap around the address space, so 2050 // offsets to its parts don't wrap either. 2051 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2052 TypeSize::Fixed(Offsets[i])); 2053 2054 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2055 if (MemVTs[i] != ValueVTs[i]) 2056 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2057 Chains[i] = DAG.getStore( 2058 Chain, getCurSDLoc(), Val, 2059 // FIXME: better loc info would be nice. 2060 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2061 commonAlignment(BaseAlign, Offsets[i])); 2062 } 2063 2064 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2065 MVT::Other, Chains); 2066 } else if (I.getNumOperands() != 0) { 2067 SmallVector<EVT, 4> ValueVTs; 2068 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2069 unsigned NumValues = ValueVTs.size(); 2070 if (NumValues) { 2071 SDValue RetOp = getValue(I.getOperand(0)); 2072 2073 const Function *F = I.getParent()->getParent(); 2074 2075 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2076 I.getOperand(0)->getType(), F->getCallingConv(), 2077 /*IsVarArg*/ false, DL); 2078 2079 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2080 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2081 ExtendKind = ISD::SIGN_EXTEND; 2082 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2083 ExtendKind = ISD::ZERO_EXTEND; 2084 2085 LLVMContext &Context = F->getContext(); 2086 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2087 2088 for (unsigned j = 0; j != NumValues; ++j) { 2089 EVT VT = ValueVTs[j]; 2090 2091 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2092 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2093 2094 CallingConv::ID CC = F->getCallingConv(); 2095 2096 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2097 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2098 SmallVector<SDValue, 4> Parts(NumParts); 2099 getCopyToParts(DAG, getCurSDLoc(), 2100 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2101 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2102 2103 // 'inreg' on function refers to return value 2104 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2105 if (RetInReg) 2106 Flags.setInReg(); 2107 2108 if (I.getOperand(0)->getType()->isPointerTy()) { 2109 Flags.setPointer(); 2110 Flags.setPointerAddrSpace( 2111 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2112 } 2113 2114 if (NeedsRegBlock) { 2115 Flags.setInConsecutiveRegs(); 2116 if (j == NumValues - 1) 2117 Flags.setInConsecutiveRegsLast(); 2118 } 2119 2120 // Propagate extension type if any 2121 if (ExtendKind == ISD::SIGN_EXTEND) 2122 Flags.setSExt(); 2123 else if (ExtendKind == ISD::ZERO_EXTEND) 2124 Flags.setZExt(); 2125 2126 for (unsigned i = 0; i < NumParts; ++i) { 2127 Outs.push_back(ISD::OutputArg(Flags, 2128 Parts[i].getValueType().getSimpleVT(), 2129 VT, /*isfixed=*/true, 0, 0)); 2130 OutVals.push_back(Parts[i]); 2131 } 2132 } 2133 } 2134 } 2135 2136 // Push in swifterror virtual register as the last element of Outs. This makes 2137 // sure swifterror virtual register will be returned in the swifterror 2138 // physical register. 2139 const Function *F = I.getParent()->getParent(); 2140 if (TLI.supportSwiftError() && 2141 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2142 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2143 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2144 Flags.setSwiftError(); 2145 Outs.push_back(ISD::OutputArg( 2146 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2147 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2148 // Create SDNode for the swifterror virtual register. 2149 OutVals.push_back( 2150 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2151 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2152 EVT(TLI.getPointerTy(DL)))); 2153 } 2154 2155 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2156 CallingConv::ID CallConv = 2157 DAG.getMachineFunction().getFunction().getCallingConv(); 2158 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2159 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2160 2161 // Verify that the target's LowerReturn behaved as expected. 2162 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2163 "LowerReturn didn't return a valid chain!"); 2164 2165 // Update the DAG with the new chain value resulting from return lowering. 2166 DAG.setRoot(Chain); 2167 } 2168 2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2170 /// created for it, emit nodes to copy the value into the virtual 2171 /// registers. 2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2173 // Skip empty types 2174 if (V->getType()->isEmptyTy()) 2175 return; 2176 2177 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2178 if (VMI != FuncInfo.ValueMap.end()) { 2179 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2180 "Unused value assigned virtual registers!"); 2181 CopyValueToVirtualRegister(V, VMI->second); 2182 } 2183 } 2184 2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2186 /// the current basic block, add it to ValueMap now so that we'll get a 2187 /// CopyTo/FromReg. 2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2189 // No need to export constants. 2190 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2191 2192 // Already exported? 2193 if (FuncInfo.isExportedInst(V)) return; 2194 2195 Register Reg = FuncInfo.InitializeRegForValue(V); 2196 CopyValueToVirtualRegister(V, Reg); 2197 } 2198 2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2200 const BasicBlock *FromBB) { 2201 // The operands of the setcc have to be in this block. We don't know 2202 // how to export them from some other block. 2203 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2204 // Can export from current BB. 2205 if (VI->getParent() == FromBB) 2206 return true; 2207 2208 // Is already exported, noop. 2209 return FuncInfo.isExportedInst(V); 2210 } 2211 2212 // If this is an argument, we can export it if the BB is the entry block or 2213 // if it is already exported. 2214 if (isa<Argument>(V)) { 2215 if (FromBB->isEntryBlock()) 2216 return true; 2217 2218 // Otherwise, can only export this if it is already exported. 2219 return FuncInfo.isExportedInst(V); 2220 } 2221 2222 // Otherwise, constants can always be exported. 2223 return true; 2224 } 2225 2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2227 BranchProbability 2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2229 const MachineBasicBlock *Dst) const { 2230 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2231 const BasicBlock *SrcBB = Src->getBasicBlock(); 2232 const BasicBlock *DstBB = Dst->getBasicBlock(); 2233 if (!BPI) { 2234 // If BPI is not available, set the default probability as 1 / N, where N is 2235 // the number of successors. 2236 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2237 return BranchProbability(1, SuccSize); 2238 } 2239 return BPI->getEdgeProbability(SrcBB, DstBB); 2240 } 2241 2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2243 MachineBasicBlock *Dst, 2244 BranchProbability Prob) { 2245 if (!FuncInfo.BPI) 2246 Src->addSuccessorWithoutProb(Dst); 2247 else { 2248 if (Prob.isUnknown()) 2249 Prob = getEdgeProbability(Src, Dst); 2250 Src->addSuccessor(Dst, Prob); 2251 } 2252 } 2253 2254 static bool InBlock(const Value *V, const BasicBlock *BB) { 2255 if (const Instruction *I = dyn_cast<Instruction>(V)) 2256 return I->getParent() == BB; 2257 return true; 2258 } 2259 2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2261 /// This function emits a branch and is used at the leaves of an OR or an 2262 /// AND operator tree. 2263 void 2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2265 MachineBasicBlock *TBB, 2266 MachineBasicBlock *FBB, 2267 MachineBasicBlock *CurBB, 2268 MachineBasicBlock *SwitchBB, 2269 BranchProbability TProb, 2270 BranchProbability FProb, 2271 bool InvertCond) { 2272 const BasicBlock *BB = CurBB->getBasicBlock(); 2273 2274 // If the leaf of the tree is a comparison, merge the condition into 2275 // the caseblock. 2276 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2277 // The operands of the cmp have to be in this block. We don't know 2278 // how to export them from some other block. If this is the first block 2279 // of the sequence, no exporting is needed. 2280 if (CurBB == SwitchBB || 2281 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2282 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2283 ISD::CondCode Condition; 2284 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2285 ICmpInst::Predicate Pred = 2286 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2287 Condition = getICmpCondCode(Pred); 2288 } else { 2289 const FCmpInst *FC = cast<FCmpInst>(Cond); 2290 FCmpInst::Predicate Pred = 2291 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2292 Condition = getFCmpCondCode(Pred); 2293 if (TM.Options.NoNaNsFPMath) 2294 Condition = getFCmpCodeWithoutNaN(Condition); 2295 } 2296 2297 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2298 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2299 SL->SwitchCases.push_back(CB); 2300 return; 2301 } 2302 } 2303 2304 // Create a CaseBlock record representing this branch. 2305 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2306 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2307 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2308 SL->SwitchCases.push_back(CB); 2309 } 2310 2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2312 MachineBasicBlock *TBB, 2313 MachineBasicBlock *FBB, 2314 MachineBasicBlock *CurBB, 2315 MachineBasicBlock *SwitchBB, 2316 Instruction::BinaryOps Opc, 2317 BranchProbability TProb, 2318 BranchProbability FProb, 2319 bool InvertCond) { 2320 // Skip over not part of the tree and remember to invert op and operands at 2321 // next level. 2322 Value *NotCond; 2323 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2324 InBlock(NotCond, CurBB->getBasicBlock())) { 2325 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2326 !InvertCond); 2327 return; 2328 } 2329 2330 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2331 const Value *BOpOp0, *BOpOp1; 2332 // Compute the effective opcode for Cond, taking into account whether it needs 2333 // to be inverted, e.g. 2334 // and (not (or A, B)), C 2335 // gets lowered as 2336 // and (and (not A, not B), C) 2337 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2338 if (BOp) { 2339 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2340 ? Instruction::And 2341 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2342 ? Instruction::Or 2343 : (Instruction::BinaryOps)0); 2344 if (InvertCond) { 2345 if (BOpc == Instruction::And) 2346 BOpc = Instruction::Or; 2347 else if (BOpc == Instruction::Or) 2348 BOpc = Instruction::And; 2349 } 2350 } 2351 2352 // If this node is not part of the or/and tree, emit it as a branch. 2353 // Note that all nodes in the tree should have same opcode. 2354 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2355 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2356 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2357 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2358 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2359 TProb, FProb, InvertCond); 2360 return; 2361 } 2362 2363 // Create TmpBB after CurBB. 2364 MachineFunction::iterator BBI(CurBB); 2365 MachineFunction &MF = DAG.getMachineFunction(); 2366 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2367 CurBB->getParent()->insert(++BBI, TmpBB); 2368 2369 if (Opc == Instruction::Or) { 2370 // Codegen X | Y as: 2371 // BB1: 2372 // jmp_if_X TBB 2373 // jmp TmpBB 2374 // TmpBB: 2375 // jmp_if_Y TBB 2376 // jmp FBB 2377 // 2378 2379 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2380 // The requirement is that 2381 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2382 // = TrueProb for original BB. 2383 // Assuming the original probabilities are A and B, one choice is to set 2384 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2385 // A/(1+B) and 2B/(1+B). This choice assumes that 2386 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2387 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2388 // TmpBB, but the math is more complicated. 2389 2390 auto NewTrueProb = TProb / 2; 2391 auto NewFalseProb = TProb / 2 + FProb; 2392 // Emit the LHS condition. 2393 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2394 NewFalseProb, InvertCond); 2395 2396 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2397 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2398 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2399 // Emit the RHS condition into TmpBB. 2400 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2401 Probs[1], InvertCond); 2402 } else { 2403 assert(Opc == Instruction::And && "Unknown merge op!"); 2404 // Codegen X & Y as: 2405 // BB1: 2406 // jmp_if_X TmpBB 2407 // jmp FBB 2408 // TmpBB: 2409 // jmp_if_Y TBB 2410 // jmp FBB 2411 // 2412 // This requires creation of TmpBB after CurBB. 2413 2414 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2415 // The requirement is that 2416 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2417 // = FalseProb for original BB. 2418 // Assuming the original probabilities are A and B, one choice is to set 2419 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2420 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2421 // TrueProb for BB1 * FalseProb for TmpBB. 2422 2423 auto NewTrueProb = TProb + FProb / 2; 2424 auto NewFalseProb = FProb / 2; 2425 // Emit the LHS condition. 2426 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2427 NewFalseProb, InvertCond); 2428 2429 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2430 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2431 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2432 // Emit the RHS condition into TmpBB. 2433 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2434 Probs[1], InvertCond); 2435 } 2436 } 2437 2438 /// If the set of cases should be emitted as a series of branches, return true. 2439 /// If we should emit this as a bunch of and/or'd together conditions, return 2440 /// false. 2441 bool 2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2443 if (Cases.size() != 2) return true; 2444 2445 // If this is two comparisons of the same values or'd or and'd together, they 2446 // will get folded into a single comparison, so don't emit two blocks. 2447 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2448 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2449 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2450 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2451 return false; 2452 } 2453 2454 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2455 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2456 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2457 Cases[0].CC == Cases[1].CC && 2458 isa<Constant>(Cases[0].CmpRHS) && 2459 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2460 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2461 return false; 2462 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2463 return false; 2464 } 2465 2466 return true; 2467 } 2468 2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2470 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2471 2472 // Update machine-CFG edges. 2473 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2474 2475 if (I.isUnconditional()) { 2476 // Update machine-CFG edges. 2477 BrMBB->addSuccessor(Succ0MBB); 2478 2479 // If this is not a fall-through branch or optimizations are switched off, 2480 // emit the branch. 2481 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2482 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2483 MVT::Other, getControlRoot(), 2484 DAG.getBasicBlock(Succ0MBB))); 2485 2486 return; 2487 } 2488 2489 // If this condition is one of the special cases we handle, do special stuff 2490 // now. 2491 const Value *CondVal = I.getCondition(); 2492 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2493 2494 // If this is a series of conditions that are or'd or and'd together, emit 2495 // this as a sequence of branches instead of setcc's with and/or operations. 2496 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2497 // unpredictable branches, and vector extracts because those jumps are likely 2498 // expensive for any target), this should improve performance. 2499 // For example, instead of something like: 2500 // cmp A, B 2501 // C = seteq 2502 // cmp D, E 2503 // F = setle 2504 // or C, F 2505 // jnz foo 2506 // Emit: 2507 // cmp A, B 2508 // je foo 2509 // cmp D, E 2510 // jle foo 2511 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2512 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2513 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2514 Value *Vec; 2515 const Value *BOp0, *BOp1; 2516 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2517 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2518 Opcode = Instruction::And; 2519 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2520 Opcode = Instruction::Or; 2521 2522 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2523 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2524 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2525 getEdgeProbability(BrMBB, Succ0MBB), 2526 getEdgeProbability(BrMBB, Succ1MBB), 2527 /*InvertCond=*/false); 2528 // If the compares in later blocks need to use values not currently 2529 // exported from this block, export them now. This block should always 2530 // be the first entry. 2531 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2532 2533 // Allow some cases to be rejected. 2534 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2535 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2536 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2537 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2538 } 2539 2540 // Emit the branch for this block. 2541 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2542 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2543 return; 2544 } 2545 2546 // Okay, we decided not to do this, remove any inserted MBB's and clear 2547 // SwitchCases. 2548 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2549 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2550 2551 SL->SwitchCases.clear(); 2552 } 2553 } 2554 2555 // Create a CaseBlock record representing this branch. 2556 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2557 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2558 2559 // Use visitSwitchCase to actually insert the fast branch sequence for this 2560 // cond branch. 2561 visitSwitchCase(CB, BrMBB); 2562 } 2563 2564 /// visitSwitchCase - Emits the necessary code to represent a single node in 2565 /// the binary search tree resulting from lowering a switch instruction. 2566 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2567 MachineBasicBlock *SwitchBB) { 2568 SDValue Cond; 2569 SDValue CondLHS = getValue(CB.CmpLHS); 2570 SDLoc dl = CB.DL; 2571 2572 if (CB.CC == ISD::SETTRUE) { 2573 // Branch or fall through to TrueBB. 2574 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2575 SwitchBB->normalizeSuccProbs(); 2576 if (CB.TrueBB != NextBlock(SwitchBB)) { 2577 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2578 DAG.getBasicBlock(CB.TrueBB))); 2579 } 2580 return; 2581 } 2582 2583 auto &TLI = DAG.getTargetLoweringInfo(); 2584 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2585 2586 // Build the setcc now. 2587 if (!CB.CmpMHS) { 2588 // Fold "(X == true)" to X and "(X == false)" to !X to 2589 // handle common cases produced by branch lowering. 2590 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2591 CB.CC == ISD::SETEQ) 2592 Cond = CondLHS; 2593 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2594 CB.CC == ISD::SETEQ) { 2595 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2596 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2597 } else { 2598 SDValue CondRHS = getValue(CB.CmpRHS); 2599 2600 // If a pointer's DAG type is larger than its memory type then the DAG 2601 // values are zero-extended. This breaks signed comparisons so truncate 2602 // back to the underlying type before doing the compare. 2603 if (CondLHS.getValueType() != MemVT) { 2604 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2605 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2606 } 2607 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2608 } 2609 } else { 2610 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2611 2612 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2613 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2614 2615 SDValue CmpOp = getValue(CB.CmpMHS); 2616 EVT VT = CmpOp.getValueType(); 2617 2618 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2619 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2620 ISD::SETLE); 2621 } else { 2622 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2623 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2624 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2625 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2626 } 2627 } 2628 2629 // Update successor info 2630 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2631 // TrueBB and FalseBB are always different unless the incoming IR is 2632 // degenerate. This only happens when running llc on weird IR. 2633 if (CB.TrueBB != CB.FalseBB) 2634 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2635 SwitchBB->normalizeSuccProbs(); 2636 2637 // If the lhs block is the next block, invert the condition so that we can 2638 // fall through to the lhs instead of the rhs block. 2639 if (CB.TrueBB == NextBlock(SwitchBB)) { 2640 std::swap(CB.TrueBB, CB.FalseBB); 2641 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2642 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2643 } 2644 2645 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2646 MVT::Other, getControlRoot(), Cond, 2647 DAG.getBasicBlock(CB.TrueBB)); 2648 2649 setValue(CurInst, BrCond); 2650 2651 // Insert the false branch. Do this even if it's a fall through branch, 2652 // this makes it easier to do DAG optimizations which require inverting 2653 // the branch condition. 2654 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2655 DAG.getBasicBlock(CB.FalseBB)); 2656 2657 DAG.setRoot(BrCond); 2658 } 2659 2660 /// visitJumpTable - Emit JumpTable node in the current MBB 2661 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2662 // Emit the code for the jump table 2663 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2664 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2665 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2666 JT.Reg, PTy); 2667 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2668 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2669 MVT::Other, Index.getValue(1), 2670 Table, Index); 2671 DAG.setRoot(BrJumpTable); 2672 } 2673 2674 /// visitJumpTableHeader - This function emits necessary code to produce index 2675 /// in the JumpTable from switch case. 2676 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2677 JumpTableHeader &JTH, 2678 MachineBasicBlock *SwitchBB) { 2679 SDLoc dl = getCurSDLoc(); 2680 2681 // Subtract the lowest switch case value from the value being switched on. 2682 SDValue SwitchOp = getValue(JTH.SValue); 2683 EVT VT = SwitchOp.getValueType(); 2684 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2685 DAG.getConstant(JTH.First, dl, VT)); 2686 2687 // The SDNode we just created, which holds the value being switched on minus 2688 // the smallest case value, needs to be copied to a virtual register so it 2689 // can be used as an index into the jump table in a subsequent basic block. 2690 // This value may be smaller or larger than the target's pointer type, and 2691 // therefore require extension or truncating. 2692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2693 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2694 2695 unsigned JumpTableReg = 2696 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2697 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2698 JumpTableReg, SwitchOp); 2699 JT.Reg = JumpTableReg; 2700 2701 if (!JTH.FallthroughUnreachable) { 2702 // Emit the range check for the jump table, and branch to the default block 2703 // for the switch statement if the value being switched on exceeds the 2704 // largest case in the switch. 2705 SDValue CMP = DAG.getSetCC( 2706 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2707 Sub.getValueType()), 2708 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2709 2710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2711 MVT::Other, CopyTo, CMP, 2712 DAG.getBasicBlock(JT.Default)); 2713 2714 // Avoid emitting unnecessary branches to the next block. 2715 if (JT.MBB != NextBlock(SwitchBB)) 2716 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2717 DAG.getBasicBlock(JT.MBB)); 2718 2719 DAG.setRoot(BrCond); 2720 } else { 2721 // Avoid emitting unnecessary branches to the next block. 2722 if (JT.MBB != NextBlock(SwitchBB)) 2723 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2724 DAG.getBasicBlock(JT.MBB))); 2725 else 2726 DAG.setRoot(CopyTo); 2727 } 2728 } 2729 2730 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2731 /// variable if there exists one. 2732 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2733 SDValue &Chain) { 2734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2735 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2736 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2737 MachineFunction &MF = DAG.getMachineFunction(); 2738 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2739 MachineSDNode *Node = 2740 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2741 if (Global) { 2742 MachinePointerInfo MPInfo(Global); 2743 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2744 MachineMemOperand::MODereferenceable; 2745 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2746 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2747 DAG.setNodeMemRefs(Node, {MemRef}); 2748 } 2749 if (PtrTy != PtrMemTy) 2750 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2751 return SDValue(Node, 0); 2752 } 2753 2754 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2755 /// tail spliced into a stack protector check success bb. 2756 /// 2757 /// For a high level explanation of how this fits into the stack protector 2758 /// generation see the comment on the declaration of class 2759 /// StackProtectorDescriptor. 2760 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2761 MachineBasicBlock *ParentBB) { 2762 2763 // First create the loads to the guard/stack slot for the comparison. 2764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2765 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2766 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2767 2768 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2769 int FI = MFI.getStackProtectorIndex(); 2770 2771 SDValue Guard; 2772 SDLoc dl = getCurSDLoc(); 2773 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2774 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2775 Align Align = 2776 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2777 2778 // Generate code to load the content of the guard slot. 2779 SDValue GuardVal = DAG.getLoad( 2780 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2781 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2782 MachineMemOperand::MOVolatile); 2783 2784 if (TLI.useStackGuardXorFP()) 2785 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2786 2787 // Retrieve guard check function, nullptr if instrumentation is inlined. 2788 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2789 // The target provides a guard check function to validate the guard value. 2790 // Generate a call to that function with the content of the guard slot as 2791 // argument. 2792 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2793 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2794 2795 TargetLowering::ArgListTy Args; 2796 TargetLowering::ArgListEntry Entry; 2797 Entry.Node = GuardVal; 2798 Entry.Ty = FnTy->getParamType(0); 2799 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2800 Entry.IsInReg = true; 2801 Args.push_back(Entry); 2802 2803 TargetLowering::CallLoweringInfo CLI(DAG); 2804 CLI.setDebugLoc(getCurSDLoc()) 2805 .setChain(DAG.getEntryNode()) 2806 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2807 getValue(GuardCheckFn), std::move(Args)); 2808 2809 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2810 DAG.setRoot(Result.second); 2811 return; 2812 } 2813 2814 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2815 // Otherwise, emit a volatile load to retrieve the stack guard value. 2816 SDValue Chain = DAG.getEntryNode(); 2817 if (TLI.useLoadStackGuardNode()) { 2818 Guard = getLoadStackGuard(DAG, dl, Chain); 2819 } else { 2820 const Value *IRGuard = TLI.getSDagStackGuard(M); 2821 SDValue GuardPtr = getValue(IRGuard); 2822 2823 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2824 MachinePointerInfo(IRGuard, 0), Align, 2825 MachineMemOperand::MOVolatile); 2826 } 2827 2828 // Perform the comparison via a getsetcc. 2829 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2830 *DAG.getContext(), 2831 Guard.getValueType()), 2832 Guard, GuardVal, ISD::SETNE); 2833 2834 // If the guard/stackslot do not equal, branch to failure MBB. 2835 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2836 MVT::Other, GuardVal.getOperand(0), 2837 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2838 // Otherwise branch to success MBB. 2839 SDValue Br = DAG.getNode(ISD::BR, dl, 2840 MVT::Other, BrCond, 2841 DAG.getBasicBlock(SPD.getSuccessMBB())); 2842 2843 DAG.setRoot(Br); 2844 } 2845 2846 /// Codegen the failure basic block for a stack protector check. 2847 /// 2848 /// A failure stack protector machine basic block consists simply of a call to 2849 /// __stack_chk_fail(). 2850 /// 2851 /// For a high level explanation of how this fits into the stack protector 2852 /// generation see the comment on the declaration of class 2853 /// StackProtectorDescriptor. 2854 void 2855 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2857 TargetLowering::MakeLibCallOptions CallOptions; 2858 CallOptions.setDiscardResult(true); 2859 SDValue Chain = 2860 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2861 std::nullopt, CallOptions, getCurSDLoc()) 2862 .second; 2863 // On PS4/PS5, the "return address" must still be within the calling 2864 // function, even if it's at the very end, so emit an explicit TRAP here. 2865 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2866 if (TM.getTargetTriple().isPS()) 2867 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2868 // WebAssembly needs an unreachable instruction after a non-returning call, 2869 // because the function return type can be different from __stack_chk_fail's 2870 // return type (void). 2871 if (TM.getTargetTriple().isWasm()) 2872 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2873 2874 DAG.setRoot(Chain); 2875 } 2876 2877 /// visitBitTestHeader - This function emits necessary code to produce value 2878 /// suitable for "bit tests" 2879 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2880 MachineBasicBlock *SwitchBB) { 2881 SDLoc dl = getCurSDLoc(); 2882 2883 // Subtract the minimum value. 2884 SDValue SwitchOp = getValue(B.SValue); 2885 EVT VT = SwitchOp.getValueType(); 2886 SDValue RangeSub = 2887 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2888 2889 // Determine the type of the test operands. 2890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2891 bool UsePtrType = false; 2892 if (!TLI.isTypeLegal(VT)) { 2893 UsePtrType = true; 2894 } else { 2895 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2896 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2897 // Switch table case range are encoded into series of masks. 2898 // Just use pointer type, it's guaranteed to fit. 2899 UsePtrType = true; 2900 break; 2901 } 2902 } 2903 SDValue Sub = RangeSub; 2904 if (UsePtrType) { 2905 VT = TLI.getPointerTy(DAG.getDataLayout()); 2906 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2907 } 2908 2909 B.RegVT = VT.getSimpleVT(); 2910 B.Reg = FuncInfo.CreateReg(B.RegVT); 2911 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2912 2913 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2914 2915 if (!B.FallthroughUnreachable) 2916 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2917 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2918 SwitchBB->normalizeSuccProbs(); 2919 2920 SDValue Root = CopyTo; 2921 if (!B.FallthroughUnreachable) { 2922 // Conditional branch to the default block. 2923 SDValue RangeCmp = DAG.getSetCC(dl, 2924 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2925 RangeSub.getValueType()), 2926 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2927 ISD::SETUGT); 2928 2929 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2930 DAG.getBasicBlock(B.Default)); 2931 } 2932 2933 // Avoid emitting unnecessary branches to the next block. 2934 if (MBB != NextBlock(SwitchBB)) 2935 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2936 2937 DAG.setRoot(Root); 2938 } 2939 2940 /// visitBitTestCase - this function produces one "bit test" 2941 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2942 MachineBasicBlock* NextMBB, 2943 BranchProbability BranchProbToNext, 2944 unsigned Reg, 2945 BitTestCase &B, 2946 MachineBasicBlock *SwitchBB) { 2947 SDLoc dl = getCurSDLoc(); 2948 MVT VT = BB.RegVT; 2949 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2950 SDValue Cmp; 2951 unsigned PopCount = llvm::popcount(B.Mask); 2952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2953 if (PopCount == 1) { 2954 // Testing for a single bit; just compare the shift count with what it 2955 // would need to be to shift a 1 bit in that position. 2956 Cmp = DAG.getSetCC( 2957 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2958 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2959 ISD::SETEQ); 2960 } else if (PopCount == BB.Range) { 2961 // There is only one zero bit in the range, test for it directly. 2962 Cmp = DAG.getSetCC( 2963 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2964 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2965 } else { 2966 // Make desired shift 2967 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2968 DAG.getConstant(1, dl, VT), ShiftOp); 2969 2970 // Emit bit tests and jumps 2971 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2972 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2973 Cmp = DAG.getSetCC( 2974 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2975 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2976 } 2977 2978 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2979 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2980 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2981 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2982 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2983 // one as they are relative probabilities (and thus work more like weights), 2984 // and hence we need to normalize them to let the sum of them become one. 2985 SwitchBB->normalizeSuccProbs(); 2986 2987 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2988 MVT::Other, getControlRoot(), 2989 Cmp, DAG.getBasicBlock(B.TargetBB)); 2990 2991 // Avoid emitting unnecessary branches to the next block. 2992 if (NextMBB != NextBlock(SwitchBB)) 2993 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2994 DAG.getBasicBlock(NextMBB)); 2995 2996 DAG.setRoot(BrAnd); 2997 } 2998 2999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3001 3002 // Retrieve successors. Look through artificial IR level blocks like 3003 // catchswitch for successors. 3004 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3005 const BasicBlock *EHPadBB = I.getSuccessor(1); 3006 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3007 3008 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3009 // have to do anything here to lower funclet bundles. 3010 assert(!I.hasOperandBundlesOtherThan( 3011 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3012 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3013 LLVMContext::OB_cfguardtarget, 3014 LLVMContext::OB_clang_arc_attachedcall}) && 3015 "Cannot lower invokes with arbitrary operand bundles yet!"); 3016 3017 const Value *Callee(I.getCalledOperand()); 3018 const Function *Fn = dyn_cast<Function>(Callee); 3019 if (isa<InlineAsm>(Callee)) 3020 visitInlineAsm(I, EHPadBB); 3021 else if (Fn && Fn->isIntrinsic()) { 3022 switch (Fn->getIntrinsicID()) { 3023 default: 3024 llvm_unreachable("Cannot invoke this intrinsic"); 3025 case Intrinsic::donothing: 3026 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3027 case Intrinsic::seh_try_begin: 3028 case Intrinsic::seh_scope_begin: 3029 case Intrinsic::seh_try_end: 3030 case Intrinsic::seh_scope_end: 3031 if (EHPadMBB) 3032 // a block referenced by EH table 3033 // so dtor-funclet not removed by opts 3034 EHPadMBB->setMachineBlockAddressTaken(); 3035 break; 3036 case Intrinsic::experimental_patchpoint_void: 3037 case Intrinsic::experimental_patchpoint_i64: 3038 visitPatchpoint(I, EHPadBB); 3039 break; 3040 case Intrinsic::experimental_gc_statepoint: 3041 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3042 break; 3043 case Intrinsic::wasm_rethrow: { 3044 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3045 // special because it can be invoked, so we manually lower it to a DAG 3046 // node here. 3047 SmallVector<SDValue, 8> Ops; 3048 Ops.push_back(getRoot()); // inchain 3049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3050 Ops.push_back( 3051 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3052 TLI.getPointerTy(DAG.getDataLayout()))); 3053 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3054 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3055 break; 3056 } 3057 } 3058 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3059 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3060 // Eventually we will support lowering the @llvm.experimental.deoptimize 3061 // intrinsic, and right now there are no plans to support other intrinsics 3062 // with deopt state. 3063 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3064 } else { 3065 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3066 } 3067 3068 // If the value of the invoke is used outside of its defining block, make it 3069 // available as a virtual register. 3070 // We already took care of the exported value for the statepoint instruction 3071 // during call to the LowerStatepoint. 3072 if (!isa<GCStatepointInst>(I)) { 3073 CopyToExportRegsIfNeeded(&I); 3074 } 3075 3076 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3077 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3078 BranchProbability EHPadBBProb = 3079 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3080 : BranchProbability::getZero(); 3081 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3082 3083 // Update successor info. 3084 addSuccessorWithProb(InvokeMBB, Return); 3085 for (auto &UnwindDest : UnwindDests) { 3086 UnwindDest.first->setIsEHPad(); 3087 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3088 } 3089 InvokeMBB->normalizeSuccProbs(); 3090 3091 // Drop into normal successor. 3092 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3093 DAG.getBasicBlock(Return))); 3094 } 3095 3096 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3097 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3098 3099 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3100 // have to do anything here to lower funclet bundles. 3101 assert(!I.hasOperandBundlesOtherThan( 3102 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3103 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3104 3105 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3106 visitInlineAsm(I); 3107 CopyToExportRegsIfNeeded(&I); 3108 3109 // Retrieve successors. 3110 SmallPtrSet<BasicBlock *, 8> Dests; 3111 Dests.insert(I.getDefaultDest()); 3112 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3113 3114 // Update successor info. 3115 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3116 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3117 BasicBlock *Dest = I.getIndirectDest(i); 3118 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3119 Target->setIsInlineAsmBrIndirectTarget(); 3120 Target->setMachineBlockAddressTaken(); 3121 Target->setLabelMustBeEmitted(); 3122 // Don't add duplicate machine successors. 3123 if (Dests.insert(Dest).second) 3124 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3125 } 3126 CallBrMBB->normalizeSuccProbs(); 3127 3128 // Drop into default successor. 3129 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3130 MVT::Other, getControlRoot(), 3131 DAG.getBasicBlock(Return))); 3132 } 3133 3134 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3135 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3136 } 3137 3138 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3139 assert(FuncInfo.MBB->isEHPad() && 3140 "Call to landingpad not in landing pad!"); 3141 3142 // If there aren't registers to copy the values into (e.g., during SjLj 3143 // exceptions), then don't bother to create these DAG nodes. 3144 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3145 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3146 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3147 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3148 return; 3149 3150 // If landingpad's return type is token type, we don't create DAG nodes 3151 // for its exception pointer and selector value. The extraction of exception 3152 // pointer or selector value from token type landingpads is not currently 3153 // supported. 3154 if (LP.getType()->isTokenTy()) 3155 return; 3156 3157 SmallVector<EVT, 2> ValueVTs; 3158 SDLoc dl = getCurSDLoc(); 3159 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3160 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3161 3162 // Get the two live-in registers as SDValues. The physregs have already been 3163 // copied into virtual registers. 3164 SDValue Ops[2]; 3165 if (FuncInfo.ExceptionPointerVirtReg) { 3166 Ops[0] = DAG.getZExtOrTrunc( 3167 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3168 FuncInfo.ExceptionPointerVirtReg, 3169 TLI.getPointerTy(DAG.getDataLayout())), 3170 dl, ValueVTs[0]); 3171 } else { 3172 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3173 } 3174 Ops[1] = DAG.getZExtOrTrunc( 3175 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3176 FuncInfo.ExceptionSelectorVirtReg, 3177 TLI.getPointerTy(DAG.getDataLayout())), 3178 dl, ValueVTs[1]); 3179 3180 // Merge into one. 3181 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3182 DAG.getVTList(ValueVTs), Ops); 3183 setValue(&LP, Res); 3184 } 3185 3186 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3187 MachineBasicBlock *Last) { 3188 // Update JTCases. 3189 for (JumpTableBlock &JTB : SL->JTCases) 3190 if (JTB.first.HeaderBB == First) 3191 JTB.first.HeaderBB = Last; 3192 3193 // Update BitTestCases. 3194 for (BitTestBlock &BTB : SL->BitTestCases) 3195 if (BTB.Parent == First) 3196 BTB.Parent = Last; 3197 } 3198 3199 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3200 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3201 3202 // Update machine-CFG edges with unique successors. 3203 SmallSet<BasicBlock*, 32> Done; 3204 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3205 BasicBlock *BB = I.getSuccessor(i); 3206 bool Inserted = Done.insert(BB).second; 3207 if (!Inserted) 3208 continue; 3209 3210 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3211 addSuccessorWithProb(IndirectBrMBB, Succ); 3212 } 3213 IndirectBrMBB->normalizeSuccProbs(); 3214 3215 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3216 MVT::Other, getControlRoot(), 3217 getValue(I.getAddress()))); 3218 } 3219 3220 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3221 if (!DAG.getTarget().Options.TrapUnreachable) 3222 return; 3223 3224 // We may be able to ignore unreachable behind a noreturn call. 3225 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3226 const BasicBlock &BB = *I.getParent(); 3227 if (&I != &BB.front()) { 3228 BasicBlock::const_iterator PredI = 3229 std::prev(BasicBlock::const_iterator(&I)); 3230 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3231 if (Call->doesNotReturn()) 3232 return; 3233 } 3234 } 3235 } 3236 3237 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3238 } 3239 3240 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3241 SDNodeFlags Flags; 3242 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3243 Flags.copyFMF(*FPOp); 3244 3245 SDValue Op = getValue(I.getOperand(0)); 3246 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3247 Op, Flags); 3248 setValue(&I, UnNodeValue); 3249 } 3250 3251 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3252 SDNodeFlags Flags; 3253 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3254 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3255 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3256 } 3257 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3258 Flags.setExact(ExactOp->isExact()); 3259 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3260 Flags.copyFMF(*FPOp); 3261 3262 SDValue Op1 = getValue(I.getOperand(0)); 3263 SDValue Op2 = getValue(I.getOperand(1)); 3264 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3265 Op1, Op2, Flags); 3266 setValue(&I, BinNodeValue); 3267 } 3268 3269 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3270 SDValue Op1 = getValue(I.getOperand(0)); 3271 SDValue Op2 = getValue(I.getOperand(1)); 3272 3273 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3274 Op1.getValueType(), DAG.getDataLayout()); 3275 3276 // Coerce the shift amount to the right type if we can. This exposes the 3277 // truncate or zext to optimization early. 3278 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3279 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3280 "Unexpected shift type"); 3281 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3282 } 3283 3284 bool nuw = false; 3285 bool nsw = false; 3286 bool exact = false; 3287 3288 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3289 3290 if (const OverflowingBinaryOperator *OFBinOp = 3291 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3292 nuw = OFBinOp->hasNoUnsignedWrap(); 3293 nsw = OFBinOp->hasNoSignedWrap(); 3294 } 3295 if (const PossiblyExactOperator *ExactOp = 3296 dyn_cast<const PossiblyExactOperator>(&I)) 3297 exact = ExactOp->isExact(); 3298 } 3299 SDNodeFlags Flags; 3300 Flags.setExact(exact); 3301 Flags.setNoSignedWrap(nsw); 3302 Flags.setNoUnsignedWrap(nuw); 3303 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3304 Flags); 3305 setValue(&I, Res); 3306 } 3307 3308 void SelectionDAGBuilder::visitSDiv(const User &I) { 3309 SDValue Op1 = getValue(I.getOperand(0)); 3310 SDValue Op2 = getValue(I.getOperand(1)); 3311 3312 SDNodeFlags Flags; 3313 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3314 cast<PossiblyExactOperator>(&I)->isExact()); 3315 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3316 Op2, Flags)); 3317 } 3318 3319 void SelectionDAGBuilder::visitICmp(const User &I) { 3320 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3321 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3322 predicate = IC->getPredicate(); 3323 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3324 predicate = ICmpInst::Predicate(IC->getPredicate()); 3325 SDValue Op1 = getValue(I.getOperand(0)); 3326 SDValue Op2 = getValue(I.getOperand(1)); 3327 ISD::CondCode Opcode = getICmpCondCode(predicate); 3328 3329 auto &TLI = DAG.getTargetLoweringInfo(); 3330 EVT MemVT = 3331 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3332 3333 // If a pointer's DAG type is larger than its memory type then the DAG values 3334 // are zero-extended. This breaks signed comparisons so truncate back to the 3335 // underlying type before doing the compare. 3336 if (Op1.getValueType() != MemVT) { 3337 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3338 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3339 } 3340 3341 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3342 I.getType()); 3343 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3344 } 3345 3346 void SelectionDAGBuilder::visitFCmp(const User &I) { 3347 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3348 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3349 predicate = FC->getPredicate(); 3350 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3351 predicate = FCmpInst::Predicate(FC->getPredicate()); 3352 SDValue Op1 = getValue(I.getOperand(0)); 3353 SDValue Op2 = getValue(I.getOperand(1)); 3354 3355 ISD::CondCode Condition = getFCmpCondCode(predicate); 3356 auto *FPMO = cast<FPMathOperator>(&I); 3357 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3358 Condition = getFCmpCodeWithoutNaN(Condition); 3359 3360 SDNodeFlags Flags; 3361 Flags.copyFMF(*FPMO); 3362 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3363 3364 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3365 I.getType()); 3366 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3367 } 3368 3369 // Check if the condition of the select has one use or two users that are both 3370 // selects with the same condition. 3371 static bool hasOnlySelectUsers(const Value *Cond) { 3372 return llvm::all_of(Cond->users(), [](const Value *V) { 3373 return isa<SelectInst>(V); 3374 }); 3375 } 3376 3377 void SelectionDAGBuilder::visitSelect(const User &I) { 3378 SmallVector<EVT, 4> ValueVTs; 3379 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3380 ValueVTs); 3381 unsigned NumValues = ValueVTs.size(); 3382 if (NumValues == 0) return; 3383 3384 SmallVector<SDValue, 4> Values(NumValues); 3385 SDValue Cond = getValue(I.getOperand(0)); 3386 SDValue LHSVal = getValue(I.getOperand(1)); 3387 SDValue RHSVal = getValue(I.getOperand(2)); 3388 SmallVector<SDValue, 1> BaseOps(1, Cond); 3389 ISD::NodeType OpCode = 3390 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3391 3392 bool IsUnaryAbs = false; 3393 bool Negate = false; 3394 3395 SDNodeFlags Flags; 3396 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3397 Flags.copyFMF(*FPOp); 3398 3399 Flags.setUnpredictable( 3400 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3401 3402 // Min/max matching is only viable if all output VTs are the same. 3403 if (all_equal(ValueVTs)) { 3404 EVT VT = ValueVTs[0]; 3405 LLVMContext &Ctx = *DAG.getContext(); 3406 auto &TLI = DAG.getTargetLoweringInfo(); 3407 3408 // We care about the legality of the operation after it has been type 3409 // legalized. 3410 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3411 VT = TLI.getTypeToTransformTo(Ctx, VT); 3412 3413 // If the vselect is legal, assume we want to leave this as a vector setcc + 3414 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3415 // min/max is legal on the scalar type. 3416 bool UseScalarMinMax = VT.isVector() && 3417 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3418 3419 // ValueTracking's select pattern matching does not account for -0.0, 3420 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3421 // -0.0 is less than +0.0. 3422 Value *LHS, *RHS; 3423 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3424 ISD::NodeType Opc = ISD::DELETED_NODE; 3425 switch (SPR.Flavor) { 3426 case SPF_UMAX: Opc = ISD::UMAX; break; 3427 case SPF_UMIN: Opc = ISD::UMIN; break; 3428 case SPF_SMAX: Opc = ISD::SMAX; break; 3429 case SPF_SMIN: Opc = ISD::SMIN; break; 3430 case SPF_FMINNUM: 3431 switch (SPR.NaNBehavior) { 3432 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3433 case SPNB_RETURNS_NAN: break; 3434 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3435 case SPNB_RETURNS_ANY: 3436 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3437 (UseScalarMinMax && 3438 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3439 Opc = ISD::FMINNUM; 3440 break; 3441 } 3442 break; 3443 case SPF_FMAXNUM: 3444 switch (SPR.NaNBehavior) { 3445 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3446 case SPNB_RETURNS_NAN: break; 3447 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3448 case SPNB_RETURNS_ANY: 3449 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3450 (UseScalarMinMax && 3451 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3452 Opc = ISD::FMAXNUM; 3453 break; 3454 } 3455 break; 3456 case SPF_NABS: 3457 Negate = true; 3458 [[fallthrough]]; 3459 case SPF_ABS: 3460 IsUnaryAbs = true; 3461 Opc = ISD::ABS; 3462 break; 3463 default: break; 3464 } 3465 3466 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3467 (TLI.isOperationLegalOrCustom(Opc, VT) || 3468 (UseScalarMinMax && 3469 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3470 // If the underlying comparison instruction is used by any other 3471 // instruction, the consumed instructions won't be destroyed, so it is 3472 // not profitable to convert to a min/max. 3473 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3474 OpCode = Opc; 3475 LHSVal = getValue(LHS); 3476 RHSVal = getValue(RHS); 3477 BaseOps.clear(); 3478 } 3479 3480 if (IsUnaryAbs) { 3481 OpCode = Opc; 3482 LHSVal = getValue(LHS); 3483 BaseOps.clear(); 3484 } 3485 } 3486 3487 if (IsUnaryAbs) { 3488 for (unsigned i = 0; i != NumValues; ++i) { 3489 SDLoc dl = getCurSDLoc(); 3490 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3491 Values[i] = 3492 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3493 if (Negate) 3494 Values[i] = DAG.getNegative(Values[i], dl, VT); 3495 } 3496 } else { 3497 for (unsigned i = 0; i != NumValues; ++i) { 3498 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3499 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3500 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3501 Values[i] = DAG.getNode( 3502 OpCode, getCurSDLoc(), 3503 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3504 } 3505 } 3506 3507 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3508 DAG.getVTList(ValueVTs), Values)); 3509 } 3510 3511 void SelectionDAGBuilder::visitTrunc(const User &I) { 3512 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3513 SDValue N = getValue(I.getOperand(0)); 3514 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3515 I.getType()); 3516 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3517 } 3518 3519 void SelectionDAGBuilder::visitZExt(const User &I) { 3520 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3521 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3522 SDValue N = getValue(I.getOperand(0)); 3523 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3524 I.getType()); 3525 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3526 } 3527 3528 void SelectionDAGBuilder::visitSExt(const User &I) { 3529 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3530 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3531 SDValue N = getValue(I.getOperand(0)); 3532 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3533 I.getType()); 3534 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3535 } 3536 3537 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3538 // FPTrunc is never a no-op cast, no need to check 3539 SDValue N = getValue(I.getOperand(0)); 3540 SDLoc dl = getCurSDLoc(); 3541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3542 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3543 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3544 DAG.getTargetConstant( 3545 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3546 } 3547 3548 void SelectionDAGBuilder::visitFPExt(const User &I) { 3549 // FPExt is never a no-op cast, no need to check 3550 SDValue N = getValue(I.getOperand(0)); 3551 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3552 I.getType()); 3553 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3554 } 3555 3556 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3557 // FPToUI is never a no-op cast, no need to check 3558 SDValue N = getValue(I.getOperand(0)); 3559 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3560 I.getType()); 3561 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3562 } 3563 3564 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3565 // FPToSI is never a no-op cast, no need to check 3566 SDValue N = getValue(I.getOperand(0)); 3567 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3568 I.getType()); 3569 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3570 } 3571 3572 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3573 // UIToFP is never a no-op cast, no need to check 3574 SDValue N = getValue(I.getOperand(0)); 3575 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3576 I.getType()); 3577 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3578 } 3579 3580 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3581 // SIToFP is never a no-op cast, no need to check 3582 SDValue N = getValue(I.getOperand(0)); 3583 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3584 I.getType()); 3585 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3586 } 3587 3588 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3589 // What to do depends on the size of the integer and the size of the pointer. 3590 // We can either truncate, zero extend, or no-op, accordingly. 3591 SDValue N = getValue(I.getOperand(0)); 3592 auto &TLI = DAG.getTargetLoweringInfo(); 3593 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3594 I.getType()); 3595 EVT PtrMemVT = 3596 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3597 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3598 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3599 setValue(&I, N); 3600 } 3601 3602 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3603 // What to do depends on the size of the integer and the size of the pointer. 3604 // We can either truncate, zero extend, or no-op, accordingly. 3605 SDValue N = getValue(I.getOperand(0)); 3606 auto &TLI = DAG.getTargetLoweringInfo(); 3607 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3608 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3609 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3610 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3611 setValue(&I, N); 3612 } 3613 3614 void SelectionDAGBuilder::visitBitCast(const User &I) { 3615 SDValue N = getValue(I.getOperand(0)); 3616 SDLoc dl = getCurSDLoc(); 3617 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3618 I.getType()); 3619 3620 // BitCast assures us that source and destination are the same size so this is 3621 // either a BITCAST or a no-op. 3622 if (DestVT != N.getValueType()) 3623 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3624 DestVT, N)); // convert types. 3625 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3626 // might fold any kind of constant expression to an integer constant and that 3627 // is not what we are looking for. Only recognize a bitcast of a genuine 3628 // constant integer as an opaque constant. 3629 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3630 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3631 /*isOpaque*/true)); 3632 else 3633 setValue(&I, N); // noop cast. 3634 } 3635 3636 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3638 const Value *SV = I.getOperand(0); 3639 SDValue N = getValue(SV); 3640 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3641 3642 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3643 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3644 3645 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3646 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3647 3648 setValue(&I, N); 3649 } 3650 3651 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3653 SDValue InVec = getValue(I.getOperand(0)); 3654 SDValue InVal = getValue(I.getOperand(1)); 3655 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3656 TLI.getVectorIdxTy(DAG.getDataLayout())); 3657 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3658 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3659 InVec, InVal, InIdx)); 3660 } 3661 3662 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3664 SDValue InVec = getValue(I.getOperand(0)); 3665 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3666 TLI.getVectorIdxTy(DAG.getDataLayout())); 3667 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3668 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3669 InVec, InIdx)); 3670 } 3671 3672 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3673 SDValue Src1 = getValue(I.getOperand(0)); 3674 SDValue Src2 = getValue(I.getOperand(1)); 3675 ArrayRef<int> Mask; 3676 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3677 Mask = SVI->getShuffleMask(); 3678 else 3679 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3680 SDLoc DL = getCurSDLoc(); 3681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3682 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3683 EVT SrcVT = Src1.getValueType(); 3684 3685 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3686 VT.isScalableVector()) { 3687 // Canonical splat form of first element of first input vector. 3688 SDValue FirstElt = 3689 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3690 DAG.getVectorIdxConstant(0, DL)); 3691 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3692 return; 3693 } 3694 3695 // For now, we only handle splats for scalable vectors. 3696 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3697 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3698 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3699 3700 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3701 unsigned MaskNumElts = Mask.size(); 3702 3703 if (SrcNumElts == MaskNumElts) { 3704 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3705 return; 3706 } 3707 3708 // Normalize the shuffle vector since mask and vector length don't match. 3709 if (SrcNumElts < MaskNumElts) { 3710 // Mask is longer than the source vectors. We can use concatenate vector to 3711 // make the mask and vectors lengths match. 3712 3713 if (MaskNumElts % SrcNumElts == 0) { 3714 // Mask length is a multiple of the source vector length. 3715 // Check if the shuffle is some kind of concatenation of the input 3716 // vectors. 3717 unsigned NumConcat = MaskNumElts / SrcNumElts; 3718 bool IsConcat = true; 3719 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3720 for (unsigned i = 0; i != MaskNumElts; ++i) { 3721 int Idx = Mask[i]; 3722 if (Idx < 0) 3723 continue; 3724 // Ensure the indices in each SrcVT sized piece are sequential and that 3725 // the same source is used for the whole piece. 3726 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3727 (ConcatSrcs[i / SrcNumElts] >= 0 && 3728 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3729 IsConcat = false; 3730 break; 3731 } 3732 // Remember which source this index came from. 3733 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3734 } 3735 3736 // The shuffle is concatenating multiple vectors together. Just emit 3737 // a CONCAT_VECTORS operation. 3738 if (IsConcat) { 3739 SmallVector<SDValue, 8> ConcatOps; 3740 for (auto Src : ConcatSrcs) { 3741 if (Src < 0) 3742 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3743 else if (Src == 0) 3744 ConcatOps.push_back(Src1); 3745 else 3746 ConcatOps.push_back(Src2); 3747 } 3748 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3749 return; 3750 } 3751 } 3752 3753 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3754 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3755 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3756 PaddedMaskNumElts); 3757 3758 // Pad both vectors with undefs to make them the same length as the mask. 3759 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3760 3761 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3762 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3763 MOps1[0] = Src1; 3764 MOps2[0] = Src2; 3765 3766 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3767 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3768 3769 // Readjust mask for new input vector length. 3770 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3771 for (unsigned i = 0; i != MaskNumElts; ++i) { 3772 int Idx = Mask[i]; 3773 if (Idx >= (int)SrcNumElts) 3774 Idx -= SrcNumElts - PaddedMaskNumElts; 3775 MappedOps[i] = Idx; 3776 } 3777 3778 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3779 3780 // If the concatenated vector was padded, extract a subvector with the 3781 // correct number of elements. 3782 if (MaskNumElts != PaddedMaskNumElts) 3783 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3784 DAG.getVectorIdxConstant(0, DL)); 3785 3786 setValue(&I, Result); 3787 return; 3788 } 3789 3790 if (SrcNumElts > MaskNumElts) { 3791 // Analyze the access pattern of the vector to see if we can extract 3792 // two subvectors and do the shuffle. 3793 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3794 bool CanExtract = true; 3795 for (int Idx : Mask) { 3796 unsigned Input = 0; 3797 if (Idx < 0) 3798 continue; 3799 3800 if (Idx >= (int)SrcNumElts) { 3801 Input = 1; 3802 Idx -= SrcNumElts; 3803 } 3804 3805 // If all the indices come from the same MaskNumElts sized portion of 3806 // the sources we can use extract. Also make sure the extract wouldn't 3807 // extract past the end of the source. 3808 int NewStartIdx = alignDown(Idx, MaskNumElts); 3809 if (NewStartIdx + MaskNumElts > SrcNumElts || 3810 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3811 CanExtract = false; 3812 // Make sure we always update StartIdx as we use it to track if all 3813 // elements are undef. 3814 StartIdx[Input] = NewStartIdx; 3815 } 3816 3817 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3818 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3819 return; 3820 } 3821 if (CanExtract) { 3822 // Extract appropriate subvector and generate a vector shuffle 3823 for (unsigned Input = 0; Input < 2; ++Input) { 3824 SDValue &Src = Input == 0 ? Src1 : Src2; 3825 if (StartIdx[Input] < 0) 3826 Src = DAG.getUNDEF(VT); 3827 else { 3828 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3829 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3830 } 3831 } 3832 3833 // Calculate new mask. 3834 SmallVector<int, 8> MappedOps(Mask); 3835 for (int &Idx : MappedOps) { 3836 if (Idx >= (int)SrcNumElts) 3837 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3838 else if (Idx >= 0) 3839 Idx -= StartIdx[0]; 3840 } 3841 3842 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3843 return; 3844 } 3845 } 3846 3847 // We can't use either concat vectors or extract subvectors so fall back to 3848 // replacing the shuffle with extract and build vector. 3849 // to insert and build vector. 3850 EVT EltVT = VT.getVectorElementType(); 3851 SmallVector<SDValue,8> Ops; 3852 for (int Idx : Mask) { 3853 SDValue Res; 3854 3855 if (Idx < 0) { 3856 Res = DAG.getUNDEF(EltVT); 3857 } else { 3858 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3859 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3860 3861 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3862 DAG.getVectorIdxConstant(Idx, DL)); 3863 } 3864 3865 Ops.push_back(Res); 3866 } 3867 3868 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3869 } 3870 3871 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3872 ArrayRef<unsigned> Indices = I.getIndices(); 3873 const Value *Op0 = I.getOperand(0); 3874 const Value *Op1 = I.getOperand(1); 3875 Type *AggTy = I.getType(); 3876 Type *ValTy = Op1->getType(); 3877 bool IntoUndef = isa<UndefValue>(Op0); 3878 bool FromUndef = isa<UndefValue>(Op1); 3879 3880 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3881 3882 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3883 SmallVector<EVT, 4> AggValueVTs; 3884 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3885 SmallVector<EVT, 4> ValValueVTs; 3886 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3887 3888 unsigned NumAggValues = AggValueVTs.size(); 3889 unsigned NumValValues = ValValueVTs.size(); 3890 SmallVector<SDValue, 4> Values(NumAggValues); 3891 3892 // Ignore an insertvalue that produces an empty object 3893 if (!NumAggValues) { 3894 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3895 return; 3896 } 3897 3898 SDValue Agg = getValue(Op0); 3899 unsigned i = 0; 3900 // Copy the beginning value(s) from the original aggregate. 3901 for (; i != LinearIndex; ++i) 3902 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3903 SDValue(Agg.getNode(), Agg.getResNo() + i); 3904 // Copy values from the inserted value(s). 3905 if (NumValValues) { 3906 SDValue Val = getValue(Op1); 3907 for (; i != LinearIndex + NumValValues; ++i) 3908 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3909 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3910 } 3911 // Copy remaining value(s) from the original aggregate. 3912 for (; i != NumAggValues; ++i) 3913 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3914 SDValue(Agg.getNode(), Agg.getResNo() + i); 3915 3916 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3917 DAG.getVTList(AggValueVTs), Values)); 3918 } 3919 3920 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3921 ArrayRef<unsigned> Indices = I.getIndices(); 3922 const Value *Op0 = I.getOperand(0); 3923 Type *AggTy = Op0->getType(); 3924 Type *ValTy = I.getType(); 3925 bool OutOfUndef = isa<UndefValue>(Op0); 3926 3927 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3928 3929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3930 SmallVector<EVT, 4> ValValueVTs; 3931 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3932 3933 unsigned NumValValues = ValValueVTs.size(); 3934 3935 // Ignore a extractvalue that produces an empty object 3936 if (!NumValValues) { 3937 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3938 return; 3939 } 3940 3941 SmallVector<SDValue, 4> Values(NumValValues); 3942 3943 SDValue Agg = getValue(Op0); 3944 // Copy out the selected value(s). 3945 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3946 Values[i - LinearIndex] = 3947 OutOfUndef ? 3948 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3949 SDValue(Agg.getNode(), Agg.getResNo() + i); 3950 3951 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3952 DAG.getVTList(ValValueVTs), Values)); 3953 } 3954 3955 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3956 Value *Op0 = I.getOperand(0); 3957 // Note that the pointer operand may be a vector of pointers. Take the scalar 3958 // element which holds a pointer. 3959 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3960 SDValue N = getValue(Op0); 3961 SDLoc dl = getCurSDLoc(); 3962 auto &TLI = DAG.getTargetLoweringInfo(); 3963 3964 // Normalize Vector GEP - all scalar operands should be converted to the 3965 // splat vector. 3966 bool IsVectorGEP = I.getType()->isVectorTy(); 3967 ElementCount VectorElementCount = 3968 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3969 : ElementCount::getFixed(0); 3970 3971 if (IsVectorGEP && !N.getValueType().isVector()) { 3972 LLVMContext &Context = *DAG.getContext(); 3973 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3974 N = DAG.getSplat(VT, dl, N); 3975 } 3976 3977 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3978 GTI != E; ++GTI) { 3979 const Value *Idx = GTI.getOperand(); 3980 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3981 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3982 if (Field) { 3983 // N = N + Offset 3984 uint64_t Offset = 3985 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3986 3987 // In an inbounds GEP with an offset that is nonnegative even when 3988 // interpreted as signed, assume there is no unsigned overflow. 3989 SDNodeFlags Flags; 3990 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3991 Flags.setNoUnsignedWrap(true); 3992 3993 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3994 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3995 } 3996 } else { 3997 // IdxSize is the width of the arithmetic according to IR semantics. 3998 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3999 // (and fix up the result later). 4000 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4001 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4002 TypeSize ElementSize = 4003 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4004 // We intentionally mask away the high bits here; ElementSize may not 4005 // fit in IdxTy. 4006 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4007 bool ElementScalable = ElementSize.isScalable(); 4008 4009 // If this is a scalar constant or a splat vector of constants, 4010 // handle it quickly. 4011 const auto *C = dyn_cast<Constant>(Idx); 4012 if (C && isa<VectorType>(C->getType())) 4013 C = C->getSplatValue(); 4014 4015 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4016 if (CI && CI->isZero()) 4017 continue; 4018 if (CI && !ElementScalable) { 4019 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4020 LLVMContext &Context = *DAG.getContext(); 4021 SDValue OffsVal; 4022 if (IsVectorGEP) 4023 OffsVal = DAG.getConstant( 4024 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4025 else 4026 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4027 4028 // In an inbounds GEP with an offset that is nonnegative even when 4029 // interpreted as signed, assume there is no unsigned overflow. 4030 SDNodeFlags Flags; 4031 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4032 Flags.setNoUnsignedWrap(true); 4033 4034 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4035 4036 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4037 continue; 4038 } 4039 4040 // N = N + Idx * ElementMul; 4041 SDValue IdxN = getValue(Idx); 4042 4043 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4044 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4045 VectorElementCount); 4046 IdxN = DAG.getSplat(VT, dl, IdxN); 4047 } 4048 4049 // If the index is smaller or larger than intptr_t, truncate or extend 4050 // it. 4051 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4052 4053 if (ElementScalable) { 4054 EVT VScaleTy = N.getValueType().getScalarType(); 4055 SDValue VScale = DAG.getNode( 4056 ISD::VSCALE, dl, VScaleTy, 4057 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4058 if (IsVectorGEP) 4059 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4060 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4061 } else { 4062 // If this is a multiply by a power of two, turn it into a shl 4063 // immediately. This is a very common case. 4064 if (ElementMul != 1) { 4065 if (ElementMul.isPowerOf2()) { 4066 unsigned Amt = ElementMul.logBase2(); 4067 IdxN = DAG.getNode(ISD::SHL, dl, 4068 N.getValueType(), IdxN, 4069 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4070 } else { 4071 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4072 IdxN.getValueType()); 4073 IdxN = DAG.getNode(ISD::MUL, dl, 4074 N.getValueType(), IdxN, Scale); 4075 } 4076 } 4077 } 4078 4079 N = DAG.getNode(ISD::ADD, dl, 4080 N.getValueType(), N, IdxN); 4081 } 4082 } 4083 4084 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4085 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4086 if (IsVectorGEP) { 4087 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4088 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4089 } 4090 4091 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4092 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4093 4094 setValue(&I, N); 4095 } 4096 4097 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4098 // If this is a fixed sized alloca in the entry block of the function, 4099 // allocate it statically on the stack. 4100 if (FuncInfo.StaticAllocaMap.count(&I)) 4101 return; // getValue will auto-populate this. 4102 4103 SDLoc dl = getCurSDLoc(); 4104 Type *Ty = I.getAllocatedType(); 4105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4106 auto &DL = DAG.getDataLayout(); 4107 TypeSize TySize = DL.getTypeAllocSize(Ty); 4108 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4109 4110 SDValue AllocSize = getValue(I.getArraySize()); 4111 4112 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4113 if (AllocSize.getValueType() != IntPtr) 4114 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4115 4116 if (TySize.isScalable()) 4117 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4118 DAG.getVScale(dl, IntPtr, 4119 APInt(IntPtr.getScalarSizeInBits(), 4120 TySize.getKnownMinValue()))); 4121 else 4122 AllocSize = 4123 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4124 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4125 4126 // Handle alignment. If the requested alignment is less than or equal to 4127 // the stack alignment, ignore it. If the size is greater than or equal to 4128 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4129 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4130 if (*Alignment <= StackAlign) 4131 Alignment = std::nullopt; 4132 4133 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4134 // Round the size of the allocation up to the stack alignment size 4135 // by add SA-1 to the size. This doesn't overflow because we're computing 4136 // an address inside an alloca. 4137 SDNodeFlags Flags; 4138 Flags.setNoUnsignedWrap(true); 4139 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4140 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4141 4142 // Mask out the low bits for alignment purposes. 4143 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4144 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4145 4146 SDValue Ops[] = { 4147 getRoot(), AllocSize, 4148 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4149 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4150 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4151 setValue(&I, DSA); 4152 DAG.setRoot(DSA.getValue(1)); 4153 4154 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4155 } 4156 4157 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4158 if (I.isAtomic()) 4159 return visitAtomicLoad(I); 4160 4161 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4162 const Value *SV = I.getOperand(0); 4163 if (TLI.supportSwiftError()) { 4164 // Swifterror values can come from either a function parameter with 4165 // swifterror attribute or an alloca with swifterror attribute. 4166 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4167 if (Arg->hasSwiftErrorAttr()) 4168 return visitLoadFromSwiftError(I); 4169 } 4170 4171 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4172 if (Alloca->isSwiftError()) 4173 return visitLoadFromSwiftError(I); 4174 } 4175 } 4176 4177 SDValue Ptr = getValue(SV); 4178 4179 Type *Ty = I.getType(); 4180 SmallVector<EVT, 4> ValueVTs, MemVTs; 4181 SmallVector<uint64_t, 4> Offsets; 4182 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4183 unsigned NumValues = ValueVTs.size(); 4184 if (NumValues == 0) 4185 return; 4186 4187 Align Alignment = I.getAlign(); 4188 AAMDNodes AAInfo = I.getAAMetadata(); 4189 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4190 bool isVolatile = I.isVolatile(); 4191 MachineMemOperand::Flags MMOFlags = 4192 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4193 4194 SDValue Root; 4195 bool ConstantMemory = false; 4196 if (isVolatile) 4197 // Serialize volatile loads with other side effects. 4198 Root = getRoot(); 4199 else if (NumValues > MaxParallelChains) 4200 Root = getMemoryRoot(); 4201 else if (AA && 4202 AA->pointsToConstantMemory(MemoryLocation( 4203 SV, 4204 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4205 AAInfo))) { 4206 // Do not serialize (non-volatile) loads of constant memory with anything. 4207 Root = DAG.getEntryNode(); 4208 ConstantMemory = true; 4209 MMOFlags |= MachineMemOperand::MOInvariant; 4210 } else { 4211 // Do not serialize non-volatile loads against each other. 4212 Root = DAG.getRoot(); 4213 } 4214 4215 SDLoc dl = getCurSDLoc(); 4216 4217 if (isVolatile) 4218 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4219 4220 // An aggregate load cannot wrap around the address space, so offsets to its 4221 // parts don't wrap either. 4222 SDNodeFlags Flags; 4223 Flags.setNoUnsignedWrap(true); 4224 4225 SmallVector<SDValue, 4> Values(NumValues); 4226 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4227 EVT PtrVT = Ptr.getValueType(); 4228 4229 unsigned ChainI = 0; 4230 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4231 // Serializing loads here may result in excessive register pressure, and 4232 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4233 // could recover a bit by hoisting nodes upward in the chain by recognizing 4234 // they are side-effect free or do not alias. The optimizer should really 4235 // avoid this case by converting large object/array copies to llvm.memcpy 4236 // (MaxParallelChains should always remain as failsafe). 4237 if (ChainI == MaxParallelChains) { 4238 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4239 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4240 ArrayRef(Chains.data(), ChainI)); 4241 Root = Chain; 4242 ChainI = 0; 4243 } 4244 SDValue A = DAG.getNode(ISD::ADD, dl, 4245 PtrVT, Ptr, 4246 DAG.getConstant(Offsets[i], dl, PtrVT), 4247 Flags); 4248 4249 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4250 MachinePointerInfo(SV, Offsets[i]), Alignment, 4251 MMOFlags, AAInfo, Ranges); 4252 Chains[ChainI] = L.getValue(1); 4253 4254 if (MemVTs[i] != ValueVTs[i]) 4255 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4256 4257 Values[i] = L; 4258 } 4259 4260 if (!ConstantMemory) { 4261 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4262 ArrayRef(Chains.data(), ChainI)); 4263 if (isVolatile) 4264 DAG.setRoot(Chain); 4265 else 4266 PendingLoads.push_back(Chain); 4267 } 4268 4269 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4270 DAG.getVTList(ValueVTs), Values)); 4271 } 4272 4273 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4274 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4275 "call visitStoreToSwiftError when backend supports swifterror"); 4276 4277 SmallVector<EVT, 4> ValueVTs; 4278 SmallVector<uint64_t, 4> Offsets; 4279 const Value *SrcV = I.getOperand(0); 4280 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4281 SrcV->getType(), ValueVTs, &Offsets, 0); 4282 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4283 "expect a single EVT for swifterror"); 4284 4285 SDValue Src = getValue(SrcV); 4286 // Create a virtual register, then update the virtual register. 4287 Register VReg = 4288 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4289 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4290 // Chain can be getRoot or getControlRoot. 4291 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4292 SDValue(Src.getNode(), Src.getResNo())); 4293 DAG.setRoot(CopyNode); 4294 } 4295 4296 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4297 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4298 "call visitLoadFromSwiftError when backend supports swifterror"); 4299 4300 assert(!I.isVolatile() && 4301 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4302 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4303 "Support volatile, non temporal, invariant for load_from_swift_error"); 4304 4305 const Value *SV = I.getOperand(0); 4306 Type *Ty = I.getType(); 4307 assert( 4308 (!AA || 4309 !AA->pointsToConstantMemory(MemoryLocation( 4310 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4311 I.getAAMetadata()))) && 4312 "load_from_swift_error should not be constant memory"); 4313 4314 SmallVector<EVT, 4> ValueVTs; 4315 SmallVector<uint64_t, 4> Offsets; 4316 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4317 ValueVTs, &Offsets, 0); 4318 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4319 "expect a single EVT for swifterror"); 4320 4321 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4322 SDValue L = DAG.getCopyFromReg( 4323 getRoot(), getCurSDLoc(), 4324 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4325 4326 setValue(&I, L); 4327 } 4328 4329 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4330 if (I.isAtomic()) 4331 return visitAtomicStore(I); 4332 4333 const Value *SrcV = I.getOperand(0); 4334 const Value *PtrV = I.getOperand(1); 4335 4336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4337 if (TLI.supportSwiftError()) { 4338 // Swifterror values can come from either a function parameter with 4339 // swifterror attribute or an alloca with swifterror attribute. 4340 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4341 if (Arg->hasSwiftErrorAttr()) 4342 return visitStoreToSwiftError(I); 4343 } 4344 4345 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4346 if (Alloca->isSwiftError()) 4347 return visitStoreToSwiftError(I); 4348 } 4349 } 4350 4351 SmallVector<EVT, 4> ValueVTs, MemVTs; 4352 SmallVector<uint64_t, 4> Offsets; 4353 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4354 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4355 unsigned NumValues = ValueVTs.size(); 4356 if (NumValues == 0) 4357 return; 4358 4359 // Get the lowered operands. Note that we do this after 4360 // checking if NumResults is zero, because with zero results 4361 // the operands won't have values in the map. 4362 SDValue Src = getValue(SrcV); 4363 SDValue Ptr = getValue(PtrV); 4364 4365 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4366 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4367 SDLoc dl = getCurSDLoc(); 4368 Align Alignment = I.getAlign(); 4369 AAMDNodes AAInfo = I.getAAMetadata(); 4370 4371 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4372 4373 // An aggregate load cannot wrap around the address space, so offsets to its 4374 // parts don't wrap either. 4375 SDNodeFlags Flags; 4376 Flags.setNoUnsignedWrap(true); 4377 4378 unsigned ChainI = 0; 4379 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4380 // See visitLoad comments. 4381 if (ChainI == MaxParallelChains) { 4382 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4383 ArrayRef(Chains.data(), ChainI)); 4384 Root = Chain; 4385 ChainI = 0; 4386 } 4387 SDValue Add = 4388 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4389 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4390 if (MemVTs[i] != ValueVTs[i]) 4391 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4392 SDValue St = 4393 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4394 Alignment, MMOFlags, AAInfo); 4395 Chains[ChainI] = St; 4396 } 4397 4398 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4399 ArrayRef(Chains.data(), ChainI)); 4400 setValue(&I, StoreNode); 4401 DAG.setRoot(StoreNode); 4402 } 4403 4404 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4405 bool IsCompressing) { 4406 SDLoc sdl = getCurSDLoc(); 4407 4408 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4409 MaybeAlign &Alignment) { 4410 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4411 Src0 = I.getArgOperand(0); 4412 Ptr = I.getArgOperand(1); 4413 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4414 Mask = I.getArgOperand(3); 4415 }; 4416 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4417 MaybeAlign &Alignment) { 4418 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4419 Src0 = I.getArgOperand(0); 4420 Ptr = I.getArgOperand(1); 4421 Mask = I.getArgOperand(2); 4422 Alignment = std::nullopt; 4423 }; 4424 4425 Value *PtrOperand, *MaskOperand, *Src0Operand; 4426 MaybeAlign Alignment; 4427 if (IsCompressing) 4428 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4429 else 4430 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4431 4432 SDValue Ptr = getValue(PtrOperand); 4433 SDValue Src0 = getValue(Src0Operand); 4434 SDValue Mask = getValue(MaskOperand); 4435 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4436 4437 EVT VT = Src0.getValueType(); 4438 if (!Alignment) 4439 Alignment = DAG.getEVTAlign(VT); 4440 4441 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4442 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4443 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4444 SDValue StoreNode = 4445 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4446 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4447 DAG.setRoot(StoreNode); 4448 setValue(&I, StoreNode); 4449 } 4450 4451 // Get a uniform base for the Gather/Scatter intrinsic. 4452 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4453 // We try to represent it as a base pointer + vector of indices. 4454 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4455 // The first operand of the GEP may be a single pointer or a vector of pointers 4456 // Example: 4457 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4458 // or 4459 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4460 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4461 // 4462 // When the first GEP operand is a single pointer - it is the uniform base we 4463 // are looking for. If first operand of the GEP is a splat vector - we 4464 // extract the splat value and use it as a uniform base. 4465 // In all other cases the function returns 'false'. 4466 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4467 ISD::MemIndexType &IndexType, SDValue &Scale, 4468 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4469 uint64_t ElemSize) { 4470 SelectionDAG& DAG = SDB->DAG; 4471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4472 const DataLayout &DL = DAG.getDataLayout(); 4473 4474 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4475 4476 // Handle splat constant pointer. 4477 if (auto *C = dyn_cast<Constant>(Ptr)) { 4478 C = C->getSplatValue(); 4479 if (!C) 4480 return false; 4481 4482 Base = SDB->getValue(C); 4483 4484 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4485 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4486 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4487 IndexType = ISD::SIGNED_SCALED; 4488 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4489 return true; 4490 } 4491 4492 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4493 if (!GEP || GEP->getParent() != CurBB) 4494 return false; 4495 4496 if (GEP->getNumOperands() != 2) 4497 return false; 4498 4499 const Value *BasePtr = GEP->getPointerOperand(); 4500 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4501 4502 // Make sure the base is scalar and the index is a vector. 4503 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4504 return false; 4505 4506 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4507 if (ScaleVal.isScalable()) 4508 return false; 4509 4510 // Target may not support the required addressing mode. 4511 if (ScaleVal != 1 && 4512 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4513 return false; 4514 4515 Base = SDB->getValue(BasePtr); 4516 Index = SDB->getValue(IndexVal); 4517 IndexType = ISD::SIGNED_SCALED; 4518 4519 Scale = 4520 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4521 return true; 4522 } 4523 4524 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4525 SDLoc sdl = getCurSDLoc(); 4526 4527 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4528 const Value *Ptr = I.getArgOperand(1); 4529 SDValue Src0 = getValue(I.getArgOperand(0)); 4530 SDValue Mask = getValue(I.getArgOperand(3)); 4531 EVT VT = Src0.getValueType(); 4532 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4533 ->getMaybeAlignValue() 4534 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4536 4537 SDValue Base; 4538 SDValue Index; 4539 ISD::MemIndexType IndexType; 4540 SDValue Scale; 4541 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4542 I.getParent(), VT.getScalarStoreSize()); 4543 4544 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4545 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4546 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4547 // TODO: Make MachineMemOperands aware of scalable 4548 // vectors. 4549 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4550 if (!UniformBase) { 4551 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4552 Index = getValue(Ptr); 4553 IndexType = ISD::SIGNED_SCALED; 4554 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4555 } 4556 4557 EVT IdxVT = Index.getValueType(); 4558 EVT EltTy = IdxVT.getVectorElementType(); 4559 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4560 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4561 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4562 } 4563 4564 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4565 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4566 Ops, MMO, IndexType, false); 4567 DAG.setRoot(Scatter); 4568 setValue(&I, Scatter); 4569 } 4570 4571 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4572 SDLoc sdl = getCurSDLoc(); 4573 4574 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4575 MaybeAlign &Alignment) { 4576 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4577 Ptr = I.getArgOperand(0); 4578 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4579 Mask = I.getArgOperand(2); 4580 Src0 = I.getArgOperand(3); 4581 }; 4582 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4583 MaybeAlign &Alignment) { 4584 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4585 Ptr = I.getArgOperand(0); 4586 Alignment = std::nullopt; 4587 Mask = I.getArgOperand(1); 4588 Src0 = I.getArgOperand(2); 4589 }; 4590 4591 Value *PtrOperand, *MaskOperand, *Src0Operand; 4592 MaybeAlign Alignment; 4593 if (IsExpanding) 4594 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4595 else 4596 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4597 4598 SDValue Ptr = getValue(PtrOperand); 4599 SDValue Src0 = getValue(Src0Operand); 4600 SDValue Mask = getValue(MaskOperand); 4601 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4602 4603 EVT VT = Src0.getValueType(); 4604 if (!Alignment) 4605 Alignment = DAG.getEVTAlign(VT); 4606 4607 AAMDNodes AAInfo = I.getAAMetadata(); 4608 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4609 4610 // Do not serialize masked loads of constant memory with anything. 4611 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4612 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4613 4614 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4615 4616 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4617 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4618 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4619 4620 SDValue Load = 4621 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4622 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4623 if (AddToChain) 4624 PendingLoads.push_back(Load.getValue(1)); 4625 setValue(&I, Load); 4626 } 4627 4628 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4629 SDLoc sdl = getCurSDLoc(); 4630 4631 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4632 const Value *Ptr = I.getArgOperand(0); 4633 SDValue Src0 = getValue(I.getArgOperand(3)); 4634 SDValue Mask = getValue(I.getArgOperand(2)); 4635 4636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4637 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4638 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4639 ->getMaybeAlignValue() 4640 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4641 4642 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4643 4644 SDValue Root = DAG.getRoot(); 4645 SDValue Base; 4646 SDValue Index; 4647 ISD::MemIndexType IndexType; 4648 SDValue Scale; 4649 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4650 I.getParent(), VT.getScalarStoreSize()); 4651 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4652 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4653 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4654 // TODO: Make MachineMemOperands aware of scalable 4655 // vectors. 4656 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4657 4658 if (!UniformBase) { 4659 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4660 Index = getValue(Ptr); 4661 IndexType = ISD::SIGNED_SCALED; 4662 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4663 } 4664 4665 EVT IdxVT = Index.getValueType(); 4666 EVT EltTy = IdxVT.getVectorElementType(); 4667 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4668 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4669 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4670 } 4671 4672 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4673 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4674 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4675 4676 PendingLoads.push_back(Gather.getValue(1)); 4677 setValue(&I, Gather); 4678 } 4679 4680 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4681 SDLoc dl = getCurSDLoc(); 4682 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4683 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4684 SyncScope::ID SSID = I.getSyncScopeID(); 4685 4686 SDValue InChain = getRoot(); 4687 4688 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4689 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4690 4691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4692 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4693 4694 MachineFunction &MF = DAG.getMachineFunction(); 4695 MachineMemOperand *MMO = MF.getMachineMemOperand( 4696 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4697 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4698 FailureOrdering); 4699 4700 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4701 dl, MemVT, VTs, InChain, 4702 getValue(I.getPointerOperand()), 4703 getValue(I.getCompareOperand()), 4704 getValue(I.getNewValOperand()), MMO); 4705 4706 SDValue OutChain = L.getValue(2); 4707 4708 setValue(&I, L); 4709 DAG.setRoot(OutChain); 4710 } 4711 4712 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4713 SDLoc dl = getCurSDLoc(); 4714 ISD::NodeType NT; 4715 switch (I.getOperation()) { 4716 default: llvm_unreachable("Unknown atomicrmw operation"); 4717 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4718 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4719 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4720 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4721 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4722 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4723 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4724 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4725 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4726 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4727 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4728 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4729 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4730 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4731 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4732 case AtomicRMWInst::UIncWrap: 4733 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4734 break; 4735 case AtomicRMWInst::UDecWrap: 4736 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4737 break; 4738 } 4739 AtomicOrdering Ordering = I.getOrdering(); 4740 SyncScope::ID SSID = I.getSyncScopeID(); 4741 4742 SDValue InChain = getRoot(); 4743 4744 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4745 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4746 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4747 4748 MachineFunction &MF = DAG.getMachineFunction(); 4749 MachineMemOperand *MMO = MF.getMachineMemOperand( 4750 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4751 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4752 4753 SDValue L = 4754 DAG.getAtomic(NT, dl, MemVT, InChain, 4755 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4756 MMO); 4757 4758 SDValue OutChain = L.getValue(1); 4759 4760 setValue(&I, L); 4761 DAG.setRoot(OutChain); 4762 } 4763 4764 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4765 SDLoc dl = getCurSDLoc(); 4766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4767 SDValue Ops[3]; 4768 Ops[0] = getRoot(); 4769 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4770 TLI.getFenceOperandTy(DAG.getDataLayout())); 4771 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4772 TLI.getFenceOperandTy(DAG.getDataLayout())); 4773 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4774 setValue(&I, N); 4775 DAG.setRoot(N); 4776 } 4777 4778 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4779 SDLoc dl = getCurSDLoc(); 4780 AtomicOrdering Order = I.getOrdering(); 4781 SyncScope::ID SSID = I.getSyncScopeID(); 4782 4783 SDValue InChain = getRoot(); 4784 4785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4786 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4787 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4788 4789 if (!TLI.supportsUnalignedAtomics() && 4790 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4791 report_fatal_error("Cannot generate unaligned atomic load"); 4792 4793 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4794 4795 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4796 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4797 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4798 4799 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4800 4801 SDValue Ptr = getValue(I.getPointerOperand()); 4802 4803 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4804 // TODO: Once this is better exercised by tests, it should be merged with 4805 // the normal path for loads to prevent future divergence. 4806 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4807 if (MemVT != VT) 4808 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4809 4810 setValue(&I, L); 4811 SDValue OutChain = L.getValue(1); 4812 if (!I.isUnordered()) 4813 DAG.setRoot(OutChain); 4814 else 4815 PendingLoads.push_back(OutChain); 4816 return; 4817 } 4818 4819 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4820 Ptr, MMO); 4821 4822 SDValue OutChain = L.getValue(1); 4823 if (MemVT != VT) 4824 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4825 4826 setValue(&I, L); 4827 DAG.setRoot(OutChain); 4828 } 4829 4830 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4831 SDLoc dl = getCurSDLoc(); 4832 4833 AtomicOrdering Ordering = I.getOrdering(); 4834 SyncScope::ID SSID = I.getSyncScopeID(); 4835 4836 SDValue InChain = getRoot(); 4837 4838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4839 EVT MemVT = 4840 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4841 4842 if (!TLI.supportsUnalignedAtomics() && 4843 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4844 report_fatal_error("Cannot generate unaligned atomic store"); 4845 4846 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4847 4848 MachineFunction &MF = DAG.getMachineFunction(); 4849 MachineMemOperand *MMO = MF.getMachineMemOperand( 4850 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4851 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4852 4853 SDValue Val = getValue(I.getValueOperand()); 4854 if (Val.getValueType() != MemVT) 4855 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4856 SDValue Ptr = getValue(I.getPointerOperand()); 4857 4858 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4859 // TODO: Once this is better exercised by tests, it should be merged with 4860 // the normal path for stores to prevent future divergence. 4861 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4862 setValue(&I, S); 4863 DAG.setRoot(S); 4864 return; 4865 } 4866 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4867 Ptr, Val, MMO); 4868 4869 setValue(&I, OutChain); 4870 DAG.setRoot(OutChain); 4871 } 4872 4873 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4874 /// node. 4875 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4876 unsigned Intrinsic) { 4877 // Ignore the callsite's attributes. A specific call site may be marked with 4878 // readnone, but the lowering code will expect the chain based on the 4879 // definition. 4880 const Function *F = I.getCalledFunction(); 4881 bool HasChain = !F->doesNotAccessMemory(); 4882 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4883 4884 // Build the operand list. 4885 SmallVector<SDValue, 8> Ops; 4886 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4887 if (OnlyLoad) { 4888 // We don't need to serialize loads against other loads. 4889 Ops.push_back(DAG.getRoot()); 4890 } else { 4891 Ops.push_back(getRoot()); 4892 } 4893 } 4894 4895 // Info is set by getTgtMemIntrinsic 4896 TargetLowering::IntrinsicInfo Info; 4897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4898 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4899 DAG.getMachineFunction(), 4900 Intrinsic); 4901 4902 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4903 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4904 Info.opc == ISD::INTRINSIC_W_CHAIN) 4905 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4906 TLI.getPointerTy(DAG.getDataLayout()))); 4907 4908 // Add all operands of the call to the operand list. 4909 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4910 const Value *Arg = I.getArgOperand(i); 4911 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4912 Ops.push_back(getValue(Arg)); 4913 continue; 4914 } 4915 4916 // Use TargetConstant instead of a regular constant for immarg. 4917 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4918 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4919 assert(CI->getBitWidth() <= 64 && 4920 "large intrinsic immediates not handled"); 4921 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4922 } else { 4923 Ops.push_back( 4924 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4925 } 4926 } 4927 4928 SmallVector<EVT, 4> ValueVTs; 4929 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4930 4931 if (HasChain) 4932 ValueVTs.push_back(MVT::Other); 4933 4934 SDVTList VTs = DAG.getVTList(ValueVTs); 4935 4936 // Propagate fast-math-flags from IR to node(s). 4937 SDNodeFlags Flags; 4938 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4939 Flags.copyFMF(*FPMO); 4940 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4941 4942 // Create the node. 4943 SDValue Result; 4944 // In some cases, custom collection of operands from CallInst I may be needed. 4945 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4946 if (IsTgtIntrinsic) { 4947 // This is target intrinsic that touches memory 4948 // 4949 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4950 // didn't yield anything useful. 4951 MachinePointerInfo MPI; 4952 if (Info.ptrVal) 4953 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4954 else if (Info.fallbackAddressSpace) 4955 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4956 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4957 Info.memVT, MPI, Info.align, Info.flags, 4958 Info.size, I.getAAMetadata()); 4959 } else if (!HasChain) { 4960 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4961 } else if (!I.getType()->isVoidTy()) { 4962 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4963 } else { 4964 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4965 } 4966 4967 if (HasChain) { 4968 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4969 if (OnlyLoad) 4970 PendingLoads.push_back(Chain); 4971 else 4972 DAG.setRoot(Chain); 4973 } 4974 4975 if (!I.getType()->isVoidTy()) { 4976 if (!isa<VectorType>(I.getType())) 4977 Result = lowerRangeToAssertZExt(DAG, I, Result); 4978 4979 MaybeAlign Alignment = I.getRetAlign(); 4980 4981 // Insert `assertalign` node if there's an alignment. 4982 if (InsertAssertAlign && Alignment) { 4983 Result = 4984 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4985 } 4986 4987 setValue(&I, Result); 4988 } 4989 } 4990 4991 /// GetSignificand - Get the significand and build it into a floating-point 4992 /// number with exponent of 1: 4993 /// 4994 /// Op = (Op & 0x007fffff) | 0x3f800000; 4995 /// 4996 /// where Op is the hexadecimal representation of floating point value. 4997 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4998 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4999 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5000 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5001 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5002 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5003 } 5004 5005 /// GetExponent - Get the exponent: 5006 /// 5007 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5008 /// 5009 /// where Op is the hexadecimal representation of floating point value. 5010 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5011 const TargetLowering &TLI, const SDLoc &dl) { 5012 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5013 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5014 SDValue t1 = DAG.getNode( 5015 ISD::SRL, dl, MVT::i32, t0, 5016 DAG.getConstant(23, dl, 5017 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5018 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5019 DAG.getConstant(127, dl, MVT::i32)); 5020 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5021 } 5022 5023 /// getF32Constant - Get 32-bit floating point constant. 5024 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5025 const SDLoc &dl) { 5026 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5027 MVT::f32); 5028 } 5029 5030 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5031 SelectionDAG &DAG) { 5032 // TODO: What fast-math-flags should be set on the floating-point nodes? 5033 5034 // IntegerPartOfX = ((int32_t)(t0); 5035 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5036 5037 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5038 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5039 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5040 5041 // IntegerPartOfX <<= 23; 5042 IntegerPartOfX = 5043 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5044 DAG.getConstant(23, dl, 5045 DAG.getTargetLoweringInfo().getShiftAmountTy( 5046 MVT::i32, DAG.getDataLayout()))); 5047 5048 SDValue TwoToFractionalPartOfX; 5049 if (LimitFloatPrecision <= 6) { 5050 // For floating-point precision of 6: 5051 // 5052 // TwoToFractionalPartOfX = 5053 // 0.997535578f + 5054 // (0.735607626f + 0.252464424f * x) * x; 5055 // 5056 // error 0.0144103317, which is 6 bits 5057 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5058 getF32Constant(DAG, 0x3e814304, dl)); 5059 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5060 getF32Constant(DAG, 0x3f3c50c8, dl)); 5061 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5062 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5063 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5064 } else if (LimitFloatPrecision <= 12) { 5065 // For floating-point precision of 12: 5066 // 5067 // TwoToFractionalPartOfX = 5068 // 0.999892986f + 5069 // (0.696457318f + 5070 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5071 // 5072 // error 0.000107046256, which is 13 to 14 bits 5073 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5074 getF32Constant(DAG, 0x3da235e3, dl)); 5075 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5076 getF32Constant(DAG, 0x3e65b8f3, dl)); 5077 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5078 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5079 getF32Constant(DAG, 0x3f324b07, dl)); 5080 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5081 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5082 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5083 } else { // LimitFloatPrecision <= 18 5084 // For floating-point precision of 18: 5085 // 5086 // TwoToFractionalPartOfX = 5087 // 0.999999982f + 5088 // (0.693148872f + 5089 // (0.240227044f + 5090 // (0.554906021e-1f + 5091 // (0.961591928e-2f + 5092 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5093 // error 2.47208000*10^(-7), which is better than 18 bits 5094 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5095 getF32Constant(DAG, 0x3924b03e, dl)); 5096 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5097 getF32Constant(DAG, 0x3ab24b87, dl)); 5098 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5099 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5100 getF32Constant(DAG, 0x3c1d8c17, dl)); 5101 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5102 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5103 getF32Constant(DAG, 0x3d634a1d, dl)); 5104 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5105 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5106 getF32Constant(DAG, 0x3e75fe14, dl)); 5107 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5108 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5109 getF32Constant(DAG, 0x3f317234, dl)); 5110 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5111 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5112 getF32Constant(DAG, 0x3f800000, dl)); 5113 } 5114 5115 // Add the exponent into the result in integer domain. 5116 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5117 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5118 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5119 } 5120 5121 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5122 /// limited-precision mode. 5123 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5124 const TargetLowering &TLI, SDNodeFlags Flags) { 5125 if (Op.getValueType() == MVT::f32 && 5126 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5127 5128 // Put the exponent in the right bit position for later addition to the 5129 // final result: 5130 // 5131 // t0 = Op * log2(e) 5132 5133 // TODO: What fast-math-flags should be set here? 5134 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5135 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5136 return getLimitedPrecisionExp2(t0, dl, DAG); 5137 } 5138 5139 // No special expansion. 5140 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5141 } 5142 5143 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5144 /// limited-precision mode. 5145 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5146 const TargetLowering &TLI, SDNodeFlags Flags) { 5147 // TODO: What fast-math-flags should be set on the floating-point nodes? 5148 5149 if (Op.getValueType() == MVT::f32 && 5150 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5151 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5152 5153 // Scale the exponent by log(2). 5154 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5155 SDValue LogOfExponent = 5156 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5157 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5158 5159 // Get the significand and build it into a floating-point number with 5160 // exponent of 1. 5161 SDValue X = GetSignificand(DAG, Op1, dl); 5162 5163 SDValue LogOfMantissa; 5164 if (LimitFloatPrecision <= 6) { 5165 // For floating-point precision of 6: 5166 // 5167 // LogofMantissa = 5168 // -1.1609546f + 5169 // (1.4034025f - 0.23903021f * x) * x; 5170 // 5171 // error 0.0034276066, which is better than 8 bits 5172 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5173 getF32Constant(DAG, 0xbe74c456, dl)); 5174 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5175 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5176 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5177 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5178 getF32Constant(DAG, 0x3f949a29, dl)); 5179 } else if (LimitFloatPrecision <= 12) { 5180 // For floating-point precision of 12: 5181 // 5182 // LogOfMantissa = 5183 // -1.7417939f + 5184 // (2.8212026f + 5185 // (-1.4699568f + 5186 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5187 // 5188 // error 0.000061011436, which is 14 bits 5189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5190 getF32Constant(DAG, 0xbd67b6d6, dl)); 5191 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5192 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5193 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5194 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5195 getF32Constant(DAG, 0x3fbc278b, dl)); 5196 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5197 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5198 getF32Constant(DAG, 0x40348e95, dl)); 5199 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5200 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5201 getF32Constant(DAG, 0x3fdef31a, dl)); 5202 } else { // LimitFloatPrecision <= 18 5203 // For floating-point precision of 18: 5204 // 5205 // LogOfMantissa = 5206 // -2.1072184f + 5207 // (4.2372794f + 5208 // (-3.7029485f + 5209 // (2.2781945f + 5210 // (-0.87823314f + 5211 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5212 // 5213 // error 0.0000023660568, which is better than 18 bits 5214 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5215 getF32Constant(DAG, 0xbc91e5ac, dl)); 5216 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5217 getF32Constant(DAG, 0x3e4350aa, dl)); 5218 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5219 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5220 getF32Constant(DAG, 0x3f60d3e3, dl)); 5221 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5222 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5223 getF32Constant(DAG, 0x4011cdf0, dl)); 5224 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5225 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5226 getF32Constant(DAG, 0x406cfd1c, dl)); 5227 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5228 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5229 getF32Constant(DAG, 0x408797cb, dl)); 5230 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5231 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5232 getF32Constant(DAG, 0x4006dcab, dl)); 5233 } 5234 5235 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5236 } 5237 5238 // No special expansion. 5239 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5240 } 5241 5242 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5243 /// limited-precision mode. 5244 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5245 const TargetLowering &TLI, SDNodeFlags Flags) { 5246 // TODO: What fast-math-flags should be set on the floating-point nodes? 5247 5248 if (Op.getValueType() == MVT::f32 && 5249 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5250 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5251 5252 // Get the exponent. 5253 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5254 5255 // Get the significand and build it into a floating-point number with 5256 // exponent of 1. 5257 SDValue X = GetSignificand(DAG, Op1, dl); 5258 5259 // Different possible minimax approximations of significand in 5260 // floating-point for various degrees of accuracy over [1,2]. 5261 SDValue Log2ofMantissa; 5262 if (LimitFloatPrecision <= 6) { 5263 // For floating-point precision of 6: 5264 // 5265 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5266 // 5267 // error 0.0049451742, which is more than 7 bits 5268 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5269 getF32Constant(DAG, 0xbeb08fe0, dl)); 5270 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5271 getF32Constant(DAG, 0x40019463, dl)); 5272 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5273 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5274 getF32Constant(DAG, 0x3fd6633d, dl)); 5275 } else if (LimitFloatPrecision <= 12) { 5276 // For floating-point precision of 12: 5277 // 5278 // Log2ofMantissa = 5279 // -2.51285454f + 5280 // (4.07009056f + 5281 // (-2.12067489f + 5282 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5283 // 5284 // error 0.0000876136000, which is better than 13 bits 5285 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5286 getF32Constant(DAG, 0xbda7262e, dl)); 5287 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5288 getF32Constant(DAG, 0x3f25280b, dl)); 5289 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5290 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5291 getF32Constant(DAG, 0x4007b923, dl)); 5292 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5293 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5294 getF32Constant(DAG, 0x40823e2f, dl)); 5295 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5296 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5297 getF32Constant(DAG, 0x4020d29c, dl)); 5298 } else { // LimitFloatPrecision <= 18 5299 // For floating-point precision of 18: 5300 // 5301 // Log2ofMantissa = 5302 // -3.0400495f + 5303 // (6.1129976f + 5304 // (-5.3420409f + 5305 // (3.2865683f + 5306 // (-1.2669343f + 5307 // (0.27515199f - 5308 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5309 // 5310 // error 0.0000018516, which is better than 18 bits 5311 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5312 getF32Constant(DAG, 0xbcd2769e, dl)); 5313 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5314 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5315 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5316 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5317 getF32Constant(DAG, 0x3fa22ae7, dl)); 5318 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5319 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5320 getF32Constant(DAG, 0x40525723, dl)); 5321 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5322 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5323 getF32Constant(DAG, 0x40aaf200, dl)); 5324 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5325 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5326 getF32Constant(DAG, 0x40c39dad, dl)); 5327 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5328 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5329 getF32Constant(DAG, 0x4042902c, dl)); 5330 } 5331 5332 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5333 } 5334 5335 // No special expansion. 5336 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5337 } 5338 5339 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5340 /// limited-precision mode. 5341 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5342 const TargetLowering &TLI, SDNodeFlags Flags) { 5343 // TODO: What fast-math-flags should be set on the floating-point nodes? 5344 5345 if (Op.getValueType() == MVT::f32 && 5346 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5347 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5348 5349 // Scale the exponent by log10(2) [0.30102999f]. 5350 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5351 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5352 getF32Constant(DAG, 0x3e9a209a, dl)); 5353 5354 // Get the significand and build it into a floating-point number with 5355 // exponent of 1. 5356 SDValue X = GetSignificand(DAG, Op1, dl); 5357 5358 SDValue Log10ofMantissa; 5359 if (LimitFloatPrecision <= 6) { 5360 // For floating-point precision of 6: 5361 // 5362 // Log10ofMantissa = 5363 // -0.50419619f + 5364 // (0.60948995f - 0.10380950f * x) * x; 5365 // 5366 // error 0.0014886165, which is 6 bits 5367 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5368 getF32Constant(DAG, 0xbdd49a13, dl)); 5369 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5370 getF32Constant(DAG, 0x3f1c0789, dl)); 5371 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5372 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5373 getF32Constant(DAG, 0x3f011300, dl)); 5374 } else if (LimitFloatPrecision <= 12) { 5375 // For floating-point precision of 12: 5376 // 5377 // Log10ofMantissa = 5378 // -0.64831180f + 5379 // (0.91751397f + 5380 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5381 // 5382 // error 0.00019228036, which is better than 12 bits 5383 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5384 getF32Constant(DAG, 0x3d431f31, dl)); 5385 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5386 getF32Constant(DAG, 0x3ea21fb2, dl)); 5387 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5388 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5389 getF32Constant(DAG, 0x3f6ae232, dl)); 5390 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5391 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5392 getF32Constant(DAG, 0x3f25f7c3, dl)); 5393 } else { // LimitFloatPrecision <= 18 5394 // For floating-point precision of 18: 5395 // 5396 // Log10ofMantissa = 5397 // -0.84299375f + 5398 // (1.5327582f + 5399 // (-1.0688956f + 5400 // (0.49102474f + 5401 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5402 // 5403 // error 0.0000037995730, which is better than 18 bits 5404 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5405 getF32Constant(DAG, 0x3c5d51ce, dl)); 5406 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5407 getF32Constant(DAG, 0x3e00685a, dl)); 5408 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5409 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5410 getF32Constant(DAG, 0x3efb6798, dl)); 5411 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5412 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5413 getF32Constant(DAG, 0x3f88d192, dl)); 5414 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5415 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5416 getF32Constant(DAG, 0x3fc4316c, dl)); 5417 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5418 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5419 getF32Constant(DAG, 0x3f57ce70, dl)); 5420 } 5421 5422 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5423 } 5424 5425 // No special expansion. 5426 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5427 } 5428 5429 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5430 /// limited-precision mode. 5431 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5432 const TargetLowering &TLI, SDNodeFlags Flags) { 5433 if (Op.getValueType() == MVT::f32 && 5434 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5435 return getLimitedPrecisionExp2(Op, dl, DAG); 5436 5437 // No special expansion. 5438 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5439 } 5440 5441 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5442 /// limited-precision mode with x == 10.0f. 5443 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5444 SelectionDAG &DAG, const TargetLowering &TLI, 5445 SDNodeFlags Flags) { 5446 bool IsExp10 = false; 5447 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5448 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5449 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5450 APFloat Ten(10.0f); 5451 IsExp10 = LHSC->isExactlyValue(Ten); 5452 } 5453 } 5454 5455 // TODO: What fast-math-flags should be set on the FMUL node? 5456 if (IsExp10) { 5457 // Put the exponent in the right bit position for later addition to the 5458 // final result: 5459 // 5460 // #define LOG2OF10 3.3219281f 5461 // t0 = Op * LOG2OF10; 5462 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5463 getF32Constant(DAG, 0x40549a78, dl)); 5464 return getLimitedPrecisionExp2(t0, dl, DAG); 5465 } 5466 5467 // No special expansion. 5468 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5469 } 5470 5471 /// ExpandPowI - Expand a llvm.powi intrinsic. 5472 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5473 SelectionDAG &DAG) { 5474 // If RHS is a constant, we can expand this out to a multiplication tree if 5475 // it's beneficial on the target, otherwise we end up lowering to a call to 5476 // __powidf2 (for example). 5477 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5478 unsigned Val = RHSC->getSExtValue(); 5479 5480 // powi(x, 0) -> 1.0 5481 if (Val == 0) 5482 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5483 5484 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5485 Val, DAG.shouldOptForSize())) { 5486 // Get the exponent as a positive value. 5487 if ((int)Val < 0) 5488 Val = -Val; 5489 // We use the simple binary decomposition method to generate the multiply 5490 // sequence. There are more optimal ways to do this (for example, 5491 // powi(x,15) generates one more multiply than it should), but this has 5492 // the benefit of being both really simple and much better than a libcall. 5493 SDValue Res; // Logically starts equal to 1.0 5494 SDValue CurSquare = LHS; 5495 // TODO: Intrinsics should have fast-math-flags that propagate to these 5496 // nodes. 5497 while (Val) { 5498 if (Val & 1) { 5499 if (Res.getNode()) 5500 Res = 5501 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5502 else 5503 Res = CurSquare; // 1.0*CurSquare. 5504 } 5505 5506 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5507 CurSquare, CurSquare); 5508 Val >>= 1; 5509 } 5510 5511 // If the original was negative, invert the result, producing 1/(x*x*x). 5512 if (RHSC->getSExtValue() < 0) 5513 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5514 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5515 return Res; 5516 } 5517 } 5518 5519 // Otherwise, expand to a libcall. 5520 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5521 } 5522 5523 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5524 SDValue LHS, SDValue RHS, SDValue Scale, 5525 SelectionDAG &DAG, const TargetLowering &TLI) { 5526 EVT VT = LHS.getValueType(); 5527 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5528 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5529 LLVMContext &Ctx = *DAG.getContext(); 5530 5531 // If the type is legal but the operation isn't, this node might survive all 5532 // the way to operation legalization. If we end up there and we do not have 5533 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5534 // node. 5535 5536 // Coax the legalizer into expanding the node during type legalization instead 5537 // by bumping the size by one bit. This will force it to Promote, enabling the 5538 // early expansion and avoiding the need to expand later. 5539 5540 // We don't have to do this if Scale is 0; that can always be expanded, unless 5541 // it's a saturating signed operation. Those can experience true integer 5542 // division overflow, a case which we must avoid. 5543 5544 // FIXME: We wouldn't have to do this (or any of the early 5545 // expansion/promotion) if it was possible to expand a libcall of an 5546 // illegal type during operation legalization. But it's not, so things 5547 // get a bit hacky. 5548 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5549 if ((ScaleInt > 0 || (Saturating && Signed)) && 5550 (TLI.isTypeLegal(VT) || 5551 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5552 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5553 Opcode, VT, ScaleInt); 5554 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5555 EVT PromVT; 5556 if (VT.isScalarInteger()) 5557 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5558 else if (VT.isVector()) { 5559 PromVT = VT.getVectorElementType(); 5560 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5561 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5562 } else 5563 llvm_unreachable("Wrong VT for DIVFIX?"); 5564 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5565 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5566 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5567 // For saturating operations, we need to shift up the LHS to get the 5568 // proper saturation width, and then shift down again afterwards. 5569 if (Saturating) 5570 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5571 DAG.getConstant(1, DL, ShiftTy)); 5572 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5573 if (Saturating) 5574 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5575 DAG.getConstant(1, DL, ShiftTy)); 5576 return DAG.getZExtOrTrunc(Res, DL, VT); 5577 } 5578 } 5579 5580 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5581 } 5582 5583 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5584 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5585 static void 5586 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5587 const SDValue &N) { 5588 switch (N.getOpcode()) { 5589 case ISD::CopyFromReg: { 5590 SDValue Op = N.getOperand(1); 5591 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5592 Op.getValueType().getSizeInBits()); 5593 return; 5594 } 5595 case ISD::BITCAST: 5596 case ISD::AssertZext: 5597 case ISD::AssertSext: 5598 case ISD::TRUNCATE: 5599 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5600 return; 5601 case ISD::BUILD_PAIR: 5602 case ISD::BUILD_VECTOR: 5603 case ISD::CONCAT_VECTORS: 5604 for (SDValue Op : N->op_values()) 5605 getUnderlyingArgRegs(Regs, Op); 5606 return; 5607 default: 5608 return; 5609 } 5610 } 5611 5612 /// If the DbgValueInst is a dbg_value of a function argument, create the 5613 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5614 /// instruction selection, they will be inserted to the entry BB. 5615 /// We don't currently support this for variadic dbg_values, as they shouldn't 5616 /// appear for function arguments or in the prologue. 5617 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5618 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5619 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5620 const Argument *Arg = dyn_cast<Argument>(V); 5621 if (!Arg) 5622 return false; 5623 5624 MachineFunction &MF = DAG.getMachineFunction(); 5625 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5626 5627 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5628 // we've been asked to pursue. 5629 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5630 bool Indirect) { 5631 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5632 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5633 // pointing at the VReg, which will be patched up later. 5634 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5635 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5636 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5637 /* isKill */ false, /* isDead */ false, 5638 /* isUndef */ false, /* isEarlyClobber */ false, 5639 /* SubReg */ 0, /* isDebug */ true)}); 5640 5641 auto *NewDIExpr = FragExpr; 5642 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5643 // the DIExpression. 5644 if (Indirect) 5645 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5646 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5647 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5648 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5649 } else { 5650 // Create a completely standard DBG_VALUE. 5651 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5652 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5653 } 5654 }; 5655 5656 if (Kind == FuncArgumentDbgValueKind::Value) { 5657 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5658 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5659 // the entry block. 5660 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5661 if (!IsInEntryBlock) 5662 return false; 5663 5664 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5665 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5666 // variable that also is a param. 5667 // 5668 // Although, if we are at the top of the entry block already, we can still 5669 // emit using ArgDbgValue. This might catch some situations when the 5670 // dbg.value refers to an argument that isn't used in the entry block, so 5671 // any CopyToReg node would be optimized out and the only way to express 5672 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5673 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5674 // we should only emit as ArgDbgValue if the Variable is an argument to the 5675 // current function, and the dbg.value intrinsic is found in the entry 5676 // block. 5677 bool VariableIsFunctionInputArg = Variable->isParameter() && 5678 !DL->getInlinedAt(); 5679 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5680 if (!IsInPrologue && !VariableIsFunctionInputArg) 5681 return false; 5682 5683 // Here we assume that a function argument on IR level only can be used to 5684 // describe one input parameter on source level. If we for example have 5685 // source code like this 5686 // 5687 // struct A { long x, y; }; 5688 // void foo(struct A a, long b) { 5689 // ... 5690 // b = a.x; 5691 // ... 5692 // } 5693 // 5694 // and IR like this 5695 // 5696 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5697 // entry: 5698 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5699 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5700 // call void @llvm.dbg.value(metadata i32 %b, "b", 5701 // ... 5702 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5703 // ... 5704 // 5705 // then the last dbg.value is describing a parameter "b" using a value that 5706 // is an argument. But since we already has used %a1 to describe a parameter 5707 // we should not handle that last dbg.value here (that would result in an 5708 // incorrect hoisting of the DBG_VALUE to the function entry). 5709 // Notice that we allow one dbg.value per IR level argument, to accommodate 5710 // for the situation with fragments above. 5711 if (VariableIsFunctionInputArg) { 5712 unsigned ArgNo = Arg->getArgNo(); 5713 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5714 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5715 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5716 return false; 5717 FuncInfo.DescribedArgs.set(ArgNo); 5718 } 5719 } 5720 5721 bool IsIndirect = false; 5722 std::optional<MachineOperand> Op; 5723 // Some arguments' frame index is recorded during argument lowering. 5724 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5725 if (FI != std::numeric_limits<int>::max()) 5726 Op = MachineOperand::CreateFI(FI); 5727 5728 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5729 if (!Op && N.getNode()) { 5730 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5731 Register Reg; 5732 if (ArgRegsAndSizes.size() == 1) 5733 Reg = ArgRegsAndSizes.front().first; 5734 5735 if (Reg && Reg.isVirtual()) { 5736 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5737 Register PR = RegInfo.getLiveInPhysReg(Reg); 5738 if (PR) 5739 Reg = PR; 5740 } 5741 if (Reg) { 5742 Op = MachineOperand::CreateReg(Reg, false); 5743 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5744 } 5745 } 5746 5747 if (!Op && N.getNode()) { 5748 // Check if frame index is available. 5749 SDValue LCandidate = peekThroughBitcasts(N); 5750 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5751 if (FrameIndexSDNode *FINode = 5752 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5753 Op = MachineOperand::CreateFI(FINode->getIndex()); 5754 } 5755 5756 if (!Op) { 5757 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5758 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5759 SplitRegs) { 5760 unsigned Offset = 0; 5761 for (const auto &RegAndSize : SplitRegs) { 5762 // If the expression is already a fragment, the current register 5763 // offset+size might extend beyond the fragment. In this case, only 5764 // the register bits that are inside the fragment are relevant. 5765 int RegFragmentSizeInBits = RegAndSize.second; 5766 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5767 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5768 // The register is entirely outside the expression fragment, 5769 // so is irrelevant for debug info. 5770 if (Offset >= ExprFragmentSizeInBits) 5771 break; 5772 // The register is partially outside the expression fragment, only 5773 // the low bits within the fragment are relevant for debug info. 5774 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5775 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5776 } 5777 } 5778 5779 auto FragmentExpr = DIExpression::createFragmentExpression( 5780 Expr, Offset, RegFragmentSizeInBits); 5781 Offset += RegAndSize.second; 5782 // If a valid fragment expression cannot be created, the variable's 5783 // correct value cannot be determined and so it is set as Undef. 5784 if (!FragmentExpr) { 5785 SDDbgValue *SDV = DAG.getConstantDbgValue( 5786 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5787 DAG.AddDbgValue(SDV, false); 5788 continue; 5789 } 5790 MachineInstr *NewMI = 5791 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5792 Kind != FuncArgumentDbgValueKind::Value); 5793 FuncInfo.ArgDbgValues.push_back(NewMI); 5794 } 5795 }; 5796 5797 // Check if ValueMap has reg number. 5798 DenseMap<const Value *, Register>::const_iterator 5799 VMI = FuncInfo.ValueMap.find(V); 5800 if (VMI != FuncInfo.ValueMap.end()) { 5801 const auto &TLI = DAG.getTargetLoweringInfo(); 5802 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5803 V->getType(), std::nullopt); 5804 if (RFV.occupiesMultipleRegs()) { 5805 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5806 return true; 5807 } 5808 5809 Op = MachineOperand::CreateReg(VMI->second, false); 5810 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5811 } else if (ArgRegsAndSizes.size() > 1) { 5812 // This was split due to the calling convention, and no virtual register 5813 // mapping exists for the value. 5814 splitMultiRegDbgValue(ArgRegsAndSizes); 5815 return true; 5816 } 5817 } 5818 5819 if (!Op) 5820 return false; 5821 5822 // If the expression refers to the entry value of an Argument, use the 5823 // corresponding livein physical register. As per the Verifier, this is only 5824 // allowed for swiftasync Arguments. 5825 if (Op->isReg() && Expr->isEntryValue()) { 5826 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5827 auto OpReg = Op->getReg(); 5828 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5829 if (OpReg == VirtReg || OpReg == PhysReg) { 5830 SDDbgValue *SDV = DAG.getVRegDbgValue( 5831 Variable, Expr, PhysReg, 5832 Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL, 5833 SDNodeOrder); 5834 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5835 return true; 5836 } 5837 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5838 "couldn't find a physical register\n"); 5839 return true; 5840 } 5841 5842 assert(Variable->isValidLocationForIntrinsic(DL) && 5843 "Expected inlined-at fields to agree"); 5844 MachineInstr *NewMI = nullptr; 5845 5846 if (Op->isReg()) 5847 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5848 else 5849 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5850 Variable, Expr); 5851 5852 // Otherwise, use ArgDbgValues. 5853 FuncInfo.ArgDbgValues.push_back(NewMI); 5854 return true; 5855 } 5856 5857 /// Return the appropriate SDDbgValue based on N. 5858 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5859 DILocalVariable *Variable, 5860 DIExpression *Expr, 5861 const DebugLoc &dl, 5862 unsigned DbgSDNodeOrder) { 5863 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5864 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5865 // stack slot locations. 5866 // 5867 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5868 // debug values here after optimization: 5869 // 5870 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5871 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5872 // 5873 // Both describe the direct values of their associated variables. 5874 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5875 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5876 } 5877 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5878 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5879 } 5880 5881 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5882 switch (Intrinsic) { 5883 case Intrinsic::smul_fix: 5884 return ISD::SMULFIX; 5885 case Intrinsic::umul_fix: 5886 return ISD::UMULFIX; 5887 case Intrinsic::smul_fix_sat: 5888 return ISD::SMULFIXSAT; 5889 case Intrinsic::umul_fix_sat: 5890 return ISD::UMULFIXSAT; 5891 case Intrinsic::sdiv_fix: 5892 return ISD::SDIVFIX; 5893 case Intrinsic::udiv_fix: 5894 return ISD::UDIVFIX; 5895 case Intrinsic::sdiv_fix_sat: 5896 return ISD::SDIVFIXSAT; 5897 case Intrinsic::udiv_fix_sat: 5898 return ISD::UDIVFIXSAT; 5899 default: 5900 llvm_unreachable("Unhandled fixed point intrinsic"); 5901 } 5902 } 5903 5904 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5905 const char *FunctionName) { 5906 assert(FunctionName && "FunctionName must not be nullptr"); 5907 SDValue Callee = DAG.getExternalSymbol( 5908 FunctionName, 5909 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5910 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5911 } 5912 5913 /// Given a @llvm.call.preallocated.setup, return the corresponding 5914 /// preallocated call. 5915 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5916 assert(cast<CallBase>(PreallocatedSetup) 5917 ->getCalledFunction() 5918 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5919 "expected call_preallocated_setup Value"); 5920 for (const auto *U : PreallocatedSetup->users()) { 5921 auto *UseCall = cast<CallBase>(U); 5922 const Function *Fn = UseCall->getCalledFunction(); 5923 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5924 return UseCall; 5925 } 5926 } 5927 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5928 } 5929 5930 /// Lower the call to the specified intrinsic function. 5931 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5932 unsigned Intrinsic) { 5933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5934 SDLoc sdl = getCurSDLoc(); 5935 DebugLoc dl = getCurDebugLoc(); 5936 SDValue Res; 5937 5938 SDNodeFlags Flags; 5939 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5940 Flags.copyFMF(*FPOp); 5941 5942 switch (Intrinsic) { 5943 default: 5944 // By default, turn this into a target intrinsic node. 5945 visitTargetIntrinsic(I, Intrinsic); 5946 return; 5947 case Intrinsic::vscale: { 5948 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5949 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5950 return; 5951 } 5952 case Intrinsic::vastart: visitVAStart(I); return; 5953 case Intrinsic::vaend: visitVAEnd(I); return; 5954 case Intrinsic::vacopy: visitVACopy(I); return; 5955 case Intrinsic::returnaddress: 5956 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5957 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5958 getValue(I.getArgOperand(0)))); 5959 return; 5960 case Intrinsic::addressofreturnaddress: 5961 setValue(&I, 5962 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5963 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5964 return; 5965 case Intrinsic::sponentry: 5966 setValue(&I, 5967 DAG.getNode(ISD::SPONENTRY, sdl, 5968 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5969 return; 5970 case Intrinsic::frameaddress: 5971 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5972 TLI.getFrameIndexTy(DAG.getDataLayout()), 5973 getValue(I.getArgOperand(0)))); 5974 return; 5975 case Intrinsic::read_volatile_register: 5976 case Intrinsic::read_register: { 5977 Value *Reg = I.getArgOperand(0); 5978 SDValue Chain = getRoot(); 5979 SDValue RegName = 5980 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5981 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5982 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5983 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5984 setValue(&I, Res); 5985 DAG.setRoot(Res.getValue(1)); 5986 return; 5987 } 5988 case Intrinsic::write_register: { 5989 Value *Reg = I.getArgOperand(0); 5990 Value *RegValue = I.getArgOperand(1); 5991 SDValue Chain = getRoot(); 5992 SDValue RegName = 5993 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5994 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5995 RegName, getValue(RegValue))); 5996 return; 5997 } 5998 case Intrinsic::memcpy: { 5999 const auto &MCI = cast<MemCpyInst>(I); 6000 SDValue Op1 = getValue(I.getArgOperand(0)); 6001 SDValue Op2 = getValue(I.getArgOperand(1)); 6002 SDValue Op3 = getValue(I.getArgOperand(2)); 6003 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6004 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6005 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6006 Align Alignment = std::min(DstAlign, SrcAlign); 6007 bool isVol = MCI.isVolatile(); 6008 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6009 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6010 // node. 6011 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6012 SDValue MC = DAG.getMemcpy( 6013 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6014 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6015 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6016 updateDAGForMaybeTailCall(MC); 6017 return; 6018 } 6019 case Intrinsic::memcpy_inline: { 6020 const auto &MCI = cast<MemCpyInlineInst>(I); 6021 SDValue Dst = getValue(I.getArgOperand(0)); 6022 SDValue Src = getValue(I.getArgOperand(1)); 6023 SDValue Size = getValue(I.getArgOperand(2)); 6024 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6025 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6026 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6027 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6028 Align Alignment = std::min(DstAlign, SrcAlign); 6029 bool isVol = MCI.isVolatile(); 6030 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6031 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6032 // node. 6033 SDValue MC = DAG.getMemcpy( 6034 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6035 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6036 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6037 updateDAGForMaybeTailCall(MC); 6038 return; 6039 } 6040 case Intrinsic::memset: { 6041 const auto &MSI = cast<MemSetInst>(I); 6042 SDValue Op1 = getValue(I.getArgOperand(0)); 6043 SDValue Op2 = getValue(I.getArgOperand(1)); 6044 SDValue Op3 = getValue(I.getArgOperand(2)); 6045 // @llvm.memset defines 0 and 1 to both mean no alignment. 6046 Align Alignment = MSI.getDestAlign().valueOrOne(); 6047 bool isVol = MSI.isVolatile(); 6048 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6049 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6050 SDValue MS = DAG.getMemset( 6051 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6052 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6053 updateDAGForMaybeTailCall(MS); 6054 return; 6055 } 6056 case Intrinsic::memset_inline: { 6057 const auto &MSII = cast<MemSetInlineInst>(I); 6058 SDValue Dst = getValue(I.getArgOperand(0)); 6059 SDValue Value = getValue(I.getArgOperand(1)); 6060 SDValue Size = getValue(I.getArgOperand(2)); 6061 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6062 // @llvm.memset defines 0 and 1 to both mean no alignment. 6063 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6064 bool isVol = MSII.isVolatile(); 6065 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6066 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6067 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6068 /* AlwaysInline */ true, isTC, 6069 MachinePointerInfo(I.getArgOperand(0)), 6070 I.getAAMetadata()); 6071 updateDAGForMaybeTailCall(MC); 6072 return; 6073 } 6074 case Intrinsic::memmove: { 6075 const auto &MMI = cast<MemMoveInst>(I); 6076 SDValue Op1 = getValue(I.getArgOperand(0)); 6077 SDValue Op2 = getValue(I.getArgOperand(1)); 6078 SDValue Op3 = getValue(I.getArgOperand(2)); 6079 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6080 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6081 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6082 Align Alignment = std::min(DstAlign, SrcAlign); 6083 bool isVol = MMI.isVolatile(); 6084 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6085 // FIXME: Support passing different dest/src alignments to the memmove DAG 6086 // node. 6087 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6088 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6089 isTC, MachinePointerInfo(I.getArgOperand(0)), 6090 MachinePointerInfo(I.getArgOperand(1)), 6091 I.getAAMetadata(), AA); 6092 updateDAGForMaybeTailCall(MM); 6093 return; 6094 } 6095 case Intrinsic::memcpy_element_unordered_atomic: { 6096 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6097 SDValue Dst = getValue(MI.getRawDest()); 6098 SDValue Src = getValue(MI.getRawSource()); 6099 SDValue Length = getValue(MI.getLength()); 6100 6101 Type *LengthTy = MI.getLength()->getType(); 6102 unsigned ElemSz = MI.getElementSizeInBytes(); 6103 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6104 SDValue MC = 6105 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6106 isTC, MachinePointerInfo(MI.getRawDest()), 6107 MachinePointerInfo(MI.getRawSource())); 6108 updateDAGForMaybeTailCall(MC); 6109 return; 6110 } 6111 case Intrinsic::memmove_element_unordered_atomic: { 6112 auto &MI = cast<AtomicMemMoveInst>(I); 6113 SDValue Dst = getValue(MI.getRawDest()); 6114 SDValue Src = getValue(MI.getRawSource()); 6115 SDValue Length = getValue(MI.getLength()); 6116 6117 Type *LengthTy = MI.getLength()->getType(); 6118 unsigned ElemSz = MI.getElementSizeInBytes(); 6119 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6120 SDValue MC = 6121 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6122 isTC, MachinePointerInfo(MI.getRawDest()), 6123 MachinePointerInfo(MI.getRawSource())); 6124 updateDAGForMaybeTailCall(MC); 6125 return; 6126 } 6127 case Intrinsic::memset_element_unordered_atomic: { 6128 auto &MI = cast<AtomicMemSetInst>(I); 6129 SDValue Dst = getValue(MI.getRawDest()); 6130 SDValue Val = getValue(MI.getValue()); 6131 SDValue Length = getValue(MI.getLength()); 6132 6133 Type *LengthTy = MI.getLength()->getType(); 6134 unsigned ElemSz = MI.getElementSizeInBytes(); 6135 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6136 SDValue MC = 6137 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6138 isTC, MachinePointerInfo(MI.getRawDest())); 6139 updateDAGForMaybeTailCall(MC); 6140 return; 6141 } 6142 case Intrinsic::call_preallocated_setup: { 6143 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6144 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6145 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6146 getRoot(), SrcValue); 6147 setValue(&I, Res); 6148 DAG.setRoot(Res); 6149 return; 6150 } 6151 case Intrinsic::call_preallocated_arg: { 6152 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6153 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6154 SDValue Ops[3]; 6155 Ops[0] = getRoot(); 6156 Ops[1] = SrcValue; 6157 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6158 MVT::i32); // arg index 6159 SDValue Res = DAG.getNode( 6160 ISD::PREALLOCATED_ARG, sdl, 6161 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6162 setValue(&I, Res); 6163 DAG.setRoot(Res.getValue(1)); 6164 return; 6165 } 6166 case Intrinsic::dbg_declare: { 6167 const auto &DI = cast<DbgDeclareInst>(I); 6168 // Debug intrinsics are handled separately in assignment tracking mode. 6169 // Some intrinsics are handled right after Argument lowering. 6170 if (AssignmentTrackingEnabled || 6171 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6172 return; 6173 // Assume dbg.declare can not currently use DIArgList, i.e. 6174 // it is non-variadic. 6175 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6176 DILocalVariable *Variable = DI.getVariable(); 6177 DIExpression *Expression = DI.getExpression(); 6178 dropDanglingDebugInfo(Variable, Expression); 6179 assert(Variable && "Missing variable"); 6180 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6181 << "\n"); 6182 // Check if address has undef value. 6183 const Value *Address = DI.getVariableLocationOp(0); 6184 if (!Address || isa<UndefValue>(Address) || 6185 (Address->use_empty() && !isa<Argument>(Address))) { 6186 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6187 << " (bad/undef/unused-arg address)\n"); 6188 return; 6189 } 6190 6191 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6192 6193 SDValue &N = NodeMap[Address]; 6194 if (!N.getNode() && isa<Argument>(Address)) 6195 // Check unused arguments map. 6196 N = UnusedArgNodeMap[Address]; 6197 SDDbgValue *SDV; 6198 if (N.getNode()) { 6199 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6200 Address = BCI->getOperand(0); 6201 // Parameters are handled specially. 6202 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6203 if (isParameter && FINode) { 6204 // Byval parameter. We have a frame index at this point. 6205 SDV = 6206 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6207 /*IsIndirect*/ true, dl, SDNodeOrder); 6208 } else if (isa<Argument>(Address)) { 6209 // Address is an argument, so try to emit its dbg value using 6210 // virtual register info from the FuncInfo.ValueMap. 6211 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6212 FuncArgumentDbgValueKind::Declare, N); 6213 return; 6214 } else { 6215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6216 true, dl, SDNodeOrder); 6217 } 6218 DAG.AddDbgValue(SDV, isParameter); 6219 } else { 6220 // If Address is an argument then try to emit its dbg value using 6221 // virtual register info from the FuncInfo.ValueMap. 6222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6223 FuncArgumentDbgValueKind::Declare, N)) { 6224 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6225 << " (could not emit func-arg dbg_value)\n"); 6226 } 6227 } 6228 return; 6229 } 6230 case Intrinsic::dbg_label: { 6231 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6232 DILabel *Label = DI.getLabel(); 6233 assert(Label && "Missing label"); 6234 6235 SDDbgLabel *SDV; 6236 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6237 DAG.AddDbgLabel(SDV); 6238 return; 6239 } 6240 case Intrinsic::dbg_assign: { 6241 // Debug intrinsics are handled seperately in assignment tracking mode. 6242 if (AssignmentTrackingEnabled) 6243 return; 6244 // If assignment tracking hasn't been enabled then fall through and treat 6245 // the dbg.assign as a dbg.value. 6246 [[fallthrough]]; 6247 } 6248 case Intrinsic::dbg_value: { 6249 // Debug intrinsics are handled seperately in assignment tracking mode. 6250 if (AssignmentTrackingEnabled) 6251 return; 6252 const DbgValueInst &DI = cast<DbgValueInst>(I); 6253 assert(DI.getVariable() && "Missing variable"); 6254 6255 DILocalVariable *Variable = DI.getVariable(); 6256 DIExpression *Expression = DI.getExpression(); 6257 dropDanglingDebugInfo(Variable, Expression); 6258 6259 if (DI.isKillLocation()) { 6260 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6261 return; 6262 } 6263 6264 SmallVector<Value *, 4> Values(DI.getValues()); 6265 if (Values.empty()) 6266 return; 6267 6268 bool IsVariadic = DI.hasArgList(); 6269 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6270 SDNodeOrder, IsVariadic)) 6271 addDanglingDebugInfo(&DI, SDNodeOrder); 6272 return; 6273 } 6274 6275 case Intrinsic::eh_typeid_for: { 6276 // Find the type id for the given typeinfo. 6277 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6278 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6279 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6280 setValue(&I, Res); 6281 return; 6282 } 6283 6284 case Intrinsic::eh_return_i32: 6285 case Intrinsic::eh_return_i64: 6286 DAG.getMachineFunction().setCallsEHReturn(true); 6287 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6288 MVT::Other, 6289 getControlRoot(), 6290 getValue(I.getArgOperand(0)), 6291 getValue(I.getArgOperand(1)))); 6292 return; 6293 case Intrinsic::eh_unwind_init: 6294 DAG.getMachineFunction().setCallsUnwindInit(true); 6295 return; 6296 case Intrinsic::eh_dwarf_cfa: 6297 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6298 TLI.getPointerTy(DAG.getDataLayout()), 6299 getValue(I.getArgOperand(0)))); 6300 return; 6301 case Intrinsic::eh_sjlj_callsite: { 6302 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6303 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6304 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6305 6306 MMI.setCurrentCallSite(CI->getZExtValue()); 6307 return; 6308 } 6309 case Intrinsic::eh_sjlj_functioncontext: { 6310 // Get and store the index of the function context. 6311 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6312 AllocaInst *FnCtx = 6313 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6314 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6315 MFI.setFunctionContextIndex(FI); 6316 return; 6317 } 6318 case Intrinsic::eh_sjlj_setjmp: { 6319 SDValue Ops[2]; 6320 Ops[0] = getRoot(); 6321 Ops[1] = getValue(I.getArgOperand(0)); 6322 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6323 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6324 setValue(&I, Op.getValue(0)); 6325 DAG.setRoot(Op.getValue(1)); 6326 return; 6327 } 6328 case Intrinsic::eh_sjlj_longjmp: 6329 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6330 getRoot(), getValue(I.getArgOperand(0)))); 6331 return; 6332 case Intrinsic::eh_sjlj_setup_dispatch: 6333 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6334 getRoot())); 6335 return; 6336 case Intrinsic::masked_gather: 6337 visitMaskedGather(I); 6338 return; 6339 case Intrinsic::masked_load: 6340 visitMaskedLoad(I); 6341 return; 6342 case Intrinsic::masked_scatter: 6343 visitMaskedScatter(I); 6344 return; 6345 case Intrinsic::masked_store: 6346 visitMaskedStore(I); 6347 return; 6348 case Intrinsic::masked_expandload: 6349 visitMaskedLoad(I, true /* IsExpanding */); 6350 return; 6351 case Intrinsic::masked_compressstore: 6352 visitMaskedStore(I, true /* IsCompressing */); 6353 return; 6354 case Intrinsic::powi: 6355 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6356 getValue(I.getArgOperand(1)), DAG)); 6357 return; 6358 case Intrinsic::log: 6359 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6360 return; 6361 case Intrinsic::log2: 6362 setValue(&I, 6363 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6364 return; 6365 case Intrinsic::log10: 6366 setValue(&I, 6367 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6368 return; 6369 case Intrinsic::exp: 6370 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6371 return; 6372 case Intrinsic::exp2: 6373 setValue(&I, 6374 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6375 return; 6376 case Intrinsic::pow: 6377 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6378 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6379 return; 6380 case Intrinsic::sqrt: 6381 case Intrinsic::fabs: 6382 case Intrinsic::sin: 6383 case Intrinsic::cos: 6384 case Intrinsic::floor: 6385 case Intrinsic::ceil: 6386 case Intrinsic::trunc: 6387 case Intrinsic::rint: 6388 case Intrinsic::nearbyint: 6389 case Intrinsic::round: 6390 case Intrinsic::roundeven: 6391 case Intrinsic::canonicalize: { 6392 unsigned Opcode; 6393 switch (Intrinsic) { 6394 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6395 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6396 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6397 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6398 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6399 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6400 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6401 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6402 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6403 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6404 case Intrinsic::round: Opcode = ISD::FROUND; break; 6405 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6406 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6407 } 6408 6409 setValue(&I, DAG.getNode(Opcode, sdl, 6410 getValue(I.getArgOperand(0)).getValueType(), 6411 getValue(I.getArgOperand(0)), Flags)); 6412 return; 6413 } 6414 case Intrinsic::lround: 6415 case Intrinsic::llround: 6416 case Intrinsic::lrint: 6417 case Intrinsic::llrint: { 6418 unsigned Opcode; 6419 switch (Intrinsic) { 6420 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6421 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6422 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6423 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6424 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6425 } 6426 6427 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6428 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6429 getValue(I.getArgOperand(0)))); 6430 return; 6431 } 6432 case Intrinsic::minnum: 6433 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6434 getValue(I.getArgOperand(0)).getValueType(), 6435 getValue(I.getArgOperand(0)), 6436 getValue(I.getArgOperand(1)), Flags)); 6437 return; 6438 case Intrinsic::maxnum: 6439 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6440 getValue(I.getArgOperand(0)).getValueType(), 6441 getValue(I.getArgOperand(0)), 6442 getValue(I.getArgOperand(1)), Flags)); 6443 return; 6444 case Intrinsic::minimum: 6445 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6446 getValue(I.getArgOperand(0)).getValueType(), 6447 getValue(I.getArgOperand(0)), 6448 getValue(I.getArgOperand(1)), Flags)); 6449 return; 6450 case Intrinsic::maximum: 6451 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6452 getValue(I.getArgOperand(0)).getValueType(), 6453 getValue(I.getArgOperand(0)), 6454 getValue(I.getArgOperand(1)), Flags)); 6455 return; 6456 case Intrinsic::copysign: 6457 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6458 getValue(I.getArgOperand(0)).getValueType(), 6459 getValue(I.getArgOperand(0)), 6460 getValue(I.getArgOperand(1)), Flags)); 6461 return; 6462 case Intrinsic::ldexp: 6463 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6464 getValue(I.getArgOperand(0)).getValueType(), 6465 getValue(I.getArgOperand(0)), 6466 getValue(I.getArgOperand(1)), Flags)); 6467 return; 6468 case Intrinsic::frexp: { 6469 SmallVector<EVT, 2> ValueVTs; 6470 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6471 SDVTList VTs = DAG.getVTList(ValueVTs); 6472 setValue(&I, 6473 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6474 return; 6475 } 6476 case Intrinsic::arithmetic_fence: { 6477 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6478 getValue(I.getArgOperand(0)).getValueType(), 6479 getValue(I.getArgOperand(0)), Flags)); 6480 return; 6481 } 6482 case Intrinsic::fma: 6483 setValue(&I, DAG.getNode( 6484 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6485 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6486 getValue(I.getArgOperand(2)), Flags)); 6487 return; 6488 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6489 case Intrinsic::INTRINSIC: 6490 #include "llvm/IR/ConstrainedOps.def" 6491 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6492 return; 6493 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6494 #include "llvm/IR/VPIntrinsics.def" 6495 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6496 return; 6497 case Intrinsic::fptrunc_round: { 6498 // Get the last argument, the metadata and convert it to an integer in the 6499 // call 6500 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6501 std::optional<RoundingMode> RoundMode = 6502 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6503 6504 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6505 6506 // Propagate fast-math-flags from IR to node(s). 6507 SDNodeFlags Flags; 6508 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6509 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6510 6511 SDValue Result; 6512 Result = DAG.getNode( 6513 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6514 DAG.getTargetConstant((int)*RoundMode, sdl, 6515 TLI.getPointerTy(DAG.getDataLayout()))); 6516 setValue(&I, Result); 6517 6518 return; 6519 } 6520 case Intrinsic::fmuladd: { 6521 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6522 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6523 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6524 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6525 getValue(I.getArgOperand(0)).getValueType(), 6526 getValue(I.getArgOperand(0)), 6527 getValue(I.getArgOperand(1)), 6528 getValue(I.getArgOperand(2)), Flags)); 6529 } else { 6530 // TODO: Intrinsic calls should have fast-math-flags. 6531 SDValue Mul = DAG.getNode( 6532 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6533 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6534 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6535 getValue(I.getArgOperand(0)).getValueType(), 6536 Mul, getValue(I.getArgOperand(2)), Flags); 6537 setValue(&I, Add); 6538 } 6539 return; 6540 } 6541 case Intrinsic::convert_to_fp16: 6542 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6543 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6544 getValue(I.getArgOperand(0)), 6545 DAG.getTargetConstant(0, sdl, 6546 MVT::i32)))); 6547 return; 6548 case Intrinsic::convert_from_fp16: 6549 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6550 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6551 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6552 getValue(I.getArgOperand(0))))); 6553 return; 6554 case Intrinsic::fptosi_sat: { 6555 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6556 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6557 getValue(I.getArgOperand(0)), 6558 DAG.getValueType(VT.getScalarType()))); 6559 return; 6560 } 6561 case Intrinsic::fptoui_sat: { 6562 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6563 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6564 getValue(I.getArgOperand(0)), 6565 DAG.getValueType(VT.getScalarType()))); 6566 return; 6567 } 6568 case Intrinsic::set_rounding: 6569 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6570 {getRoot(), getValue(I.getArgOperand(0))}); 6571 setValue(&I, Res); 6572 DAG.setRoot(Res.getValue(0)); 6573 return; 6574 case Intrinsic::is_fpclass: { 6575 const DataLayout DLayout = DAG.getDataLayout(); 6576 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6577 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6578 FPClassTest Test = static_cast<FPClassTest>( 6579 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6580 MachineFunction &MF = DAG.getMachineFunction(); 6581 const Function &F = MF.getFunction(); 6582 SDValue Op = getValue(I.getArgOperand(0)); 6583 SDNodeFlags Flags; 6584 Flags.setNoFPExcept( 6585 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6586 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6587 // expansion can use illegal types. Making expansion early allows 6588 // legalizing these types prior to selection. 6589 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6590 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6591 setValue(&I, Result); 6592 return; 6593 } 6594 6595 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6596 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6597 setValue(&I, V); 6598 return; 6599 } 6600 case Intrinsic::get_fpenv: { 6601 const DataLayout DLayout = DAG.getDataLayout(); 6602 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6603 Align TempAlign = DAG.getEVTAlign(EnvVT); 6604 SDValue Chain = getRoot(); 6605 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6606 // and temporary storage in stack. 6607 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6608 Res = DAG.getNode( 6609 ISD::GET_FPENV, sdl, 6610 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6611 MVT::Other), 6612 Chain); 6613 } else { 6614 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6615 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6616 auto MPI = 6617 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6618 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6619 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6620 TempAlign); 6621 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6622 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6623 } 6624 setValue(&I, Res); 6625 DAG.setRoot(Res.getValue(1)); 6626 return; 6627 } 6628 case Intrinsic::set_fpenv: { 6629 const DataLayout DLayout = DAG.getDataLayout(); 6630 SDValue Env = getValue(I.getArgOperand(0)); 6631 EVT EnvVT = Env.getValueType(); 6632 Align TempAlign = DAG.getEVTAlign(EnvVT); 6633 SDValue Chain = getRoot(); 6634 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6635 // environment from memory. 6636 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6637 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6638 } else { 6639 // Allocate space in stack, copy environment bits into it and use this 6640 // memory in SET_FPENV_MEM. 6641 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6642 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6643 auto MPI = 6644 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6645 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6646 MachineMemOperand::MOStore); 6647 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6648 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6649 TempAlign); 6650 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6651 } 6652 DAG.setRoot(Chain); 6653 return; 6654 } 6655 case Intrinsic::reset_fpenv: 6656 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6657 return; 6658 case Intrinsic::pcmarker: { 6659 SDValue Tmp = getValue(I.getArgOperand(0)); 6660 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6661 return; 6662 } 6663 case Intrinsic::readcyclecounter: { 6664 SDValue Op = getRoot(); 6665 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6666 DAG.getVTList(MVT::i64, MVT::Other), Op); 6667 setValue(&I, Res); 6668 DAG.setRoot(Res.getValue(1)); 6669 return; 6670 } 6671 case Intrinsic::bitreverse: 6672 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6673 getValue(I.getArgOperand(0)).getValueType(), 6674 getValue(I.getArgOperand(0)))); 6675 return; 6676 case Intrinsic::bswap: 6677 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6678 getValue(I.getArgOperand(0)).getValueType(), 6679 getValue(I.getArgOperand(0)))); 6680 return; 6681 case Intrinsic::cttz: { 6682 SDValue Arg = getValue(I.getArgOperand(0)); 6683 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6684 EVT Ty = Arg.getValueType(); 6685 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6686 sdl, Ty, Arg)); 6687 return; 6688 } 6689 case Intrinsic::ctlz: { 6690 SDValue Arg = getValue(I.getArgOperand(0)); 6691 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6692 EVT Ty = Arg.getValueType(); 6693 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6694 sdl, Ty, Arg)); 6695 return; 6696 } 6697 case Intrinsic::ctpop: { 6698 SDValue Arg = getValue(I.getArgOperand(0)); 6699 EVT Ty = Arg.getValueType(); 6700 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6701 return; 6702 } 6703 case Intrinsic::fshl: 6704 case Intrinsic::fshr: { 6705 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6706 SDValue X = getValue(I.getArgOperand(0)); 6707 SDValue Y = getValue(I.getArgOperand(1)); 6708 SDValue Z = getValue(I.getArgOperand(2)); 6709 EVT VT = X.getValueType(); 6710 6711 if (X == Y) { 6712 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6713 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6714 } else { 6715 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6716 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6717 } 6718 return; 6719 } 6720 case Intrinsic::sadd_sat: { 6721 SDValue Op1 = getValue(I.getArgOperand(0)); 6722 SDValue Op2 = getValue(I.getArgOperand(1)); 6723 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6724 return; 6725 } 6726 case Intrinsic::uadd_sat: { 6727 SDValue Op1 = getValue(I.getArgOperand(0)); 6728 SDValue Op2 = getValue(I.getArgOperand(1)); 6729 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6730 return; 6731 } 6732 case Intrinsic::ssub_sat: { 6733 SDValue Op1 = getValue(I.getArgOperand(0)); 6734 SDValue Op2 = getValue(I.getArgOperand(1)); 6735 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6736 return; 6737 } 6738 case Intrinsic::usub_sat: { 6739 SDValue Op1 = getValue(I.getArgOperand(0)); 6740 SDValue Op2 = getValue(I.getArgOperand(1)); 6741 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6742 return; 6743 } 6744 case Intrinsic::sshl_sat: { 6745 SDValue Op1 = getValue(I.getArgOperand(0)); 6746 SDValue Op2 = getValue(I.getArgOperand(1)); 6747 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6748 return; 6749 } 6750 case Intrinsic::ushl_sat: { 6751 SDValue Op1 = getValue(I.getArgOperand(0)); 6752 SDValue Op2 = getValue(I.getArgOperand(1)); 6753 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6754 return; 6755 } 6756 case Intrinsic::smul_fix: 6757 case Intrinsic::umul_fix: 6758 case Intrinsic::smul_fix_sat: 6759 case Intrinsic::umul_fix_sat: { 6760 SDValue Op1 = getValue(I.getArgOperand(0)); 6761 SDValue Op2 = getValue(I.getArgOperand(1)); 6762 SDValue Op3 = getValue(I.getArgOperand(2)); 6763 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6764 Op1.getValueType(), Op1, Op2, Op3)); 6765 return; 6766 } 6767 case Intrinsic::sdiv_fix: 6768 case Intrinsic::udiv_fix: 6769 case Intrinsic::sdiv_fix_sat: 6770 case Intrinsic::udiv_fix_sat: { 6771 SDValue Op1 = getValue(I.getArgOperand(0)); 6772 SDValue Op2 = getValue(I.getArgOperand(1)); 6773 SDValue Op3 = getValue(I.getArgOperand(2)); 6774 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6775 Op1, Op2, Op3, DAG, TLI)); 6776 return; 6777 } 6778 case Intrinsic::smax: { 6779 SDValue Op1 = getValue(I.getArgOperand(0)); 6780 SDValue Op2 = getValue(I.getArgOperand(1)); 6781 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6782 return; 6783 } 6784 case Intrinsic::smin: { 6785 SDValue Op1 = getValue(I.getArgOperand(0)); 6786 SDValue Op2 = getValue(I.getArgOperand(1)); 6787 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6788 return; 6789 } 6790 case Intrinsic::umax: { 6791 SDValue Op1 = getValue(I.getArgOperand(0)); 6792 SDValue Op2 = getValue(I.getArgOperand(1)); 6793 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6794 return; 6795 } 6796 case Intrinsic::umin: { 6797 SDValue Op1 = getValue(I.getArgOperand(0)); 6798 SDValue Op2 = getValue(I.getArgOperand(1)); 6799 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6800 return; 6801 } 6802 case Intrinsic::abs: { 6803 // TODO: Preserve "int min is poison" arg in SDAG? 6804 SDValue Op1 = getValue(I.getArgOperand(0)); 6805 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6806 return; 6807 } 6808 case Intrinsic::stacksave: { 6809 SDValue Op = getRoot(); 6810 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6811 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6812 setValue(&I, Res); 6813 DAG.setRoot(Res.getValue(1)); 6814 return; 6815 } 6816 case Intrinsic::stackrestore: 6817 Res = getValue(I.getArgOperand(0)); 6818 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6819 return; 6820 case Intrinsic::get_dynamic_area_offset: { 6821 SDValue Op = getRoot(); 6822 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6823 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6824 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6825 // target. 6826 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6827 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6828 " intrinsic!"); 6829 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6830 Op); 6831 DAG.setRoot(Op); 6832 setValue(&I, Res); 6833 return; 6834 } 6835 case Intrinsic::stackguard: { 6836 MachineFunction &MF = DAG.getMachineFunction(); 6837 const Module &M = *MF.getFunction().getParent(); 6838 SDValue Chain = getRoot(); 6839 if (TLI.useLoadStackGuardNode()) { 6840 Res = getLoadStackGuard(DAG, sdl, Chain); 6841 } else { 6842 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6843 const Value *Global = TLI.getSDagStackGuard(M); 6844 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6845 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6846 MachinePointerInfo(Global, 0), Align, 6847 MachineMemOperand::MOVolatile); 6848 } 6849 if (TLI.useStackGuardXorFP()) 6850 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6851 DAG.setRoot(Chain); 6852 setValue(&I, Res); 6853 return; 6854 } 6855 case Intrinsic::stackprotector: { 6856 // Emit code into the DAG to store the stack guard onto the stack. 6857 MachineFunction &MF = DAG.getMachineFunction(); 6858 MachineFrameInfo &MFI = MF.getFrameInfo(); 6859 SDValue Src, Chain = getRoot(); 6860 6861 if (TLI.useLoadStackGuardNode()) 6862 Src = getLoadStackGuard(DAG, sdl, Chain); 6863 else 6864 Src = getValue(I.getArgOperand(0)); // The guard's value. 6865 6866 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6867 6868 int FI = FuncInfo.StaticAllocaMap[Slot]; 6869 MFI.setStackProtectorIndex(FI); 6870 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6871 6872 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6873 6874 // Store the stack protector onto the stack. 6875 Res = DAG.getStore( 6876 Chain, sdl, Src, FIN, 6877 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6878 MaybeAlign(), MachineMemOperand::MOVolatile); 6879 setValue(&I, Res); 6880 DAG.setRoot(Res); 6881 return; 6882 } 6883 case Intrinsic::objectsize: 6884 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6885 6886 case Intrinsic::is_constant: 6887 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6888 6889 case Intrinsic::annotation: 6890 case Intrinsic::ptr_annotation: 6891 case Intrinsic::launder_invariant_group: 6892 case Intrinsic::strip_invariant_group: 6893 // Drop the intrinsic, but forward the value 6894 setValue(&I, getValue(I.getOperand(0))); 6895 return; 6896 6897 case Intrinsic::assume: 6898 case Intrinsic::experimental_noalias_scope_decl: 6899 case Intrinsic::var_annotation: 6900 case Intrinsic::sideeffect: 6901 // Discard annotate attributes, noalias scope declarations, assumptions, and 6902 // artificial side-effects. 6903 return; 6904 6905 case Intrinsic::codeview_annotation: { 6906 // Emit a label associated with this metadata. 6907 MachineFunction &MF = DAG.getMachineFunction(); 6908 MCSymbol *Label = 6909 MF.getMMI().getContext().createTempSymbol("annotation", true); 6910 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6911 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6912 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6913 DAG.setRoot(Res); 6914 return; 6915 } 6916 6917 case Intrinsic::init_trampoline: { 6918 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6919 6920 SDValue Ops[6]; 6921 Ops[0] = getRoot(); 6922 Ops[1] = getValue(I.getArgOperand(0)); 6923 Ops[2] = getValue(I.getArgOperand(1)); 6924 Ops[3] = getValue(I.getArgOperand(2)); 6925 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6926 Ops[5] = DAG.getSrcValue(F); 6927 6928 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6929 6930 DAG.setRoot(Res); 6931 return; 6932 } 6933 case Intrinsic::adjust_trampoline: 6934 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6935 TLI.getPointerTy(DAG.getDataLayout()), 6936 getValue(I.getArgOperand(0)))); 6937 return; 6938 case Intrinsic::gcroot: { 6939 assert(DAG.getMachineFunction().getFunction().hasGC() && 6940 "only valid in functions with gc specified, enforced by Verifier"); 6941 assert(GFI && "implied by previous"); 6942 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6943 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6944 6945 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6946 GFI->addStackRoot(FI->getIndex(), TypeMap); 6947 return; 6948 } 6949 case Intrinsic::gcread: 6950 case Intrinsic::gcwrite: 6951 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6952 case Intrinsic::get_rounding: 6953 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 6954 setValue(&I, Res); 6955 DAG.setRoot(Res.getValue(1)); 6956 return; 6957 6958 case Intrinsic::expect: 6959 // Just replace __builtin_expect(exp, c) with EXP. 6960 setValue(&I, getValue(I.getArgOperand(0))); 6961 return; 6962 6963 case Intrinsic::ubsantrap: 6964 case Intrinsic::debugtrap: 6965 case Intrinsic::trap: { 6966 StringRef TrapFuncName = 6967 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6968 if (TrapFuncName.empty()) { 6969 switch (Intrinsic) { 6970 case Intrinsic::trap: 6971 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6972 break; 6973 case Intrinsic::debugtrap: 6974 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6975 break; 6976 case Intrinsic::ubsantrap: 6977 DAG.setRoot(DAG.getNode( 6978 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6979 DAG.getTargetConstant( 6980 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6981 MVT::i32))); 6982 break; 6983 default: llvm_unreachable("unknown trap intrinsic"); 6984 } 6985 return; 6986 } 6987 TargetLowering::ArgListTy Args; 6988 if (Intrinsic == Intrinsic::ubsantrap) { 6989 Args.push_back(TargetLoweringBase::ArgListEntry()); 6990 Args[0].Val = I.getArgOperand(0); 6991 Args[0].Node = getValue(Args[0].Val); 6992 Args[0].Ty = Args[0].Val->getType(); 6993 } 6994 6995 TargetLowering::CallLoweringInfo CLI(DAG); 6996 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6997 CallingConv::C, I.getType(), 6998 DAG.getExternalSymbol(TrapFuncName.data(), 6999 TLI.getPointerTy(DAG.getDataLayout())), 7000 std::move(Args)); 7001 7002 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7003 DAG.setRoot(Result.second); 7004 return; 7005 } 7006 7007 case Intrinsic::uadd_with_overflow: 7008 case Intrinsic::sadd_with_overflow: 7009 case Intrinsic::usub_with_overflow: 7010 case Intrinsic::ssub_with_overflow: 7011 case Intrinsic::umul_with_overflow: 7012 case Intrinsic::smul_with_overflow: { 7013 ISD::NodeType Op; 7014 switch (Intrinsic) { 7015 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7016 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7017 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7018 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7019 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7020 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7021 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7022 } 7023 SDValue Op1 = getValue(I.getArgOperand(0)); 7024 SDValue Op2 = getValue(I.getArgOperand(1)); 7025 7026 EVT ResultVT = Op1.getValueType(); 7027 EVT OverflowVT = MVT::i1; 7028 if (ResultVT.isVector()) 7029 OverflowVT = EVT::getVectorVT( 7030 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7031 7032 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7033 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7034 return; 7035 } 7036 case Intrinsic::prefetch: { 7037 SDValue Ops[5]; 7038 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7039 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7040 Ops[0] = DAG.getRoot(); 7041 Ops[1] = getValue(I.getArgOperand(0)); 7042 Ops[2] = getValue(I.getArgOperand(1)); 7043 Ops[3] = getValue(I.getArgOperand(2)); 7044 Ops[4] = getValue(I.getArgOperand(3)); 7045 SDValue Result = DAG.getMemIntrinsicNode( 7046 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7047 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7048 /* align */ std::nullopt, Flags); 7049 7050 // Chain the prefetch in parallell with any pending loads, to stay out of 7051 // the way of later optimizations. 7052 PendingLoads.push_back(Result); 7053 Result = getRoot(); 7054 DAG.setRoot(Result); 7055 return; 7056 } 7057 case Intrinsic::lifetime_start: 7058 case Intrinsic::lifetime_end: { 7059 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7060 // Stack coloring is not enabled in O0, discard region information. 7061 if (TM.getOptLevel() == CodeGenOpt::None) 7062 return; 7063 7064 const int64_t ObjectSize = 7065 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7066 Value *const ObjectPtr = I.getArgOperand(1); 7067 SmallVector<const Value *, 4> Allocas; 7068 getUnderlyingObjects(ObjectPtr, Allocas); 7069 7070 for (const Value *Alloca : Allocas) { 7071 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7072 7073 // Could not find an Alloca. 7074 if (!LifetimeObject) 7075 continue; 7076 7077 // First check that the Alloca is static, otherwise it won't have a 7078 // valid frame index. 7079 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7080 if (SI == FuncInfo.StaticAllocaMap.end()) 7081 return; 7082 7083 const int FrameIndex = SI->second; 7084 int64_t Offset; 7085 if (GetPointerBaseWithConstantOffset( 7086 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7087 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7088 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7089 Offset); 7090 DAG.setRoot(Res); 7091 } 7092 return; 7093 } 7094 case Intrinsic::pseudoprobe: { 7095 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7096 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7097 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7098 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7099 DAG.setRoot(Res); 7100 return; 7101 } 7102 case Intrinsic::invariant_start: 7103 // Discard region information. 7104 setValue(&I, 7105 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7106 return; 7107 case Intrinsic::invariant_end: 7108 // Discard region information. 7109 return; 7110 case Intrinsic::clear_cache: 7111 /// FunctionName may be null. 7112 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7113 lowerCallToExternalSymbol(I, FunctionName); 7114 return; 7115 case Intrinsic::donothing: 7116 case Intrinsic::seh_try_begin: 7117 case Intrinsic::seh_scope_begin: 7118 case Intrinsic::seh_try_end: 7119 case Intrinsic::seh_scope_end: 7120 // ignore 7121 return; 7122 case Intrinsic::experimental_stackmap: 7123 visitStackmap(I); 7124 return; 7125 case Intrinsic::experimental_patchpoint_void: 7126 case Intrinsic::experimental_patchpoint_i64: 7127 visitPatchpoint(I); 7128 return; 7129 case Intrinsic::experimental_gc_statepoint: 7130 LowerStatepoint(cast<GCStatepointInst>(I)); 7131 return; 7132 case Intrinsic::experimental_gc_result: 7133 visitGCResult(cast<GCResultInst>(I)); 7134 return; 7135 case Intrinsic::experimental_gc_relocate: 7136 visitGCRelocate(cast<GCRelocateInst>(I)); 7137 return; 7138 case Intrinsic::instrprof_cover: 7139 llvm_unreachable("instrprof failed to lower a cover"); 7140 case Intrinsic::instrprof_increment: 7141 llvm_unreachable("instrprof failed to lower an increment"); 7142 case Intrinsic::instrprof_timestamp: 7143 llvm_unreachable("instrprof failed to lower a timestamp"); 7144 case Intrinsic::instrprof_value_profile: 7145 llvm_unreachable("instrprof failed to lower a value profiling call"); 7146 case Intrinsic::localescape: { 7147 MachineFunction &MF = DAG.getMachineFunction(); 7148 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7149 7150 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7151 // is the same on all targets. 7152 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7153 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7154 if (isa<ConstantPointerNull>(Arg)) 7155 continue; // Skip null pointers. They represent a hole in index space. 7156 AllocaInst *Slot = cast<AllocaInst>(Arg); 7157 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7158 "can only escape static allocas"); 7159 int FI = FuncInfo.StaticAllocaMap[Slot]; 7160 MCSymbol *FrameAllocSym = 7161 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7162 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7164 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7165 .addSym(FrameAllocSym) 7166 .addFrameIndex(FI); 7167 } 7168 7169 return; 7170 } 7171 7172 case Intrinsic::localrecover: { 7173 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7174 MachineFunction &MF = DAG.getMachineFunction(); 7175 7176 // Get the symbol that defines the frame offset. 7177 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7178 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7179 unsigned IdxVal = 7180 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7181 MCSymbol *FrameAllocSym = 7182 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7183 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7184 7185 Value *FP = I.getArgOperand(1); 7186 SDValue FPVal = getValue(FP); 7187 EVT PtrVT = FPVal.getValueType(); 7188 7189 // Create a MCSymbol for the label to avoid any target lowering 7190 // that would make this PC relative. 7191 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7192 SDValue OffsetVal = 7193 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7194 7195 // Add the offset to the FP. 7196 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7197 setValue(&I, Add); 7198 7199 return; 7200 } 7201 7202 case Intrinsic::eh_exceptionpointer: 7203 case Intrinsic::eh_exceptioncode: { 7204 // Get the exception pointer vreg, copy from it, and resize it to fit. 7205 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7206 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7207 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7208 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7209 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7210 if (Intrinsic == Intrinsic::eh_exceptioncode) 7211 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7212 setValue(&I, N); 7213 return; 7214 } 7215 case Intrinsic::xray_customevent: { 7216 // Here we want to make sure that the intrinsic behaves as if it has a 7217 // specific calling convention. 7218 const auto &Triple = DAG.getTarget().getTargetTriple(); 7219 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7220 return; 7221 7222 SmallVector<SDValue, 8> Ops; 7223 7224 // We want to say that we always want the arguments in registers. 7225 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7226 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7227 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7228 SDValue Chain = getRoot(); 7229 Ops.push_back(LogEntryVal); 7230 Ops.push_back(StrSizeVal); 7231 Ops.push_back(Chain); 7232 7233 // We need to enforce the calling convention for the callsite, so that 7234 // argument ordering is enforced correctly, and that register allocation can 7235 // see that some registers may be assumed clobbered and have to preserve 7236 // them across calls to the intrinsic. 7237 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7238 sdl, NodeTys, Ops); 7239 SDValue patchableNode = SDValue(MN, 0); 7240 DAG.setRoot(patchableNode); 7241 setValue(&I, patchableNode); 7242 return; 7243 } 7244 case Intrinsic::xray_typedevent: { 7245 // Here we want to make sure that the intrinsic behaves as if it has a 7246 // specific calling convention. 7247 const auto &Triple = DAG.getTarget().getTargetTriple(); 7248 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7249 return; 7250 7251 SmallVector<SDValue, 8> Ops; 7252 7253 // We want to say that we always want the arguments in registers. 7254 // It's unclear to me how manipulating the selection DAG here forces callers 7255 // to provide arguments in registers instead of on the stack. 7256 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7257 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7258 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7259 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7260 SDValue Chain = getRoot(); 7261 Ops.push_back(LogTypeId); 7262 Ops.push_back(LogEntryVal); 7263 Ops.push_back(StrSizeVal); 7264 Ops.push_back(Chain); 7265 7266 // We need to enforce the calling convention for the callsite, so that 7267 // argument ordering is enforced correctly, and that register allocation can 7268 // see that some registers may be assumed clobbered and have to preserve 7269 // them across calls to the intrinsic. 7270 MachineSDNode *MN = DAG.getMachineNode( 7271 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7272 SDValue patchableNode = SDValue(MN, 0); 7273 DAG.setRoot(patchableNode); 7274 setValue(&I, patchableNode); 7275 return; 7276 } 7277 case Intrinsic::experimental_deoptimize: 7278 LowerDeoptimizeCall(&I); 7279 return; 7280 case Intrinsic::experimental_stepvector: 7281 visitStepVector(I); 7282 return; 7283 case Intrinsic::vector_reduce_fadd: 7284 case Intrinsic::vector_reduce_fmul: 7285 case Intrinsic::vector_reduce_add: 7286 case Intrinsic::vector_reduce_mul: 7287 case Intrinsic::vector_reduce_and: 7288 case Intrinsic::vector_reduce_or: 7289 case Intrinsic::vector_reduce_xor: 7290 case Intrinsic::vector_reduce_smax: 7291 case Intrinsic::vector_reduce_smin: 7292 case Intrinsic::vector_reduce_umax: 7293 case Intrinsic::vector_reduce_umin: 7294 case Intrinsic::vector_reduce_fmax: 7295 case Intrinsic::vector_reduce_fmin: 7296 case Intrinsic::vector_reduce_fmaximum: 7297 case Intrinsic::vector_reduce_fminimum: 7298 visitVectorReduce(I, Intrinsic); 7299 return; 7300 7301 case Intrinsic::icall_branch_funnel: { 7302 SmallVector<SDValue, 16> Ops; 7303 Ops.push_back(getValue(I.getArgOperand(0))); 7304 7305 int64_t Offset; 7306 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7307 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7308 if (!Base) 7309 report_fatal_error( 7310 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7311 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7312 7313 struct BranchFunnelTarget { 7314 int64_t Offset; 7315 SDValue Target; 7316 }; 7317 SmallVector<BranchFunnelTarget, 8> Targets; 7318 7319 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7320 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7321 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7322 if (ElemBase != Base) 7323 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7324 "to the same GlobalValue"); 7325 7326 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7327 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7328 if (!GA) 7329 report_fatal_error( 7330 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7331 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7332 GA->getGlobal(), sdl, Val.getValueType(), 7333 GA->getOffset())}); 7334 } 7335 llvm::sort(Targets, 7336 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7337 return T1.Offset < T2.Offset; 7338 }); 7339 7340 for (auto &T : Targets) { 7341 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7342 Ops.push_back(T.Target); 7343 } 7344 7345 Ops.push_back(DAG.getRoot()); // Chain 7346 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7347 MVT::Other, Ops), 7348 0); 7349 DAG.setRoot(N); 7350 setValue(&I, N); 7351 HasTailCall = true; 7352 return; 7353 } 7354 7355 case Intrinsic::wasm_landingpad_index: 7356 // Information this intrinsic contained has been transferred to 7357 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7358 // delete it now. 7359 return; 7360 7361 case Intrinsic::aarch64_settag: 7362 case Intrinsic::aarch64_settag_zero: { 7363 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7364 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7365 SDValue Val = TSI.EmitTargetCodeForSetTag( 7366 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7367 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7368 ZeroMemory); 7369 DAG.setRoot(Val); 7370 setValue(&I, Val); 7371 return; 7372 } 7373 case Intrinsic::ptrmask: { 7374 SDValue Ptr = getValue(I.getOperand(0)); 7375 SDValue Const = getValue(I.getOperand(1)); 7376 7377 EVT PtrVT = Ptr.getValueType(); 7378 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7379 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7380 return; 7381 } 7382 case Intrinsic::threadlocal_address: { 7383 setValue(&I, getValue(I.getOperand(0))); 7384 return; 7385 } 7386 case Intrinsic::get_active_lane_mask: { 7387 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7388 SDValue Index = getValue(I.getOperand(0)); 7389 EVT ElementVT = Index.getValueType(); 7390 7391 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7392 visitTargetIntrinsic(I, Intrinsic); 7393 return; 7394 } 7395 7396 SDValue TripCount = getValue(I.getOperand(1)); 7397 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7398 7399 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7400 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7401 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7402 SDValue VectorInduction = DAG.getNode( 7403 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7404 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7405 VectorTripCount, ISD::CondCode::SETULT); 7406 setValue(&I, SetCC); 7407 return; 7408 } 7409 case Intrinsic::experimental_get_vector_length: { 7410 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7411 "Expected positive VF"); 7412 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7413 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7414 7415 SDValue Count = getValue(I.getOperand(0)); 7416 EVT CountVT = Count.getValueType(); 7417 7418 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7419 visitTargetIntrinsic(I, Intrinsic); 7420 return; 7421 } 7422 7423 // Expand to a umin between the trip count and the maximum elements the type 7424 // can hold. 7425 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7426 7427 // Extend the trip count to at least the result VT. 7428 if (CountVT.bitsLT(VT)) { 7429 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7430 CountVT = VT; 7431 } 7432 7433 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7434 ElementCount::get(VF, IsScalable)); 7435 7436 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7437 // Clip to the result type if needed. 7438 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7439 7440 setValue(&I, Trunc); 7441 return; 7442 } 7443 case Intrinsic::vector_insert: { 7444 SDValue Vec = getValue(I.getOperand(0)); 7445 SDValue SubVec = getValue(I.getOperand(1)); 7446 SDValue Index = getValue(I.getOperand(2)); 7447 7448 // The intrinsic's index type is i64, but the SDNode requires an index type 7449 // suitable for the target. Convert the index as required. 7450 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7451 if (Index.getValueType() != VectorIdxTy) 7452 Index = DAG.getVectorIdxConstant( 7453 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7454 7455 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7456 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7457 Index)); 7458 return; 7459 } 7460 case Intrinsic::vector_extract: { 7461 SDValue Vec = getValue(I.getOperand(0)); 7462 SDValue Index = getValue(I.getOperand(1)); 7463 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7464 7465 // The intrinsic's index type is i64, but the SDNode requires an index type 7466 // suitable for the target. Convert the index as required. 7467 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7468 if (Index.getValueType() != VectorIdxTy) 7469 Index = DAG.getVectorIdxConstant( 7470 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7471 7472 setValue(&I, 7473 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7474 return; 7475 } 7476 case Intrinsic::experimental_vector_reverse: 7477 visitVectorReverse(I); 7478 return; 7479 case Intrinsic::experimental_vector_splice: 7480 visitVectorSplice(I); 7481 return; 7482 case Intrinsic::callbr_landingpad: 7483 visitCallBrLandingPad(I); 7484 return; 7485 case Intrinsic::experimental_vector_interleave2: 7486 visitVectorInterleave(I); 7487 return; 7488 case Intrinsic::experimental_vector_deinterleave2: 7489 visitVectorDeinterleave(I); 7490 return; 7491 } 7492 } 7493 7494 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7495 const ConstrainedFPIntrinsic &FPI) { 7496 SDLoc sdl = getCurSDLoc(); 7497 7498 // We do not need to serialize constrained FP intrinsics against 7499 // each other or against (nonvolatile) loads, so they can be 7500 // chained like loads. 7501 SDValue Chain = DAG.getRoot(); 7502 SmallVector<SDValue, 4> Opers; 7503 Opers.push_back(Chain); 7504 if (FPI.isUnaryOp()) { 7505 Opers.push_back(getValue(FPI.getArgOperand(0))); 7506 } else if (FPI.isTernaryOp()) { 7507 Opers.push_back(getValue(FPI.getArgOperand(0))); 7508 Opers.push_back(getValue(FPI.getArgOperand(1))); 7509 Opers.push_back(getValue(FPI.getArgOperand(2))); 7510 } else { 7511 Opers.push_back(getValue(FPI.getArgOperand(0))); 7512 Opers.push_back(getValue(FPI.getArgOperand(1))); 7513 } 7514 7515 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7516 assert(Result.getNode()->getNumValues() == 2); 7517 7518 // Push node to the appropriate list so that future instructions can be 7519 // chained up correctly. 7520 SDValue OutChain = Result.getValue(1); 7521 switch (EB) { 7522 case fp::ExceptionBehavior::ebIgnore: 7523 // The only reason why ebIgnore nodes still need to be chained is that 7524 // they might depend on the current rounding mode, and therefore must 7525 // not be moved across instruction that may change that mode. 7526 [[fallthrough]]; 7527 case fp::ExceptionBehavior::ebMayTrap: 7528 // These must not be moved across calls or instructions that may change 7529 // floating-point exception masks. 7530 PendingConstrainedFP.push_back(OutChain); 7531 break; 7532 case fp::ExceptionBehavior::ebStrict: 7533 // These must not be moved across calls or instructions that may change 7534 // floating-point exception masks or read floating-point exception flags. 7535 // In addition, they cannot be optimized out even if unused. 7536 PendingConstrainedFPStrict.push_back(OutChain); 7537 break; 7538 } 7539 }; 7540 7541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7542 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7543 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7544 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7545 7546 SDNodeFlags Flags; 7547 if (EB == fp::ExceptionBehavior::ebIgnore) 7548 Flags.setNoFPExcept(true); 7549 7550 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7551 Flags.copyFMF(*FPOp); 7552 7553 unsigned Opcode; 7554 switch (FPI.getIntrinsicID()) { 7555 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7556 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7557 case Intrinsic::INTRINSIC: \ 7558 Opcode = ISD::STRICT_##DAGN; \ 7559 break; 7560 #include "llvm/IR/ConstrainedOps.def" 7561 case Intrinsic::experimental_constrained_fmuladd: { 7562 Opcode = ISD::STRICT_FMA; 7563 // Break fmuladd into fmul and fadd. 7564 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7565 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7566 Opers.pop_back(); 7567 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7568 pushOutChain(Mul, EB); 7569 Opcode = ISD::STRICT_FADD; 7570 Opers.clear(); 7571 Opers.push_back(Mul.getValue(1)); 7572 Opers.push_back(Mul.getValue(0)); 7573 Opers.push_back(getValue(FPI.getArgOperand(2))); 7574 } 7575 break; 7576 } 7577 } 7578 7579 // A few strict DAG nodes carry additional operands that are not 7580 // set up by the default code above. 7581 switch (Opcode) { 7582 default: break; 7583 case ISD::STRICT_FP_ROUND: 7584 Opers.push_back( 7585 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7586 break; 7587 case ISD::STRICT_FSETCC: 7588 case ISD::STRICT_FSETCCS: { 7589 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7590 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7591 if (TM.Options.NoNaNsFPMath) 7592 Condition = getFCmpCodeWithoutNaN(Condition); 7593 Opers.push_back(DAG.getCondCode(Condition)); 7594 break; 7595 } 7596 } 7597 7598 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7599 pushOutChain(Result, EB); 7600 7601 SDValue FPResult = Result.getValue(0); 7602 setValue(&FPI, FPResult); 7603 } 7604 7605 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7606 std::optional<unsigned> ResOPC; 7607 switch (VPIntrin.getIntrinsicID()) { 7608 case Intrinsic::vp_ctlz: { 7609 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7610 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7611 break; 7612 } 7613 case Intrinsic::vp_cttz: { 7614 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7615 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7616 break; 7617 } 7618 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7619 case Intrinsic::VPID: \ 7620 ResOPC = ISD::VPSD; \ 7621 break; 7622 #include "llvm/IR/VPIntrinsics.def" 7623 } 7624 7625 if (!ResOPC) 7626 llvm_unreachable( 7627 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7628 7629 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7630 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7631 if (VPIntrin.getFastMathFlags().allowReassoc()) 7632 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7633 : ISD::VP_REDUCE_FMUL; 7634 } 7635 7636 return *ResOPC; 7637 } 7638 7639 void SelectionDAGBuilder::visitVPLoad( 7640 const VPIntrinsic &VPIntrin, EVT VT, 7641 const SmallVectorImpl<SDValue> &OpValues) { 7642 SDLoc DL = getCurSDLoc(); 7643 Value *PtrOperand = VPIntrin.getArgOperand(0); 7644 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7645 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7646 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7647 SDValue LD; 7648 // Do not serialize variable-length loads of constant memory with 7649 // anything. 7650 if (!Alignment) 7651 Alignment = DAG.getEVTAlign(VT); 7652 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7653 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7654 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7655 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7656 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7657 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7658 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7659 MMO, false /*IsExpanding */); 7660 if (AddToChain) 7661 PendingLoads.push_back(LD.getValue(1)); 7662 setValue(&VPIntrin, LD); 7663 } 7664 7665 void SelectionDAGBuilder::visitVPGather( 7666 const VPIntrinsic &VPIntrin, EVT VT, 7667 const SmallVectorImpl<SDValue> &OpValues) { 7668 SDLoc DL = getCurSDLoc(); 7669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7670 Value *PtrOperand = VPIntrin.getArgOperand(0); 7671 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7672 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7673 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7674 SDValue LD; 7675 if (!Alignment) 7676 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7677 unsigned AS = 7678 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7679 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7680 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7681 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7682 SDValue Base, Index, Scale; 7683 ISD::MemIndexType IndexType; 7684 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7685 this, VPIntrin.getParent(), 7686 VT.getScalarStoreSize()); 7687 if (!UniformBase) { 7688 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7689 Index = getValue(PtrOperand); 7690 IndexType = ISD::SIGNED_SCALED; 7691 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7692 } 7693 EVT IdxVT = Index.getValueType(); 7694 EVT EltTy = IdxVT.getVectorElementType(); 7695 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7696 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7697 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7698 } 7699 LD = DAG.getGatherVP( 7700 DAG.getVTList(VT, MVT::Other), VT, DL, 7701 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7702 IndexType); 7703 PendingLoads.push_back(LD.getValue(1)); 7704 setValue(&VPIntrin, LD); 7705 } 7706 7707 void SelectionDAGBuilder::visitVPStore( 7708 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7709 SDLoc DL = getCurSDLoc(); 7710 Value *PtrOperand = VPIntrin.getArgOperand(1); 7711 EVT VT = OpValues[0].getValueType(); 7712 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7713 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7714 SDValue ST; 7715 if (!Alignment) 7716 Alignment = DAG.getEVTAlign(VT); 7717 SDValue Ptr = OpValues[1]; 7718 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7719 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7720 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7721 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7722 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7723 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7724 /* IsTruncating */ false, /*IsCompressing*/ false); 7725 DAG.setRoot(ST); 7726 setValue(&VPIntrin, ST); 7727 } 7728 7729 void SelectionDAGBuilder::visitVPScatter( 7730 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7731 SDLoc DL = getCurSDLoc(); 7732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7733 Value *PtrOperand = VPIntrin.getArgOperand(1); 7734 EVT VT = OpValues[0].getValueType(); 7735 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7736 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7737 SDValue ST; 7738 if (!Alignment) 7739 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7740 unsigned AS = 7741 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7742 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7743 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7744 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7745 SDValue Base, Index, Scale; 7746 ISD::MemIndexType IndexType; 7747 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7748 this, VPIntrin.getParent(), 7749 VT.getScalarStoreSize()); 7750 if (!UniformBase) { 7751 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7752 Index = getValue(PtrOperand); 7753 IndexType = ISD::SIGNED_SCALED; 7754 Scale = 7755 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7756 } 7757 EVT IdxVT = Index.getValueType(); 7758 EVT EltTy = IdxVT.getVectorElementType(); 7759 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7760 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7761 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7762 } 7763 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7764 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7765 OpValues[2], OpValues[3]}, 7766 MMO, IndexType); 7767 DAG.setRoot(ST); 7768 setValue(&VPIntrin, ST); 7769 } 7770 7771 void SelectionDAGBuilder::visitVPStridedLoad( 7772 const VPIntrinsic &VPIntrin, EVT VT, 7773 const SmallVectorImpl<SDValue> &OpValues) { 7774 SDLoc DL = getCurSDLoc(); 7775 Value *PtrOperand = VPIntrin.getArgOperand(0); 7776 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7777 if (!Alignment) 7778 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7779 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7780 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7781 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7782 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7783 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7784 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7785 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7786 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7787 7788 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7789 OpValues[2], OpValues[3], MMO, 7790 false /*IsExpanding*/); 7791 7792 if (AddToChain) 7793 PendingLoads.push_back(LD.getValue(1)); 7794 setValue(&VPIntrin, LD); 7795 } 7796 7797 void SelectionDAGBuilder::visitVPStridedStore( 7798 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7799 SDLoc DL = getCurSDLoc(); 7800 Value *PtrOperand = VPIntrin.getArgOperand(1); 7801 EVT VT = OpValues[0].getValueType(); 7802 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7803 if (!Alignment) 7804 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7805 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7806 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7807 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7808 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7809 7810 SDValue ST = DAG.getStridedStoreVP( 7811 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7812 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7813 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7814 /*IsCompressing*/ false); 7815 7816 DAG.setRoot(ST); 7817 setValue(&VPIntrin, ST); 7818 } 7819 7820 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7822 SDLoc DL = getCurSDLoc(); 7823 7824 ISD::CondCode Condition; 7825 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7826 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7827 if (IsFP) { 7828 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7829 // flags, but calls that don't return floating-point types can't be 7830 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7831 Condition = getFCmpCondCode(CondCode); 7832 if (TM.Options.NoNaNsFPMath) 7833 Condition = getFCmpCodeWithoutNaN(Condition); 7834 } else { 7835 Condition = getICmpCondCode(CondCode); 7836 } 7837 7838 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7839 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7840 // #2 is the condition code 7841 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7842 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7843 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7844 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7845 "Unexpected target EVL type"); 7846 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7847 7848 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7849 VPIntrin.getType()); 7850 setValue(&VPIntrin, 7851 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7852 } 7853 7854 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7855 const VPIntrinsic &VPIntrin) { 7856 SDLoc DL = getCurSDLoc(); 7857 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7858 7859 auto IID = VPIntrin.getIntrinsicID(); 7860 7861 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7862 return visitVPCmp(*CmpI); 7863 7864 SmallVector<EVT, 4> ValueVTs; 7865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7866 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7867 SDVTList VTs = DAG.getVTList(ValueVTs); 7868 7869 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7870 7871 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7872 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7873 "Unexpected target EVL type"); 7874 7875 // Request operands. 7876 SmallVector<SDValue, 7> OpValues; 7877 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7878 auto Op = getValue(VPIntrin.getArgOperand(I)); 7879 if (I == EVLParamPos) 7880 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7881 OpValues.push_back(Op); 7882 } 7883 7884 switch (Opcode) { 7885 default: { 7886 SDNodeFlags SDFlags; 7887 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7888 SDFlags.copyFMF(*FPMO); 7889 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7890 setValue(&VPIntrin, Result); 7891 break; 7892 } 7893 case ISD::VP_LOAD: 7894 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7895 break; 7896 case ISD::VP_GATHER: 7897 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7898 break; 7899 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7900 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7901 break; 7902 case ISD::VP_STORE: 7903 visitVPStore(VPIntrin, OpValues); 7904 break; 7905 case ISD::VP_SCATTER: 7906 visitVPScatter(VPIntrin, OpValues); 7907 break; 7908 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7909 visitVPStridedStore(VPIntrin, OpValues); 7910 break; 7911 case ISD::VP_FMULADD: { 7912 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7913 SDNodeFlags SDFlags; 7914 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7915 SDFlags.copyFMF(*FPMO); 7916 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7917 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7918 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7919 } else { 7920 SDValue Mul = DAG.getNode( 7921 ISD::VP_FMUL, DL, VTs, 7922 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7923 SDValue Add = 7924 DAG.getNode(ISD::VP_FADD, DL, VTs, 7925 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7926 setValue(&VPIntrin, Add); 7927 } 7928 break; 7929 } 7930 case ISD::VP_INTTOPTR: { 7931 SDValue N = OpValues[0]; 7932 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7933 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7934 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7935 OpValues[2]); 7936 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7937 OpValues[2]); 7938 setValue(&VPIntrin, N); 7939 break; 7940 } 7941 case ISD::VP_PTRTOINT: { 7942 SDValue N = OpValues[0]; 7943 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7944 VPIntrin.getType()); 7945 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7946 VPIntrin.getOperand(0)->getType()); 7947 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7948 OpValues[2]); 7949 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7950 OpValues[2]); 7951 setValue(&VPIntrin, N); 7952 break; 7953 } 7954 case ISD::VP_ABS: 7955 case ISD::VP_CTLZ: 7956 case ISD::VP_CTLZ_ZERO_UNDEF: 7957 case ISD::VP_CTTZ: 7958 case ISD::VP_CTTZ_ZERO_UNDEF: { 7959 SDValue Result = 7960 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 7961 setValue(&VPIntrin, Result); 7962 break; 7963 } 7964 } 7965 } 7966 7967 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7968 const BasicBlock *EHPadBB, 7969 MCSymbol *&BeginLabel) { 7970 MachineFunction &MF = DAG.getMachineFunction(); 7971 MachineModuleInfo &MMI = MF.getMMI(); 7972 7973 // Insert a label before the invoke call to mark the try range. This can be 7974 // used to detect deletion of the invoke via the MachineModuleInfo. 7975 BeginLabel = MMI.getContext().createTempSymbol(); 7976 7977 // For SjLj, keep track of which landing pads go with which invokes 7978 // so as to maintain the ordering of pads in the LSDA. 7979 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7980 if (CallSiteIndex) { 7981 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7982 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7983 7984 // Now that the call site is handled, stop tracking it. 7985 MMI.setCurrentCallSite(0); 7986 } 7987 7988 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7989 } 7990 7991 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7992 const BasicBlock *EHPadBB, 7993 MCSymbol *BeginLabel) { 7994 assert(BeginLabel && "BeginLabel should've been set"); 7995 7996 MachineFunction &MF = DAG.getMachineFunction(); 7997 MachineModuleInfo &MMI = MF.getMMI(); 7998 7999 // Insert a label at the end of the invoke call to mark the try range. This 8000 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8001 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8002 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8003 8004 // Inform MachineModuleInfo of range. 8005 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8006 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8007 // actually use outlined funclets and their LSDA info style. 8008 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8009 assert(II && "II should've been set"); 8010 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8011 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8012 } else if (!isScopedEHPersonality(Pers)) { 8013 assert(EHPadBB); 8014 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8015 } 8016 8017 return Chain; 8018 } 8019 8020 std::pair<SDValue, SDValue> 8021 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8022 const BasicBlock *EHPadBB) { 8023 MCSymbol *BeginLabel = nullptr; 8024 8025 if (EHPadBB) { 8026 // Both PendingLoads and PendingExports must be flushed here; 8027 // this call might not return. 8028 (void)getRoot(); 8029 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8030 CLI.setChain(getRoot()); 8031 } 8032 8033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8034 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8035 8036 assert((CLI.IsTailCall || Result.second.getNode()) && 8037 "Non-null chain expected with non-tail call!"); 8038 assert((Result.second.getNode() || !Result.first.getNode()) && 8039 "Null value expected with tail call!"); 8040 8041 if (!Result.second.getNode()) { 8042 // As a special case, a null chain means that a tail call has been emitted 8043 // and the DAG root is already updated. 8044 HasTailCall = true; 8045 8046 // Since there's no actual continuation from this block, nothing can be 8047 // relying on us setting vregs for them. 8048 PendingExports.clear(); 8049 } else { 8050 DAG.setRoot(Result.second); 8051 } 8052 8053 if (EHPadBB) { 8054 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8055 BeginLabel)); 8056 } 8057 8058 return Result; 8059 } 8060 8061 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8062 bool isTailCall, 8063 bool isMustTailCall, 8064 const BasicBlock *EHPadBB) { 8065 auto &DL = DAG.getDataLayout(); 8066 FunctionType *FTy = CB.getFunctionType(); 8067 Type *RetTy = CB.getType(); 8068 8069 TargetLowering::ArgListTy Args; 8070 Args.reserve(CB.arg_size()); 8071 8072 const Value *SwiftErrorVal = nullptr; 8073 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8074 8075 if (isTailCall) { 8076 // Avoid emitting tail calls in functions with the disable-tail-calls 8077 // attribute. 8078 auto *Caller = CB.getParent()->getParent(); 8079 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8080 "true" && !isMustTailCall) 8081 isTailCall = false; 8082 8083 // We can't tail call inside a function with a swifterror argument. Lowering 8084 // does not support this yet. It would have to move into the swifterror 8085 // register before the call. 8086 if (TLI.supportSwiftError() && 8087 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8088 isTailCall = false; 8089 } 8090 8091 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8092 TargetLowering::ArgListEntry Entry; 8093 const Value *V = *I; 8094 8095 // Skip empty types 8096 if (V->getType()->isEmptyTy()) 8097 continue; 8098 8099 SDValue ArgNode = getValue(V); 8100 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8101 8102 Entry.setAttributes(&CB, I - CB.arg_begin()); 8103 8104 // Use swifterror virtual register as input to the call. 8105 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8106 SwiftErrorVal = V; 8107 // We find the virtual register for the actual swifterror argument. 8108 // Instead of using the Value, we use the virtual register instead. 8109 Entry.Node = 8110 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8111 EVT(TLI.getPointerTy(DL))); 8112 } 8113 8114 Args.push_back(Entry); 8115 8116 // If we have an explicit sret argument that is an Instruction, (i.e., it 8117 // might point to function-local memory), we can't meaningfully tail-call. 8118 if (Entry.IsSRet && isa<Instruction>(V)) 8119 isTailCall = false; 8120 } 8121 8122 // If call site has a cfguardtarget operand bundle, create and add an 8123 // additional ArgListEntry. 8124 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8125 TargetLowering::ArgListEntry Entry; 8126 Value *V = Bundle->Inputs[0]; 8127 SDValue ArgNode = getValue(V); 8128 Entry.Node = ArgNode; 8129 Entry.Ty = V->getType(); 8130 Entry.IsCFGuardTarget = true; 8131 Args.push_back(Entry); 8132 } 8133 8134 // Check if target-independent constraints permit a tail call here. 8135 // Target-dependent constraints are checked within TLI->LowerCallTo. 8136 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8137 isTailCall = false; 8138 8139 // Disable tail calls if there is an swifterror argument. Targets have not 8140 // been updated to support tail calls. 8141 if (TLI.supportSwiftError() && SwiftErrorVal) 8142 isTailCall = false; 8143 8144 ConstantInt *CFIType = nullptr; 8145 if (CB.isIndirectCall()) { 8146 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8147 if (!TLI.supportKCFIBundles()) 8148 report_fatal_error( 8149 "Target doesn't support calls with kcfi operand bundles."); 8150 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8151 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8152 } 8153 } 8154 8155 TargetLowering::CallLoweringInfo CLI(DAG); 8156 CLI.setDebugLoc(getCurSDLoc()) 8157 .setChain(getRoot()) 8158 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8159 .setTailCall(isTailCall) 8160 .setConvergent(CB.isConvergent()) 8161 .setIsPreallocated( 8162 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8163 .setCFIType(CFIType); 8164 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8165 8166 if (Result.first.getNode()) { 8167 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8168 setValue(&CB, Result.first); 8169 } 8170 8171 // The last element of CLI.InVals has the SDValue for swifterror return. 8172 // Here we copy it to a virtual register and update SwiftErrorMap for 8173 // book-keeping. 8174 if (SwiftErrorVal && TLI.supportSwiftError()) { 8175 // Get the last element of InVals. 8176 SDValue Src = CLI.InVals.back(); 8177 Register VReg = 8178 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8179 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8180 DAG.setRoot(CopyNode); 8181 } 8182 } 8183 8184 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8185 SelectionDAGBuilder &Builder) { 8186 // Check to see if this load can be trivially constant folded, e.g. if the 8187 // input is from a string literal. 8188 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8189 // Cast pointer to the type we really want to load. 8190 Type *LoadTy = 8191 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8192 if (LoadVT.isVector()) 8193 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8194 8195 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8196 PointerType::getUnqual(LoadTy)); 8197 8198 if (const Constant *LoadCst = 8199 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8200 LoadTy, Builder.DAG.getDataLayout())) 8201 return Builder.getValue(LoadCst); 8202 } 8203 8204 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8205 // still constant memory, the input chain can be the entry node. 8206 SDValue Root; 8207 bool ConstantMemory = false; 8208 8209 // Do not serialize (non-volatile) loads of constant memory with anything. 8210 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8211 Root = Builder.DAG.getEntryNode(); 8212 ConstantMemory = true; 8213 } else { 8214 // Do not serialize non-volatile loads against each other. 8215 Root = Builder.DAG.getRoot(); 8216 } 8217 8218 SDValue Ptr = Builder.getValue(PtrVal); 8219 SDValue LoadVal = 8220 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8221 MachinePointerInfo(PtrVal), Align(1)); 8222 8223 if (!ConstantMemory) 8224 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8225 return LoadVal; 8226 } 8227 8228 /// Record the value for an instruction that produces an integer result, 8229 /// converting the type where necessary. 8230 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8231 SDValue Value, 8232 bool IsSigned) { 8233 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8234 I.getType(), true); 8235 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8236 setValue(&I, Value); 8237 } 8238 8239 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8240 /// true and lower it. Otherwise return false, and it will be lowered like a 8241 /// normal call. 8242 /// The caller already checked that \p I calls the appropriate LibFunc with a 8243 /// correct prototype. 8244 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8245 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8246 const Value *Size = I.getArgOperand(2); 8247 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8248 if (CSize && CSize->getZExtValue() == 0) { 8249 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8250 I.getType(), true); 8251 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8252 return true; 8253 } 8254 8255 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8256 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8257 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8258 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8259 if (Res.first.getNode()) { 8260 processIntegerCallValue(I, Res.first, true); 8261 PendingLoads.push_back(Res.second); 8262 return true; 8263 } 8264 8265 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8266 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8267 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8268 return false; 8269 8270 // If the target has a fast compare for the given size, it will return a 8271 // preferred load type for that size. Require that the load VT is legal and 8272 // that the target supports unaligned loads of that type. Otherwise, return 8273 // INVALID. 8274 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8276 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8277 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8278 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8279 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8280 // TODO: Check alignment of src and dest ptrs. 8281 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8282 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8283 if (!TLI.isTypeLegal(LVT) || 8284 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8285 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8286 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8287 } 8288 8289 return LVT; 8290 }; 8291 8292 // This turns into unaligned loads. We only do this if the target natively 8293 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8294 // we'll only produce a small number of byte loads. 8295 MVT LoadVT; 8296 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8297 switch (NumBitsToCompare) { 8298 default: 8299 return false; 8300 case 16: 8301 LoadVT = MVT::i16; 8302 break; 8303 case 32: 8304 LoadVT = MVT::i32; 8305 break; 8306 case 64: 8307 case 128: 8308 case 256: 8309 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8310 break; 8311 } 8312 8313 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8314 return false; 8315 8316 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8317 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8318 8319 // Bitcast to a wide integer type if the loads are vectors. 8320 if (LoadVT.isVector()) { 8321 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8322 LoadL = DAG.getBitcast(CmpVT, LoadL); 8323 LoadR = DAG.getBitcast(CmpVT, LoadR); 8324 } 8325 8326 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8327 processIntegerCallValue(I, Cmp, false); 8328 return true; 8329 } 8330 8331 /// See if we can lower a memchr call into an optimized form. If so, return 8332 /// true and lower it. Otherwise return false, and it will be lowered like a 8333 /// normal call. 8334 /// The caller already checked that \p I calls the appropriate LibFunc with a 8335 /// correct prototype. 8336 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8337 const Value *Src = I.getArgOperand(0); 8338 const Value *Char = I.getArgOperand(1); 8339 const Value *Length = I.getArgOperand(2); 8340 8341 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8342 std::pair<SDValue, SDValue> Res = 8343 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8344 getValue(Src), getValue(Char), getValue(Length), 8345 MachinePointerInfo(Src)); 8346 if (Res.first.getNode()) { 8347 setValue(&I, Res.first); 8348 PendingLoads.push_back(Res.second); 8349 return true; 8350 } 8351 8352 return false; 8353 } 8354 8355 /// See if we can lower a mempcpy call into an optimized form. If so, return 8356 /// true and lower it. Otherwise return false, and it will be lowered like a 8357 /// normal call. 8358 /// The caller already checked that \p I calls the appropriate LibFunc with a 8359 /// correct prototype. 8360 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8361 SDValue Dst = getValue(I.getArgOperand(0)); 8362 SDValue Src = getValue(I.getArgOperand(1)); 8363 SDValue Size = getValue(I.getArgOperand(2)); 8364 8365 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8366 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8367 // DAG::getMemcpy needs Alignment to be defined. 8368 Align Alignment = std::min(DstAlign, SrcAlign); 8369 8370 SDLoc sdl = getCurSDLoc(); 8371 8372 // In the mempcpy context we need to pass in a false value for isTailCall 8373 // because the return pointer needs to be adjusted by the size of 8374 // the copied memory. 8375 SDValue Root = getMemoryRoot(); 8376 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8377 /*isTailCall=*/false, 8378 MachinePointerInfo(I.getArgOperand(0)), 8379 MachinePointerInfo(I.getArgOperand(1)), 8380 I.getAAMetadata()); 8381 assert(MC.getNode() != nullptr && 8382 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8383 DAG.setRoot(MC); 8384 8385 // Check if Size needs to be truncated or extended. 8386 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8387 8388 // Adjust return pointer to point just past the last dst byte. 8389 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8390 Dst, Size); 8391 setValue(&I, DstPlusSize); 8392 return true; 8393 } 8394 8395 /// See if we can lower a strcpy call into an optimized form. If so, return 8396 /// true and lower it, otherwise return false and it will be lowered like a 8397 /// normal call. 8398 /// The caller already checked that \p I calls the appropriate LibFunc with a 8399 /// correct prototype. 8400 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8401 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8402 8403 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8404 std::pair<SDValue, SDValue> Res = 8405 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8406 getValue(Arg0), getValue(Arg1), 8407 MachinePointerInfo(Arg0), 8408 MachinePointerInfo(Arg1), isStpcpy); 8409 if (Res.first.getNode()) { 8410 setValue(&I, Res.first); 8411 DAG.setRoot(Res.second); 8412 return true; 8413 } 8414 8415 return false; 8416 } 8417 8418 /// See if we can lower a strcmp call into an optimized form. If so, return 8419 /// true and lower it, otherwise return false and it will be lowered like a 8420 /// normal call. 8421 /// The caller already checked that \p I calls the appropriate LibFunc with a 8422 /// correct prototype. 8423 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8424 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8425 8426 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8427 std::pair<SDValue, SDValue> Res = 8428 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8429 getValue(Arg0), getValue(Arg1), 8430 MachinePointerInfo(Arg0), 8431 MachinePointerInfo(Arg1)); 8432 if (Res.first.getNode()) { 8433 processIntegerCallValue(I, Res.first, true); 8434 PendingLoads.push_back(Res.second); 8435 return true; 8436 } 8437 8438 return false; 8439 } 8440 8441 /// See if we can lower a strlen call into an optimized form. If so, return 8442 /// true and lower it, otherwise return false and it will be lowered like a 8443 /// normal call. 8444 /// The caller already checked that \p I calls the appropriate LibFunc with a 8445 /// correct prototype. 8446 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8447 const Value *Arg0 = I.getArgOperand(0); 8448 8449 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8450 std::pair<SDValue, SDValue> Res = 8451 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8452 getValue(Arg0), MachinePointerInfo(Arg0)); 8453 if (Res.first.getNode()) { 8454 processIntegerCallValue(I, Res.first, false); 8455 PendingLoads.push_back(Res.second); 8456 return true; 8457 } 8458 8459 return false; 8460 } 8461 8462 /// See if we can lower a strnlen call into an optimized form. If so, return 8463 /// true and lower it, otherwise return false and it will be lowered like a 8464 /// normal call. 8465 /// The caller already checked that \p I calls the appropriate LibFunc with a 8466 /// correct prototype. 8467 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8468 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8469 8470 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8471 std::pair<SDValue, SDValue> Res = 8472 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8473 getValue(Arg0), getValue(Arg1), 8474 MachinePointerInfo(Arg0)); 8475 if (Res.first.getNode()) { 8476 processIntegerCallValue(I, Res.first, false); 8477 PendingLoads.push_back(Res.second); 8478 return true; 8479 } 8480 8481 return false; 8482 } 8483 8484 /// See if we can lower a unary floating-point operation into an SDNode with 8485 /// the specified Opcode. If so, return true and lower it, otherwise return 8486 /// false and it will be lowered like a normal call. 8487 /// The caller already checked that \p I calls the appropriate LibFunc with a 8488 /// correct prototype. 8489 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8490 unsigned Opcode) { 8491 // We already checked this call's prototype; verify it doesn't modify errno. 8492 if (!I.onlyReadsMemory()) 8493 return false; 8494 8495 SDNodeFlags Flags; 8496 Flags.copyFMF(cast<FPMathOperator>(I)); 8497 8498 SDValue Tmp = getValue(I.getArgOperand(0)); 8499 setValue(&I, 8500 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8501 return true; 8502 } 8503 8504 /// See if we can lower a binary floating-point operation into an SDNode with 8505 /// the specified Opcode. If so, return true and lower it. Otherwise return 8506 /// false, and it will be lowered like a normal call. 8507 /// The caller already checked that \p I calls the appropriate LibFunc with a 8508 /// correct prototype. 8509 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8510 unsigned Opcode) { 8511 // We already checked this call's prototype; verify it doesn't modify errno. 8512 if (!I.onlyReadsMemory()) 8513 return false; 8514 8515 SDNodeFlags Flags; 8516 Flags.copyFMF(cast<FPMathOperator>(I)); 8517 8518 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8519 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8520 EVT VT = Tmp0.getValueType(); 8521 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8522 return true; 8523 } 8524 8525 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8526 // Handle inline assembly differently. 8527 if (I.isInlineAsm()) { 8528 visitInlineAsm(I); 8529 return; 8530 } 8531 8532 diagnoseDontCall(I); 8533 8534 if (Function *F = I.getCalledFunction()) { 8535 if (F->isDeclaration()) { 8536 // Is this an LLVM intrinsic or a target-specific intrinsic? 8537 unsigned IID = F->getIntrinsicID(); 8538 if (!IID) 8539 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8540 IID = II->getIntrinsicID(F); 8541 8542 if (IID) { 8543 visitIntrinsicCall(I, IID); 8544 return; 8545 } 8546 } 8547 8548 // Check for well-known libc/libm calls. If the function is internal, it 8549 // can't be a library call. Don't do the check if marked as nobuiltin for 8550 // some reason or the call site requires strict floating point semantics. 8551 LibFunc Func; 8552 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8553 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8554 LibInfo->hasOptimizedCodeGen(Func)) { 8555 switch (Func) { 8556 default: break; 8557 case LibFunc_bcmp: 8558 if (visitMemCmpBCmpCall(I)) 8559 return; 8560 break; 8561 case LibFunc_copysign: 8562 case LibFunc_copysignf: 8563 case LibFunc_copysignl: 8564 // We already checked this call's prototype; verify it doesn't modify 8565 // errno. 8566 if (I.onlyReadsMemory()) { 8567 SDValue LHS = getValue(I.getArgOperand(0)); 8568 SDValue RHS = getValue(I.getArgOperand(1)); 8569 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8570 LHS.getValueType(), LHS, RHS)); 8571 return; 8572 } 8573 break; 8574 case LibFunc_fabs: 8575 case LibFunc_fabsf: 8576 case LibFunc_fabsl: 8577 if (visitUnaryFloatCall(I, ISD::FABS)) 8578 return; 8579 break; 8580 case LibFunc_fmin: 8581 case LibFunc_fminf: 8582 case LibFunc_fminl: 8583 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8584 return; 8585 break; 8586 case LibFunc_fmax: 8587 case LibFunc_fmaxf: 8588 case LibFunc_fmaxl: 8589 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8590 return; 8591 break; 8592 case LibFunc_sin: 8593 case LibFunc_sinf: 8594 case LibFunc_sinl: 8595 if (visitUnaryFloatCall(I, ISD::FSIN)) 8596 return; 8597 break; 8598 case LibFunc_cos: 8599 case LibFunc_cosf: 8600 case LibFunc_cosl: 8601 if (visitUnaryFloatCall(I, ISD::FCOS)) 8602 return; 8603 break; 8604 case LibFunc_sqrt: 8605 case LibFunc_sqrtf: 8606 case LibFunc_sqrtl: 8607 case LibFunc_sqrt_finite: 8608 case LibFunc_sqrtf_finite: 8609 case LibFunc_sqrtl_finite: 8610 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8611 return; 8612 break; 8613 case LibFunc_floor: 8614 case LibFunc_floorf: 8615 case LibFunc_floorl: 8616 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8617 return; 8618 break; 8619 case LibFunc_nearbyint: 8620 case LibFunc_nearbyintf: 8621 case LibFunc_nearbyintl: 8622 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8623 return; 8624 break; 8625 case LibFunc_ceil: 8626 case LibFunc_ceilf: 8627 case LibFunc_ceill: 8628 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8629 return; 8630 break; 8631 case LibFunc_rint: 8632 case LibFunc_rintf: 8633 case LibFunc_rintl: 8634 if (visitUnaryFloatCall(I, ISD::FRINT)) 8635 return; 8636 break; 8637 case LibFunc_round: 8638 case LibFunc_roundf: 8639 case LibFunc_roundl: 8640 if (visitUnaryFloatCall(I, ISD::FROUND)) 8641 return; 8642 break; 8643 case LibFunc_trunc: 8644 case LibFunc_truncf: 8645 case LibFunc_truncl: 8646 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8647 return; 8648 break; 8649 case LibFunc_log2: 8650 case LibFunc_log2f: 8651 case LibFunc_log2l: 8652 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8653 return; 8654 break; 8655 case LibFunc_exp2: 8656 case LibFunc_exp2f: 8657 case LibFunc_exp2l: 8658 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8659 return; 8660 break; 8661 case LibFunc_ldexp: 8662 case LibFunc_ldexpf: 8663 case LibFunc_ldexpl: 8664 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8665 return; 8666 break; 8667 case LibFunc_memcmp: 8668 if (visitMemCmpBCmpCall(I)) 8669 return; 8670 break; 8671 case LibFunc_mempcpy: 8672 if (visitMemPCpyCall(I)) 8673 return; 8674 break; 8675 case LibFunc_memchr: 8676 if (visitMemChrCall(I)) 8677 return; 8678 break; 8679 case LibFunc_strcpy: 8680 if (visitStrCpyCall(I, false)) 8681 return; 8682 break; 8683 case LibFunc_stpcpy: 8684 if (visitStrCpyCall(I, true)) 8685 return; 8686 break; 8687 case LibFunc_strcmp: 8688 if (visitStrCmpCall(I)) 8689 return; 8690 break; 8691 case LibFunc_strlen: 8692 if (visitStrLenCall(I)) 8693 return; 8694 break; 8695 case LibFunc_strnlen: 8696 if (visitStrNLenCall(I)) 8697 return; 8698 break; 8699 } 8700 } 8701 } 8702 8703 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8704 // have to do anything here to lower funclet bundles. 8705 // CFGuardTarget bundles are lowered in LowerCallTo. 8706 assert(!I.hasOperandBundlesOtherThan( 8707 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8708 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8709 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8710 "Cannot lower calls with arbitrary operand bundles!"); 8711 8712 SDValue Callee = getValue(I.getCalledOperand()); 8713 8714 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8715 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8716 else 8717 // Check if we can potentially perform a tail call. More detailed checking 8718 // is be done within LowerCallTo, after more information about the call is 8719 // known. 8720 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8721 } 8722 8723 namespace { 8724 8725 /// AsmOperandInfo - This contains information for each constraint that we are 8726 /// lowering. 8727 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8728 public: 8729 /// CallOperand - If this is the result output operand or a clobber 8730 /// this is null, otherwise it is the incoming operand to the CallInst. 8731 /// This gets modified as the asm is processed. 8732 SDValue CallOperand; 8733 8734 /// AssignedRegs - If this is a register or register class operand, this 8735 /// contains the set of register corresponding to the operand. 8736 RegsForValue AssignedRegs; 8737 8738 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8739 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8740 } 8741 8742 /// Whether or not this operand accesses memory 8743 bool hasMemory(const TargetLowering &TLI) const { 8744 // Indirect operand accesses access memory. 8745 if (isIndirect) 8746 return true; 8747 8748 for (const auto &Code : Codes) 8749 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8750 return true; 8751 8752 return false; 8753 } 8754 }; 8755 8756 8757 } // end anonymous namespace 8758 8759 /// Make sure that the output operand \p OpInfo and its corresponding input 8760 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8761 /// out). 8762 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8763 SDISelAsmOperandInfo &MatchingOpInfo, 8764 SelectionDAG &DAG) { 8765 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8766 return; 8767 8768 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8769 const auto &TLI = DAG.getTargetLoweringInfo(); 8770 8771 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8772 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8773 OpInfo.ConstraintVT); 8774 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8775 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8776 MatchingOpInfo.ConstraintVT); 8777 if ((OpInfo.ConstraintVT.isInteger() != 8778 MatchingOpInfo.ConstraintVT.isInteger()) || 8779 (MatchRC.second != InputRC.second)) { 8780 // FIXME: error out in a more elegant fashion 8781 report_fatal_error("Unsupported asm: input constraint" 8782 " with a matching output constraint of" 8783 " incompatible type!"); 8784 } 8785 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8786 } 8787 8788 /// Get a direct memory input to behave well as an indirect operand. 8789 /// This may introduce stores, hence the need for a \p Chain. 8790 /// \return The (possibly updated) chain. 8791 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8792 SDISelAsmOperandInfo &OpInfo, 8793 SelectionDAG &DAG) { 8794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8795 8796 // If we don't have an indirect input, put it in the constpool if we can, 8797 // otherwise spill it to a stack slot. 8798 // TODO: This isn't quite right. We need to handle these according to 8799 // the addressing mode that the constraint wants. Also, this may take 8800 // an additional register for the computation and we don't want that 8801 // either. 8802 8803 // If the operand is a float, integer, or vector constant, spill to a 8804 // constant pool entry to get its address. 8805 const Value *OpVal = OpInfo.CallOperandVal; 8806 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8807 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8808 OpInfo.CallOperand = DAG.getConstantPool( 8809 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8810 return Chain; 8811 } 8812 8813 // Otherwise, create a stack slot and emit a store to it before the asm. 8814 Type *Ty = OpVal->getType(); 8815 auto &DL = DAG.getDataLayout(); 8816 uint64_t TySize = DL.getTypeAllocSize(Ty); 8817 MachineFunction &MF = DAG.getMachineFunction(); 8818 int SSFI = MF.getFrameInfo().CreateStackObject( 8819 TySize, DL.getPrefTypeAlign(Ty), false); 8820 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8821 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8822 MachinePointerInfo::getFixedStack(MF, SSFI), 8823 TLI.getMemValueType(DL, Ty)); 8824 OpInfo.CallOperand = StackSlot; 8825 8826 return Chain; 8827 } 8828 8829 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8830 /// specified operand. We prefer to assign virtual registers, to allow the 8831 /// register allocator to handle the assignment process. However, if the asm 8832 /// uses features that we can't model on machineinstrs, we have SDISel do the 8833 /// allocation. This produces generally horrible, but correct, code. 8834 /// 8835 /// OpInfo describes the operand 8836 /// RefOpInfo describes the matching operand if any, the operand otherwise 8837 static std::optional<unsigned> 8838 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8839 SDISelAsmOperandInfo &OpInfo, 8840 SDISelAsmOperandInfo &RefOpInfo) { 8841 LLVMContext &Context = *DAG.getContext(); 8842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8843 8844 MachineFunction &MF = DAG.getMachineFunction(); 8845 SmallVector<unsigned, 4> Regs; 8846 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8847 8848 // No work to do for memory/address operands. 8849 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8850 OpInfo.ConstraintType == TargetLowering::C_Address) 8851 return std::nullopt; 8852 8853 // If this is a constraint for a single physreg, or a constraint for a 8854 // register class, find it. 8855 unsigned AssignedReg; 8856 const TargetRegisterClass *RC; 8857 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8858 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8859 // RC is unset only on failure. Return immediately. 8860 if (!RC) 8861 return std::nullopt; 8862 8863 // Get the actual register value type. This is important, because the user 8864 // may have asked for (e.g.) the AX register in i32 type. We need to 8865 // remember that AX is actually i16 to get the right extension. 8866 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8867 8868 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8869 // If this is an FP operand in an integer register (or visa versa), or more 8870 // generally if the operand value disagrees with the register class we plan 8871 // to stick it in, fix the operand type. 8872 // 8873 // If this is an input value, the bitcast to the new type is done now. 8874 // Bitcast for output value is done at the end of visitInlineAsm(). 8875 if ((OpInfo.Type == InlineAsm::isOutput || 8876 OpInfo.Type == InlineAsm::isInput) && 8877 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8878 // Try to convert to the first EVT that the reg class contains. If the 8879 // types are identical size, use a bitcast to convert (e.g. two differing 8880 // vector types). Note: output bitcast is done at the end of 8881 // visitInlineAsm(). 8882 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8883 // Exclude indirect inputs while they are unsupported because the code 8884 // to perform the load is missing and thus OpInfo.CallOperand still 8885 // refers to the input address rather than the pointed-to value. 8886 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8887 OpInfo.CallOperand = 8888 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8889 OpInfo.ConstraintVT = RegVT; 8890 // If the operand is an FP value and we want it in integer registers, 8891 // use the corresponding integer type. This turns an f64 value into 8892 // i64, which can be passed with two i32 values on a 32-bit machine. 8893 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8894 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8895 if (OpInfo.Type == InlineAsm::isInput) 8896 OpInfo.CallOperand = 8897 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8898 OpInfo.ConstraintVT = VT; 8899 } 8900 } 8901 } 8902 8903 // No need to allocate a matching input constraint since the constraint it's 8904 // matching to has already been allocated. 8905 if (OpInfo.isMatchingInputConstraint()) 8906 return std::nullopt; 8907 8908 EVT ValueVT = OpInfo.ConstraintVT; 8909 if (OpInfo.ConstraintVT == MVT::Other) 8910 ValueVT = RegVT; 8911 8912 // Initialize NumRegs. 8913 unsigned NumRegs = 1; 8914 if (OpInfo.ConstraintVT != MVT::Other) 8915 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8916 8917 // If this is a constraint for a specific physical register, like {r17}, 8918 // assign it now. 8919 8920 // If this associated to a specific register, initialize iterator to correct 8921 // place. If virtual, make sure we have enough registers 8922 8923 // Initialize iterator if necessary 8924 TargetRegisterClass::iterator I = RC->begin(); 8925 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8926 8927 // Do not check for single registers. 8928 if (AssignedReg) { 8929 I = std::find(I, RC->end(), AssignedReg); 8930 if (I == RC->end()) { 8931 // RC does not contain the selected register, which indicates a 8932 // mismatch between the register and the required type/bitwidth. 8933 return {AssignedReg}; 8934 } 8935 } 8936 8937 for (; NumRegs; --NumRegs, ++I) { 8938 assert(I != RC->end() && "Ran out of registers to allocate!"); 8939 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8940 Regs.push_back(R); 8941 } 8942 8943 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8944 return std::nullopt; 8945 } 8946 8947 static unsigned 8948 findMatchingInlineAsmOperand(unsigned OperandNo, 8949 const std::vector<SDValue> &AsmNodeOperands) { 8950 // Scan until we find the definition we already emitted of this operand. 8951 unsigned CurOp = InlineAsm::Op_FirstOperand; 8952 for (; OperandNo; --OperandNo) { 8953 // Advance to the next operand. 8954 unsigned OpFlag = 8955 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8956 assert((InlineAsm::isRegDefKind(OpFlag) || 8957 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8958 InlineAsm::isMemKind(OpFlag)) && 8959 "Skipped past definitions?"); 8960 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8961 } 8962 return CurOp; 8963 } 8964 8965 namespace { 8966 8967 class ExtraFlags { 8968 unsigned Flags = 0; 8969 8970 public: 8971 explicit ExtraFlags(const CallBase &Call) { 8972 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8973 if (IA->hasSideEffects()) 8974 Flags |= InlineAsm::Extra_HasSideEffects; 8975 if (IA->isAlignStack()) 8976 Flags |= InlineAsm::Extra_IsAlignStack; 8977 if (Call.isConvergent()) 8978 Flags |= InlineAsm::Extra_IsConvergent; 8979 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8980 } 8981 8982 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8983 // Ideally, we would only check against memory constraints. However, the 8984 // meaning of an Other constraint can be target-specific and we can't easily 8985 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8986 // for Other constraints as well. 8987 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8988 OpInfo.ConstraintType == TargetLowering::C_Other) { 8989 if (OpInfo.Type == InlineAsm::isInput) 8990 Flags |= InlineAsm::Extra_MayLoad; 8991 else if (OpInfo.Type == InlineAsm::isOutput) 8992 Flags |= InlineAsm::Extra_MayStore; 8993 else if (OpInfo.Type == InlineAsm::isClobber) 8994 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8995 } 8996 } 8997 8998 unsigned get() const { return Flags; } 8999 }; 9000 9001 } // end anonymous namespace 9002 9003 static bool isFunction(SDValue Op) { 9004 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9005 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9006 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9007 9008 // In normal "call dllimport func" instruction (non-inlineasm) it force 9009 // indirect access by specifing call opcode. And usually specially print 9010 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9011 // not do in this way now. (In fact, this is similar with "Data Access" 9012 // action). So here we ignore dllimport function. 9013 if (Fn && !Fn->hasDLLImportStorageClass()) 9014 return true; 9015 } 9016 } 9017 return false; 9018 } 9019 9020 /// visitInlineAsm - Handle a call to an InlineAsm object. 9021 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9022 const BasicBlock *EHPadBB) { 9023 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9024 9025 /// ConstraintOperands - Information about all of the constraints. 9026 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9027 9028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9029 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9030 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9031 9032 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9033 // AsmDialect, MayLoad, MayStore). 9034 bool HasSideEffect = IA->hasSideEffects(); 9035 ExtraFlags ExtraInfo(Call); 9036 9037 for (auto &T : TargetConstraints) { 9038 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9039 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9040 9041 if (OpInfo.CallOperandVal) 9042 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9043 9044 if (!HasSideEffect) 9045 HasSideEffect = OpInfo.hasMemory(TLI); 9046 9047 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9048 // FIXME: Could we compute this on OpInfo rather than T? 9049 9050 // Compute the constraint code and ConstraintType to use. 9051 TLI.ComputeConstraintToUse(T, SDValue()); 9052 9053 if (T.ConstraintType == TargetLowering::C_Immediate && 9054 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9055 // We've delayed emitting a diagnostic like the "n" constraint because 9056 // inlining could cause an integer showing up. 9057 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9058 "' expects an integer constant " 9059 "expression"); 9060 9061 ExtraInfo.update(T); 9062 } 9063 9064 // We won't need to flush pending loads if this asm doesn't touch 9065 // memory and is nonvolatile. 9066 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9067 9068 bool EmitEHLabels = isa<InvokeInst>(Call); 9069 if (EmitEHLabels) { 9070 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9071 } 9072 bool IsCallBr = isa<CallBrInst>(Call); 9073 9074 if (IsCallBr || EmitEHLabels) { 9075 // If this is a callbr or invoke we need to flush pending exports since 9076 // inlineasm_br and invoke are terminators. 9077 // We need to do this before nodes are glued to the inlineasm_br node. 9078 Chain = getControlRoot(); 9079 } 9080 9081 MCSymbol *BeginLabel = nullptr; 9082 if (EmitEHLabels) { 9083 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9084 } 9085 9086 int OpNo = -1; 9087 SmallVector<StringRef> AsmStrs; 9088 IA->collectAsmStrs(AsmStrs); 9089 9090 // Second pass over the constraints: compute which constraint option to use. 9091 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9092 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9093 OpNo++; 9094 9095 // If this is an output operand with a matching input operand, look up the 9096 // matching input. If their types mismatch, e.g. one is an integer, the 9097 // other is floating point, or their sizes are different, flag it as an 9098 // error. 9099 if (OpInfo.hasMatchingInput()) { 9100 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9101 patchMatchingInput(OpInfo, Input, DAG); 9102 } 9103 9104 // Compute the constraint code and ConstraintType to use. 9105 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9106 9107 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9108 OpInfo.Type == InlineAsm::isClobber) || 9109 OpInfo.ConstraintType == TargetLowering::C_Address) 9110 continue; 9111 9112 // In Linux PIC model, there are 4 cases about value/label addressing: 9113 // 9114 // 1: Function call or Label jmp inside the module. 9115 // 2: Data access (such as global variable, static variable) inside module. 9116 // 3: Function call or Label jmp outside the module. 9117 // 4: Data access (such as global variable) outside the module. 9118 // 9119 // Due to current llvm inline asm architecture designed to not "recognize" 9120 // the asm code, there are quite troubles for us to treat mem addressing 9121 // differently for same value/adress used in different instuctions. 9122 // For example, in pic model, call a func may in plt way or direclty 9123 // pc-related, but lea/mov a function adress may use got. 9124 // 9125 // Here we try to "recognize" function call for the case 1 and case 3 in 9126 // inline asm. And try to adjust the constraint for them. 9127 // 9128 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9129 // label, so here we don't handle jmp function label now, but we need to 9130 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9131 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9132 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9133 TM.getCodeModel() != CodeModel::Large) { 9134 OpInfo.isIndirect = false; 9135 OpInfo.ConstraintType = TargetLowering::C_Address; 9136 } 9137 9138 // If this is a memory input, and if the operand is not indirect, do what we 9139 // need to provide an address for the memory input. 9140 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9141 !OpInfo.isIndirect) { 9142 assert((OpInfo.isMultipleAlternative || 9143 (OpInfo.Type == InlineAsm::isInput)) && 9144 "Can only indirectify direct input operands!"); 9145 9146 // Memory operands really want the address of the value. 9147 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9148 9149 // There is no longer a Value* corresponding to this operand. 9150 OpInfo.CallOperandVal = nullptr; 9151 9152 // It is now an indirect operand. 9153 OpInfo.isIndirect = true; 9154 } 9155 9156 } 9157 9158 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9159 std::vector<SDValue> AsmNodeOperands; 9160 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9161 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9162 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9163 9164 // If we have a !srcloc metadata node associated with it, we want to attach 9165 // this to the ultimately generated inline asm machineinstr. To do this, we 9166 // pass in the third operand as this (potentially null) inline asm MDNode. 9167 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9168 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9169 9170 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9171 // bits as operand 3. 9172 AsmNodeOperands.push_back(DAG.getTargetConstant( 9173 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9174 9175 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9176 // this, assign virtual and physical registers for inputs and otput. 9177 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9178 // Assign Registers. 9179 SDISelAsmOperandInfo &RefOpInfo = 9180 OpInfo.isMatchingInputConstraint() 9181 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9182 : OpInfo; 9183 const auto RegError = 9184 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9185 if (RegError) { 9186 const MachineFunction &MF = DAG.getMachineFunction(); 9187 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9188 const char *RegName = TRI.getName(*RegError); 9189 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9190 "' allocated for constraint '" + 9191 Twine(OpInfo.ConstraintCode) + 9192 "' does not match required type"); 9193 return; 9194 } 9195 9196 auto DetectWriteToReservedRegister = [&]() { 9197 const MachineFunction &MF = DAG.getMachineFunction(); 9198 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9199 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9200 if (Register::isPhysicalRegister(Reg) && 9201 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9202 const char *RegName = TRI.getName(Reg); 9203 emitInlineAsmError(Call, "write to reserved register '" + 9204 Twine(RegName) + "'"); 9205 return true; 9206 } 9207 } 9208 return false; 9209 }; 9210 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9211 (OpInfo.Type == InlineAsm::isInput && 9212 !OpInfo.isMatchingInputConstraint())) && 9213 "Only address as input operand is allowed."); 9214 9215 switch (OpInfo.Type) { 9216 case InlineAsm::isOutput: 9217 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9218 unsigned ConstraintID = 9219 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9220 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9221 "Failed to convert memory constraint code to constraint id."); 9222 9223 // Add information to the INLINEASM node to know about this output. 9224 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9225 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 9226 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9227 MVT::i32)); 9228 AsmNodeOperands.push_back(OpInfo.CallOperand); 9229 } else { 9230 // Otherwise, this outputs to a register (directly for C_Register / 9231 // C_RegisterClass, and a target-defined fashion for 9232 // C_Immediate/C_Other). Find a register that we can use. 9233 if (OpInfo.AssignedRegs.Regs.empty()) { 9234 emitInlineAsmError( 9235 Call, "couldn't allocate output register for constraint '" + 9236 Twine(OpInfo.ConstraintCode) + "'"); 9237 return; 9238 } 9239 9240 if (DetectWriteToReservedRegister()) 9241 return; 9242 9243 // Add information to the INLINEASM node to know that this register is 9244 // set. 9245 OpInfo.AssignedRegs.AddInlineAsmOperands( 9246 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9247 : InlineAsm::Kind_RegDef, 9248 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9249 } 9250 break; 9251 9252 case InlineAsm::isInput: 9253 case InlineAsm::isLabel: { 9254 SDValue InOperandVal = OpInfo.CallOperand; 9255 9256 if (OpInfo.isMatchingInputConstraint()) { 9257 // If this is required to match an output register we have already set, 9258 // just use its register. 9259 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9260 AsmNodeOperands); 9261 unsigned OpFlag = 9262 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9263 if (InlineAsm::isRegDefKind(OpFlag) || 9264 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9265 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9266 if (OpInfo.isIndirect) { 9267 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9268 emitInlineAsmError(Call, "inline asm not supported yet: " 9269 "don't know how to handle tied " 9270 "indirect register inputs"); 9271 return; 9272 } 9273 9274 SmallVector<unsigned, 4> Regs; 9275 MachineFunction &MF = DAG.getMachineFunction(); 9276 MachineRegisterInfo &MRI = MF.getRegInfo(); 9277 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9278 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9279 Register TiedReg = R->getReg(); 9280 MVT RegVT = R->getSimpleValueType(0); 9281 const TargetRegisterClass *RC = 9282 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9283 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9284 : TRI.getMinimalPhysRegClass(TiedReg); 9285 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9286 for (unsigned i = 0; i != NumRegs; ++i) 9287 Regs.push_back(MRI.createVirtualRegister(RC)); 9288 9289 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9290 9291 SDLoc dl = getCurSDLoc(); 9292 // Use the produced MatchedRegs object to 9293 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9294 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9295 true, OpInfo.getMatchedOperand(), dl, 9296 DAG, AsmNodeOperands); 9297 break; 9298 } 9299 9300 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9301 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9302 "Unexpected number of operands"); 9303 // Add information to the INLINEASM node to know about this input. 9304 // See InlineAsm.h isUseOperandTiedToDef. 9305 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9306 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9307 OpInfo.getMatchedOperand()); 9308 AsmNodeOperands.push_back(DAG.getTargetConstant( 9309 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9310 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9311 break; 9312 } 9313 9314 // Treat indirect 'X' constraint as memory. 9315 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9316 OpInfo.isIndirect) 9317 OpInfo.ConstraintType = TargetLowering::C_Memory; 9318 9319 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9320 OpInfo.ConstraintType == TargetLowering::C_Other) { 9321 std::vector<SDValue> Ops; 9322 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9323 Ops, DAG); 9324 if (Ops.empty()) { 9325 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9326 if (isa<ConstantSDNode>(InOperandVal)) { 9327 emitInlineAsmError(Call, "value out of range for constraint '" + 9328 Twine(OpInfo.ConstraintCode) + "'"); 9329 return; 9330 } 9331 9332 emitInlineAsmError(Call, 9333 "invalid operand for inline asm constraint '" + 9334 Twine(OpInfo.ConstraintCode) + "'"); 9335 return; 9336 } 9337 9338 // Add information to the INLINEASM node to know about this input. 9339 unsigned ResOpType = 9340 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9341 AsmNodeOperands.push_back(DAG.getTargetConstant( 9342 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9343 llvm::append_range(AsmNodeOperands, Ops); 9344 break; 9345 } 9346 9347 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9348 assert((OpInfo.isIndirect || 9349 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9350 "Operand must be indirect to be a mem!"); 9351 assert(InOperandVal.getValueType() == 9352 TLI.getPointerTy(DAG.getDataLayout()) && 9353 "Memory operands expect pointer values"); 9354 9355 unsigned ConstraintID = 9356 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9357 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9358 "Failed to convert memory constraint code to constraint id."); 9359 9360 // Add information to the INLINEASM node to know about this input. 9361 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9362 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9363 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9364 getCurSDLoc(), 9365 MVT::i32)); 9366 AsmNodeOperands.push_back(InOperandVal); 9367 break; 9368 } 9369 9370 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9371 assert(InOperandVal.getValueType() == 9372 TLI.getPointerTy(DAG.getDataLayout()) && 9373 "Address operands expect pointer values"); 9374 9375 unsigned ConstraintID = 9376 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9377 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9378 "Failed to convert memory constraint code to constraint id."); 9379 9380 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9381 9382 SDValue AsmOp = InOperandVal; 9383 if (isFunction(InOperandVal)) { 9384 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9385 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9386 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9387 InOperandVal.getValueType(), 9388 GA->getOffset()); 9389 } 9390 9391 // Add information to the INLINEASM node to know about this input. 9392 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9393 9394 AsmNodeOperands.push_back( 9395 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9396 9397 AsmNodeOperands.push_back(AsmOp); 9398 break; 9399 } 9400 9401 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9402 OpInfo.ConstraintType == TargetLowering::C_Register) && 9403 "Unknown constraint type!"); 9404 9405 // TODO: Support this. 9406 if (OpInfo.isIndirect) { 9407 emitInlineAsmError( 9408 Call, "Don't know how to handle indirect register inputs yet " 9409 "for constraint '" + 9410 Twine(OpInfo.ConstraintCode) + "'"); 9411 return; 9412 } 9413 9414 // Copy the input into the appropriate registers. 9415 if (OpInfo.AssignedRegs.Regs.empty()) { 9416 emitInlineAsmError(Call, 9417 "couldn't allocate input reg for constraint '" + 9418 Twine(OpInfo.ConstraintCode) + "'"); 9419 return; 9420 } 9421 9422 if (DetectWriteToReservedRegister()) 9423 return; 9424 9425 SDLoc dl = getCurSDLoc(); 9426 9427 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9428 &Call); 9429 9430 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9431 dl, DAG, AsmNodeOperands); 9432 break; 9433 } 9434 case InlineAsm::isClobber: 9435 // Add the clobbered value to the operand list, so that the register 9436 // allocator is aware that the physreg got clobbered. 9437 if (!OpInfo.AssignedRegs.Regs.empty()) 9438 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9439 false, 0, getCurSDLoc(), DAG, 9440 AsmNodeOperands); 9441 break; 9442 } 9443 } 9444 9445 // Finish up input operands. Set the input chain and add the flag last. 9446 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9447 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9448 9449 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9450 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9451 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9452 Glue = Chain.getValue(1); 9453 9454 // Do additional work to generate outputs. 9455 9456 SmallVector<EVT, 1> ResultVTs; 9457 SmallVector<SDValue, 1> ResultValues; 9458 SmallVector<SDValue, 8> OutChains; 9459 9460 llvm::Type *CallResultType = Call.getType(); 9461 ArrayRef<Type *> ResultTypes; 9462 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9463 ResultTypes = StructResult->elements(); 9464 else if (!CallResultType->isVoidTy()) 9465 ResultTypes = ArrayRef(CallResultType); 9466 9467 auto CurResultType = ResultTypes.begin(); 9468 auto handleRegAssign = [&](SDValue V) { 9469 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9470 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9471 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9472 ++CurResultType; 9473 // If the type of the inline asm call site return value is different but has 9474 // same size as the type of the asm output bitcast it. One example of this 9475 // is for vectors with different width / number of elements. This can 9476 // happen for register classes that can contain multiple different value 9477 // types. The preg or vreg allocated may not have the same VT as was 9478 // expected. 9479 // 9480 // This can also happen for a return value that disagrees with the register 9481 // class it is put in, eg. a double in a general-purpose register on a 9482 // 32-bit machine. 9483 if (ResultVT != V.getValueType() && 9484 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9485 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9486 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9487 V.getValueType().isInteger()) { 9488 // If a result value was tied to an input value, the computed result 9489 // may have a wider width than the expected result. Extract the 9490 // relevant portion. 9491 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9492 } 9493 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9494 ResultVTs.push_back(ResultVT); 9495 ResultValues.push_back(V); 9496 }; 9497 9498 // Deal with output operands. 9499 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9500 if (OpInfo.Type == InlineAsm::isOutput) { 9501 SDValue Val; 9502 // Skip trivial output operands. 9503 if (OpInfo.AssignedRegs.Regs.empty()) 9504 continue; 9505 9506 switch (OpInfo.ConstraintType) { 9507 case TargetLowering::C_Register: 9508 case TargetLowering::C_RegisterClass: 9509 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9510 Chain, &Glue, &Call); 9511 break; 9512 case TargetLowering::C_Immediate: 9513 case TargetLowering::C_Other: 9514 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9515 OpInfo, DAG); 9516 break; 9517 case TargetLowering::C_Memory: 9518 break; // Already handled. 9519 case TargetLowering::C_Address: 9520 break; // Silence warning. 9521 case TargetLowering::C_Unknown: 9522 assert(false && "Unexpected unknown constraint"); 9523 } 9524 9525 // Indirect output manifest as stores. Record output chains. 9526 if (OpInfo.isIndirect) { 9527 const Value *Ptr = OpInfo.CallOperandVal; 9528 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9529 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9530 MachinePointerInfo(Ptr)); 9531 OutChains.push_back(Store); 9532 } else { 9533 // generate CopyFromRegs to associated registers. 9534 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9535 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9536 for (const SDValue &V : Val->op_values()) 9537 handleRegAssign(V); 9538 } else 9539 handleRegAssign(Val); 9540 } 9541 } 9542 } 9543 9544 // Set results. 9545 if (!ResultValues.empty()) { 9546 assert(CurResultType == ResultTypes.end() && 9547 "Mismatch in number of ResultTypes"); 9548 assert(ResultValues.size() == ResultTypes.size() && 9549 "Mismatch in number of output operands in asm result"); 9550 9551 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9552 DAG.getVTList(ResultVTs), ResultValues); 9553 setValue(&Call, V); 9554 } 9555 9556 // Collect store chains. 9557 if (!OutChains.empty()) 9558 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9559 9560 if (EmitEHLabels) { 9561 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9562 } 9563 9564 // Only Update Root if inline assembly has a memory effect. 9565 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9566 EmitEHLabels) 9567 DAG.setRoot(Chain); 9568 } 9569 9570 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9571 const Twine &Message) { 9572 LLVMContext &Ctx = *DAG.getContext(); 9573 Ctx.emitError(&Call, Message); 9574 9575 // Make sure we leave the DAG in a valid state 9576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9577 SmallVector<EVT, 1> ValueVTs; 9578 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9579 9580 if (ValueVTs.empty()) 9581 return; 9582 9583 SmallVector<SDValue, 1> Ops; 9584 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9585 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9586 9587 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9588 } 9589 9590 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9591 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9592 MVT::Other, getRoot(), 9593 getValue(I.getArgOperand(0)), 9594 DAG.getSrcValue(I.getArgOperand(0)))); 9595 } 9596 9597 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9599 const DataLayout &DL = DAG.getDataLayout(); 9600 SDValue V = DAG.getVAArg( 9601 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9602 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9603 DL.getABITypeAlign(I.getType()).value()); 9604 DAG.setRoot(V.getValue(1)); 9605 9606 if (I.getType()->isPointerTy()) 9607 V = DAG.getPtrExtOrTrunc( 9608 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9609 setValue(&I, V); 9610 } 9611 9612 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9613 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9614 MVT::Other, getRoot(), 9615 getValue(I.getArgOperand(0)), 9616 DAG.getSrcValue(I.getArgOperand(0)))); 9617 } 9618 9619 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9620 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9621 MVT::Other, getRoot(), 9622 getValue(I.getArgOperand(0)), 9623 getValue(I.getArgOperand(1)), 9624 DAG.getSrcValue(I.getArgOperand(0)), 9625 DAG.getSrcValue(I.getArgOperand(1)))); 9626 } 9627 9628 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9629 const Instruction &I, 9630 SDValue Op) { 9631 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9632 if (!Range) 9633 return Op; 9634 9635 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9636 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9637 return Op; 9638 9639 APInt Lo = CR.getUnsignedMin(); 9640 if (!Lo.isMinValue()) 9641 return Op; 9642 9643 APInt Hi = CR.getUnsignedMax(); 9644 unsigned Bits = std::max(Hi.getActiveBits(), 9645 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9646 9647 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9648 9649 SDLoc SL = getCurSDLoc(); 9650 9651 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9652 DAG.getValueType(SmallVT)); 9653 unsigned NumVals = Op.getNode()->getNumValues(); 9654 if (NumVals == 1) 9655 return ZExt; 9656 9657 SmallVector<SDValue, 4> Ops; 9658 9659 Ops.push_back(ZExt); 9660 for (unsigned I = 1; I != NumVals; ++I) 9661 Ops.push_back(Op.getValue(I)); 9662 9663 return DAG.getMergeValues(Ops, SL); 9664 } 9665 9666 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9667 /// the call being lowered. 9668 /// 9669 /// This is a helper for lowering intrinsics that follow a target calling 9670 /// convention or require stack pointer adjustment. Only a subset of the 9671 /// intrinsic's operands need to participate in the calling convention. 9672 void SelectionDAGBuilder::populateCallLoweringInfo( 9673 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9674 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9675 bool IsPatchPoint) { 9676 TargetLowering::ArgListTy Args; 9677 Args.reserve(NumArgs); 9678 9679 // Populate the argument list. 9680 // Attributes for args start at offset 1, after the return attribute. 9681 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9682 ArgI != ArgE; ++ArgI) { 9683 const Value *V = Call->getOperand(ArgI); 9684 9685 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9686 9687 TargetLowering::ArgListEntry Entry; 9688 Entry.Node = getValue(V); 9689 Entry.Ty = V->getType(); 9690 Entry.setAttributes(Call, ArgI); 9691 Args.push_back(Entry); 9692 } 9693 9694 CLI.setDebugLoc(getCurSDLoc()) 9695 .setChain(getRoot()) 9696 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9697 .setDiscardResult(Call->use_empty()) 9698 .setIsPatchPoint(IsPatchPoint) 9699 .setIsPreallocated( 9700 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9701 } 9702 9703 /// Add a stack map intrinsic call's live variable operands to a stackmap 9704 /// or patchpoint target node's operand list. 9705 /// 9706 /// Constants are converted to TargetConstants purely as an optimization to 9707 /// avoid constant materialization and register allocation. 9708 /// 9709 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9710 /// generate addess computation nodes, and so FinalizeISel can convert the 9711 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9712 /// address materialization and register allocation, but may also be required 9713 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9714 /// alloca in the entry block, then the runtime may assume that the alloca's 9715 /// StackMap location can be read immediately after compilation and that the 9716 /// location is valid at any point during execution (this is similar to the 9717 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9718 /// only available in a register, then the runtime would need to trap when 9719 /// execution reaches the StackMap in order to read the alloca's location. 9720 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9721 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9722 SelectionDAGBuilder &Builder) { 9723 SelectionDAG &DAG = Builder.DAG; 9724 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9725 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9726 9727 // Things on the stack are pointer-typed, meaning that they are already 9728 // legal and can be emitted directly to target nodes. 9729 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9730 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9731 } else { 9732 // Otherwise emit a target independent node to be legalised. 9733 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9734 } 9735 } 9736 } 9737 9738 /// Lower llvm.experimental.stackmap. 9739 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9740 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9741 // [live variables...]) 9742 9743 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9744 9745 SDValue Chain, InGlue, Callee; 9746 SmallVector<SDValue, 32> Ops; 9747 9748 SDLoc DL = getCurSDLoc(); 9749 Callee = getValue(CI.getCalledOperand()); 9750 9751 // The stackmap intrinsic only records the live variables (the arguments 9752 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9753 // intrinsic, this won't be lowered to a function call. This means we don't 9754 // have to worry about calling conventions and target specific lowering code. 9755 // Instead we perform the call lowering right here. 9756 // 9757 // chain, flag = CALLSEQ_START(chain, 0, 0) 9758 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9759 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9760 // 9761 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9762 InGlue = Chain.getValue(1); 9763 9764 // Add the STACKMAP operands, starting with DAG house-keeping. 9765 Ops.push_back(Chain); 9766 Ops.push_back(InGlue); 9767 9768 // Add the <id>, <numShadowBytes> operands. 9769 // 9770 // These do not require legalisation, and can be emitted directly to target 9771 // constant nodes. 9772 SDValue ID = getValue(CI.getArgOperand(0)); 9773 assert(ID.getValueType() == MVT::i64); 9774 SDValue IDConst = DAG.getTargetConstant( 9775 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9776 Ops.push_back(IDConst); 9777 9778 SDValue Shad = getValue(CI.getArgOperand(1)); 9779 assert(Shad.getValueType() == MVT::i32); 9780 SDValue ShadConst = DAG.getTargetConstant( 9781 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9782 Ops.push_back(ShadConst); 9783 9784 // Add the live variables. 9785 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9786 9787 // Create the STACKMAP node. 9788 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9789 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9790 InGlue = Chain.getValue(1); 9791 9792 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9793 9794 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9795 9796 // Set the root to the target-lowered call chain. 9797 DAG.setRoot(Chain); 9798 9799 // Inform the Frame Information that we have a stackmap in this function. 9800 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9801 } 9802 9803 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9804 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9805 const BasicBlock *EHPadBB) { 9806 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9807 // i32 <numBytes>, 9808 // i8* <target>, 9809 // i32 <numArgs>, 9810 // [Args...], 9811 // [live variables...]) 9812 9813 CallingConv::ID CC = CB.getCallingConv(); 9814 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9815 bool HasDef = !CB.getType()->isVoidTy(); 9816 SDLoc dl = getCurSDLoc(); 9817 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9818 9819 // Handle immediate and symbolic callees. 9820 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9821 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9822 /*isTarget=*/true); 9823 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9824 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9825 SDLoc(SymbolicCallee), 9826 SymbolicCallee->getValueType(0)); 9827 9828 // Get the real number of arguments participating in the call <numArgs> 9829 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9830 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9831 9832 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9833 // Intrinsics include all meta-operands up to but not including CC. 9834 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9835 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9836 "Not enough arguments provided to the patchpoint intrinsic"); 9837 9838 // For AnyRegCC the arguments are lowered later on manually. 9839 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9840 Type *ReturnTy = 9841 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9842 9843 TargetLowering::CallLoweringInfo CLI(DAG); 9844 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9845 ReturnTy, true); 9846 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9847 9848 SDNode *CallEnd = Result.second.getNode(); 9849 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9850 CallEnd = CallEnd->getOperand(0).getNode(); 9851 9852 /// Get a call instruction from the call sequence chain. 9853 /// Tail calls are not allowed. 9854 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9855 "Expected a callseq node."); 9856 SDNode *Call = CallEnd->getOperand(0).getNode(); 9857 bool HasGlue = Call->getGluedNode(); 9858 9859 // Replace the target specific call node with the patchable intrinsic. 9860 SmallVector<SDValue, 8> Ops; 9861 9862 // Push the chain. 9863 Ops.push_back(*(Call->op_begin())); 9864 9865 // Optionally, push the glue (if any). 9866 if (HasGlue) 9867 Ops.push_back(*(Call->op_end() - 1)); 9868 9869 // Push the register mask info. 9870 if (HasGlue) 9871 Ops.push_back(*(Call->op_end() - 2)); 9872 else 9873 Ops.push_back(*(Call->op_end() - 1)); 9874 9875 // Add the <id> and <numBytes> constants. 9876 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9877 Ops.push_back(DAG.getTargetConstant( 9878 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9879 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9880 Ops.push_back(DAG.getTargetConstant( 9881 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9882 MVT::i32)); 9883 9884 // Add the callee. 9885 Ops.push_back(Callee); 9886 9887 // Adjust <numArgs> to account for any arguments that have been passed on the 9888 // stack instead. 9889 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9890 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9891 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9892 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9893 9894 // Add the calling convention 9895 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9896 9897 // Add the arguments we omitted previously. The register allocator should 9898 // place these in any free register. 9899 if (IsAnyRegCC) 9900 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9901 Ops.push_back(getValue(CB.getArgOperand(i))); 9902 9903 // Push the arguments from the call instruction. 9904 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9905 Ops.append(Call->op_begin() + 2, e); 9906 9907 // Push live variables for the stack map. 9908 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9909 9910 SDVTList NodeTys; 9911 if (IsAnyRegCC && HasDef) { 9912 // Create the return types based on the intrinsic definition 9913 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9914 SmallVector<EVT, 3> ValueVTs; 9915 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9916 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9917 9918 // There is always a chain and a glue type at the end 9919 ValueVTs.push_back(MVT::Other); 9920 ValueVTs.push_back(MVT::Glue); 9921 NodeTys = DAG.getVTList(ValueVTs); 9922 } else 9923 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9924 9925 // Replace the target specific call node with a PATCHPOINT node. 9926 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9927 9928 // Update the NodeMap. 9929 if (HasDef) { 9930 if (IsAnyRegCC) 9931 setValue(&CB, SDValue(PPV.getNode(), 0)); 9932 else 9933 setValue(&CB, Result.first); 9934 } 9935 9936 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9937 // call sequence. Furthermore the location of the chain and glue can change 9938 // when the AnyReg calling convention is used and the intrinsic returns a 9939 // value. 9940 if (IsAnyRegCC && HasDef) { 9941 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9942 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9943 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9944 } else 9945 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9946 DAG.DeleteNode(Call); 9947 9948 // Inform the Frame Information that we have a patchpoint in this function. 9949 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9950 } 9951 9952 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9953 unsigned Intrinsic) { 9954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9955 SDValue Op1 = getValue(I.getArgOperand(0)); 9956 SDValue Op2; 9957 if (I.arg_size() > 1) 9958 Op2 = getValue(I.getArgOperand(1)); 9959 SDLoc dl = getCurSDLoc(); 9960 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9961 SDValue Res; 9962 SDNodeFlags SDFlags; 9963 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9964 SDFlags.copyFMF(*FPMO); 9965 9966 switch (Intrinsic) { 9967 case Intrinsic::vector_reduce_fadd: 9968 if (SDFlags.hasAllowReassociation()) 9969 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9970 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9971 SDFlags); 9972 else 9973 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9974 break; 9975 case Intrinsic::vector_reduce_fmul: 9976 if (SDFlags.hasAllowReassociation()) 9977 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9978 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9979 SDFlags); 9980 else 9981 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9982 break; 9983 case Intrinsic::vector_reduce_add: 9984 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9985 break; 9986 case Intrinsic::vector_reduce_mul: 9987 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9988 break; 9989 case Intrinsic::vector_reduce_and: 9990 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9991 break; 9992 case Intrinsic::vector_reduce_or: 9993 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9994 break; 9995 case Intrinsic::vector_reduce_xor: 9996 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9997 break; 9998 case Intrinsic::vector_reduce_smax: 9999 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10000 break; 10001 case Intrinsic::vector_reduce_smin: 10002 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10003 break; 10004 case Intrinsic::vector_reduce_umax: 10005 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10006 break; 10007 case Intrinsic::vector_reduce_umin: 10008 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10009 break; 10010 case Intrinsic::vector_reduce_fmax: 10011 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10012 break; 10013 case Intrinsic::vector_reduce_fmin: 10014 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10015 break; 10016 case Intrinsic::vector_reduce_fmaximum: 10017 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10018 break; 10019 case Intrinsic::vector_reduce_fminimum: 10020 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10021 break; 10022 default: 10023 llvm_unreachable("Unhandled vector reduce intrinsic"); 10024 } 10025 setValue(&I, Res); 10026 } 10027 10028 /// Returns an AttributeList representing the attributes applied to the return 10029 /// value of the given call. 10030 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10031 SmallVector<Attribute::AttrKind, 2> Attrs; 10032 if (CLI.RetSExt) 10033 Attrs.push_back(Attribute::SExt); 10034 if (CLI.RetZExt) 10035 Attrs.push_back(Attribute::ZExt); 10036 if (CLI.IsInReg) 10037 Attrs.push_back(Attribute::InReg); 10038 10039 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10040 Attrs); 10041 } 10042 10043 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10044 /// implementation, which just calls LowerCall. 10045 /// FIXME: When all targets are 10046 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10047 std::pair<SDValue, SDValue> 10048 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10049 // Handle the incoming return values from the call. 10050 CLI.Ins.clear(); 10051 Type *OrigRetTy = CLI.RetTy; 10052 SmallVector<EVT, 4> RetTys; 10053 SmallVector<uint64_t, 4> Offsets; 10054 auto &DL = CLI.DAG.getDataLayout(); 10055 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10056 10057 if (CLI.IsPostTypeLegalization) { 10058 // If we are lowering a libcall after legalization, split the return type. 10059 SmallVector<EVT, 4> OldRetTys; 10060 SmallVector<uint64_t, 4> OldOffsets; 10061 RetTys.swap(OldRetTys); 10062 Offsets.swap(OldOffsets); 10063 10064 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10065 EVT RetVT = OldRetTys[i]; 10066 uint64_t Offset = OldOffsets[i]; 10067 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10068 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10069 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10070 RetTys.append(NumRegs, RegisterVT); 10071 for (unsigned j = 0; j != NumRegs; ++j) 10072 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10073 } 10074 } 10075 10076 SmallVector<ISD::OutputArg, 4> Outs; 10077 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10078 10079 bool CanLowerReturn = 10080 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10081 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10082 10083 SDValue DemoteStackSlot; 10084 int DemoteStackIdx = -100; 10085 if (!CanLowerReturn) { 10086 // FIXME: equivalent assert? 10087 // assert(!CS.hasInAllocaArgument() && 10088 // "sret demotion is incompatible with inalloca"); 10089 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10090 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10091 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10092 DemoteStackIdx = 10093 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10094 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10095 DL.getAllocaAddrSpace()); 10096 10097 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10098 ArgListEntry Entry; 10099 Entry.Node = DemoteStackSlot; 10100 Entry.Ty = StackSlotPtrType; 10101 Entry.IsSExt = false; 10102 Entry.IsZExt = false; 10103 Entry.IsInReg = false; 10104 Entry.IsSRet = true; 10105 Entry.IsNest = false; 10106 Entry.IsByVal = false; 10107 Entry.IsByRef = false; 10108 Entry.IsReturned = false; 10109 Entry.IsSwiftSelf = false; 10110 Entry.IsSwiftAsync = false; 10111 Entry.IsSwiftError = false; 10112 Entry.IsCFGuardTarget = false; 10113 Entry.Alignment = Alignment; 10114 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10115 CLI.NumFixedArgs += 1; 10116 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10117 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10118 10119 // sret demotion isn't compatible with tail-calls, since the sret argument 10120 // points into the callers stack frame. 10121 CLI.IsTailCall = false; 10122 } else { 10123 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10124 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10125 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10126 ISD::ArgFlagsTy Flags; 10127 if (NeedsRegBlock) { 10128 Flags.setInConsecutiveRegs(); 10129 if (I == RetTys.size() - 1) 10130 Flags.setInConsecutiveRegsLast(); 10131 } 10132 EVT VT = RetTys[I]; 10133 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10134 CLI.CallConv, VT); 10135 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10136 CLI.CallConv, VT); 10137 for (unsigned i = 0; i != NumRegs; ++i) { 10138 ISD::InputArg MyFlags; 10139 MyFlags.Flags = Flags; 10140 MyFlags.VT = RegisterVT; 10141 MyFlags.ArgVT = VT; 10142 MyFlags.Used = CLI.IsReturnValueUsed; 10143 if (CLI.RetTy->isPointerTy()) { 10144 MyFlags.Flags.setPointer(); 10145 MyFlags.Flags.setPointerAddrSpace( 10146 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10147 } 10148 if (CLI.RetSExt) 10149 MyFlags.Flags.setSExt(); 10150 if (CLI.RetZExt) 10151 MyFlags.Flags.setZExt(); 10152 if (CLI.IsInReg) 10153 MyFlags.Flags.setInReg(); 10154 CLI.Ins.push_back(MyFlags); 10155 } 10156 } 10157 } 10158 10159 // We push in swifterror return as the last element of CLI.Ins. 10160 ArgListTy &Args = CLI.getArgs(); 10161 if (supportSwiftError()) { 10162 for (const ArgListEntry &Arg : Args) { 10163 if (Arg.IsSwiftError) { 10164 ISD::InputArg MyFlags; 10165 MyFlags.VT = getPointerTy(DL); 10166 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10167 MyFlags.Flags.setSwiftError(); 10168 CLI.Ins.push_back(MyFlags); 10169 } 10170 } 10171 } 10172 10173 // Handle all of the outgoing arguments. 10174 CLI.Outs.clear(); 10175 CLI.OutVals.clear(); 10176 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10177 SmallVector<EVT, 4> ValueVTs; 10178 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10179 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10180 Type *FinalType = Args[i].Ty; 10181 if (Args[i].IsByVal) 10182 FinalType = Args[i].IndirectType; 10183 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10184 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10185 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10186 ++Value) { 10187 EVT VT = ValueVTs[Value]; 10188 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10189 SDValue Op = SDValue(Args[i].Node.getNode(), 10190 Args[i].Node.getResNo() + Value); 10191 ISD::ArgFlagsTy Flags; 10192 10193 // Certain targets (such as MIPS), may have a different ABI alignment 10194 // for a type depending on the context. Give the target a chance to 10195 // specify the alignment it wants. 10196 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10197 Flags.setOrigAlign(OriginalAlignment); 10198 10199 if (Args[i].Ty->isPointerTy()) { 10200 Flags.setPointer(); 10201 Flags.setPointerAddrSpace( 10202 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10203 } 10204 if (Args[i].IsZExt) 10205 Flags.setZExt(); 10206 if (Args[i].IsSExt) 10207 Flags.setSExt(); 10208 if (Args[i].IsInReg) { 10209 // If we are using vectorcall calling convention, a structure that is 10210 // passed InReg - is surely an HVA 10211 if (CLI.CallConv == CallingConv::X86_VectorCall && 10212 isa<StructType>(FinalType)) { 10213 // The first value of a structure is marked 10214 if (0 == Value) 10215 Flags.setHvaStart(); 10216 Flags.setHva(); 10217 } 10218 // Set InReg Flag 10219 Flags.setInReg(); 10220 } 10221 if (Args[i].IsSRet) 10222 Flags.setSRet(); 10223 if (Args[i].IsSwiftSelf) 10224 Flags.setSwiftSelf(); 10225 if (Args[i].IsSwiftAsync) 10226 Flags.setSwiftAsync(); 10227 if (Args[i].IsSwiftError) 10228 Flags.setSwiftError(); 10229 if (Args[i].IsCFGuardTarget) 10230 Flags.setCFGuardTarget(); 10231 if (Args[i].IsByVal) 10232 Flags.setByVal(); 10233 if (Args[i].IsByRef) 10234 Flags.setByRef(); 10235 if (Args[i].IsPreallocated) { 10236 Flags.setPreallocated(); 10237 // Set the byval flag for CCAssignFn callbacks that don't know about 10238 // preallocated. This way we can know how many bytes we should've 10239 // allocated and how many bytes a callee cleanup function will pop. If 10240 // we port preallocated to more targets, we'll have to add custom 10241 // preallocated handling in the various CC lowering callbacks. 10242 Flags.setByVal(); 10243 } 10244 if (Args[i].IsInAlloca) { 10245 Flags.setInAlloca(); 10246 // Set the byval flag for CCAssignFn callbacks that don't know about 10247 // inalloca. This way we can know how many bytes we should've allocated 10248 // and how many bytes a callee cleanup function will pop. If we port 10249 // inalloca to more targets, we'll have to add custom inalloca handling 10250 // in the various CC lowering callbacks. 10251 Flags.setByVal(); 10252 } 10253 Align MemAlign; 10254 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10255 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10256 Flags.setByValSize(FrameSize); 10257 10258 // info is not there but there are cases it cannot get right. 10259 if (auto MA = Args[i].Alignment) 10260 MemAlign = *MA; 10261 else 10262 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10263 } else if (auto MA = Args[i].Alignment) { 10264 MemAlign = *MA; 10265 } else { 10266 MemAlign = OriginalAlignment; 10267 } 10268 Flags.setMemAlign(MemAlign); 10269 if (Args[i].IsNest) 10270 Flags.setNest(); 10271 if (NeedsRegBlock) 10272 Flags.setInConsecutiveRegs(); 10273 10274 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10275 CLI.CallConv, VT); 10276 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10277 CLI.CallConv, VT); 10278 SmallVector<SDValue, 4> Parts(NumParts); 10279 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10280 10281 if (Args[i].IsSExt) 10282 ExtendKind = ISD::SIGN_EXTEND; 10283 else if (Args[i].IsZExt) 10284 ExtendKind = ISD::ZERO_EXTEND; 10285 10286 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10287 // for now. 10288 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10289 CanLowerReturn) { 10290 assert((CLI.RetTy == Args[i].Ty || 10291 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10292 CLI.RetTy->getPointerAddressSpace() == 10293 Args[i].Ty->getPointerAddressSpace())) && 10294 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10295 // Before passing 'returned' to the target lowering code, ensure that 10296 // either the register MVT and the actual EVT are the same size or that 10297 // the return value and argument are extended in the same way; in these 10298 // cases it's safe to pass the argument register value unchanged as the 10299 // return register value (although it's at the target's option whether 10300 // to do so) 10301 // TODO: allow code generation to take advantage of partially preserved 10302 // registers rather than clobbering the entire register when the 10303 // parameter extension method is not compatible with the return 10304 // extension method 10305 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10306 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10307 CLI.RetZExt == Args[i].IsZExt)) 10308 Flags.setReturned(); 10309 } 10310 10311 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10312 CLI.CallConv, ExtendKind); 10313 10314 for (unsigned j = 0; j != NumParts; ++j) { 10315 // if it isn't first piece, alignment must be 1 10316 // For scalable vectors the scalable part is currently handled 10317 // by individual targets, so we just use the known minimum size here. 10318 ISD::OutputArg MyFlags( 10319 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10320 i < CLI.NumFixedArgs, i, 10321 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10322 if (NumParts > 1 && j == 0) 10323 MyFlags.Flags.setSplit(); 10324 else if (j != 0) { 10325 MyFlags.Flags.setOrigAlign(Align(1)); 10326 if (j == NumParts - 1) 10327 MyFlags.Flags.setSplitEnd(); 10328 } 10329 10330 CLI.Outs.push_back(MyFlags); 10331 CLI.OutVals.push_back(Parts[j]); 10332 } 10333 10334 if (NeedsRegBlock && Value == NumValues - 1) 10335 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10336 } 10337 } 10338 10339 SmallVector<SDValue, 4> InVals; 10340 CLI.Chain = LowerCall(CLI, InVals); 10341 10342 // Update CLI.InVals to use outside of this function. 10343 CLI.InVals = InVals; 10344 10345 // Verify that the target's LowerCall behaved as expected. 10346 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10347 "LowerCall didn't return a valid chain!"); 10348 assert((!CLI.IsTailCall || InVals.empty()) && 10349 "LowerCall emitted a return value for a tail call!"); 10350 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10351 "LowerCall didn't emit the correct number of values!"); 10352 10353 // For a tail call, the return value is merely live-out and there aren't 10354 // any nodes in the DAG representing it. Return a special value to 10355 // indicate that a tail call has been emitted and no more Instructions 10356 // should be processed in the current block. 10357 if (CLI.IsTailCall) { 10358 CLI.DAG.setRoot(CLI.Chain); 10359 return std::make_pair(SDValue(), SDValue()); 10360 } 10361 10362 #ifndef NDEBUG 10363 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10364 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10365 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10366 "LowerCall emitted a value with the wrong type!"); 10367 } 10368 #endif 10369 10370 SmallVector<SDValue, 4> ReturnValues; 10371 if (!CanLowerReturn) { 10372 // The instruction result is the result of loading from the 10373 // hidden sret parameter. 10374 SmallVector<EVT, 1> PVTs; 10375 Type *PtrRetTy = 10376 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10377 10378 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10379 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10380 EVT PtrVT = PVTs[0]; 10381 10382 unsigned NumValues = RetTys.size(); 10383 ReturnValues.resize(NumValues); 10384 SmallVector<SDValue, 4> Chains(NumValues); 10385 10386 // An aggregate return value cannot wrap around the address space, so 10387 // offsets to its parts don't wrap either. 10388 SDNodeFlags Flags; 10389 Flags.setNoUnsignedWrap(true); 10390 10391 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10392 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10393 for (unsigned i = 0; i < NumValues; ++i) { 10394 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10395 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10396 PtrVT), Flags); 10397 SDValue L = CLI.DAG.getLoad( 10398 RetTys[i], CLI.DL, CLI.Chain, Add, 10399 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10400 DemoteStackIdx, Offsets[i]), 10401 HiddenSRetAlign); 10402 ReturnValues[i] = L; 10403 Chains[i] = L.getValue(1); 10404 } 10405 10406 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10407 } else { 10408 // Collect the legal value parts into potentially illegal values 10409 // that correspond to the original function's return values. 10410 std::optional<ISD::NodeType> AssertOp; 10411 if (CLI.RetSExt) 10412 AssertOp = ISD::AssertSext; 10413 else if (CLI.RetZExt) 10414 AssertOp = ISD::AssertZext; 10415 unsigned CurReg = 0; 10416 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10417 EVT VT = RetTys[I]; 10418 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10419 CLI.CallConv, VT); 10420 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10421 CLI.CallConv, VT); 10422 10423 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10424 NumRegs, RegisterVT, VT, nullptr, 10425 CLI.CallConv, AssertOp)); 10426 CurReg += NumRegs; 10427 } 10428 10429 // For a function returning void, there is no return value. We can't create 10430 // such a node, so we just return a null return value in that case. In 10431 // that case, nothing will actually look at the value. 10432 if (ReturnValues.empty()) 10433 return std::make_pair(SDValue(), CLI.Chain); 10434 } 10435 10436 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10437 CLI.DAG.getVTList(RetTys), ReturnValues); 10438 return std::make_pair(Res, CLI.Chain); 10439 } 10440 10441 /// Places new result values for the node in Results (their number 10442 /// and types must exactly match those of the original return values of 10443 /// the node), or leaves Results empty, which indicates that the node is not 10444 /// to be custom lowered after all. 10445 void TargetLowering::LowerOperationWrapper(SDNode *N, 10446 SmallVectorImpl<SDValue> &Results, 10447 SelectionDAG &DAG) const { 10448 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10449 10450 if (!Res.getNode()) 10451 return; 10452 10453 // If the original node has one result, take the return value from 10454 // LowerOperation as is. It might not be result number 0. 10455 if (N->getNumValues() == 1) { 10456 Results.push_back(Res); 10457 return; 10458 } 10459 10460 // If the original node has multiple results, then the return node should 10461 // have the same number of results. 10462 assert((N->getNumValues() == Res->getNumValues()) && 10463 "Lowering returned the wrong number of results!"); 10464 10465 // Places new result values base on N result number. 10466 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10467 Results.push_back(Res.getValue(I)); 10468 } 10469 10470 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10471 llvm_unreachable("LowerOperation not implemented for this target!"); 10472 } 10473 10474 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10475 unsigned Reg, 10476 ISD::NodeType ExtendType) { 10477 SDValue Op = getNonRegisterValue(V); 10478 assert((Op.getOpcode() != ISD::CopyFromReg || 10479 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10480 "Copy from a reg to the same reg!"); 10481 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10482 10483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10484 // If this is an InlineAsm we have to match the registers required, not the 10485 // notional registers required by the type. 10486 10487 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10488 std::nullopt); // This is not an ABI copy. 10489 SDValue Chain = DAG.getEntryNode(); 10490 10491 if (ExtendType == ISD::ANY_EXTEND) { 10492 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10493 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10494 ExtendType = PreferredExtendIt->second; 10495 } 10496 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10497 PendingExports.push_back(Chain); 10498 } 10499 10500 #include "llvm/CodeGen/SelectionDAGISel.h" 10501 10502 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10503 /// entry block, return true. This includes arguments used by switches, since 10504 /// the switch may expand into multiple basic blocks. 10505 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10506 // With FastISel active, we may be splitting blocks, so force creation 10507 // of virtual registers for all non-dead arguments. 10508 if (FastISel) 10509 return A->use_empty(); 10510 10511 const BasicBlock &Entry = A->getParent()->front(); 10512 for (const User *U : A->users()) 10513 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10514 return false; // Use not in entry block. 10515 10516 return true; 10517 } 10518 10519 using ArgCopyElisionMapTy = 10520 DenseMap<const Argument *, 10521 std::pair<const AllocaInst *, const StoreInst *>>; 10522 10523 /// Scan the entry block of the function in FuncInfo for arguments that look 10524 /// like copies into a local alloca. Record any copied arguments in 10525 /// ArgCopyElisionCandidates. 10526 static void 10527 findArgumentCopyElisionCandidates(const DataLayout &DL, 10528 FunctionLoweringInfo *FuncInfo, 10529 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10530 // Record the state of every static alloca used in the entry block. Argument 10531 // allocas are all used in the entry block, so we need approximately as many 10532 // entries as we have arguments. 10533 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10534 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10535 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10536 StaticAllocas.reserve(NumArgs * 2); 10537 10538 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10539 if (!V) 10540 return nullptr; 10541 V = V->stripPointerCasts(); 10542 const auto *AI = dyn_cast<AllocaInst>(V); 10543 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10544 return nullptr; 10545 auto Iter = StaticAllocas.insert({AI, Unknown}); 10546 return &Iter.first->second; 10547 }; 10548 10549 // Look for stores of arguments to static allocas. Look through bitcasts and 10550 // GEPs to handle type coercions, as long as the alloca is fully initialized 10551 // by the store. Any non-store use of an alloca escapes it and any subsequent 10552 // unanalyzed store might write it. 10553 // FIXME: Handle structs initialized with multiple stores. 10554 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10555 // Look for stores, and handle non-store uses conservatively. 10556 const auto *SI = dyn_cast<StoreInst>(&I); 10557 if (!SI) { 10558 // We will look through cast uses, so ignore them completely. 10559 if (I.isCast()) 10560 continue; 10561 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10562 // to allocas. 10563 if (I.isDebugOrPseudoInst()) 10564 continue; 10565 // This is an unknown instruction. Assume it escapes or writes to all 10566 // static alloca operands. 10567 for (const Use &U : I.operands()) { 10568 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10569 *Info = StaticAllocaInfo::Clobbered; 10570 } 10571 continue; 10572 } 10573 10574 // If the stored value is a static alloca, mark it as escaped. 10575 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10576 *Info = StaticAllocaInfo::Clobbered; 10577 10578 // Check if the destination is a static alloca. 10579 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10580 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10581 if (!Info) 10582 continue; 10583 const AllocaInst *AI = cast<AllocaInst>(Dst); 10584 10585 // Skip allocas that have been initialized or clobbered. 10586 if (*Info != StaticAllocaInfo::Unknown) 10587 continue; 10588 10589 // Check if the stored value is an argument, and that this store fully 10590 // initializes the alloca. 10591 // If the argument type has padding bits we can't directly forward a pointer 10592 // as the upper bits may contain garbage. 10593 // Don't elide copies from the same argument twice. 10594 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10595 const auto *Arg = dyn_cast<Argument>(Val); 10596 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10597 Arg->getType()->isEmptyTy() || 10598 DL.getTypeStoreSize(Arg->getType()) != 10599 DL.getTypeAllocSize(AI->getAllocatedType()) || 10600 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10601 ArgCopyElisionCandidates.count(Arg)) { 10602 *Info = StaticAllocaInfo::Clobbered; 10603 continue; 10604 } 10605 10606 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10607 << '\n'); 10608 10609 // Mark this alloca and store for argument copy elision. 10610 *Info = StaticAllocaInfo::Elidable; 10611 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10612 10613 // Stop scanning if we've seen all arguments. This will happen early in -O0 10614 // builds, which is useful, because -O0 builds have large entry blocks and 10615 // many allocas. 10616 if (ArgCopyElisionCandidates.size() == NumArgs) 10617 break; 10618 } 10619 } 10620 10621 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10622 /// ArgVal is a load from a suitable fixed stack object. 10623 static void tryToElideArgumentCopy( 10624 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10625 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10626 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10627 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10628 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10629 // Check if this is a load from a fixed stack object. 10630 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10631 if (!LNode) 10632 return; 10633 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10634 if (!FINode) 10635 return; 10636 10637 // Check that the fixed stack object is the right size and alignment. 10638 // Look at the alignment that the user wrote on the alloca instead of looking 10639 // at the stack object. 10640 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10641 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10642 const AllocaInst *AI = ArgCopyIter->second.first; 10643 int FixedIndex = FINode->getIndex(); 10644 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10645 int OldIndex = AllocaIndex; 10646 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10647 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10648 LLVM_DEBUG( 10649 dbgs() << " argument copy elision failed due to bad fixed stack " 10650 "object size\n"); 10651 return; 10652 } 10653 Align RequiredAlignment = AI->getAlign(); 10654 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10655 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10656 "greater than stack argument alignment (" 10657 << DebugStr(RequiredAlignment) << " vs " 10658 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10659 return; 10660 } 10661 10662 // Perform the elision. Delete the old stack object and replace its only use 10663 // in the variable info map. Mark the stack object as mutable. 10664 LLVM_DEBUG({ 10665 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10666 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10667 << '\n'; 10668 }); 10669 MFI.RemoveStackObject(OldIndex); 10670 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10671 AllocaIndex = FixedIndex; 10672 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10673 for (SDValue ArgVal : ArgVals) 10674 Chains.push_back(ArgVal.getValue(1)); 10675 10676 // Avoid emitting code for the store implementing the copy. 10677 const StoreInst *SI = ArgCopyIter->second.second; 10678 ElidedArgCopyInstrs.insert(SI); 10679 10680 // Check for uses of the argument again so that we can avoid exporting ArgVal 10681 // if it is't used by anything other than the store. 10682 for (const Value *U : Arg.users()) { 10683 if (U != SI) { 10684 ArgHasUses = true; 10685 break; 10686 } 10687 } 10688 } 10689 10690 void SelectionDAGISel::LowerArguments(const Function &F) { 10691 SelectionDAG &DAG = SDB->DAG; 10692 SDLoc dl = SDB->getCurSDLoc(); 10693 const DataLayout &DL = DAG.getDataLayout(); 10694 SmallVector<ISD::InputArg, 16> Ins; 10695 10696 // In Naked functions we aren't going to save any registers. 10697 if (F.hasFnAttribute(Attribute::Naked)) 10698 return; 10699 10700 if (!FuncInfo->CanLowerReturn) { 10701 // Put in an sret pointer parameter before all the other parameters. 10702 SmallVector<EVT, 1> ValueVTs; 10703 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10704 PointerType::get(F.getContext(), 10705 DAG.getDataLayout().getAllocaAddrSpace()), 10706 ValueVTs); 10707 10708 // NOTE: Assuming that a pointer will never break down to more than one VT 10709 // or one register. 10710 ISD::ArgFlagsTy Flags; 10711 Flags.setSRet(); 10712 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10713 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10714 ISD::InputArg::NoArgIndex, 0); 10715 Ins.push_back(RetArg); 10716 } 10717 10718 // Look for stores of arguments to static allocas. Mark such arguments with a 10719 // flag to ask the target to give us the memory location of that argument if 10720 // available. 10721 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10722 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10723 ArgCopyElisionCandidates); 10724 10725 // Set up the incoming argument description vector. 10726 for (const Argument &Arg : F.args()) { 10727 unsigned ArgNo = Arg.getArgNo(); 10728 SmallVector<EVT, 4> ValueVTs; 10729 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10730 bool isArgValueUsed = !Arg.use_empty(); 10731 unsigned PartBase = 0; 10732 Type *FinalType = Arg.getType(); 10733 if (Arg.hasAttribute(Attribute::ByVal)) 10734 FinalType = Arg.getParamByValType(); 10735 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10736 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10737 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10738 Value != NumValues; ++Value) { 10739 EVT VT = ValueVTs[Value]; 10740 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10741 ISD::ArgFlagsTy Flags; 10742 10743 10744 if (Arg.getType()->isPointerTy()) { 10745 Flags.setPointer(); 10746 Flags.setPointerAddrSpace( 10747 cast<PointerType>(Arg.getType())->getAddressSpace()); 10748 } 10749 if (Arg.hasAttribute(Attribute::ZExt)) 10750 Flags.setZExt(); 10751 if (Arg.hasAttribute(Attribute::SExt)) 10752 Flags.setSExt(); 10753 if (Arg.hasAttribute(Attribute::InReg)) { 10754 // If we are using vectorcall calling convention, a structure that is 10755 // passed InReg - is surely an HVA 10756 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10757 isa<StructType>(Arg.getType())) { 10758 // The first value of a structure is marked 10759 if (0 == Value) 10760 Flags.setHvaStart(); 10761 Flags.setHva(); 10762 } 10763 // Set InReg Flag 10764 Flags.setInReg(); 10765 } 10766 if (Arg.hasAttribute(Attribute::StructRet)) 10767 Flags.setSRet(); 10768 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10769 Flags.setSwiftSelf(); 10770 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10771 Flags.setSwiftAsync(); 10772 if (Arg.hasAttribute(Attribute::SwiftError)) 10773 Flags.setSwiftError(); 10774 if (Arg.hasAttribute(Attribute::ByVal)) 10775 Flags.setByVal(); 10776 if (Arg.hasAttribute(Attribute::ByRef)) 10777 Flags.setByRef(); 10778 if (Arg.hasAttribute(Attribute::InAlloca)) { 10779 Flags.setInAlloca(); 10780 // Set the byval flag for CCAssignFn callbacks that don't know about 10781 // inalloca. This way we can know how many bytes we should've allocated 10782 // and how many bytes a callee cleanup function will pop. If we port 10783 // inalloca to more targets, we'll have to add custom inalloca handling 10784 // in the various CC lowering callbacks. 10785 Flags.setByVal(); 10786 } 10787 if (Arg.hasAttribute(Attribute::Preallocated)) { 10788 Flags.setPreallocated(); 10789 // Set the byval flag for CCAssignFn callbacks that don't know about 10790 // preallocated. This way we can know how many bytes we should've 10791 // allocated and how many bytes a callee cleanup function will pop. If 10792 // we port preallocated to more targets, we'll have to add custom 10793 // preallocated handling in the various CC lowering callbacks. 10794 Flags.setByVal(); 10795 } 10796 10797 // Certain targets (such as MIPS), may have a different ABI alignment 10798 // for a type depending on the context. Give the target a chance to 10799 // specify the alignment it wants. 10800 const Align OriginalAlignment( 10801 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10802 Flags.setOrigAlign(OriginalAlignment); 10803 10804 Align MemAlign; 10805 Type *ArgMemTy = nullptr; 10806 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10807 Flags.isByRef()) { 10808 if (!ArgMemTy) 10809 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10810 10811 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10812 10813 // For in-memory arguments, size and alignment should be passed from FE. 10814 // BE will guess if this info is not there but there are cases it cannot 10815 // get right. 10816 if (auto ParamAlign = Arg.getParamStackAlign()) 10817 MemAlign = *ParamAlign; 10818 else if ((ParamAlign = Arg.getParamAlign())) 10819 MemAlign = *ParamAlign; 10820 else 10821 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10822 if (Flags.isByRef()) 10823 Flags.setByRefSize(MemSize); 10824 else 10825 Flags.setByValSize(MemSize); 10826 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10827 MemAlign = *ParamAlign; 10828 } else { 10829 MemAlign = OriginalAlignment; 10830 } 10831 Flags.setMemAlign(MemAlign); 10832 10833 if (Arg.hasAttribute(Attribute::Nest)) 10834 Flags.setNest(); 10835 if (NeedsRegBlock) 10836 Flags.setInConsecutiveRegs(); 10837 if (ArgCopyElisionCandidates.count(&Arg)) 10838 Flags.setCopyElisionCandidate(); 10839 if (Arg.hasAttribute(Attribute::Returned)) 10840 Flags.setReturned(); 10841 10842 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10843 *CurDAG->getContext(), F.getCallingConv(), VT); 10844 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10845 *CurDAG->getContext(), F.getCallingConv(), VT); 10846 for (unsigned i = 0; i != NumRegs; ++i) { 10847 // For scalable vectors, use the minimum size; individual targets 10848 // are responsible for handling scalable vector arguments and 10849 // return values. 10850 ISD::InputArg MyFlags( 10851 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10852 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10853 if (NumRegs > 1 && i == 0) 10854 MyFlags.Flags.setSplit(); 10855 // if it isn't first piece, alignment must be 1 10856 else if (i > 0) { 10857 MyFlags.Flags.setOrigAlign(Align(1)); 10858 if (i == NumRegs - 1) 10859 MyFlags.Flags.setSplitEnd(); 10860 } 10861 Ins.push_back(MyFlags); 10862 } 10863 if (NeedsRegBlock && Value == NumValues - 1) 10864 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10865 PartBase += VT.getStoreSize().getKnownMinValue(); 10866 } 10867 } 10868 10869 // Call the target to set up the argument values. 10870 SmallVector<SDValue, 8> InVals; 10871 SDValue NewRoot = TLI->LowerFormalArguments( 10872 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10873 10874 // Verify that the target's LowerFormalArguments behaved as expected. 10875 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10876 "LowerFormalArguments didn't return a valid chain!"); 10877 assert(InVals.size() == Ins.size() && 10878 "LowerFormalArguments didn't emit the correct number of values!"); 10879 LLVM_DEBUG({ 10880 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10881 assert(InVals[i].getNode() && 10882 "LowerFormalArguments emitted a null value!"); 10883 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10884 "LowerFormalArguments emitted a value with the wrong type!"); 10885 } 10886 }); 10887 10888 // Update the DAG with the new chain value resulting from argument lowering. 10889 DAG.setRoot(NewRoot); 10890 10891 // Set up the argument values. 10892 unsigned i = 0; 10893 if (!FuncInfo->CanLowerReturn) { 10894 // Create a virtual register for the sret pointer, and put in a copy 10895 // from the sret argument into it. 10896 SmallVector<EVT, 1> ValueVTs; 10897 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10898 PointerType::get(F.getContext(), 10899 DAG.getDataLayout().getAllocaAddrSpace()), 10900 ValueVTs); 10901 MVT VT = ValueVTs[0].getSimpleVT(); 10902 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10903 std::optional<ISD::NodeType> AssertOp; 10904 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10905 nullptr, F.getCallingConv(), AssertOp); 10906 10907 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10908 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10909 Register SRetReg = 10910 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10911 FuncInfo->DemoteRegister = SRetReg; 10912 NewRoot = 10913 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10914 DAG.setRoot(NewRoot); 10915 10916 // i indexes lowered arguments. Bump it past the hidden sret argument. 10917 ++i; 10918 } 10919 10920 SmallVector<SDValue, 4> Chains; 10921 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10922 for (const Argument &Arg : F.args()) { 10923 SmallVector<SDValue, 4> ArgValues; 10924 SmallVector<EVT, 4> ValueVTs; 10925 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10926 unsigned NumValues = ValueVTs.size(); 10927 if (NumValues == 0) 10928 continue; 10929 10930 bool ArgHasUses = !Arg.use_empty(); 10931 10932 // Elide the copying store if the target loaded this argument from a 10933 // suitable fixed stack object. 10934 if (Ins[i].Flags.isCopyElisionCandidate()) { 10935 unsigned NumParts = 0; 10936 for (EVT VT : ValueVTs) 10937 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 10938 F.getCallingConv(), VT); 10939 10940 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10941 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10942 ArrayRef(&InVals[i], NumParts), ArgHasUses); 10943 } 10944 10945 // If this argument is unused then remember its value. It is used to generate 10946 // debugging information. 10947 bool isSwiftErrorArg = 10948 TLI->supportSwiftError() && 10949 Arg.hasAttribute(Attribute::SwiftError); 10950 if (!ArgHasUses && !isSwiftErrorArg) { 10951 SDB->setUnusedArgValue(&Arg, InVals[i]); 10952 10953 // Also remember any frame index for use in FastISel. 10954 if (FrameIndexSDNode *FI = 10955 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10956 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10957 } 10958 10959 for (unsigned Val = 0; Val != NumValues; ++Val) { 10960 EVT VT = ValueVTs[Val]; 10961 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10962 F.getCallingConv(), VT); 10963 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10964 *CurDAG->getContext(), F.getCallingConv(), VT); 10965 10966 // Even an apparent 'unused' swifterror argument needs to be returned. So 10967 // we do generate a copy for it that can be used on return from the 10968 // function. 10969 if (ArgHasUses || isSwiftErrorArg) { 10970 std::optional<ISD::NodeType> AssertOp; 10971 if (Arg.hasAttribute(Attribute::SExt)) 10972 AssertOp = ISD::AssertSext; 10973 else if (Arg.hasAttribute(Attribute::ZExt)) 10974 AssertOp = ISD::AssertZext; 10975 10976 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10977 PartVT, VT, nullptr, 10978 F.getCallingConv(), AssertOp)); 10979 } 10980 10981 i += NumParts; 10982 } 10983 10984 // We don't need to do anything else for unused arguments. 10985 if (ArgValues.empty()) 10986 continue; 10987 10988 // Note down frame index. 10989 if (FrameIndexSDNode *FI = 10990 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10991 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10992 10993 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 10994 SDB->getCurSDLoc()); 10995 10996 SDB->setValue(&Arg, Res); 10997 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10998 // We want to associate the argument with the frame index, among 10999 // involved operands, that correspond to the lowest address. The 11000 // getCopyFromParts function, called earlier, is swapping the order of 11001 // the operands to BUILD_PAIR depending on endianness. The result of 11002 // that swapping is that the least significant bits of the argument will 11003 // be in the first operand of the BUILD_PAIR node, and the most 11004 // significant bits will be in the second operand. 11005 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11006 if (LoadSDNode *LNode = 11007 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11008 if (FrameIndexSDNode *FI = 11009 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11010 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11011 } 11012 11013 // Analyses past this point are naive and don't expect an assertion. 11014 if (Res.getOpcode() == ISD::AssertZext) 11015 Res = Res.getOperand(0); 11016 11017 // Update the SwiftErrorVRegDefMap. 11018 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11019 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11020 if (Register::isVirtualRegister(Reg)) 11021 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11022 Reg); 11023 } 11024 11025 // If this argument is live outside of the entry block, insert a copy from 11026 // wherever we got it to the vreg that other BB's will reference it as. 11027 if (Res.getOpcode() == ISD::CopyFromReg) { 11028 // If we can, though, try to skip creating an unnecessary vreg. 11029 // FIXME: This isn't very clean... it would be nice to make this more 11030 // general. 11031 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11032 if (Register::isVirtualRegister(Reg)) { 11033 FuncInfo->ValueMap[&Arg] = Reg; 11034 continue; 11035 } 11036 } 11037 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11038 FuncInfo->InitializeRegForValue(&Arg); 11039 SDB->CopyToExportRegsIfNeeded(&Arg); 11040 } 11041 } 11042 11043 if (!Chains.empty()) { 11044 Chains.push_back(NewRoot); 11045 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11046 } 11047 11048 DAG.setRoot(NewRoot); 11049 11050 assert(i == InVals.size() && "Argument register count mismatch!"); 11051 11052 // If any argument copy elisions occurred and we have debug info, update the 11053 // stale frame indices used in the dbg.declare variable info table. 11054 if (!ArgCopyElisionFrameIndexMap.empty()) { 11055 for (MachineFunction::VariableDbgInfo &VI : 11056 MF->getInStackSlotVariableDbgInfo()) { 11057 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11058 if (I != ArgCopyElisionFrameIndexMap.end()) 11059 VI.updateStackSlot(I->second); 11060 } 11061 } 11062 11063 // Finally, if the target has anything special to do, allow it to do so. 11064 emitFunctionEntryCode(); 11065 } 11066 11067 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11068 /// ensure constants are generated when needed. Remember the virtual registers 11069 /// that need to be added to the Machine PHI nodes as input. We cannot just 11070 /// directly add them, because expansion might result in multiple MBB's for one 11071 /// BB. As such, the start of the BB might correspond to a different MBB than 11072 /// the end. 11073 void 11074 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11076 11077 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11078 11079 // Check PHI nodes in successors that expect a value to be available from this 11080 // block. 11081 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11082 if (!isa<PHINode>(SuccBB->begin())) continue; 11083 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11084 11085 // If this terminator has multiple identical successors (common for 11086 // switches), only handle each succ once. 11087 if (!SuccsHandled.insert(SuccMBB).second) 11088 continue; 11089 11090 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11091 11092 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11093 // nodes and Machine PHI nodes, but the incoming operands have not been 11094 // emitted yet. 11095 for (const PHINode &PN : SuccBB->phis()) { 11096 // Ignore dead phi's. 11097 if (PN.use_empty()) 11098 continue; 11099 11100 // Skip empty types 11101 if (PN.getType()->isEmptyTy()) 11102 continue; 11103 11104 unsigned Reg; 11105 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11106 11107 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11108 unsigned &RegOut = ConstantsOut[C]; 11109 if (RegOut == 0) { 11110 RegOut = FuncInfo.CreateRegs(C); 11111 // We need to zero/sign extend ConstantInt phi operands to match 11112 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11113 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11114 if (auto *CI = dyn_cast<ConstantInt>(C)) 11115 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11116 : ISD::ZERO_EXTEND; 11117 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11118 } 11119 Reg = RegOut; 11120 } else { 11121 DenseMap<const Value *, Register>::iterator I = 11122 FuncInfo.ValueMap.find(PHIOp); 11123 if (I != FuncInfo.ValueMap.end()) 11124 Reg = I->second; 11125 else { 11126 assert(isa<AllocaInst>(PHIOp) && 11127 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11128 "Didn't codegen value into a register!??"); 11129 Reg = FuncInfo.CreateRegs(PHIOp); 11130 CopyValueToVirtualRegister(PHIOp, Reg); 11131 } 11132 } 11133 11134 // Remember that this register needs to added to the machine PHI node as 11135 // the input for this MBB. 11136 SmallVector<EVT, 4> ValueVTs; 11137 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11138 for (EVT VT : ValueVTs) { 11139 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11140 for (unsigned i = 0; i != NumRegisters; ++i) 11141 FuncInfo.PHINodesToUpdate.push_back( 11142 std::make_pair(&*MBBI++, Reg + i)); 11143 Reg += NumRegisters; 11144 } 11145 } 11146 } 11147 11148 ConstantsOut.clear(); 11149 } 11150 11151 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11152 MachineFunction::iterator I(MBB); 11153 if (++I == FuncInfo.MF->end()) 11154 return nullptr; 11155 return &*I; 11156 } 11157 11158 /// During lowering new call nodes can be created (such as memset, etc.). 11159 /// Those will become new roots of the current DAG, but complications arise 11160 /// when they are tail calls. In such cases, the call lowering will update 11161 /// the root, but the builder still needs to know that a tail call has been 11162 /// lowered in order to avoid generating an additional return. 11163 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11164 // If the node is null, we do have a tail call. 11165 if (MaybeTC.getNode() != nullptr) 11166 DAG.setRoot(MaybeTC); 11167 else 11168 HasTailCall = true; 11169 } 11170 11171 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11172 MachineBasicBlock *SwitchMBB, 11173 MachineBasicBlock *DefaultMBB) { 11174 MachineFunction *CurMF = FuncInfo.MF; 11175 MachineBasicBlock *NextMBB = nullptr; 11176 MachineFunction::iterator BBI(W.MBB); 11177 if (++BBI != FuncInfo.MF->end()) 11178 NextMBB = &*BBI; 11179 11180 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11181 11182 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11183 11184 if (Size == 2 && W.MBB == SwitchMBB) { 11185 // If any two of the cases has the same destination, and if one value 11186 // is the same as the other, but has one bit unset that the other has set, 11187 // use bit manipulation to do two compares at once. For example: 11188 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11189 // TODO: This could be extended to merge any 2 cases in switches with 3 11190 // cases. 11191 // TODO: Handle cases where W.CaseBB != SwitchBB. 11192 CaseCluster &Small = *W.FirstCluster; 11193 CaseCluster &Big = *W.LastCluster; 11194 11195 if (Small.Low == Small.High && Big.Low == Big.High && 11196 Small.MBB == Big.MBB) { 11197 const APInt &SmallValue = Small.Low->getValue(); 11198 const APInt &BigValue = Big.Low->getValue(); 11199 11200 // Check that there is only one bit different. 11201 APInt CommonBit = BigValue ^ SmallValue; 11202 if (CommonBit.isPowerOf2()) { 11203 SDValue CondLHS = getValue(Cond); 11204 EVT VT = CondLHS.getValueType(); 11205 SDLoc DL = getCurSDLoc(); 11206 11207 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11208 DAG.getConstant(CommonBit, DL, VT)); 11209 SDValue Cond = DAG.getSetCC( 11210 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11211 ISD::SETEQ); 11212 11213 // Update successor info. 11214 // Both Small and Big will jump to Small.BB, so we sum up the 11215 // probabilities. 11216 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11217 if (BPI) 11218 addSuccessorWithProb( 11219 SwitchMBB, DefaultMBB, 11220 // The default destination is the first successor in IR. 11221 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11222 else 11223 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11224 11225 // Insert the true branch. 11226 SDValue BrCond = 11227 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11228 DAG.getBasicBlock(Small.MBB)); 11229 // Insert the false branch. 11230 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11231 DAG.getBasicBlock(DefaultMBB)); 11232 11233 DAG.setRoot(BrCond); 11234 return; 11235 } 11236 } 11237 } 11238 11239 if (TM.getOptLevel() != CodeGenOpt::None) { 11240 // Here, we order cases by probability so the most likely case will be 11241 // checked first. However, two clusters can have the same probability in 11242 // which case their relative ordering is non-deterministic. So we use Low 11243 // as a tie-breaker as clusters are guaranteed to never overlap. 11244 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11245 [](const CaseCluster &a, const CaseCluster &b) { 11246 return a.Prob != b.Prob ? 11247 a.Prob > b.Prob : 11248 a.Low->getValue().slt(b.Low->getValue()); 11249 }); 11250 11251 // Rearrange the case blocks so that the last one falls through if possible 11252 // without changing the order of probabilities. 11253 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11254 --I; 11255 if (I->Prob > W.LastCluster->Prob) 11256 break; 11257 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11258 std::swap(*I, *W.LastCluster); 11259 break; 11260 } 11261 } 11262 } 11263 11264 // Compute total probability. 11265 BranchProbability DefaultProb = W.DefaultProb; 11266 BranchProbability UnhandledProbs = DefaultProb; 11267 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11268 UnhandledProbs += I->Prob; 11269 11270 MachineBasicBlock *CurMBB = W.MBB; 11271 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11272 bool FallthroughUnreachable = false; 11273 MachineBasicBlock *Fallthrough; 11274 if (I == W.LastCluster) { 11275 // For the last cluster, fall through to the default destination. 11276 Fallthrough = DefaultMBB; 11277 FallthroughUnreachable = isa<UnreachableInst>( 11278 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11279 } else { 11280 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11281 CurMF->insert(BBI, Fallthrough); 11282 // Put Cond in a virtual register to make it available from the new blocks. 11283 ExportFromCurrentBlock(Cond); 11284 } 11285 UnhandledProbs -= I->Prob; 11286 11287 switch (I->Kind) { 11288 case CC_JumpTable: { 11289 // FIXME: Optimize away range check based on pivot comparisons. 11290 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11291 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11292 11293 // The jump block hasn't been inserted yet; insert it here. 11294 MachineBasicBlock *JumpMBB = JT->MBB; 11295 CurMF->insert(BBI, JumpMBB); 11296 11297 auto JumpProb = I->Prob; 11298 auto FallthroughProb = UnhandledProbs; 11299 11300 // If the default statement is a target of the jump table, we evenly 11301 // distribute the default probability to successors of CurMBB. Also 11302 // update the probability on the edge from JumpMBB to Fallthrough. 11303 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11304 SE = JumpMBB->succ_end(); 11305 SI != SE; ++SI) { 11306 if (*SI == DefaultMBB) { 11307 JumpProb += DefaultProb / 2; 11308 FallthroughProb -= DefaultProb / 2; 11309 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11310 JumpMBB->normalizeSuccProbs(); 11311 break; 11312 } 11313 } 11314 11315 if (FallthroughUnreachable) 11316 JTH->FallthroughUnreachable = true; 11317 11318 if (!JTH->FallthroughUnreachable) 11319 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11320 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11321 CurMBB->normalizeSuccProbs(); 11322 11323 // The jump table header will be inserted in our current block, do the 11324 // range check, and fall through to our fallthrough block. 11325 JTH->HeaderBB = CurMBB; 11326 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11327 11328 // If we're in the right place, emit the jump table header right now. 11329 if (CurMBB == SwitchMBB) { 11330 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11331 JTH->Emitted = true; 11332 } 11333 break; 11334 } 11335 case CC_BitTests: { 11336 // FIXME: Optimize away range check based on pivot comparisons. 11337 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11338 11339 // The bit test blocks haven't been inserted yet; insert them here. 11340 for (BitTestCase &BTC : BTB->Cases) 11341 CurMF->insert(BBI, BTC.ThisBB); 11342 11343 // Fill in fields of the BitTestBlock. 11344 BTB->Parent = CurMBB; 11345 BTB->Default = Fallthrough; 11346 11347 BTB->DefaultProb = UnhandledProbs; 11348 // If the cases in bit test don't form a contiguous range, we evenly 11349 // distribute the probability on the edge to Fallthrough to two 11350 // successors of CurMBB. 11351 if (!BTB->ContiguousRange) { 11352 BTB->Prob += DefaultProb / 2; 11353 BTB->DefaultProb -= DefaultProb / 2; 11354 } 11355 11356 if (FallthroughUnreachable) 11357 BTB->FallthroughUnreachable = true; 11358 11359 // If we're in the right place, emit the bit test header right now. 11360 if (CurMBB == SwitchMBB) { 11361 visitBitTestHeader(*BTB, SwitchMBB); 11362 BTB->Emitted = true; 11363 } 11364 break; 11365 } 11366 case CC_Range: { 11367 const Value *RHS, *LHS, *MHS; 11368 ISD::CondCode CC; 11369 if (I->Low == I->High) { 11370 // Check Cond == I->Low. 11371 CC = ISD::SETEQ; 11372 LHS = Cond; 11373 RHS=I->Low; 11374 MHS = nullptr; 11375 } else { 11376 // Check I->Low <= Cond <= I->High. 11377 CC = ISD::SETLE; 11378 LHS = I->Low; 11379 MHS = Cond; 11380 RHS = I->High; 11381 } 11382 11383 // If Fallthrough is unreachable, fold away the comparison. 11384 if (FallthroughUnreachable) 11385 CC = ISD::SETTRUE; 11386 11387 // The false probability is the sum of all unhandled cases. 11388 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11389 getCurSDLoc(), I->Prob, UnhandledProbs); 11390 11391 if (CurMBB == SwitchMBB) 11392 visitSwitchCase(CB, SwitchMBB); 11393 else 11394 SL->SwitchCases.push_back(CB); 11395 11396 break; 11397 } 11398 } 11399 CurMBB = Fallthrough; 11400 } 11401 } 11402 11403 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11404 CaseClusterIt First, 11405 CaseClusterIt Last) { 11406 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11407 if (X.Prob != CC.Prob) 11408 return X.Prob > CC.Prob; 11409 11410 // Ties are broken by comparing the case value. 11411 return X.Low->getValue().slt(CC.Low->getValue()); 11412 }); 11413 } 11414 11415 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11416 const SwitchWorkListItem &W, 11417 Value *Cond, 11418 MachineBasicBlock *SwitchMBB) { 11419 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11420 "Clusters not sorted?"); 11421 11422 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11423 11424 // Balance the tree based on branch probabilities to create a near-optimal (in 11425 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11426 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11427 CaseClusterIt LastLeft = W.FirstCluster; 11428 CaseClusterIt FirstRight = W.LastCluster; 11429 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11430 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11431 11432 // Move LastLeft and FirstRight towards each other from opposite directions to 11433 // find a partitioning of the clusters which balances the probability on both 11434 // sides. If LeftProb and RightProb are equal, alternate which side is 11435 // taken to ensure 0-probability nodes are distributed evenly. 11436 unsigned I = 0; 11437 while (LastLeft + 1 < FirstRight) { 11438 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11439 LeftProb += (++LastLeft)->Prob; 11440 else 11441 RightProb += (--FirstRight)->Prob; 11442 I++; 11443 } 11444 11445 while (true) { 11446 // Our binary search tree differs from a typical BST in that ours can have up 11447 // to three values in each leaf. The pivot selection above doesn't take that 11448 // into account, which means the tree might require more nodes and be less 11449 // efficient. We compensate for this here. 11450 11451 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11452 unsigned NumRight = W.LastCluster - FirstRight + 1; 11453 11454 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11455 // If one side has less than 3 clusters, and the other has more than 3, 11456 // consider taking a cluster from the other side. 11457 11458 if (NumLeft < NumRight) { 11459 // Consider moving the first cluster on the right to the left side. 11460 CaseCluster &CC = *FirstRight; 11461 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11462 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11463 if (LeftSideRank <= RightSideRank) { 11464 // Moving the cluster to the left does not demote it. 11465 ++LastLeft; 11466 ++FirstRight; 11467 continue; 11468 } 11469 } else { 11470 assert(NumRight < NumLeft); 11471 // Consider moving the last element on the left to the right side. 11472 CaseCluster &CC = *LastLeft; 11473 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11474 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11475 if (RightSideRank <= LeftSideRank) { 11476 // Moving the cluster to the right does not demot it. 11477 --LastLeft; 11478 --FirstRight; 11479 continue; 11480 } 11481 } 11482 } 11483 break; 11484 } 11485 11486 assert(LastLeft + 1 == FirstRight); 11487 assert(LastLeft >= W.FirstCluster); 11488 assert(FirstRight <= W.LastCluster); 11489 11490 // Use the first element on the right as pivot since we will make less-than 11491 // comparisons against it. 11492 CaseClusterIt PivotCluster = FirstRight; 11493 assert(PivotCluster > W.FirstCluster); 11494 assert(PivotCluster <= W.LastCluster); 11495 11496 CaseClusterIt FirstLeft = W.FirstCluster; 11497 CaseClusterIt LastRight = W.LastCluster; 11498 11499 const ConstantInt *Pivot = PivotCluster->Low; 11500 11501 // New blocks will be inserted immediately after the current one. 11502 MachineFunction::iterator BBI(W.MBB); 11503 ++BBI; 11504 11505 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11506 // we can branch to its destination directly if it's squeezed exactly in 11507 // between the known lower bound and Pivot - 1. 11508 MachineBasicBlock *LeftMBB; 11509 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11510 FirstLeft->Low == W.GE && 11511 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11512 LeftMBB = FirstLeft->MBB; 11513 } else { 11514 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11515 FuncInfo.MF->insert(BBI, LeftMBB); 11516 WorkList.push_back( 11517 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11518 // Put Cond in a virtual register to make it available from the new blocks. 11519 ExportFromCurrentBlock(Cond); 11520 } 11521 11522 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11523 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11524 // directly if RHS.High equals the current upper bound. 11525 MachineBasicBlock *RightMBB; 11526 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11527 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11528 RightMBB = FirstRight->MBB; 11529 } else { 11530 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11531 FuncInfo.MF->insert(BBI, RightMBB); 11532 WorkList.push_back( 11533 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11534 // Put Cond in a virtual register to make it available from the new blocks. 11535 ExportFromCurrentBlock(Cond); 11536 } 11537 11538 // Create the CaseBlock record that will be used to lower the branch. 11539 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11540 getCurSDLoc(), LeftProb, RightProb); 11541 11542 if (W.MBB == SwitchMBB) 11543 visitSwitchCase(CB, SwitchMBB); 11544 else 11545 SL->SwitchCases.push_back(CB); 11546 } 11547 11548 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11549 // from the swith statement. 11550 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11551 BranchProbability PeeledCaseProb) { 11552 if (PeeledCaseProb == BranchProbability::getOne()) 11553 return BranchProbability::getZero(); 11554 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11555 11556 uint32_t Numerator = CaseProb.getNumerator(); 11557 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11558 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11559 } 11560 11561 // Try to peel the top probability case if it exceeds the threshold. 11562 // Return current MachineBasicBlock for the switch statement if the peeling 11563 // does not occur. 11564 // If the peeling is performed, return the newly created MachineBasicBlock 11565 // for the peeled switch statement. Also update Clusters to remove the peeled 11566 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11567 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11568 const SwitchInst &SI, CaseClusterVector &Clusters, 11569 BranchProbability &PeeledCaseProb) { 11570 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11571 // Don't perform if there is only one cluster or optimizing for size. 11572 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11573 TM.getOptLevel() == CodeGenOpt::None || 11574 SwitchMBB->getParent()->getFunction().hasMinSize()) 11575 return SwitchMBB; 11576 11577 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11578 unsigned PeeledCaseIndex = 0; 11579 bool SwitchPeeled = false; 11580 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11581 CaseCluster &CC = Clusters[Index]; 11582 if (CC.Prob < TopCaseProb) 11583 continue; 11584 TopCaseProb = CC.Prob; 11585 PeeledCaseIndex = Index; 11586 SwitchPeeled = true; 11587 } 11588 if (!SwitchPeeled) 11589 return SwitchMBB; 11590 11591 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11592 << TopCaseProb << "\n"); 11593 11594 // Record the MBB for the peeled switch statement. 11595 MachineFunction::iterator BBI(SwitchMBB); 11596 ++BBI; 11597 MachineBasicBlock *PeeledSwitchMBB = 11598 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11599 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11600 11601 ExportFromCurrentBlock(SI.getCondition()); 11602 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11603 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11604 nullptr, nullptr, TopCaseProb.getCompl()}; 11605 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11606 11607 Clusters.erase(PeeledCaseIt); 11608 for (CaseCluster &CC : Clusters) { 11609 LLVM_DEBUG( 11610 dbgs() << "Scale the probablity for one cluster, before scaling: " 11611 << CC.Prob << "\n"); 11612 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11613 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11614 } 11615 PeeledCaseProb = TopCaseProb; 11616 return PeeledSwitchMBB; 11617 } 11618 11619 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11620 // Extract cases from the switch. 11621 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11622 CaseClusterVector Clusters; 11623 Clusters.reserve(SI.getNumCases()); 11624 for (auto I : SI.cases()) { 11625 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11626 const ConstantInt *CaseVal = I.getCaseValue(); 11627 BranchProbability Prob = 11628 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11629 : BranchProbability(1, SI.getNumCases() + 1); 11630 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11631 } 11632 11633 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11634 11635 // Cluster adjacent cases with the same destination. We do this at all 11636 // optimization levels because it's cheap to do and will make codegen faster 11637 // if there are many clusters. 11638 sortAndRangeify(Clusters); 11639 11640 // The branch probablity of the peeled case. 11641 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11642 MachineBasicBlock *PeeledSwitchMBB = 11643 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11644 11645 // If there is only the default destination, jump there directly. 11646 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11647 if (Clusters.empty()) { 11648 assert(PeeledSwitchMBB == SwitchMBB); 11649 SwitchMBB->addSuccessor(DefaultMBB); 11650 if (DefaultMBB != NextBlock(SwitchMBB)) { 11651 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11652 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11653 } 11654 return; 11655 } 11656 11657 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11658 SL->findBitTestClusters(Clusters, &SI); 11659 11660 LLVM_DEBUG({ 11661 dbgs() << "Case clusters: "; 11662 for (const CaseCluster &C : Clusters) { 11663 if (C.Kind == CC_JumpTable) 11664 dbgs() << "JT:"; 11665 if (C.Kind == CC_BitTests) 11666 dbgs() << "BT:"; 11667 11668 C.Low->getValue().print(dbgs(), true); 11669 if (C.Low != C.High) { 11670 dbgs() << '-'; 11671 C.High->getValue().print(dbgs(), true); 11672 } 11673 dbgs() << ' '; 11674 } 11675 dbgs() << '\n'; 11676 }); 11677 11678 assert(!Clusters.empty()); 11679 SwitchWorkList WorkList; 11680 CaseClusterIt First = Clusters.begin(); 11681 CaseClusterIt Last = Clusters.end() - 1; 11682 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11683 // Scale the branchprobability for DefaultMBB if the peel occurs and 11684 // DefaultMBB is not replaced. 11685 if (PeeledCaseProb != BranchProbability::getZero() && 11686 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11687 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11688 WorkList.push_back( 11689 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11690 11691 while (!WorkList.empty()) { 11692 SwitchWorkListItem W = WorkList.pop_back_val(); 11693 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11694 11695 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11696 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11697 // For optimized builds, lower large range as a balanced binary tree. 11698 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11699 continue; 11700 } 11701 11702 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11703 } 11704 } 11705 11706 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11707 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11708 auto DL = getCurSDLoc(); 11709 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11710 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11711 } 11712 11713 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11715 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11716 11717 SDLoc DL = getCurSDLoc(); 11718 SDValue V = getValue(I.getOperand(0)); 11719 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11720 11721 if (VT.isScalableVector()) { 11722 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11723 return; 11724 } 11725 11726 // Use VECTOR_SHUFFLE for the fixed-length vector 11727 // to maintain existing behavior. 11728 SmallVector<int, 8> Mask; 11729 unsigned NumElts = VT.getVectorMinNumElements(); 11730 for (unsigned i = 0; i != NumElts; ++i) 11731 Mask.push_back(NumElts - 1 - i); 11732 11733 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11734 } 11735 11736 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11737 auto DL = getCurSDLoc(); 11738 SDValue InVec = getValue(I.getOperand(0)); 11739 EVT OutVT = 11740 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11741 11742 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11743 11744 // ISD Node needs the input vectors split into two equal parts 11745 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11746 DAG.getVectorIdxConstant(0, DL)); 11747 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11748 DAG.getVectorIdxConstant(OutNumElts, DL)); 11749 11750 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11751 // legalisation and combines. 11752 if (OutVT.isFixedLengthVector()) { 11753 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11754 createStrideMask(0, 2, OutNumElts)); 11755 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11756 createStrideMask(1, 2, OutNumElts)); 11757 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11758 setValue(&I, Res); 11759 return; 11760 } 11761 11762 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11763 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11764 setValue(&I, Res); 11765 } 11766 11767 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11768 auto DL = getCurSDLoc(); 11769 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11770 SDValue InVec0 = getValue(I.getOperand(0)); 11771 SDValue InVec1 = getValue(I.getOperand(1)); 11772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11773 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11774 11775 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11776 // legalisation and combines. 11777 if (OutVT.isFixedLengthVector()) { 11778 unsigned NumElts = InVT.getVectorMinNumElements(); 11779 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11780 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11781 createInterleaveMask(NumElts, 2))); 11782 return; 11783 } 11784 11785 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11786 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11787 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11788 Res.getValue(1)); 11789 setValue(&I, Res); 11790 } 11791 11792 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11793 SmallVector<EVT, 4> ValueVTs; 11794 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11795 ValueVTs); 11796 unsigned NumValues = ValueVTs.size(); 11797 if (NumValues == 0) return; 11798 11799 SmallVector<SDValue, 4> Values(NumValues); 11800 SDValue Op = getValue(I.getOperand(0)); 11801 11802 for (unsigned i = 0; i != NumValues; ++i) 11803 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11804 SDValue(Op.getNode(), Op.getResNo() + i)); 11805 11806 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11807 DAG.getVTList(ValueVTs), Values)); 11808 } 11809 11810 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11812 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11813 11814 SDLoc DL = getCurSDLoc(); 11815 SDValue V1 = getValue(I.getOperand(0)); 11816 SDValue V2 = getValue(I.getOperand(1)); 11817 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11818 11819 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11820 if (VT.isScalableVector()) { 11821 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11822 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11823 DAG.getConstant(Imm, DL, IdxVT))); 11824 return; 11825 } 11826 11827 unsigned NumElts = VT.getVectorNumElements(); 11828 11829 uint64_t Idx = (NumElts + Imm) % NumElts; 11830 11831 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11832 SmallVector<int, 8> Mask; 11833 for (unsigned i = 0; i < NumElts; ++i) 11834 Mask.push_back(Idx + i); 11835 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11836 } 11837 11838 // Consider the following MIR after SelectionDAG, which produces output in 11839 // phyregs in the first case or virtregs in the second case. 11840 // 11841 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 11842 // %5:gr32 = COPY $ebx 11843 // %6:gr32 = COPY $edx 11844 // %1:gr32 = COPY %6:gr32 11845 // %0:gr32 = COPY %5:gr32 11846 // 11847 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 11848 // %1:gr32 = COPY %6:gr32 11849 // %0:gr32 = COPY %5:gr32 11850 // 11851 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 11852 // Given %1, we'd like to return $edx in the first case and %6 in the second. 11853 // 11854 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 11855 // to a single virtreg (such as %0). The remaining outputs monotonically 11856 // increase in virtreg number from there. If a callbr has no outputs, then it 11857 // should not have a corresponding callbr landingpad; in fact, the callbr 11858 // landingpad would not even be able to refer to such a callbr. 11859 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 11860 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 11861 // There is definitely at least one copy. 11862 assert(MI->getOpcode() == TargetOpcode::COPY && 11863 "start of copy chain MUST be COPY"); 11864 Reg = MI->getOperand(1).getReg(); 11865 MI = MRI.def_begin(Reg)->getParent(); 11866 // There may be an optional second copy. 11867 if (MI->getOpcode() == TargetOpcode::COPY) { 11868 assert(Reg.isVirtual() && "expected COPY of virtual register"); 11869 Reg = MI->getOperand(1).getReg(); 11870 assert(Reg.isPhysical() && "expected COPY of physical register"); 11871 MI = MRI.def_begin(Reg)->getParent(); 11872 } 11873 // The start of the chain must be an INLINEASM_BR. 11874 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 11875 "end of copy chain MUST be INLINEASM_BR"); 11876 return Reg; 11877 } 11878 11879 // We must do this walk rather than the simpler 11880 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 11881 // otherwise we will end up with copies of virtregs only valid along direct 11882 // edges. 11883 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 11884 SmallVector<EVT, 8> ResultVTs; 11885 SmallVector<SDValue, 8> ResultValues; 11886 const auto *CBR = 11887 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 11888 11889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11890 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 11891 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11892 11893 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 11894 SDValue Chain = DAG.getRoot(); 11895 11896 // Re-parse the asm constraints string. 11897 TargetLowering::AsmOperandInfoVector TargetConstraints = 11898 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 11899 for (auto &T : TargetConstraints) { 11900 SDISelAsmOperandInfo OpInfo(T); 11901 if (OpInfo.Type != InlineAsm::isOutput) 11902 continue; 11903 11904 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 11905 // individual constraint. 11906 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 11907 11908 switch (OpInfo.ConstraintType) { 11909 case TargetLowering::C_Register: 11910 case TargetLowering::C_RegisterClass: { 11911 // Fill in OpInfo.AssignedRegs.Regs. 11912 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 11913 11914 // getRegistersForValue may produce 1 to many registers based on whether 11915 // the OpInfo.ConstraintVT is legal on the target or not. 11916 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 11917 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 11918 if (Register::isPhysicalRegister(OriginalDef)) 11919 FuncInfo.MBB->addLiveIn(OriginalDef); 11920 // Update the assigned registers to use the original defs. 11921 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 11922 } 11923 11924 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 11925 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 11926 ResultValues.push_back(V); 11927 ResultVTs.push_back(OpInfo.ConstraintVT); 11928 break; 11929 } 11930 case TargetLowering::C_Other: { 11931 SDValue Flag; 11932 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 11933 OpInfo, DAG); 11934 ++InitialDef; 11935 ResultValues.push_back(V); 11936 ResultVTs.push_back(OpInfo.ConstraintVT); 11937 break; 11938 } 11939 default: 11940 break; 11941 } 11942 } 11943 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11944 DAG.getVTList(ResultVTs), ResultValues); 11945 setValue(&I, V); 11946 } 11947