1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 20 // command-line option -verify-machineinstrs, or by defining the environment 21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 22 // the verifier errors. 23 //===----------------------------------------------------------------------===// 24 25 #include "LiveRangeCalc.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 void visitMachineInstrBefore(const MachineInstr *MI); 234 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 235 void visitMachineInstrAfter(const MachineInstr *MI); 236 void visitMachineBundleAfter(const MachineInstr *MI); 237 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 238 void visitMachineFunctionAfter(); 239 240 void report(const char *msg, const MachineFunction *MF); 241 void report(const char *msg, const MachineBasicBlock *MBB); 242 void report(const char *msg, const MachineInstr *MI); 243 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 244 LLT MOVRegType = LLT{}); 245 246 void report_context(const LiveInterval &LI) const; 247 void report_context(const LiveRange &LR, unsigned VRegUnit, 248 LaneBitmask LaneMask) const; 249 void report_context(const LiveRange::Segment &S) const; 250 void report_context(const VNInfo &VNI) const; 251 void report_context(SlotIndex Pos) const; 252 void report_context(MCPhysReg PhysReg) const; 253 void report_context_liverange(const LiveRange &LR) const; 254 void report_context_lanemask(LaneBitmask LaneMask) const; 255 void report_context_vreg(unsigned VReg) const; 256 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 257 258 void verifyInlineAsm(const MachineInstr *MI); 259 260 void checkLiveness(const MachineOperand *MO, unsigned MONum); 261 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 262 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 265 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 bool SubRangeCheck = false, 267 LaneBitmask LaneMask = LaneBitmask::getNone()); 268 269 void markReachable(const MachineBasicBlock *MBB); 270 void calcRegsPassed(); 271 void checkPHIOps(const MachineBasicBlock &MBB); 272 273 void calcRegsRequired(); 274 void verifyLiveVariables(); 275 void verifyLiveIntervals(); 276 void verifyLiveInterval(const LiveInterval&); 277 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 278 LaneBitmask); 279 void verifyLiveRangeSegment(const LiveRange&, 280 const LiveRange::const_iterator I, unsigned, 281 LaneBitmask); 282 void verifyLiveRange(const LiveRange&, unsigned, 283 LaneBitmask LaneMask = LaneBitmask::getNone()); 284 285 void verifyStackFrame(); 286 287 void verifySlotIndexes() const; 288 void verifyProperties(const MachineFunction &MF); 289 }; 290 291 struct MachineVerifierPass : public MachineFunctionPass { 292 static char ID; // Pass ID, replacement for typeid 293 294 const std::string Banner; 295 296 MachineVerifierPass(std::string banner = std::string()) 297 : MachineFunctionPass(ID), Banner(std::move(banner)) { 298 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 299 } 300 301 void getAnalysisUsage(AnalysisUsage &AU) const override { 302 AU.setPreservesAll(); 303 MachineFunctionPass::getAnalysisUsage(AU); 304 } 305 306 bool runOnMachineFunction(MachineFunction &MF) override { 307 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 308 if (FoundErrors) 309 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 310 return false; 311 } 312 }; 313 314 } // end anonymous namespace 315 316 char MachineVerifierPass::ID = 0; 317 318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 319 "Verify generated machine code", false, false) 320 321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 322 return new MachineVerifierPass(Banner); 323 } 324 325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 326 const { 327 MachineFunction &MF = const_cast<MachineFunction&>(*this); 328 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 329 if (AbortOnErrors && FoundErrors) 330 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 331 return FoundErrors == 0; 332 } 333 334 void MachineVerifier::verifySlotIndexes() const { 335 if (Indexes == nullptr) 336 return; 337 338 // Ensure the IdxMBB list is sorted by slot indexes. 339 SlotIndex Last; 340 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 341 E = Indexes->MBBIndexEnd(); I != E; ++I) { 342 assert(!Last.isValid() || I->first > Last); 343 Last = I->first; 344 } 345 } 346 347 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 348 // If a pass has introduced virtual registers without clearing the 349 // NoVRegs property (or set it without allocating the vregs) 350 // then report an error. 351 if (MF.getProperties().hasProperty( 352 MachineFunctionProperties::Property::NoVRegs) && 353 MRI->getNumVirtRegs()) 354 report("Function has NoVRegs property but there are VReg operands", &MF); 355 } 356 357 unsigned MachineVerifier::verify(MachineFunction &MF) { 358 foundErrors = 0; 359 360 this->MF = &MF; 361 TM = &MF.getTarget(); 362 TII = MF.getSubtarget().getInstrInfo(); 363 TRI = MF.getSubtarget().getRegisterInfo(); 364 MRI = &MF.getRegInfo(); 365 366 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 367 MachineFunctionProperties::Property::FailedISel); 368 369 // If we're mid-GlobalISel and we already triggered the fallback path then 370 // it's expected that the MIR is somewhat broken but that's ok since we'll 371 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 372 if (isFunctionFailedISel) 373 return foundErrors; 374 375 isFunctionRegBankSelected = 376 !isFunctionFailedISel && 377 MF.getProperties().hasProperty( 378 MachineFunctionProperties::Property::RegBankSelected); 379 isFunctionSelected = !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::Selected); 382 LiveVars = nullptr; 383 LiveInts = nullptr; 384 LiveStks = nullptr; 385 Indexes = nullptr; 386 if (PASS) { 387 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 388 // We don't want to verify LiveVariables if LiveIntervals is available. 389 if (!LiveInts) 390 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 391 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 392 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 393 } 394 395 verifySlotIndexes(); 396 397 verifyProperties(MF); 398 399 visitMachineFunctionBefore(); 400 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 401 MFI!=MFE; ++MFI) { 402 visitMachineBasicBlockBefore(&*MFI); 403 // Keep track of the current bundle header. 404 const MachineInstr *CurBundle = nullptr; 405 // Do we expect the next instruction to be part of the same bundle? 406 bool InBundle = false; 407 408 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 409 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 410 if (MBBI->getParent() != &*MFI) { 411 report("Bad instruction parent pointer", &*MFI); 412 errs() << "Instruction: " << *MBBI; 413 continue; 414 } 415 416 // Check for consistent bundle flags. 417 if (InBundle && !MBBI->isBundledWithPred()) 418 report("Missing BundledPred flag, " 419 "BundledSucc was set on predecessor", 420 &*MBBI); 421 if (!InBundle && MBBI->isBundledWithPred()) 422 report("BundledPred flag is set, " 423 "but BundledSucc not set on predecessor", 424 &*MBBI); 425 426 // Is this a bundle header? 427 if (!MBBI->isInsideBundle()) { 428 if (CurBundle) 429 visitMachineBundleAfter(CurBundle); 430 CurBundle = &*MBBI; 431 visitMachineBundleBefore(CurBundle); 432 } else if (!CurBundle) 433 report("No bundle header", &*MBBI); 434 visitMachineInstrBefore(&*MBBI); 435 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 436 const MachineInstr &MI = *MBBI; 437 const MachineOperand &Op = MI.getOperand(I); 438 if (Op.getParent() != &MI) { 439 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 440 // functions when replacing operands of a MachineInstr. 441 report("Instruction has operand with wrong parent set", &MI); 442 } 443 444 visitMachineOperand(&Op, I); 445 } 446 447 visitMachineInstrAfter(&*MBBI); 448 449 // Was this the last bundled instruction? 450 InBundle = MBBI->isBundledWithSucc(); 451 } 452 if (CurBundle) 453 visitMachineBundleAfter(CurBundle); 454 if (InBundle) 455 report("BundledSucc flag set on last instruction in block", &MFI->back()); 456 visitMachineBasicBlockAfter(&*MFI); 457 } 458 visitMachineFunctionAfter(); 459 460 // Clean up. 461 regsLive.clear(); 462 regsDefined.clear(); 463 regsDead.clear(); 464 regsKilled.clear(); 465 regMasks.clear(); 466 MBBInfoMap.clear(); 467 468 return foundErrors; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 472 assert(MF); 473 errs() << '\n'; 474 if (!foundErrors++) { 475 if (Banner) 476 errs() << "# " << Banner << '\n'; 477 if (LiveInts != nullptr) 478 LiveInts->print(errs()); 479 else 480 MF->print(errs(), Indexes); 481 } 482 errs() << "*** Bad machine code: " << msg << " ***\n" 483 << "- function: " << MF->getName() << "\n"; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 487 assert(MBB); 488 report(msg, MBB->getParent()); 489 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 490 << MBB->getName() << " (" << (const void *)MBB << ')'; 491 if (Indexes) 492 errs() << " [" << Indexes->getMBBStartIdx(MBB) 493 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 494 errs() << '\n'; 495 } 496 497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 498 assert(MI); 499 report(msg, MI->getParent()); 500 errs() << "- instruction: "; 501 if (Indexes && Indexes->hasIndex(*MI)) 502 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 503 MI->print(errs(), /*SkipOpers=*/true); 504 } 505 506 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 507 unsigned MONum, LLT MOVRegType) { 508 assert(MO); 509 report(msg, MO->getParent()); 510 errs() << "- operand " << MONum << ": "; 511 MO->print(errs(), MOVRegType, TRI); 512 errs() << "\n"; 513 } 514 515 void MachineVerifier::report_context(SlotIndex Pos) const { 516 errs() << "- at: " << Pos << '\n'; 517 } 518 519 void MachineVerifier::report_context(const LiveInterval &LI) const { 520 errs() << "- interval: " << LI << '\n'; 521 } 522 523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 524 LaneBitmask LaneMask) const { 525 report_context_liverange(LR); 526 report_context_vreg_regunit(VRegUnit); 527 if (LaneMask.any()) 528 report_context_lanemask(LaneMask); 529 } 530 531 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 532 errs() << "- segment: " << S << '\n'; 533 } 534 535 void MachineVerifier::report_context(const VNInfo &VNI) const { 536 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 537 } 538 539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 540 errs() << "- liverange: " << LR << '\n'; 541 } 542 543 void MachineVerifier::report_context(MCPhysReg PReg) const { 544 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 545 } 546 547 void MachineVerifier::report_context_vreg(unsigned VReg) const { 548 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 549 } 550 551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 552 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 553 report_context_vreg(VRegOrUnit); 554 } else { 555 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 556 } 557 } 558 559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 560 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 561 } 562 563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 564 BBInfo &MInfo = MBBInfoMap[MBB]; 565 if (!MInfo.reachable) { 566 MInfo.reachable = true; 567 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 568 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 569 markReachable(*SuI); 570 } 571 } 572 573 void MachineVerifier::visitMachineFunctionBefore() { 574 lastIndex = SlotIndex(); 575 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 576 : TRI->getReservedRegs(*MF); 577 578 if (!MF->empty()) 579 markReachable(&MF->front()); 580 581 // Build a set of the basic blocks in the function. 582 FunctionBlocks.clear(); 583 for (const auto &MBB : *MF) { 584 FunctionBlocks.insert(&MBB); 585 BBInfo &MInfo = MBBInfoMap[&MBB]; 586 587 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 588 if (MInfo.Preds.size() != MBB.pred_size()) 589 report("MBB has duplicate entries in its predecessor list.", &MBB); 590 591 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 592 if (MInfo.Succs.size() != MBB.succ_size()) 593 report("MBB has duplicate entries in its successor list.", &MBB); 594 } 595 596 // Check that the register use lists are sane. 597 MRI->verifyUseLists(); 598 599 if (!MF->empty()) 600 verifyStackFrame(); 601 } 602 603 // Does iterator point to a and b as the first two elements? 604 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 605 const MachineBasicBlock *a, const MachineBasicBlock *b) { 606 if (*i == a) 607 return *++i == b; 608 if (*i == b) 609 return *++i == a; 610 return false; 611 } 612 613 void 614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 615 FirstTerminator = nullptr; 616 FirstNonPHI = nullptr; 617 618 if (!MF->getProperties().hasProperty( 619 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 620 // If this block has allocatable physical registers live-in, check that 621 // it is an entry block or landing pad. 622 for (const auto &LI : MBB->liveins()) { 623 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 624 MBB->getIterator() != MBB->getParent()->begin()) { 625 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 626 report_context(LI.PhysReg); 627 } 628 } 629 } 630 631 // Count the number of landing pad successors. 632 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 633 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 634 E = MBB->succ_end(); I != E; ++I) { 635 if ((*I)->isEHPad()) 636 LandingPadSuccs.insert(*I); 637 if (!FunctionBlocks.count(*I)) 638 report("MBB has successor that isn't part of the function.", MBB); 639 if (!MBBInfoMap[*I].Preds.count(MBB)) { 640 report("Inconsistent CFG", MBB); 641 errs() << "MBB is not in the predecessor list of the successor " 642 << printMBBReference(*(*I)) << ".\n"; 643 } 644 } 645 646 // Check the predecessor list. 647 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 648 E = MBB->pred_end(); I != E; ++I) { 649 if (!FunctionBlocks.count(*I)) 650 report("MBB has predecessor that isn't part of the function.", MBB); 651 if (!MBBInfoMap[*I].Succs.count(MBB)) { 652 report("Inconsistent CFG", MBB); 653 errs() << "MBB is not in the successor list of the predecessor " 654 << printMBBReference(*(*I)) << ".\n"; 655 } 656 } 657 658 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 659 const BasicBlock *BB = MBB->getBasicBlock(); 660 const Function &F = MF->getFunction(); 661 if (LandingPadSuccs.size() > 1 && 662 !(AsmInfo && 663 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 664 BB && isa<SwitchInst>(BB->getTerminator())) && 665 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 666 report("MBB has more than one landing pad successor", MBB); 667 668 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 669 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 670 SmallVector<MachineOperand, 4> Cond; 671 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 672 Cond)) { 673 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 674 // check whether its answers match up with reality. 675 if (!TBB && !FBB) { 676 // Block falls through to its successor. 677 MachineFunction::const_iterator MBBI = MBB->getIterator(); 678 ++MBBI; 679 if (MBBI == MF->end()) { 680 // It's possible that the block legitimately ends with a noreturn 681 // call or an unreachable, in which case it won't actually fall 682 // out the bottom of the function. 683 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 684 // It's possible that the block legitimately ends with a noreturn 685 // call or an unreachable, in which case it won't actually fall 686 // out of the block. 687 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 688 report("MBB exits via unconditional fall-through but doesn't have " 689 "exactly one CFG successor!", MBB); 690 } else if (!MBB->isSuccessor(&*MBBI)) { 691 report("MBB exits via unconditional fall-through but its successor " 692 "differs from its CFG successor!", MBB); 693 } 694 if (!MBB->empty() && MBB->back().isBarrier() && 695 !TII->isPredicated(MBB->back())) { 696 report("MBB exits via unconditional fall-through but ends with a " 697 "barrier instruction!", MBB); 698 } 699 if (!Cond.empty()) { 700 report("MBB exits via unconditional fall-through but has a condition!", 701 MBB); 702 } 703 } else if (TBB && !FBB && Cond.empty()) { 704 // Block unconditionally branches somewhere. 705 // If the block has exactly one successor, that happens to be a 706 // landingpad, accept it as valid control flow. 707 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 708 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 709 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 710 report("MBB exits via unconditional branch but doesn't have " 711 "exactly one CFG successor!", MBB); 712 } else if (!MBB->isSuccessor(TBB)) { 713 report("MBB exits via unconditional branch but the CFG " 714 "successor doesn't match the actual successor!", MBB); 715 } 716 if (MBB->empty()) { 717 report("MBB exits via unconditional branch but doesn't contain " 718 "any instructions!", MBB); 719 } else if (!MBB->back().isBarrier()) { 720 report("MBB exits via unconditional branch but doesn't end with a " 721 "barrier instruction!", MBB); 722 } else if (!MBB->back().isTerminator()) { 723 report("MBB exits via unconditional branch but the branch isn't a " 724 "terminator instruction!", MBB); 725 } 726 } else if (TBB && !FBB && !Cond.empty()) { 727 // Block conditionally branches somewhere, otherwise falls through. 728 MachineFunction::const_iterator MBBI = MBB->getIterator(); 729 ++MBBI; 730 if (MBBI == MF->end()) { 731 report("MBB conditionally falls through out of function!", MBB); 732 } else if (MBB->succ_size() == 1) { 733 // A conditional branch with only one successor is weird, but allowed. 734 if (&*MBBI != TBB) 735 report("MBB exits via conditional branch/fall-through but only has " 736 "one CFG successor!", MBB); 737 else if (TBB != *MBB->succ_begin()) 738 report("MBB exits via conditional branch/fall-through but the CFG " 739 "successor don't match the actual successor!", MBB); 740 } else if (MBB->succ_size() != 2) { 741 report("MBB exits via conditional branch/fall-through but doesn't have " 742 "exactly two CFG successors!", MBB); 743 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 744 report("MBB exits via conditional branch/fall-through but the CFG " 745 "successors don't match the actual successors!", MBB); 746 } 747 if (MBB->empty()) { 748 report("MBB exits via conditional branch/fall-through but doesn't " 749 "contain any instructions!", MBB); 750 } else if (MBB->back().isBarrier()) { 751 report("MBB exits via conditional branch/fall-through but ends with a " 752 "barrier instruction!", MBB); 753 } else if (!MBB->back().isTerminator()) { 754 report("MBB exits via conditional branch/fall-through but the branch " 755 "isn't a terminator instruction!", MBB); 756 } 757 } else if (TBB && FBB) { 758 // Block conditionally branches somewhere, otherwise branches 759 // somewhere else. 760 if (MBB->succ_size() == 1) { 761 // A conditional branch with only one successor is weird, but allowed. 762 if (FBB != TBB) 763 report("MBB exits via conditional branch/branch through but only has " 764 "one CFG successor!", MBB); 765 else if (TBB != *MBB->succ_begin()) 766 report("MBB exits via conditional branch/branch through but the CFG " 767 "successor don't match the actual successor!", MBB); 768 } else if (MBB->succ_size() != 2) { 769 report("MBB exits via conditional branch/branch but doesn't have " 770 "exactly two CFG successors!", MBB); 771 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 772 report("MBB exits via conditional branch/branch but the CFG " 773 "successors don't match the actual successors!", MBB); 774 } 775 if (MBB->empty()) { 776 report("MBB exits via conditional branch/branch but doesn't " 777 "contain any instructions!", MBB); 778 } else if (!MBB->back().isBarrier()) { 779 report("MBB exits via conditional branch/branch but doesn't end with a " 780 "barrier instruction!", MBB); 781 } else if (!MBB->back().isTerminator()) { 782 report("MBB exits via conditional branch/branch but the branch " 783 "isn't a terminator instruction!", MBB); 784 } 785 if (Cond.empty()) { 786 report("MBB exits via conditional branch/branch but there's no " 787 "condition!", MBB); 788 } 789 } else { 790 report("AnalyzeBranch returned invalid data!", MBB); 791 } 792 } 793 794 regsLive.clear(); 795 if (MRI->tracksLiveness()) { 796 for (const auto &LI : MBB->liveins()) { 797 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 798 report("MBB live-in list contains non-physical register", MBB); 799 continue; 800 } 801 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 802 SubRegs.isValid(); ++SubRegs) 803 regsLive.insert(*SubRegs); 804 } 805 } 806 807 const MachineFrameInfo &MFI = MF->getFrameInfo(); 808 BitVector PR = MFI.getPristineRegs(*MF); 809 for (unsigned I : PR.set_bits()) { 810 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 811 SubRegs.isValid(); ++SubRegs) 812 regsLive.insert(*SubRegs); 813 } 814 815 regsKilled.clear(); 816 regsDefined.clear(); 817 818 if (Indexes) 819 lastIndex = Indexes->getMBBStartIdx(MBB); 820 } 821 822 // This function gets called for all bundle headers, including normal 823 // stand-alone unbundled instructions. 824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 825 if (Indexes && Indexes->hasIndex(*MI)) { 826 SlotIndex idx = Indexes->getInstructionIndex(*MI); 827 if (!(idx > lastIndex)) { 828 report("Instruction index out of order", MI); 829 errs() << "Last instruction was at " << lastIndex << '\n'; 830 } 831 lastIndex = idx; 832 } 833 834 // Ensure non-terminators don't follow terminators. 835 // Ignore predicated terminators formed by if conversion. 836 // FIXME: If conversion shouldn't need to violate this rule. 837 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 838 if (!FirstTerminator) 839 FirstTerminator = MI; 840 } else if (FirstTerminator) { 841 report("Non-terminator instruction after the first terminator", MI); 842 errs() << "First terminator was:\t" << *FirstTerminator; 843 } 844 } 845 846 // The operands on an INLINEASM instruction must follow a template. 847 // Verify that the flag operands make sense. 848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 849 // The first two operands on INLINEASM are the asm string and global flags. 850 if (MI->getNumOperands() < 2) { 851 report("Too few operands on inline asm", MI); 852 return; 853 } 854 if (!MI->getOperand(0).isSymbol()) 855 report("Asm string must be an external symbol", MI); 856 if (!MI->getOperand(1).isImm()) 857 report("Asm flags must be an immediate", MI); 858 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 859 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 860 // and Extra_IsConvergent = 32. 861 if (!isUInt<6>(MI->getOperand(1).getImm())) 862 report("Unknown asm flags", &MI->getOperand(1), 1); 863 864 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 865 866 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 867 unsigned NumOps; 868 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 869 const MachineOperand &MO = MI->getOperand(OpNo); 870 // There may be implicit ops after the fixed operands. 871 if (!MO.isImm()) 872 break; 873 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 874 } 875 876 if (OpNo > MI->getNumOperands()) 877 report("Missing operands in last group", MI); 878 879 // An optional MDNode follows the groups. 880 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 881 ++OpNo; 882 883 // All trailing operands must be implicit registers. 884 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 885 const MachineOperand &MO = MI->getOperand(OpNo); 886 if (!MO.isReg() || !MO.isImplicit()) 887 report("Expected implicit register after groups", &MO, OpNo); 888 } 889 } 890 891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 892 const MCInstrDesc &MCID = MI->getDesc(); 893 if (MI->getNumOperands() < MCID.getNumOperands()) { 894 report("Too few operands", MI); 895 errs() << MCID.getNumOperands() << " operands expected, but " 896 << MI->getNumOperands() << " given.\n"; 897 } 898 899 if (MI->isPHI()) { 900 if (MF->getProperties().hasProperty( 901 MachineFunctionProperties::Property::NoPHIs)) 902 report("Found PHI instruction with NoPHIs property set", MI); 903 904 if (FirstNonPHI) 905 report("Found PHI instruction after non-PHI", MI); 906 } else if (FirstNonPHI == nullptr) 907 FirstNonPHI = MI; 908 909 // Check the tied operands. 910 if (MI->isInlineAsm()) 911 verifyInlineAsm(MI); 912 913 // Check the MachineMemOperands for basic consistency. 914 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 915 E = MI->memoperands_end(); 916 I != E; ++I) { 917 if ((*I)->isLoad() && !MI->mayLoad()) 918 report("Missing mayLoad flag", MI); 919 if ((*I)->isStore() && !MI->mayStore()) 920 report("Missing mayStore flag", MI); 921 } 922 923 // Debug values must not have a slot index. 924 // Other instructions must have one, unless they are inside a bundle. 925 if (LiveInts) { 926 bool mapped = !LiveInts->isNotInMIMap(*MI); 927 if (MI->isDebugInstr()) { 928 if (mapped) 929 report("Debug instruction has a slot index", MI); 930 } else if (MI->isInsideBundle()) { 931 if (mapped) 932 report("Instruction inside bundle has a slot index", MI); 933 } else { 934 if (!mapped) 935 report("Missing slot index", MI); 936 } 937 } 938 939 if (isPreISelGenericOpcode(MCID.getOpcode())) { 940 if (isFunctionSelected) 941 report("Unexpected generic instruction in a Selected function", MI); 942 943 unsigned NumOps = MI->getNumOperands(); 944 945 // Check types. 946 SmallVector<LLT, 4> Types; 947 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 948 I != E; ++I) { 949 if (!MCID.OpInfo[I].isGenericType()) 950 continue; 951 // Generic instructions specify type equality constraints between some of 952 // their operands. Make sure these are consistent. 953 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 954 Types.resize(std::max(TypeIdx + 1, Types.size())); 955 956 const MachineOperand *MO = &MI->getOperand(I); 957 LLT OpTy = MRI->getType(MO->getReg()); 958 // Don't report a type mismatch if there is no actual mismatch, only a 959 // type missing, to reduce noise: 960 if (OpTy.isValid()) { 961 // Only the first valid type for a type index will be printed: don't 962 // overwrite it later so it's always clear which type was expected: 963 if (!Types[TypeIdx].isValid()) 964 Types[TypeIdx] = OpTy; 965 else if (Types[TypeIdx] != OpTy) 966 report("Type mismatch in generic instruction", MO, I, OpTy); 967 } else { 968 // Generic instructions must have types attached to their operands. 969 report("Generic instruction is missing a virtual register type", MO, I); 970 } 971 } 972 973 // Generic opcodes must not have physical register operands. 974 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 975 const MachineOperand *MO = &MI->getOperand(I); 976 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 977 report("Generic instruction cannot have physical register", MO, I); 978 } 979 980 // Avoid out of bounds in checks below. This was already reported earlier. 981 if (MI->getNumOperands() < MCID.getNumOperands()) 982 return; 983 } 984 985 StringRef ErrorInfo; 986 if (!TII->verifyInstruction(*MI, ErrorInfo)) 987 report(ErrorInfo.data(), MI); 988 989 // Verify properties of various specific instruction types 990 switch(MI->getOpcode()) { 991 default: 992 break; 993 case TargetOpcode::G_CONSTANT: 994 case TargetOpcode::G_FCONSTANT: { 995 if (MI->getNumOperands() < MCID.getNumOperands()) 996 break; 997 998 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 999 if (DstTy.isVector()) 1000 report("Instruction cannot use a vector result type", MI); 1001 break; 1002 } 1003 case TargetOpcode::G_LOAD: 1004 case TargetOpcode::G_STORE: 1005 case TargetOpcode::G_ZEXTLOAD: 1006 case TargetOpcode::G_SEXTLOAD: { 1007 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1008 if (!PtrTy.isPointer()) 1009 report("Generic memory instruction must access a pointer", MI); 1010 1011 // Generic loads and stores must have a single MachineMemOperand 1012 // describing that access. 1013 if (!MI->hasOneMemOperand()) { 1014 report("Generic instruction accessing memory must have one mem operand", 1015 MI); 1016 } else { 1017 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1018 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1019 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1020 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1021 if (MMO.getSize() * 8 >= DstTy.getSizeInBits()) { 1022 report("Generic extload must have a narrower memory type", MI); 1023 } 1024 } 1025 } 1026 1027 break; 1028 } 1029 case TargetOpcode::G_PHI: { 1030 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1031 if (!DstTy.isValid() || 1032 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1033 [this, &DstTy](const MachineOperand &MO) { 1034 if (!MO.isReg()) 1035 return true; 1036 LLT Ty = MRI->getType(MO.getReg()); 1037 if (!Ty.isValid() || (Ty != DstTy)) 1038 return false; 1039 return true; 1040 })) 1041 report("Generic Instruction G_PHI has operands with incompatible/missing " 1042 "types", 1043 MI); 1044 break; 1045 } 1046 case TargetOpcode::G_BITCAST: { 1047 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1048 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1049 if (!DstTy.isValid() || !SrcTy.isValid()) 1050 break; 1051 1052 if (SrcTy.isPointer() != DstTy.isPointer()) 1053 report("bitcast cannot convert between pointers and other types", MI); 1054 1055 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1056 report("bitcast sizes must match", MI); 1057 break; 1058 } 1059 case TargetOpcode::G_INTTOPTR: 1060 case TargetOpcode::G_PTRTOINT: 1061 case TargetOpcode::G_ADDRSPACE_CAST: { 1062 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1063 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1064 if (!DstTy.isValid() || !SrcTy.isValid()) 1065 break; 1066 1067 if (DstTy.isVector() != SrcTy.isVector()) 1068 report("pointer casts must be all-vector or all-scalar", MI); 1069 else { 1070 if (DstTy.isVector() ) { 1071 if (DstTy.getNumElements() != SrcTy.getNumElements()) { 1072 report("pointer casts must preserve number of elements", MI); 1073 break; 1074 } 1075 } 1076 } 1077 1078 DstTy = DstTy.getScalarType(); 1079 SrcTy = SrcTy.getScalarType(); 1080 1081 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1082 if (!DstTy.isPointer()) 1083 report("inttoptr result type must be a pointer", MI); 1084 if (SrcTy.isPointer()) 1085 report("inttoptr source type must not be a pointer", MI); 1086 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1087 if (!SrcTy.isPointer()) 1088 report("ptrtoint source type must be a pointer", MI); 1089 if (DstTy.isPointer()) 1090 report("ptrtoint result type must not be a pointer", MI); 1091 } else { 1092 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1093 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1094 report("addrspacecast types must be pointers", MI); 1095 else { 1096 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1097 report("addrspacecast must convert different address spaces", MI); 1098 } 1099 } 1100 1101 break; 1102 } 1103 case TargetOpcode::G_SEXT: 1104 case TargetOpcode::G_ZEXT: 1105 case TargetOpcode::G_ANYEXT: 1106 case TargetOpcode::G_TRUNC: 1107 case TargetOpcode::G_FPEXT: 1108 case TargetOpcode::G_FPTRUNC: { 1109 // Number of operands and presense of types is already checked (and 1110 // reported in case of any issues), so no need to report them again. As 1111 // we're trying to report as many issues as possible at once, however, the 1112 // instructions aren't guaranteed to have the right number of operands or 1113 // types attached to them at this point 1114 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1115 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1116 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1117 if (!DstTy.isValid() || !SrcTy.isValid()) 1118 break; 1119 1120 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1121 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1122 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1123 report("Generic extend/truncate can not operate on pointers", MI); 1124 1125 if (DstTy.isVector() != SrcTy.isVector()) { 1126 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1127 // Generally we try to report as many issues as possible at once, but in 1128 // this case it's not clear what should we be comparing the size of the 1129 // scalar with: the size of the whole vector or its lane. Instead of 1130 // making an arbitrary choice and emitting not so helpful message, let's 1131 // avoid the extra noise and stop here. 1132 break; 1133 } 1134 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1135 report("Generic vector extend/truncate must preserve number of lanes", 1136 MI); 1137 unsigned DstSize = DstElTy.getSizeInBits(); 1138 unsigned SrcSize = SrcElTy.getSizeInBits(); 1139 switch (MI->getOpcode()) { 1140 default: 1141 if (DstSize <= SrcSize) 1142 report("Generic extend has destination type no larger than source", MI); 1143 break; 1144 case TargetOpcode::G_TRUNC: 1145 case TargetOpcode::G_FPTRUNC: 1146 if (DstSize >= SrcSize) 1147 report("Generic truncate has destination type no smaller than source", 1148 MI); 1149 break; 1150 } 1151 break; 1152 } 1153 case TargetOpcode::G_MERGE_VALUES: { 1154 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1155 // e.g. s2N = MERGE sN, sN 1156 // Merging multiple scalars into a vector is not allowed, should use 1157 // G_BUILD_VECTOR for that. 1158 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1159 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1160 if (DstTy.isVector() || SrcTy.isVector()) 1161 report("G_MERGE_VALUES cannot operate on vectors", MI); 1162 break; 1163 } 1164 case TargetOpcode::G_UNMERGE_VALUES: { 1165 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1166 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1167 // For now G_UNMERGE can split vectors. 1168 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1169 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1170 report("G_UNMERGE_VALUES destination types do not match", MI); 1171 } 1172 if (SrcTy.getSizeInBits() != 1173 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1174 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1175 MI); 1176 } 1177 break; 1178 } 1179 case TargetOpcode::G_BUILD_VECTOR: { 1180 // Source types must be scalars, dest type a vector. Total size of scalars 1181 // must match the dest vector size. 1182 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1183 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1184 if (!DstTy.isVector() || SrcEltTy.isVector()) 1185 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1186 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1187 if (MRI->getType(MI->getOperand(1).getReg()) != 1188 MRI->getType(MI->getOperand(i).getReg())) 1189 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1190 } 1191 if (DstTy.getSizeInBits() != 1192 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1193 report("G_BUILD_VECTOR src operands total size don't match dest " 1194 "size.", 1195 MI); 1196 break; 1197 } 1198 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1199 // Source types must be scalars, dest type a vector. Scalar types must be 1200 // larger than the dest vector elt type, as this is a truncating operation. 1201 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1202 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1203 if (!DstTy.isVector() || SrcEltTy.isVector()) 1204 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1205 MI); 1206 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1207 if (MRI->getType(MI->getOperand(1).getReg()) != 1208 MRI->getType(MI->getOperand(i).getReg())) 1209 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1210 MI); 1211 } 1212 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1213 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1214 "dest elt type", 1215 MI); 1216 break; 1217 } 1218 case TargetOpcode::G_CONCAT_VECTORS: { 1219 // Source types should be vectors, and total size should match the dest 1220 // vector size. 1221 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1222 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1223 if (!DstTy.isVector() || !SrcTy.isVector()) 1224 report("G_CONCAT_VECTOR requires vector source and destination operands", 1225 MI); 1226 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1227 if (MRI->getType(MI->getOperand(1).getReg()) != 1228 MRI->getType(MI->getOperand(i).getReg())) 1229 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1230 } 1231 if (DstTy.getNumElements() != 1232 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1233 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1234 break; 1235 } 1236 case TargetOpcode::COPY: { 1237 if (foundErrors) 1238 break; 1239 const MachineOperand &DstOp = MI->getOperand(0); 1240 const MachineOperand &SrcOp = MI->getOperand(1); 1241 LLT DstTy = MRI->getType(DstOp.getReg()); 1242 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1243 if (SrcTy.isValid() && DstTy.isValid()) { 1244 // If both types are valid, check that the types are the same. 1245 if (SrcTy != DstTy) { 1246 report("Copy Instruction is illegal with mismatching types", MI); 1247 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1248 } 1249 } 1250 if (SrcTy.isValid() || DstTy.isValid()) { 1251 // If one of them have valid types, let's just check they have the same 1252 // size. 1253 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1254 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1255 assert(SrcSize && "Expecting size here"); 1256 assert(DstSize && "Expecting size here"); 1257 if (SrcSize != DstSize) 1258 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1259 report("Copy Instruction is illegal with mismatching sizes", MI); 1260 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1261 << "\n"; 1262 } 1263 } 1264 break; 1265 } 1266 case TargetOpcode::G_ICMP: 1267 case TargetOpcode::G_FCMP: { 1268 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1269 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1270 1271 if ((DstTy.isVector() != SrcTy.isVector()) || 1272 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1273 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1274 1275 break; 1276 } 1277 case TargetOpcode::STATEPOINT: 1278 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1279 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1280 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1281 report("meta operands to STATEPOINT not constant!", MI); 1282 break; 1283 1284 auto VerifyStackMapConstant = [&](unsigned Offset) { 1285 if (!MI->getOperand(Offset).isImm() || 1286 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1287 !MI->getOperand(Offset + 1).isImm()) 1288 report("stack map constant to STATEPOINT not well formed!", MI); 1289 }; 1290 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1291 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1292 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1293 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1294 1295 // TODO: verify we have properly encoded deopt arguments 1296 }; 1297 } 1298 1299 void 1300 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1301 const MachineInstr *MI = MO->getParent(); 1302 const MCInstrDesc &MCID = MI->getDesc(); 1303 unsigned NumDefs = MCID.getNumDefs(); 1304 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1305 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1306 1307 // The first MCID.NumDefs operands must be explicit register defines 1308 if (MONum < NumDefs) { 1309 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1310 if (!MO->isReg()) 1311 report("Explicit definition must be a register", MO, MONum); 1312 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1313 report("Explicit definition marked as use", MO, MONum); 1314 else if (MO->isImplicit()) 1315 report("Explicit definition marked as implicit", MO, MONum); 1316 } else if (MONum < MCID.getNumOperands()) { 1317 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1318 // Don't check if it's the last operand in a variadic instruction. See, 1319 // e.g., LDM_RET in the arm back end. 1320 if (MO->isReg() && 1321 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1322 if (MO->isDef() && !MCOI.isOptionalDef()) 1323 report("Explicit operand marked as def", MO, MONum); 1324 if (MO->isImplicit()) 1325 report("Explicit operand marked as implicit", MO, MONum); 1326 } 1327 1328 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1329 if (TiedTo != -1) { 1330 if (!MO->isReg()) 1331 report("Tied use must be a register", MO, MONum); 1332 else if (!MO->isTied()) 1333 report("Operand should be tied", MO, MONum); 1334 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1335 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1336 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1337 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1338 if (!MOTied.isReg()) 1339 report("Tied counterpart must be a register", &MOTied, TiedTo); 1340 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1341 MO->getReg() != MOTied.getReg()) 1342 report("Tied physical registers must match.", &MOTied, TiedTo); 1343 } 1344 } else if (MO->isReg() && MO->isTied()) 1345 report("Explicit operand should not be tied", MO, MONum); 1346 } else { 1347 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1348 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1349 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1350 } 1351 1352 switch (MO->getType()) { 1353 case MachineOperand::MO_Register: { 1354 const unsigned Reg = MO->getReg(); 1355 if (!Reg) 1356 return; 1357 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1358 checkLiveness(MO, MONum); 1359 1360 // Verify the consistency of tied operands. 1361 if (MO->isTied()) { 1362 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1363 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1364 if (!OtherMO.isReg()) 1365 report("Must be tied to a register", MO, MONum); 1366 if (!OtherMO.isTied()) 1367 report("Missing tie flags on tied operand", MO, MONum); 1368 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1369 report("Inconsistent tie links", MO, MONum); 1370 if (MONum < MCID.getNumDefs()) { 1371 if (OtherIdx < MCID.getNumOperands()) { 1372 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1373 report("Explicit def tied to explicit use without tie constraint", 1374 MO, MONum); 1375 } else { 1376 if (!OtherMO.isImplicit()) 1377 report("Explicit def should be tied to implicit use", MO, MONum); 1378 } 1379 } 1380 } 1381 1382 // Verify two-address constraints after leaving SSA form. 1383 unsigned DefIdx; 1384 if (!MRI->isSSA() && MO->isUse() && 1385 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1386 Reg != MI->getOperand(DefIdx).getReg()) 1387 report("Two-address instruction operands must be identical", MO, MONum); 1388 1389 // Check register classes. 1390 unsigned SubIdx = MO->getSubReg(); 1391 1392 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1393 if (SubIdx) { 1394 report("Illegal subregister index for physical register", MO, MONum); 1395 return; 1396 } 1397 if (MONum < MCID.getNumOperands()) { 1398 if (const TargetRegisterClass *DRC = 1399 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1400 if (!DRC->contains(Reg)) { 1401 report("Illegal physical register for instruction", MO, MONum); 1402 errs() << printReg(Reg, TRI) << " is not a " 1403 << TRI->getRegClassName(DRC) << " register.\n"; 1404 } 1405 } 1406 } 1407 if (MO->isRenamable()) { 1408 if (MRI->isReserved(Reg)) { 1409 report("isRenamable set on reserved register", MO, MONum); 1410 return; 1411 } 1412 } 1413 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1414 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1415 return; 1416 } 1417 } else { 1418 // Virtual register. 1419 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1420 if (!RC) { 1421 // This is a generic virtual register. 1422 1423 // If we're post-Select, we can't have gvregs anymore. 1424 if (isFunctionSelected) { 1425 report("Generic virtual register invalid in a Selected function", 1426 MO, MONum); 1427 return; 1428 } 1429 1430 // The gvreg must have a type and it must not have a SubIdx. 1431 LLT Ty = MRI->getType(Reg); 1432 if (!Ty.isValid()) { 1433 report("Generic virtual register must have a valid type", MO, 1434 MONum); 1435 return; 1436 } 1437 1438 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1439 1440 // If we're post-RegBankSelect, the gvreg must have a bank. 1441 if (!RegBank && isFunctionRegBankSelected) { 1442 report("Generic virtual register must have a bank in a " 1443 "RegBankSelected function", 1444 MO, MONum); 1445 return; 1446 } 1447 1448 // Make sure the register fits into its register bank if any. 1449 if (RegBank && Ty.isValid() && 1450 RegBank->getSize() < Ty.getSizeInBits()) { 1451 report("Register bank is too small for virtual register", MO, 1452 MONum); 1453 errs() << "Register bank " << RegBank->getName() << " too small(" 1454 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1455 << "-bits\n"; 1456 return; 1457 } 1458 if (SubIdx) { 1459 report("Generic virtual register does not subregister index", MO, 1460 MONum); 1461 return; 1462 } 1463 1464 // If this is a target specific instruction and this operand 1465 // has register class constraint, the virtual register must 1466 // comply to it. 1467 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1468 MONum < MCID.getNumOperands() && 1469 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1470 report("Virtual register does not match instruction constraint", MO, 1471 MONum); 1472 errs() << "Expect register class " 1473 << TRI->getRegClassName( 1474 TII->getRegClass(MCID, MONum, TRI, *MF)) 1475 << " but got nothing\n"; 1476 return; 1477 } 1478 1479 break; 1480 } 1481 if (SubIdx) { 1482 const TargetRegisterClass *SRC = 1483 TRI->getSubClassWithSubReg(RC, SubIdx); 1484 if (!SRC) { 1485 report("Invalid subregister index for virtual register", MO, MONum); 1486 errs() << "Register class " << TRI->getRegClassName(RC) 1487 << " does not support subreg index " << SubIdx << "\n"; 1488 return; 1489 } 1490 if (RC != SRC) { 1491 report("Invalid register class for subregister index", MO, MONum); 1492 errs() << "Register class " << TRI->getRegClassName(RC) 1493 << " does not fully support subreg index " << SubIdx << "\n"; 1494 return; 1495 } 1496 } 1497 if (MONum < MCID.getNumOperands()) { 1498 if (const TargetRegisterClass *DRC = 1499 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1500 if (SubIdx) { 1501 const TargetRegisterClass *SuperRC = 1502 TRI->getLargestLegalSuperClass(RC, *MF); 1503 if (!SuperRC) { 1504 report("No largest legal super class exists.", MO, MONum); 1505 return; 1506 } 1507 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1508 if (!DRC) { 1509 report("No matching super-reg register class.", MO, MONum); 1510 return; 1511 } 1512 } 1513 if (!RC->hasSuperClassEq(DRC)) { 1514 report("Illegal virtual register for instruction", MO, MONum); 1515 errs() << "Expected a " << TRI->getRegClassName(DRC) 1516 << " register, but got a " << TRI->getRegClassName(RC) 1517 << " register\n"; 1518 } 1519 } 1520 } 1521 } 1522 break; 1523 } 1524 1525 case MachineOperand::MO_RegisterMask: 1526 regMasks.push_back(MO->getRegMask()); 1527 break; 1528 1529 case MachineOperand::MO_MachineBasicBlock: 1530 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1531 report("PHI operand is not in the CFG", MO, MONum); 1532 break; 1533 1534 case MachineOperand::MO_FrameIndex: 1535 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1536 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1537 int FI = MO->getIndex(); 1538 LiveInterval &LI = LiveStks->getInterval(FI); 1539 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1540 1541 bool stores = MI->mayStore(); 1542 bool loads = MI->mayLoad(); 1543 // For a memory-to-memory move, we need to check if the frame 1544 // index is used for storing or loading, by inspecting the 1545 // memory operands. 1546 if (stores && loads) { 1547 for (auto *MMO : MI->memoperands()) { 1548 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1549 if (PSV == nullptr) continue; 1550 const FixedStackPseudoSourceValue *Value = 1551 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1552 if (Value == nullptr) continue; 1553 if (Value->getFrameIndex() != FI) continue; 1554 1555 if (MMO->isStore()) 1556 loads = false; 1557 else 1558 stores = false; 1559 break; 1560 } 1561 if (loads == stores) 1562 report("Missing fixed stack memoperand.", MI); 1563 } 1564 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1565 report("Instruction loads from dead spill slot", MO, MONum); 1566 errs() << "Live stack: " << LI << '\n'; 1567 } 1568 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1569 report("Instruction stores to dead spill slot", MO, MONum); 1570 errs() << "Live stack: " << LI << '\n'; 1571 } 1572 } 1573 break; 1574 1575 default: 1576 break; 1577 } 1578 } 1579 1580 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1581 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1582 LaneBitmask LaneMask) { 1583 LiveQueryResult LRQ = LR.Query(UseIdx); 1584 // Check if we have a segment at the use, note however that we only need one 1585 // live subregister range, the others may be dead. 1586 if (!LRQ.valueIn() && LaneMask.none()) { 1587 report("No live segment at use", MO, MONum); 1588 report_context_liverange(LR); 1589 report_context_vreg_regunit(VRegOrUnit); 1590 report_context(UseIdx); 1591 } 1592 if (MO->isKill() && !LRQ.isKill()) { 1593 report("Live range continues after kill flag", MO, MONum); 1594 report_context_liverange(LR); 1595 report_context_vreg_regunit(VRegOrUnit); 1596 if (LaneMask.any()) 1597 report_context_lanemask(LaneMask); 1598 report_context(UseIdx); 1599 } 1600 } 1601 1602 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1603 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1604 bool SubRangeCheck, LaneBitmask LaneMask) { 1605 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1606 assert(VNI && "NULL valno is not allowed"); 1607 if (VNI->def != DefIdx) { 1608 report("Inconsistent valno->def", MO, MONum); 1609 report_context_liverange(LR); 1610 report_context_vreg_regunit(VRegOrUnit); 1611 if (LaneMask.any()) 1612 report_context_lanemask(LaneMask); 1613 report_context(*VNI); 1614 report_context(DefIdx); 1615 } 1616 } else { 1617 report("No live segment at def", MO, MONum); 1618 report_context_liverange(LR); 1619 report_context_vreg_regunit(VRegOrUnit); 1620 if (LaneMask.any()) 1621 report_context_lanemask(LaneMask); 1622 report_context(DefIdx); 1623 } 1624 // Check that, if the dead def flag is present, LiveInts agree. 1625 if (MO->isDead()) { 1626 LiveQueryResult LRQ = LR.Query(DefIdx); 1627 if (!LRQ.isDeadDef()) { 1628 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1629 "Expecting a virtual register."); 1630 // A dead subreg def only tells us that the specific subreg is dead. There 1631 // could be other non-dead defs of other subregs, or we could have other 1632 // parts of the register being live through the instruction. So unless we 1633 // are checking liveness for a subrange it is ok for the live range to 1634 // continue, given that we have a dead def of a subregister. 1635 if (SubRangeCheck || MO->getSubReg() == 0) { 1636 report("Live range continues after dead def flag", MO, MONum); 1637 report_context_liverange(LR); 1638 report_context_vreg_regunit(VRegOrUnit); 1639 if (LaneMask.any()) 1640 report_context_lanemask(LaneMask); 1641 } 1642 } 1643 } 1644 } 1645 1646 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1647 const MachineInstr *MI = MO->getParent(); 1648 const unsigned Reg = MO->getReg(); 1649 1650 // Both use and def operands can read a register. 1651 if (MO->readsReg()) { 1652 if (MO->isKill()) 1653 addRegWithSubRegs(regsKilled, Reg); 1654 1655 // Check that LiveVars knows this kill. 1656 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1657 MO->isKill()) { 1658 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1659 if (!is_contained(VI.Kills, MI)) 1660 report("Kill missing from LiveVariables", MO, MONum); 1661 } 1662 1663 // Check LiveInts liveness and kill. 1664 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1665 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1666 // Check the cached regunit intervals. 1667 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1668 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1669 if (MRI->isReservedRegUnit(*Units)) 1670 continue; 1671 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1672 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1673 } 1674 } 1675 1676 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1677 if (LiveInts->hasInterval(Reg)) { 1678 // This is a virtual register interval. 1679 const LiveInterval &LI = LiveInts->getInterval(Reg); 1680 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1681 1682 if (LI.hasSubRanges() && !MO->isDef()) { 1683 unsigned SubRegIdx = MO->getSubReg(); 1684 LaneBitmask MOMask = SubRegIdx != 0 1685 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1686 : MRI->getMaxLaneMaskForVReg(Reg); 1687 LaneBitmask LiveInMask; 1688 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1689 if ((MOMask & SR.LaneMask).none()) 1690 continue; 1691 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1692 LiveQueryResult LRQ = SR.Query(UseIdx); 1693 if (LRQ.valueIn()) 1694 LiveInMask |= SR.LaneMask; 1695 } 1696 // At least parts of the register has to be live at the use. 1697 if ((LiveInMask & MOMask).none()) { 1698 report("No live subrange at use", MO, MONum); 1699 report_context(LI); 1700 report_context(UseIdx); 1701 } 1702 } 1703 } else { 1704 report("Virtual register has no live interval", MO, MONum); 1705 } 1706 } 1707 } 1708 1709 // Use of a dead register. 1710 if (!regsLive.count(Reg)) { 1711 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1712 // Reserved registers may be used even when 'dead'. 1713 bool Bad = !isReserved(Reg); 1714 // We are fine if just any subregister has a defined value. 1715 if (Bad) { 1716 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1717 ++SubRegs) { 1718 if (regsLive.count(*SubRegs)) { 1719 Bad = false; 1720 break; 1721 } 1722 } 1723 } 1724 // If there is an additional implicit-use of a super register we stop 1725 // here. By definition we are fine if the super register is not 1726 // (completely) dead, if the complete super register is dead we will 1727 // get a report for its operand. 1728 if (Bad) { 1729 for (const MachineOperand &MOP : MI->uses()) { 1730 if (!MOP.isReg() || !MOP.isImplicit()) 1731 continue; 1732 1733 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1734 continue; 1735 1736 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1737 ++SubRegs) { 1738 if (*SubRegs == Reg) { 1739 Bad = false; 1740 break; 1741 } 1742 } 1743 } 1744 } 1745 if (Bad) 1746 report("Using an undefined physical register", MO, MONum); 1747 } else if (MRI->def_empty(Reg)) { 1748 report("Reading virtual register without a def", MO, MONum); 1749 } else { 1750 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1751 // We don't know which virtual registers are live in, so only complain 1752 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1753 // must be live in. PHI instructions are handled separately. 1754 if (MInfo.regsKilled.count(Reg)) 1755 report("Using a killed virtual register", MO, MONum); 1756 else if (!MI->isPHI()) 1757 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1758 } 1759 } 1760 } 1761 1762 if (MO->isDef()) { 1763 // Register defined. 1764 // TODO: verify that earlyclobber ops are not used. 1765 if (MO->isDead()) 1766 addRegWithSubRegs(regsDead, Reg); 1767 else 1768 addRegWithSubRegs(regsDefined, Reg); 1769 1770 // Verify SSA form. 1771 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1772 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1773 report("Multiple virtual register defs in SSA form", MO, MONum); 1774 1775 // Check LiveInts for a live segment, but only for virtual registers. 1776 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1777 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1778 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1779 1780 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1781 if (LiveInts->hasInterval(Reg)) { 1782 const LiveInterval &LI = LiveInts->getInterval(Reg); 1783 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1784 1785 if (LI.hasSubRanges()) { 1786 unsigned SubRegIdx = MO->getSubReg(); 1787 LaneBitmask MOMask = SubRegIdx != 0 1788 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1789 : MRI->getMaxLaneMaskForVReg(Reg); 1790 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1791 if ((SR.LaneMask & MOMask).none()) 1792 continue; 1793 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1794 } 1795 } 1796 } else { 1797 report("Virtual register has no Live interval", MO, MONum); 1798 } 1799 } 1800 } 1801 } 1802 } 1803 1804 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1805 1806 // This function gets called after visiting all instructions in a bundle. The 1807 // argument points to the bundle header. 1808 // Normal stand-alone instructions are also considered 'bundles', and this 1809 // function is called for all of them. 1810 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1811 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1812 set_union(MInfo.regsKilled, regsKilled); 1813 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1814 // Kill any masked registers. 1815 while (!regMasks.empty()) { 1816 const uint32_t *Mask = regMasks.pop_back_val(); 1817 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1818 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1819 MachineOperand::clobbersPhysReg(Mask, *I)) 1820 regsDead.push_back(*I); 1821 } 1822 set_subtract(regsLive, regsDead); regsDead.clear(); 1823 set_union(regsLive, regsDefined); regsDefined.clear(); 1824 } 1825 1826 void 1827 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1828 MBBInfoMap[MBB].regsLiveOut = regsLive; 1829 regsLive.clear(); 1830 1831 if (Indexes) { 1832 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1833 if (!(stop > lastIndex)) { 1834 report("Block ends before last instruction index", MBB); 1835 errs() << "Block ends at " << stop 1836 << " last instruction was at " << lastIndex << '\n'; 1837 } 1838 lastIndex = stop; 1839 } 1840 } 1841 1842 // Calculate the largest possible vregsPassed sets. These are the registers that 1843 // can pass through an MBB live, but may not be live every time. It is assumed 1844 // that all vregsPassed sets are empty before the call. 1845 void MachineVerifier::calcRegsPassed() { 1846 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1847 // have any vregsPassed. 1848 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1849 for (const auto &MBB : *MF) { 1850 BBInfo &MInfo = MBBInfoMap[&MBB]; 1851 if (!MInfo.reachable) 1852 continue; 1853 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1854 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1855 BBInfo &SInfo = MBBInfoMap[*SuI]; 1856 if (SInfo.addPassed(MInfo.regsLiveOut)) 1857 todo.insert(*SuI); 1858 } 1859 } 1860 1861 // Iteratively push vregsPassed to successors. This will converge to the same 1862 // final state regardless of DenseSet iteration order. 1863 while (!todo.empty()) { 1864 const MachineBasicBlock *MBB = *todo.begin(); 1865 todo.erase(MBB); 1866 BBInfo &MInfo = MBBInfoMap[MBB]; 1867 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1868 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1869 if (*SuI == MBB) 1870 continue; 1871 BBInfo &SInfo = MBBInfoMap[*SuI]; 1872 if (SInfo.addPassed(MInfo.vregsPassed)) 1873 todo.insert(*SuI); 1874 } 1875 } 1876 } 1877 1878 // Calculate the set of virtual registers that must be passed through each basic 1879 // block in order to satisfy the requirements of successor blocks. This is very 1880 // similar to calcRegsPassed, only backwards. 1881 void MachineVerifier::calcRegsRequired() { 1882 // First push live-in regs to predecessors' vregsRequired. 1883 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1884 for (const auto &MBB : *MF) { 1885 BBInfo &MInfo = MBBInfoMap[&MBB]; 1886 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1887 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1888 BBInfo &PInfo = MBBInfoMap[*PrI]; 1889 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1890 todo.insert(*PrI); 1891 } 1892 } 1893 1894 // Iteratively push vregsRequired to predecessors. This will converge to the 1895 // same final state regardless of DenseSet iteration order. 1896 while (!todo.empty()) { 1897 const MachineBasicBlock *MBB = *todo.begin(); 1898 todo.erase(MBB); 1899 BBInfo &MInfo = MBBInfoMap[MBB]; 1900 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1901 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1902 if (*PrI == MBB) 1903 continue; 1904 BBInfo &SInfo = MBBInfoMap[*PrI]; 1905 if (SInfo.addRequired(MInfo.vregsRequired)) 1906 todo.insert(*PrI); 1907 } 1908 } 1909 } 1910 1911 // Check PHI instructions at the beginning of MBB. It is assumed that 1912 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1913 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1914 BBInfo &MInfo = MBBInfoMap[&MBB]; 1915 1916 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1917 for (const MachineInstr &Phi : MBB) { 1918 if (!Phi.isPHI()) 1919 break; 1920 seen.clear(); 1921 1922 const MachineOperand &MODef = Phi.getOperand(0); 1923 if (!MODef.isReg() || !MODef.isDef()) { 1924 report("Expected first PHI operand to be a register def", &MODef, 0); 1925 continue; 1926 } 1927 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1928 MODef.isEarlyClobber() || MODef.isDebug()) 1929 report("Unexpected flag on PHI operand", &MODef, 0); 1930 unsigned DefReg = MODef.getReg(); 1931 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1932 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1933 1934 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1935 const MachineOperand &MO0 = Phi.getOperand(I); 1936 if (!MO0.isReg()) { 1937 report("Expected PHI operand to be a register", &MO0, I); 1938 continue; 1939 } 1940 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1941 MO0.isDebug() || MO0.isTied()) 1942 report("Unexpected flag on PHI operand", &MO0, I); 1943 1944 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1945 if (!MO1.isMBB()) { 1946 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1947 continue; 1948 } 1949 1950 const MachineBasicBlock &Pre = *MO1.getMBB(); 1951 if (!Pre.isSuccessor(&MBB)) { 1952 report("PHI input is not a predecessor block", &MO1, I + 1); 1953 continue; 1954 } 1955 1956 if (MInfo.reachable) { 1957 seen.insert(&Pre); 1958 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1959 if (!MO0.isUndef() && PrInfo.reachable && 1960 !PrInfo.isLiveOut(MO0.getReg())) 1961 report("PHI operand is not live-out from predecessor", &MO0, I); 1962 } 1963 } 1964 1965 // Did we see all predecessors? 1966 if (MInfo.reachable) { 1967 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1968 if (!seen.count(Pred)) { 1969 report("Missing PHI operand", &Phi); 1970 errs() << printMBBReference(*Pred) 1971 << " is a predecessor according to the CFG.\n"; 1972 } 1973 } 1974 } 1975 } 1976 } 1977 1978 void MachineVerifier::visitMachineFunctionAfter() { 1979 calcRegsPassed(); 1980 1981 for (const MachineBasicBlock &MBB : *MF) 1982 checkPHIOps(MBB); 1983 1984 // Now check liveness info if available 1985 calcRegsRequired(); 1986 1987 // Check for killed virtual registers that should be live out. 1988 for (const auto &MBB : *MF) { 1989 BBInfo &MInfo = MBBInfoMap[&MBB]; 1990 for (RegSet::iterator 1991 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1992 ++I) 1993 if (MInfo.regsKilled.count(*I)) { 1994 report("Virtual register killed in block, but needed live out.", &MBB); 1995 errs() << "Virtual register " << printReg(*I) 1996 << " is used after the block.\n"; 1997 } 1998 } 1999 2000 if (!MF->empty()) { 2001 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2002 for (RegSet::iterator 2003 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2004 ++I) { 2005 report("Virtual register defs don't dominate all uses.", MF); 2006 report_context_vreg(*I); 2007 } 2008 } 2009 2010 if (LiveVars) 2011 verifyLiveVariables(); 2012 if (LiveInts) 2013 verifyLiveIntervals(); 2014 } 2015 2016 void MachineVerifier::verifyLiveVariables() { 2017 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2018 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2019 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2020 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2021 for (const auto &MBB : *MF) { 2022 BBInfo &MInfo = MBBInfoMap[&MBB]; 2023 2024 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2025 if (MInfo.vregsRequired.count(Reg)) { 2026 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2027 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2028 errs() << "Virtual register " << printReg(Reg) 2029 << " must be live through the block.\n"; 2030 } 2031 } else { 2032 if (VI.AliveBlocks.test(MBB.getNumber())) { 2033 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2034 errs() << "Virtual register " << printReg(Reg) 2035 << " is not needed live through the block.\n"; 2036 } 2037 } 2038 } 2039 } 2040 } 2041 2042 void MachineVerifier::verifyLiveIntervals() { 2043 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2044 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2045 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2046 2047 // Spilling and splitting may leave unused registers around. Skip them. 2048 if (MRI->reg_nodbg_empty(Reg)) 2049 continue; 2050 2051 if (!LiveInts->hasInterval(Reg)) { 2052 report("Missing live interval for virtual register", MF); 2053 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2054 continue; 2055 } 2056 2057 const LiveInterval &LI = LiveInts->getInterval(Reg); 2058 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2059 verifyLiveInterval(LI); 2060 } 2061 2062 // Verify all the cached regunit intervals. 2063 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2064 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2065 verifyLiveRange(*LR, i); 2066 } 2067 2068 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2069 const VNInfo *VNI, unsigned Reg, 2070 LaneBitmask LaneMask) { 2071 if (VNI->isUnused()) 2072 return; 2073 2074 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2075 2076 if (!DefVNI) { 2077 report("Value not live at VNInfo def and not marked unused", MF); 2078 report_context(LR, Reg, LaneMask); 2079 report_context(*VNI); 2080 return; 2081 } 2082 2083 if (DefVNI != VNI) { 2084 report("Live segment at def has different VNInfo", MF); 2085 report_context(LR, Reg, LaneMask); 2086 report_context(*VNI); 2087 return; 2088 } 2089 2090 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2091 if (!MBB) { 2092 report("Invalid VNInfo definition index", MF); 2093 report_context(LR, Reg, LaneMask); 2094 report_context(*VNI); 2095 return; 2096 } 2097 2098 if (VNI->isPHIDef()) { 2099 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2100 report("PHIDef VNInfo is not defined at MBB start", MBB); 2101 report_context(LR, Reg, LaneMask); 2102 report_context(*VNI); 2103 } 2104 return; 2105 } 2106 2107 // Non-PHI def. 2108 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2109 if (!MI) { 2110 report("No instruction at VNInfo def index", MBB); 2111 report_context(LR, Reg, LaneMask); 2112 report_context(*VNI); 2113 return; 2114 } 2115 2116 if (Reg != 0) { 2117 bool hasDef = false; 2118 bool isEarlyClobber = false; 2119 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2120 if (!MOI->isReg() || !MOI->isDef()) 2121 continue; 2122 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2123 if (MOI->getReg() != Reg) 2124 continue; 2125 } else { 2126 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2127 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2128 continue; 2129 } 2130 if (LaneMask.any() && 2131 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2132 continue; 2133 hasDef = true; 2134 if (MOI->isEarlyClobber()) 2135 isEarlyClobber = true; 2136 } 2137 2138 if (!hasDef) { 2139 report("Defining instruction does not modify register", MI); 2140 report_context(LR, Reg, LaneMask); 2141 report_context(*VNI); 2142 } 2143 2144 // Early clobber defs begin at USE slots, but other defs must begin at 2145 // DEF slots. 2146 if (isEarlyClobber) { 2147 if (!VNI->def.isEarlyClobber()) { 2148 report("Early clobber def must be at an early-clobber slot", MBB); 2149 report_context(LR, Reg, LaneMask); 2150 report_context(*VNI); 2151 } 2152 } else if (!VNI->def.isRegister()) { 2153 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2154 report_context(LR, Reg, LaneMask); 2155 report_context(*VNI); 2156 } 2157 } 2158 } 2159 2160 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2161 const LiveRange::const_iterator I, 2162 unsigned Reg, LaneBitmask LaneMask) 2163 { 2164 const LiveRange::Segment &S = *I; 2165 const VNInfo *VNI = S.valno; 2166 assert(VNI && "Live segment has no valno"); 2167 2168 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2169 report("Foreign valno in live segment", MF); 2170 report_context(LR, Reg, LaneMask); 2171 report_context(S); 2172 report_context(*VNI); 2173 } 2174 2175 if (VNI->isUnused()) { 2176 report("Live segment valno is marked unused", MF); 2177 report_context(LR, Reg, LaneMask); 2178 report_context(S); 2179 } 2180 2181 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2182 if (!MBB) { 2183 report("Bad start of live segment, no basic block", MF); 2184 report_context(LR, Reg, LaneMask); 2185 report_context(S); 2186 return; 2187 } 2188 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2189 if (S.start != MBBStartIdx && S.start != VNI->def) { 2190 report("Live segment must begin at MBB entry or valno def", MBB); 2191 report_context(LR, Reg, LaneMask); 2192 report_context(S); 2193 } 2194 2195 const MachineBasicBlock *EndMBB = 2196 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2197 if (!EndMBB) { 2198 report("Bad end of live segment, no basic block", MF); 2199 report_context(LR, Reg, LaneMask); 2200 report_context(S); 2201 return; 2202 } 2203 2204 // No more checks for live-out segments. 2205 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2206 return; 2207 2208 // RegUnit intervals are allowed dead phis. 2209 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2210 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2211 return; 2212 2213 // The live segment is ending inside EndMBB 2214 const MachineInstr *MI = 2215 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2216 if (!MI) { 2217 report("Live segment doesn't end at a valid instruction", EndMBB); 2218 report_context(LR, Reg, LaneMask); 2219 report_context(S); 2220 return; 2221 } 2222 2223 // The block slot must refer to a basic block boundary. 2224 if (S.end.isBlock()) { 2225 report("Live segment ends at B slot of an instruction", EndMBB); 2226 report_context(LR, Reg, LaneMask); 2227 report_context(S); 2228 } 2229 2230 if (S.end.isDead()) { 2231 // Segment ends on the dead slot. 2232 // That means there must be a dead def. 2233 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2234 report("Live segment ending at dead slot spans instructions", EndMBB); 2235 report_context(LR, Reg, LaneMask); 2236 report_context(S); 2237 } 2238 } 2239 2240 // A live segment can only end at an early-clobber slot if it is being 2241 // redefined by an early-clobber def. 2242 if (S.end.isEarlyClobber()) { 2243 if (I+1 == LR.end() || (I+1)->start != S.end) { 2244 report("Live segment ending at early clobber slot must be " 2245 "redefined by an EC def in the same instruction", EndMBB); 2246 report_context(LR, Reg, LaneMask); 2247 report_context(S); 2248 } 2249 } 2250 2251 // The following checks only apply to virtual registers. Physreg liveness 2252 // is too weird to check. 2253 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2254 // A live segment can end with either a redefinition, a kill flag on a 2255 // use, or a dead flag on a def. 2256 bool hasRead = false; 2257 bool hasSubRegDef = false; 2258 bool hasDeadDef = false; 2259 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2260 if (!MOI->isReg() || MOI->getReg() != Reg) 2261 continue; 2262 unsigned Sub = MOI->getSubReg(); 2263 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2264 : LaneBitmask::getAll(); 2265 if (MOI->isDef()) { 2266 if (Sub != 0) { 2267 hasSubRegDef = true; 2268 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2269 // mask for subregister defs. Read-undef defs will be handled by 2270 // readsReg below. 2271 SLM = ~SLM; 2272 } 2273 if (MOI->isDead()) 2274 hasDeadDef = true; 2275 } 2276 if (LaneMask.any() && (LaneMask & SLM).none()) 2277 continue; 2278 if (MOI->readsReg()) 2279 hasRead = true; 2280 } 2281 if (S.end.isDead()) { 2282 // Make sure that the corresponding machine operand for a "dead" live 2283 // range has the dead flag. We cannot perform this check for subregister 2284 // liveranges as partially dead values are allowed. 2285 if (LaneMask.none() && !hasDeadDef) { 2286 report("Instruction ending live segment on dead slot has no dead flag", 2287 MI); 2288 report_context(LR, Reg, LaneMask); 2289 report_context(S); 2290 } 2291 } else { 2292 if (!hasRead) { 2293 // When tracking subregister liveness, the main range must start new 2294 // values on partial register writes, even if there is no read. 2295 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2296 !hasSubRegDef) { 2297 report("Instruction ending live segment doesn't read the register", 2298 MI); 2299 report_context(LR, Reg, LaneMask); 2300 report_context(S); 2301 } 2302 } 2303 } 2304 } 2305 2306 // Now check all the basic blocks in this live segment. 2307 MachineFunction::const_iterator MFI = MBB->getIterator(); 2308 // Is this live segment the beginning of a non-PHIDef VN? 2309 if (S.start == VNI->def && !VNI->isPHIDef()) { 2310 // Not live-in to any blocks. 2311 if (MBB == EndMBB) 2312 return; 2313 // Skip this block. 2314 ++MFI; 2315 } 2316 2317 SmallVector<SlotIndex, 4> Undefs; 2318 if (LaneMask.any()) { 2319 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2320 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2321 } 2322 2323 while (true) { 2324 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2325 // We don't know how to track physregs into a landing pad. 2326 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2327 MFI->isEHPad()) { 2328 if (&*MFI == EndMBB) 2329 break; 2330 ++MFI; 2331 continue; 2332 } 2333 2334 // Is VNI a PHI-def in the current block? 2335 bool IsPHI = VNI->isPHIDef() && 2336 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2337 2338 // Check that VNI is live-out of all predecessors. 2339 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2340 PE = MFI->pred_end(); PI != PE; ++PI) { 2341 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2342 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2343 2344 // All predecessors must have a live-out value. However for a phi 2345 // instruction with subregister intervals 2346 // only one of the subregisters (not necessarily the current one) needs to 2347 // be defined. 2348 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2349 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2350 continue; 2351 report("Register not marked live out of predecessor", *PI); 2352 report_context(LR, Reg, LaneMask); 2353 report_context(*VNI); 2354 errs() << " live into " << printMBBReference(*MFI) << '@' 2355 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2356 << PEnd << '\n'; 2357 continue; 2358 } 2359 2360 // Only PHI-defs can take different predecessor values. 2361 if (!IsPHI && PVNI != VNI) { 2362 report("Different value live out of predecessor", *PI); 2363 report_context(LR, Reg, LaneMask); 2364 errs() << "Valno #" << PVNI->id << " live out of " 2365 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2366 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2367 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2368 } 2369 } 2370 if (&*MFI == EndMBB) 2371 break; 2372 ++MFI; 2373 } 2374 } 2375 2376 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2377 LaneBitmask LaneMask) { 2378 for (const VNInfo *VNI : LR.valnos) 2379 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2380 2381 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2382 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2383 } 2384 2385 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2386 unsigned Reg = LI.reg; 2387 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2388 verifyLiveRange(LI, Reg); 2389 2390 LaneBitmask Mask; 2391 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2392 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2393 if ((Mask & SR.LaneMask).any()) { 2394 report("Lane masks of sub ranges overlap in live interval", MF); 2395 report_context(LI); 2396 } 2397 if ((SR.LaneMask & ~MaxMask).any()) { 2398 report("Subrange lanemask is invalid", MF); 2399 report_context(LI); 2400 } 2401 if (SR.empty()) { 2402 report("Subrange must not be empty", MF); 2403 report_context(SR, LI.reg, SR.LaneMask); 2404 } 2405 Mask |= SR.LaneMask; 2406 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2407 if (!LI.covers(SR)) { 2408 report("A Subrange is not covered by the main range", MF); 2409 report_context(LI); 2410 } 2411 } 2412 2413 // Check the LI only has one connected component. 2414 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2415 unsigned NumComp = ConEQ.Classify(LI); 2416 if (NumComp > 1) { 2417 report("Multiple connected components in live interval", MF); 2418 report_context(LI); 2419 for (unsigned comp = 0; comp != NumComp; ++comp) { 2420 errs() << comp << ": valnos"; 2421 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2422 E = LI.vni_end(); I!=E; ++I) 2423 if (comp == ConEQ.getEqClass(*I)) 2424 errs() << ' ' << (*I)->id; 2425 errs() << '\n'; 2426 } 2427 } 2428 } 2429 2430 namespace { 2431 2432 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2433 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2434 // value is zero. 2435 // We use a bool plus an integer to capture the stack state. 2436 struct StackStateOfBB { 2437 StackStateOfBB() = default; 2438 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2439 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2440 ExitIsSetup(ExitSetup) {} 2441 2442 // Can be negative, which means we are setting up a frame. 2443 int EntryValue = 0; 2444 int ExitValue = 0; 2445 bool EntryIsSetup = false; 2446 bool ExitIsSetup = false; 2447 }; 2448 2449 } // end anonymous namespace 2450 2451 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2452 /// by a FrameDestroy <n>, stack adjustments are identical on all 2453 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2454 void MachineVerifier::verifyStackFrame() { 2455 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2456 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2457 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2458 return; 2459 2460 SmallVector<StackStateOfBB, 8> SPState; 2461 SPState.resize(MF->getNumBlockIDs()); 2462 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2463 2464 // Visit the MBBs in DFS order. 2465 for (df_ext_iterator<const MachineFunction *, 2466 df_iterator_default_set<const MachineBasicBlock *>> 2467 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2468 DFI != DFE; ++DFI) { 2469 const MachineBasicBlock *MBB = *DFI; 2470 2471 StackStateOfBB BBState; 2472 // Check the exit state of the DFS stack predecessor. 2473 if (DFI.getPathLength() >= 2) { 2474 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2475 assert(Reachable.count(StackPred) && 2476 "DFS stack predecessor is already visited.\n"); 2477 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2478 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2479 BBState.ExitValue = BBState.EntryValue; 2480 BBState.ExitIsSetup = BBState.EntryIsSetup; 2481 } 2482 2483 // Update stack state by checking contents of MBB. 2484 for (const auto &I : *MBB) { 2485 if (I.getOpcode() == FrameSetupOpcode) { 2486 if (BBState.ExitIsSetup) 2487 report("FrameSetup is after another FrameSetup", &I); 2488 BBState.ExitValue -= TII->getFrameTotalSize(I); 2489 BBState.ExitIsSetup = true; 2490 } 2491 2492 if (I.getOpcode() == FrameDestroyOpcode) { 2493 int Size = TII->getFrameTotalSize(I); 2494 if (!BBState.ExitIsSetup) 2495 report("FrameDestroy is not after a FrameSetup", &I); 2496 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2497 BBState.ExitValue; 2498 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2499 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2500 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2501 << AbsSPAdj << ">.\n"; 2502 } 2503 BBState.ExitValue += Size; 2504 BBState.ExitIsSetup = false; 2505 } 2506 } 2507 SPState[MBB->getNumber()] = BBState; 2508 2509 // Make sure the exit state of any predecessor is consistent with the entry 2510 // state. 2511 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2512 E = MBB->pred_end(); I != E; ++I) { 2513 if (Reachable.count(*I) && 2514 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2515 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2516 report("The exit stack state of a predecessor is inconsistent.", MBB); 2517 errs() << "Predecessor " << printMBBReference(*(*I)) 2518 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2519 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2520 << printMBBReference(*MBB) << " has entry state (" 2521 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2522 } 2523 } 2524 2525 // Make sure the entry state of any successor is consistent with the exit 2526 // state. 2527 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2528 E = MBB->succ_end(); I != E; ++I) { 2529 if (Reachable.count(*I) && 2530 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2531 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2532 report("The entry stack state of a successor is inconsistent.", MBB); 2533 errs() << "Successor " << printMBBReference(*(*I)) 2534 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2535 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2536 << printMBBReference(*MBB) << " has exit state (" 2537 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2538 } 2539 } 2540 2541 // Make sure a basic block with return ends with zero stack adjustment. 2542 if (!MBB->empty() && MBB->back().isReturn()) { 2543 if (BBState.ExitIsSetup) 2544 report("A return block ends with a FrameSetup.", MBB); 2545 if (BBState.ExitValue) 2546 report("A return block ends with a nonzero stack adjustment.", MBB); 2547 } 2548 } 2549 } 2550