xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision c19e17dd902fdd9857733d67664fc4e04e3c0dc0)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233     void visitMachineInstrBefore(const MachineInstr *MI);
234     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
235     void visitMachineInstrAfter(const MachineInstr *MI);
236     void visitMachineBundleAfter(const MachineInstr *MI);
237     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
238     void visitMachineFunctionAfter();
239 
240     void report(const char *msg, const MachineFunction *MF);
241     void report(const char *msg, const MachineBasicBlock *MBB);
242     void report(const char *msg, const MachineInstr *MI);
243     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
244                 LLT MOVRegType = LLT{});
245 
246     void report_context(const LiveInterval &LI) const;
247     void report_context(const LiveRange &LR, unsigned VRegUnit,
248                         LaneBitmask LaneMask) const;
249     void report_context(const LiveRange::Segment &S) const;
250     void report_context(const VNInfo &VNI) const;
251     void report_context(SlotIndex Pos) const;
252     void report_context(MCPhysReg PhysReg) const;
253     void report_context_liverange(const LiveRange &LR) const;
254     void report_context_lanemask(LaneBitmask LaneMask) const;
255     void report_context_vreg(unsigned VReg) const;
256     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
257 
258     void verifyInlineAsm(const MachineInstr *MI);
259 
260     void checkLiveness(const MachineOperand *MO, unsigned MONum);
261     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             bool SubRangeCheck = false,
267                             LaneBitmask LaneMask = LaneBitmask::getNone());
268 
269     void markReachable(const MachineBasicBlock *MBB);
270     void calcRegsPassed();
271     void checkPHIOps(const MachineBasicBlock &MBB);
272 
273     void calcRegsRequired();
274     void verifyLiveVariables();
275     void verifyLiveIntervals();
276     void verifyLiveInterval(const LiveInterval&);
277     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
278                               LaneBitmask);
279     void verifyLiveRangeSegment(const LiveRange&,
280                                 const LiveRange::const_iterator I, unsigned,
281                                 LaneBitmask);
282     void verifyLiveRange(const LiveRange&, unsigned,
283                          LaneBitmask LaneMask = LaneBitmask::getNone());
284 
285     void verifyStackFrame();
286 
287     void verifySlotIndexes() const;
288     void verifyProperties(const MachineFunction &MF);
289   };
290 
291   struct MachineVerifierPass : public MachineFunctionPass {
292     static char ID; // Pass ID, replacement for typeid
293 
294     const std::string Banner;
295 
296     MachineVerifierPass(std::string banner = std::string())
297       : MachineFunctionPass(ID), Banner(std::move(banner)) {
298         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
299       }
300 
301     void getAnalysisUsage(AnalysisUsage &AU) const override {
302       AU.setPreservesAll();
303       MachineFunctionPass::getAnalysisUsage(AU);
304     }
305 
306     bool runOnMachineFunction(MachineFunction &MF) override {
307       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
308       if (FoundErrors)
309         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
310       return false;
311     }
312   };
313 
314 } // end anonymous namespace
315 
316 char MachineVerifierPass::ID = 0;
317 
318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
319                 "Verify generated machine code", false, false)
320 
321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
322   return new MachineVerifierPass(Banner);
323 }
324 
325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
326     const {
327   MachineFunction &MF = const_cast<MachineFunction&>(*this);
328   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
329   if (AbortOnErrors && FoundErrors)
330     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
331   return FoundErrors == 0;
332 }
333 
334 void MachineVerifier::verifySlotIndexes() const {
335   if (Indexes == nullptr)
336     return;
337 
338   // Ensure the IdxMBB list is sorted by slot indexes.
339   SlotIndex Last;
340   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
341        E = Indexes->MBBIndexEnd(); I != E; ++I) {
342     assert(!Last.isValid() || I->first > Last);
343     Last = I->first;
344   }
345 }
346 
347 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
348   // If a pass has introduced virtual registers without clearing the
349   // NoVRegs property (or set it without allocating the vregs)
350   // then report an error.
351   if (MF.getProperties().hasProperty(
352           MachineFunctionProperties::Property::NoVRegs) &&
353       MRI->getNumVirtRegs())
354     report("Function has NoVRegs property but there are VReg operands", &MF);
355 }
356 
357 unsigned MachineVerifier::verify(MachineFunction &MF) {
358   foundErrors = 0;
359 
360   this->MF = &MF;
361   TM = &MF.getTarget();
362   TII = MF.getSubtarget().getInstrInfo();
363   TRI = MF.getSubtarget().getRegisterInfo();
364   MRI = &MF.getRegInfo();
365 
366   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
367       MachineFunctionProperties::Property::FailedISel);
368 
369   // If we're mid-GlobalISel and we already triggered the fallback path then
370   // it's expected that the MIR is somewhat broken but that's ok since we'll
371   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
372   if (isFunctionFailedISel)
373     return foundErrors;
374 
375   isFunctionRegBankSelected =
376       !isFunctionFailedISel &&
377       MF.getProperties().hasProperty(
378           MachineFunctionProperties::Property::RegBankSelected);
379   isFunctionSelected = !isFunctionFailedISel &&
380                        MF.getProperties().hasProperty(
381                            MachineFunctionProperties::Property::Selected);
382   LiveVars = nullptr;
383   LiveInts = nullptr;
384   LiveStks = nullptr;
385   Indexes = nullptr;
386   if (PASS) {
387     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
388     // We don't want to verify LiveVariables if LiveIntervals is available.
389     if (!LiveInts)
390       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
391     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
392     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
393   }
394 
395   verifySlotIndexes();
396 
397   verifyProperties(MF);
398 
399   visitMachineFunctionBefore();
400   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
401        MFI!=MFE; ++MFI) {
402     visitMachineBasicBlockBefore(&*MFI);
403     // Keep track of the current bundle header.
404     const MachineInstr *CurBundle = nullptr;
405     // Do we expect the next instruction to be part of the same bundle?
406     bool InBundle = false;
407 
408     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
409            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
410       if (MBBI->getParent() != &*MFI) {
411         report("Bad instruction parent pointer", &*MFI);
412         errs() << "Instruction: " << *MBBI;
413         continue;
414       }
415 
416       // Check for consistent bundle flags.
417       if (InBundle && !MBBI->isBundledWithPred())
418         report("Missing BundledPred flag, "
419                "BundledSucc was set on predecessor",
420                &*MBBI);
421       if (!InBundle && MBBI->isBundledWithPred())
422         report("BundledPred flag is set, "
423                "but BundledSucc not set on predecessor",
424                &*MBBI);
425 
426       // Is this a bundle header?
427       if (!MBBI->isInsideBundle()) {
428         if (CurBundle)
429           visitMachineBundleAfter(CurBundle);
430         CurBundle = &*MBBI;
431         visitMachineBundleBefore(CurBundle);
432       } else if (!CurBundle)
433         report("No bundle header", &*MBBI);
434       visitMachineInstrBefore(&*MBBI);
435       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
436         const MachineInstr &MI = *MBBI;
437         const MachineOperand &Op = MI.getOperand(I);
438         if (Op.getParent() != &MI) {
439           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
440           // functions when replacing operands of a MachineInstr.
441           report("Instruction has operand with wrong parent set", &MI);
442         }
443 
444         visitMachineOperand(&Op, I);
445       }
446 
447       visitMachineInstrAfter(&*MBBI);
448 
449       // Was this the last bundled instruction?
450       InBundle = MBBI->isBundledWithSucc();
451     }
452     if (CurBundle)
453       visitMachineBundleAfter(CurBundle);
454     if (InBundle)
455       report("BundledSucc flag set on last instruction in block", &MFI->back());
456     visitMachineBasicBlockAfter(&*MFI);
457   }
458   visitMachineFunctionAfter();
459 
460   // Clean up.
461   regsLive.clear();
462   regsDefined.clear();
463   regsDead.clear();
464   regsKilled.clear();
465   regMasks.clear();
466   MBBInfoMap.clear();
467 
468   return foundErrors;
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
472   assert(MF);
473   errs() << '\n';
474   if (!foundErrors++) {
475     if (Banner)
476       errs() << "# " << Banner << '\n';
477     if (LiveInts != nullptr)
478       LiveInts->print(errs());
479     else
480       MF->print(errs(), Indexes);
481   }
482   errs() << "*** Bad machine code: " << msg << " ***\n"
483       << "- function:    " << MF->getName() << "\n";
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
487   assert(MBB);
488   report(msg, MBB->getParent());
489   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
490          << MBB->getName() << " (" << (const void *)MBB << ')';
491   if (Indexes)
492     errs() << " [" << Indexes->getMBBStartIdx(MBB)
493         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
494   errs() << '\n';
495 }
496 
497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
498   assert(MI);
499   report(msg, MI->getParent());
500   errs() << "- instruction: ";
501   if (Indexes && Indexes->hasIndex(*MI))
502     errs() << Indexes->getInstructionIndex(*MI) << '\t';
503   MI->print(errs(), /*SkipOpers=*/true);
504 }
505 
506 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
507                              unsigned MONum, LLT MOVRegType) {
508   assert(MO);
509   report(msg, MO->getParent());
510   errs() << "- operand " << MONum << ":   ";
511   MO->print(errs(), MOVRegType, TRI);
512   errs() << "\n";
513 }
514 
515 void MachineVerifier::report_context(SlotIndex Pos) const {
516   errs() << "- at:          " << Pos << '\n';
517 }
518 
519 void MachineVerifier::report_context(const LiveInterval &LI) const {
520   errs() << "- interval:    " << LI << '\n';
521 }
522 
523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
524                                      LaneBitmask LaneMask) const {
525   report_context_liverange(LR);
526   report_context_vreg_regunit(VRegUnit);
527   if (LaneMask.any())
528     report_context_lanemask(LaneMask);
529 }
530 
531 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
532   errs() << "- segment:     " << S << '\n';
533 }
534 
535 void MachineVerifier::report_context(const VNInfo &VNI) const {
536   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
537 }
538 
539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
540   errs() << "- liverange:   " << LR << '\n';
541 }
542 
543 void MachineVerifier::report_context(MCPhysReg PReg) const {
544   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
545 }
546 
547 void MachineVerifier::report_context_vreg(unsigned VReg) const {
548   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
549 }
550 
551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
552   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
553     report_context_vreg(VRegOrUnit);
554   } else {
555     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
556   }
557 }
558 
559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
560   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
561 }
562 
563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
564   BBInfo &MInfo = MBBInfoMap[MBB];
565   if (!MInfo.reachable) {
566     MInfo.reachable = true;
567     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
568            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
569       markReachable(*SuI);
570   }
571 }
572 
573 void MachineVerifier::visitMachineFunctionBefore() {
574   lastIndex = SlotIndex();
575   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
576                                            : TRI->getReservedRegs(*MF);
577 
578   if (!MF->empty())
579     markReachable(&MF->front());
580 
581   // Build a set of the basic blocks in the function.
582   FunctionBlocks.clear();
583   for (const auto &MBB : *MF) {
584     FunctionBlocks.insert(&MBB);
585     BBInfo &MInfo = MBBInfoMap[&MBB];
586 
587     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
588     if (MInfo.Preds.size() != MBB.pred_size())
589       report("MBB has duplicate entries in its predecessor list.", &MBB);
590 
591     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
592     if (MInfo.Succs.size() != MBB.succ_size())
593       report("MBB has duplicate entries in its successor list.", &MBB);
594   }
595 
596   // Check that the register use lists are sane.
597   MRI->verifyUseLists();
598 
599   if (!MF->empty())
600     verifyStackFrame();
601 }
602 
603 // Does iterator point to a and b as the first two elements?
604 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
605                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
606   if (*i == a)
607     return *++i == b;
608   if (*i == b)
609     return *++i == a;
610   return false;
611 }
612 
613 void
614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
615   FirstTerminator = nullptr;
616   FirstNonPHI = nullptr;
617 
618   if (!MF->getProperties().hasProperty(
619       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
620     // If this block has allocatable physical registers live-in, check that
621     // it is an entry block or landing pad.
622     for (const auto &LI : MBB->liveins()) {
623       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
624           MBB->getIterator() != MBB->getParent()->begin()) {
625         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
626         report_context(LI.PhysReg);
627       }
628     }
629   }
630 
631   // Count the number of landing pad successors.
632   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
633   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
634        E = MBB->succ_end(); I != E; ++I) {
635     if ((*I)->isEHPad())
636       LandingPadSuccs.insert(*I);
637     if (!FunctionBlocks.count(*I))
638       report("MBB has successor that isn't part of the function.", MBB);
639     if (!MBBInfoMap[*I].Preds.count(MBB)) {
640       report("Inconsistent CFG", MBB);
641       errs() << "MBB is not in the predecessor list of the successor "
642              << printMBBReference(*(*I)) << ".\n";
643     }
644   }
645 
646   // Check the predecessor list.
647   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
648        E = MBB->pred_end(); I != E; ++I) {
649     if (!FunctionBlocks.count(*I))
650       report("MBB has predecessor that isn't part of the function.", MBB);
651     if (!MBBInfoMap[*I].Succs.count(MBB)) {
652       report("Inconsistent CFG", MBB);
653       errs() << "MBB is not in the successor list of the predecessor "
654              << printMBBReference(*(*I)) << ".\n";
655     }
656   }
657 
658   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
659   const BasicBlock *BB = MBB->getBasicBlock();
660   const Function &F = MF->getFunction();
661   if (LandingPadSuccs.size() > 1 &&
662       !(AsmInfo &&
663         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
664         BB && isa<SwitchInst>(BB->getTerminator())) &&
665       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
666     report("MBB has more than one landing pad successor", MBB);
667 
668   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
669   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
670   SmallVector<MachineOperand, 4> Cond;
671   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
672                           Cond)) {
673     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
674     // check whether its answers match up with reality.
675     if (!TBB && !FBB) {
676       // Block falls through to its successor.
677       MachineFunction::const_iterator MBBI = MBB->getIterator();
678       ++MBBI;
679       if (MBBI == MF->end()) {
680         // It's possible that the block legitimately ends with a noreturn
681         // call or an unreachable, in which case it won't actually fall
682         // out the bottom of the function.
683       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
684         // It's possible that the block legitimately ends with a noreturn
685         // call or an unreachable, in which case it won't actually fall
686         // out of the block.
687       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
688         report("MBB exits via unconditional fall-through but doesn't have "
689                "exactly one CFG successor!", MBB);
690       } else if (!MBB->isSuccessor(&*MBBI)) {
691         report("MBB exits via unconditional fall-through but its successor "
692                "differs from its CFG successor!", MBB);
693       }
694       if (!MBB->empty() && MBB->back().isBarrier() &&
695           !TII->isPredicated(MBB->back())) {
696         report("MBB exits via unconditional fall-through but ends with a "
697                "barrier instruction!", MBB);
698       }
699       if (!Cond.empty()) {
700         report("MBB exits via unconditional fall-through but has a condition!",
701                MBB);
702       }
703     } else if (TBB && !FBB && Cond.empty()) {
704       // Block unconditionally branches somewhere.
705       // If the block has exactly one successor, that happens to be a
706       // landingpad, accept it as valid control flow.
707       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
708           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
709            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
710         report("MBB exits via unconditional branch but doesn't have "
711                "exactly one CFG successor!", MBB);
712       } else if (!MBB->isSuccessor(TBB)) {
713         report("MBB exits via unconditional branch but the CFG "
714                "successor doesn't match the actual successor!", MBB);
715       }
716       if (MBB->empty()) {
717         report("MBB exits via unconditional branch but doesn't contain "
718                "any instructions!", MBB);
719       } else if (!MBB->back().isBarrier()) {
720         report("MBB exits via unconditional branch but doesn't end with a "
721                "barrier instruction!", MBB);
722       } else if (!MBB->back().isTerminator()) {
723         report("MBB exits via unconditional branch but the branch isn't a "
724                "terminator instruction!", MBB);
725       }
726     } else if (TBB && !FBB && !Cond.empty()) {
727       // Block conditionally branches somewhere, otherwise falls through.
728       MachineFunction::const_iterator MBBI = MBB->getIterator();
729       ++MBBI;
730       if (MBBI == MF->end()) {
731         report("MBB conditionally falls through out of function!", MBB);
732       } else if (MBB->succ_size() == 1) {
733         // A conditional branch with only one successor is weird, but allowed.
734         if (&*MBBI != TBB)
735           report("MBB exits via conditional branch/fall-through but only has "
736                  "one CFG successor!", MBB);
737         else if (TBB != *MBB->succ_begin())
738           report("MBB exits via conditional branch/fall-through but the CFG "
739                  "successor don't match the actual successor!", MBB);
740       } else if (MBB->succ_size() != 2) {
741         report("MBB exits via conditional branch/fall-through but doesn't have "
742                "exactly two CFG successors!", MBB);
743       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
744         report("MBB exits via conditional branch/fall-through but the CFG "
745                "successors don't match the actual successors!", MBB);
746       }
747       if (MBB->empty()) {
748         report("MBB exits via conditional branch/fall-through but doesn't "
749                "contain any instructions!", MBB);
750       } else if (MBB->back().isBarrier()) {
751         report("MBB exits via conditional branch/fall-through but ends with a "
752                "barrier instruction!", MBB);
753       } else if (!MBB->back().isTerminator()) {
754         report("MBB exits via conditional branch/fall-through but the branch "
755                "isn't a terminator instruction!", MBB);
756       }
757     } else if (TBB && FBB) {
758       // Block conditionally branches somewhere, otherwise branches
759       // somewhere else.
760       if (MBB->succ_size() == 1) {
761         // A conditional branch with only one successor is weird, but allowed.
762         if (FBB != TBB)
763           report("MBB exits via conditional branch/branch through but only has "
764                  "one CFG successor!", MBB);
765         else if (TBB != *MBB->succ_begin())
766           report("MBB exits via conditional branch/branch through but the CFG "
767                  "successor don't match the actual successor!", MBB);
768       } else if (MBB->succ_size() != 2) {
769         report("MBB exits via conditional branch/branch but doesn't have "
770                "exactly two CFG successors!", MBB);
771       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
772         report("MBB exits via conditional branch/branch but the CFG "
773                "successors don't match the actual successors!", MBB);
774       }
775       if (MBB->empty()) {
776         report("MBB exits via conditional branch/branch but doesn't "
777                "contain any instructions!", MBB);
778       } else if (!MBB->back().isBarrier()) {
779         report("MBB exits via conditional branch/branch but doesn't end with a "
780                "barrier instruction!", MBB);
781       } else if (!MBB->back().isTerminator()) {
782         report("MBB exits via conditional branch/branch but the branch "
783                "isn't a terminator instruction!", MBB);
784       }
785       if (Cond.empty()) {
786         report("MBB exits via conditional branch/branch but there's no "
787                "condition!", MBB);
788       }
789     } else {
790       report("AnalyzeBranch returned invalid data!", MBB);
791     }
792   }
793 
794   regsLive.clear();
795   if (MRI->tracksLiveness()) {
796     for (const auto &LI : MBB->liveins()) {
797       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
798         report("MBB live-in list contains non-physical register", MBB);
799         continue;
800       }
801       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
802            SubRegs.isValid(); ++SubRegs)
803         regsLive.insert(*SubRegs);
804     }
805   }
806 
807   const MachineFrameInfo &MFI = MF->getFrameInfo();
808   BitVector PR = MFI.getPristineRegs(*MF);
809   for (unsigned I : PR.set_bits()) {
810     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
811          SubRegs.isValid(); ++SubRegs)
812       regsLive.insert(*SubRegs);
813   }
814 
815   regsKilled.clear();
816   regsDefined.clear();
817 
818   if (Indexes)
819     lastIndex = Indexes->getMBBStartIdx(MBB);
820 }
821 
822 // This function gets called for all bundle headers, including normal
823 // stand-alone unbundled instructions.
824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
825   if (Indexes && Indexes->hasIndex(*MI)) {
826     SlotIndex idx = Indexes->getInstructionIndex(*MI);
827     if (!(idx > lastIndex)) {
828       report("Instruction index out of order", MI);
829       errs() << "Last instruction was at " << lastIndex << '\n';
830     }
831     lastIndex = idx;
832   }
833 
834   // Ensure non-terminators don't follow terminators.
835   // Ignore predicated terminators formed by if conversion.
836   // FIXME: If conversion shouldn't need to violate this rule.
837   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
838     if (!FirstTerminator)
839       FirstTerminator = MI;
840   } else if (FirstTerminator) {
841     report("Non-terminator instruction after the first terminator", MI);
842     errs() << "First terminator was:\t" << *FirstTerminator;
843   }
844 }
845 
846 // The operands on an INLINEASM instruction must follow a template.
847 // Verify that the flag operands make sense.
848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
849   // The first two operands on INLINEASM are the asm string and global flags.
850   if (MI->getNumOperands() < 2) {
851     report("Too few operands on inline asm", MI);
852     return;
853   }
854   if (!MI->getOperand(0).isSymbol())
855     report("Asm string must be an external symbol", MI);
856   if (!MI->getOperand(1).isImm())
857     report("Asm flags must be an immediate", MI);
858   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
859   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
860   // and Extra_IsConvergent = 32.
861   if (!isUInt<6>(MI->getOperand(1).getImm()))
862     report("Unknown asm flags", &MI->getOperand(1), 1);
863 
864   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
865 
866   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
867   unsigned NumOps;
868   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
869     const MachineOperand &MO = MI->getOperand(OpNo);
870     // There may be implicit ops after the fixed operands.
871     if (!MO.isImm())
872       break;
873     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
874   }
875 
876   if (OpNo > MI->getNumOperands())
877     report("Missing operands in last group", MI);
878 
879   // An optional MDNode follows the groups.
880   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
881     ++OpNo;
882 
883   // All trailing operands must be implicit registers.
884   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
885     const MachineOperand &MO = MI->getOperand(OpNo);
886     if (!MO.isReg() || !MO.isImplicit())
887       report("Expected implicit register after groups", &MO, OpNo);
888   }
889 }
890 
891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
892   const MCInstrDesc &MCID = MI->getDesc();
893   if (MI->getNumOperands() < MCID.getNumOperands()) {
894     report("Too few operands", MI);
895     errs() << MCID.getNumOperands() << " operands expected, but "
896            << MI->getNumOperands() << " given.\n";
897   }
898 
899   if (MI->isPHI()) {
900     if (MF->getProperties().hasProperty(
901             MachineFunctionProperties::Property::NoPHIs))
902       report("Found PHI instruction with NoPHIs property set", MI);
903 
904     if (FirstNonPHI)
905       report("Found PHI instruction after non-PHI", MI);
906   } else if (FirstNonPHI == nullptr)
907     FirstNonPHI = MI;
908 
909   // Check the tied operands.
910   if (MI->isInlineAsm())
911     verifyInlineAsm(MI);
912 
913   // Check the MachineMemOperands for basic consistency.
914   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
915                                   E = MI->memoperands_end();
916        I != E; ++I) {
917     if ((*I)->isLoad() && !MI->mayLoad())
918       report("Missing mayLoad flag", MI);
919     if ((*I)->isStore() && !MI->mayStore())
920       report("Missing mayStore flag", MI);
921   }
922 
923   // Debug values must not have a slot index.
924   // Other instructions must have one, unless they are inside a bundle.
925   if (LiveInts) {
926     bool mapped = !LiveInts->isNotInMIMap(*MI);
927     if (MI->isDebugInstr()) {
928       if (mapped)
929         report("Debug instruction has a slot index", MI);
930     } else if (MI->isInsideBundle()) {
931       if (mapped)
932         report("Instruction inside bundle has a slot index", MI);
933     } else {
934       if (!mapped)
935         report("Missing slot index", MI);
936     }
937   }
938 
939   if (isPreISelGenericOpcode(MCID.getOpcode())) {
940     if (isFunctionSelected)
941       report("Unexpected generic instruction in a Selected function", MI);
942 
943     unsigned NumOps = MI->getNumOperands();
944 
945     // Check types.
946     SmallVector<LLT, 4> Types;
947     for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
948          I != E; ++I) {
949       if (!MCID.OpInfo[I].isGenericType())
950         continue;
951       // Generic instructions specify type equality constraints between some of
952       // their operands. Make sure these are consistent.
953       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
954       Types.resize(std::max(TypeIdx + 1, Types.size()));
955 
956       const MachineOperand *MO = &MI->getOperand(I);
957       LLT OpTy = MRI->getType(MO->getReg());
958       // Don't report a type mismatch if there is no actual mismatch, only a
959       // type missing, to reduce noise:
960       if (OpTy.isValid()) {
961         // Only the first valid type for a type index will be printed: don't
962         // overwrite it later so it's always clear which type was expected:
963         if (!Types[TypeIdx].isValid())
964           Types[TypeIdx] = OpTy;
965         else if (Types[TypeIdx] != OpTy)
966           report("Type mismatch in generic instruction", MO, I, OpTy);
967       } else {
968         // Generic instructions must have types attached to their operands.
969         report("Generic instruction is missing a virtual register type", MO, I);
970       }
971     }
972 
973     // Generic opcodes must not have physical register operands.
974     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
975       const MachineOperand *MO = &MI->getOperand(I);
976       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
977         report("Generic instruction cannot have physical register", MO, I);
978     }
979 
980     // Avoid out of bounds in checks below. This was already reported earlier.
981     if (MI->getNumOperands() < MCID.getNumOperands())
982       return;
983   }
984 
985   StringRef ErrorInfo;
986   if (!TII->verifyInstruction(*MI, ErrorInfo))
987     report(ErrorInfo.data(), MI);
988 
989   // Verify properties of various specific instruction types
990   switch(MI->getOpcode()) {
991   default:
992     break;
993   case TargetOpcode::G_LOAD:
994   case TargetOpcode::G_STORE:
995     // Generic loads and stores must have a single MachineMemOperand
996     // describing that access.
997     if (!MI->hasOneMemOperand())
998       report("Generic instruction accessing memory must have one mem operand",
999              MI);
1000     break;
1001   case TargetOpcode::G_PHI: {
1002     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1003     if (!DstTy.isValid() ||
1004         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1005                      [this, &DstTy](const MachineOperand &MO) {
1006                        if (!MO.isReg())
1007                          return true;
1008                        LLT Ty = MRI->getType(MO.getReg());
1009                        if (!Ty.isValid() || (Ty != DstTy))
1010                          return false;
1011                        return true;
1012                      }))
1013       report("Generic Instruction G_PHI has operands with incompatible/missing "
1014              "types",
1015              MI);
1016     break;
1017   }
1018   case TargetOpcode::G_BITCAST: {
1019     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1020     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1021     if (!DstTy.isValid() || !SrcTy.isValid())
1022       break;
1023 
1024     if (SrcTy.isPointer() != DstTy.isPointer())
1025       report("bitcast cannot convert between pointers and other types", MI);
1026 
1027     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1028       report("bitcast sizes must match", MI);
1029     break;
1030   }
1031   case TargetOpcode::G_SEXT:
1032   case TargetOpcode::G_ZEXT:
1033   case TargetOpcode::G_ANYEXT:
1034   case TargetOpcode::G_TRUNC:
1035   case TargetOpcode::G_FPEXT:
1036   case TargetOpcode::G_FPTRUNC: {
1037     // Number of operands and presense of types is already checked (and
1038     // reported in case of any issues), so no need to report them again. As
1039     // we're trying to report as many issues as possible at once, however, the
1040     // instructions aren't guaranteed to have the right number of operands or
1041     // types attached to them at this point
1042     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1043     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1044     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1045     if (!DstTy.isValid() || !SrcTy.isValid())
1046       break;
1047 
1048     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1049     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1050     if (DstElTy.isPointer() || SrcElTy.isPointer())
1051       report("Generic extend/truncate can not operate on pointers", MI);
1052 
1053     if (DstTy.isVector() != SrcTy.isVector()) {
1054       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1055       // Generally we try to report as many issues as possible at once, but in
1056       // this case it's not clear what should we be comparing the size of the
1057       // scalar with: the size of the whole vector or its lane. Instead of
1058       // making an arbitrary choice and emitting not so helpful message, let's
1059       // avoid the extra noise and stop here.
1060       break;
1061     }
1062     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1063       report("Generic vector extend/truncate must preserve number of lanes",
1064              MI);
1065     unsigned DstSize = DstElTy.getSizeInBits();
1066     unsigned SrcSize = SrcElTy.getSizeInBits();
1067     switch (MI->getOpcode()) {
1068     default:
1069       if (DstSize <= SrcSize)
1070         report("Generic extend has destination type no larger than source", MI);
1071       break;
1072     case TargetOpcode::G_TRUNC:
1073     case TargetOpcode::G_FPTRUNC:
1074       if (DstSize >= SrcSize)
1075         report("Generic truncate has destination type no smaller than source",
1076                MI);
1077       break;
1078     }
1079     break;
1080   }
1081   case TargetOpcode::G_MERGE_VALUES: {
1082     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1083     // e.g. s2N = MERGE sN, sN
1084     // Merging multiple scalars into a vector is not allowed, should use
1085     // G_BUILD_VECTOR for that.
1086     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1087     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1088     if (DstTy.isVector() || SrcTy.isVector())
1089       report("G_MERGE_VALUES cannot operate on vectors", MI);
1090     break;
1091   }
1092   case TargetOpcode::G_UNMERGE_VALUES: {
1093     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1094     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1095     // For now G_UNMERGE can split vectors.
1096     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1097       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1098         report("G_UNMERGE_VALUES destination types do not match", MI);
1099     }
1100     if (SrcTy.getSizeInBits() !=
1101         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1102       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1103              MI);
1104     }
1105     break;
1106   }
1107   case TargetOpcode::G_BUILD_VECTOR: {
1108     // Source types must be scalars, dest type a vector. Total size of scalars
1109     // must match the dest vector size.
1110     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1111     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1112     if (!DstTy.isVector() || SrcEltTy.isVector())
1113       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1114     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1115       if (MRI->getType(MI->getOperand(1).getReg()) !=
1116           MRI->getType(MI->getOperand(i).getReg()))
1117         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1118     }
1119     if (DstTy.getSizeInBits() !=
1120         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1121       report("G_BUILD_VECTOR src operands total size don't match dest "
1122              "size.",
1123              MI);
1124     break;
1125   }
1126   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1127     // Source types must be scalars, dest type a vector. Scalar types must be
1128     // larger than the dest vector elt type, as this is a truncating operation.
1129     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1130     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1131     if (!DstTy.isVector() || SrcEltTy.isVector())
1132       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1133              MI);
1134     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1135       if (MRI->getType(MI->getOperand(1).getReg()) !=
1136           MRI->getType(MI->getOperand(i).getReg()))
1137         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1138                MI);
1139     }
1140     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1141       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1142              "dest elt type",
1143              MI);
1144     break;
1145   }
1146   case TargetOpcode::G_CONCAT_VECTORS: {
1147     // Source types should be vectors, and total size should match the dest
1148     // vector size.
1149     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1150     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1151     if (!DstTy.isVector() || !SrcTy.isVector())
1152       report("G_CONCAT_VECTOR requires vector source and destination operands",
1153              MI);
1154     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1155       if (MRI->getType(MI->getOperand(1).getReg()) !=
1156           MRI->getType(MI->getOperand(i).getReg()))
1157         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1158     }
1159     if (DstTy.getNumElements() !=
1160         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1161       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1162     break;
1163   }
1164   case TargetOpcode::COPY: {
1165     if (foundErrors)
1166       break;
1167     const MachineOperand &DstOp = MI->getOperand(0);
1168     const MachineOperand &SrcOp = MI->getOperand(1);
1169     LLT DstTy = MRI->getType(DstOp.getReg());
1170     LLT SrcTy = MRI->getType(SrcOp.getReg());
1171     if (SrcTy.isValid() && DstTy.isValid()) {
1172       // If both types are valid, check that the types are the same.
1173       if (SrcTy != DstTy) {
1174         report("Copy Instruction is illegal with mismatching types", MI);
1175         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1176       }
1177     }
1178     if (SrcTy.isValid() || DstTy.isValid()) {
1179       // If one of them have valid types, let's just check they have the same
1180       // size.
1181       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1182       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1183       assert(SrcSize && "Expecting size here");
1184       assert(DstSize && "Expecting size here");
1185       if (SrcSize != DstSize)
1186         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1187           report("Copy Instruction is illegal with mismatching sizes", MI);
1188           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1189                  << "\n";
1190         }
1191     }
1192     break;
1193   }
1194   case TargetOpcode::G_ICMP:
1195   case TargetOpcode::G_FCMP: {
1196     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1197     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1198 
1199     if ((DstTy.isVector() != SrcTy.isVector()) ||
1200         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1201       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1202 
1203     break;
1204   }
1205   case TargetOpcode::STATEPOINT:
1206     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1207         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1208         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1209       report("meta operands to STATEPOINT not constant!", MI);
1210     break;
1211 
1212     auto VerifyStackMapConstant = [&](unsigned Offset) {
1213       if (!MI->getOperand(Offset).isImm() ||
1214           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1215           !MI->getOperand(Offset + 1).isImm())
1216         report("stack map constant to STATEPOINT not well formed!", MI);
1217     };
1218     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1219     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1220     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1221     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1222 
1223     // TODO: verify we have properly encoded deopt arguments
1224   };
1225 }
1226 
1227 void
1228 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1229   const MachineInstr *MI = MO->getParent();
1230   const MCInstrDesc &MCID = MI->getDesc();
1231   unsigned NumDefs = MCID.getNumDefs();
1232   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1233     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1234 
1235   // The first MCID.NumDefs operands must be explicit register defines
1236   if (MONum < NumDefs) {
1237     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1238     if (!MO->isReg())
1239       report("Explicit definition must be a register", MO, MONum);
1240     else if (!MO->isDef() && !MCOI.isOptionalDef())
1241       report("Explicit definition marked as use", MO, MONum);
1242     else if (MO->isImplicit())
1243       report("Explicit definition marked as implicit", MO, MONum);
1244   } else if (MONum < MCID.getNumOperands()) {
1245     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1246     // Don't check if it's the last operand in a variadic instruction. See,
1247     // e.g., LDM_RET in the arm back end.
1248     if (MO->isReg() &&
1249         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1250       if (MO->isDef() && !MCOI.isOptionalDef())
1251         report("Explicit operand marked as def", MO, MONum);
1252       if (MO->isImplicit())
1253         report("Explicit operand marked as implicit", MO, MONum);
1254     }
1255 
1256     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1257     if (TiedTo != -1) {
1258       if (!MO->isReg())
1259         report("Tied use must be a register", MO, MONum);
1260       else if (!MO->isTied())
1261         report("Operand should be tied", MO, MONum);
1262       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1263         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1264       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1265         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1266         if (!MOTied.isReg())
1267           report("Tied counterpart must be a register", &MOTied, TiedTo);
1268         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1269                  MO->getReg() != MOTied.getReg())
1270           report("Tied physical registers must match.", &MOTied, TiedTo);
1271       }
1272     } else if (MO->isReg() && MO->isTied())
1273       report("Explicit operand should not be tied", MO, MONum);
1274   } else {
1275     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1276     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1277       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1278   }
1279 
1280   switch (MO->getType()) {
1281   case MachineOperand::MO_Register: {
1282     const unsigned Reg = MO->getReg();
1283     if (!Reg)
1284       return;
1285     if (MRI->tracksLiveness() && !MI->isDebugValue())
1286       checkLiveness(MO, MONum);
1287 
1288     // Verify the consistency of tied operands.
1289     if (MO->isTied()) {
1290       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1291       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1292       if (!OtherMO.isReg())
1293         report("Must be tied to a register", MO, MONum);
1294       if (!OtherMO.isTied())
1295         report("Missing tie flags on tied operand", MO, MONum);
1296       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1297         report("Inconsistent tie links", MO, MONum);
1298       if (MONum < MCID.getNumDefs()) {
1299         if (OtherIdx < MCID.getNumOperands()) {
1300           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1301             report("Explicit def tied to explicit use without tie constraint",
1302                    MO, MONum);
1303         } else {
1304           if (!OtherMO.isImplicit())
1305             report("Explicit def should be tied to implicit use", MO, MONum);
1306         }
1307       }
1308     }
1309 
1310     // Verify two-address constraints after leaving SSA form.
1311     unsigned DefIdx;
1312     if (!MRI->isSSA() && MO->isUse() &&
1313         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1314         Reg != MI->getOperand(DefIdx).getReg())
1315       report("Two-address instruction operands must be identical", MO, MONum);
1316 
1317     // Check register classes.
1318     unsigned SubIdx = MO->getSubReg();
1319 
1320     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1321       if (SubIdx) {
1322         report("Illegal subregister index for physical register", MO, MONum);
1323         return;
1324       }
1325       if (MONum < MCID.getNumOperands()) {
1326         if (const TargetRegisterClass *DRC =
1327               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1328           if (!DRC->contains(Reg)) {
1329             report("Illegal physical register for instruction", MO, MONum);
1330             errs() << printReg(Reg, TRI) << " is not a "
1331                    << TRI->getRegClassName(DRC) << " register.\n";
1332           }
1333         }
1334       }
1335       if (MO->isRenamable()) {
1336         if (MRI->isReserved(Reg)) {
1337           report("isRenamable set on reserved register", MO, MONum);
1338           return;
1339         }
1340       }
1341       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1342         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1343         return;
1344       }
1345     } else {
1346       // Virtual register.
1347       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1348       if (!RC) {
1349         // This is a generic virtual register.
1350 
1351         // If we're post-Select, we can't have gvregs anymore.
1352         if (isFunctionSelected) {
1353           report("Generic virtual register invalid in a Selected function",
1354                  MO, MONum);
1355           return;
1356         }
1357 
1358         // The gvreg must have a type and it must not have a SubIdx.
1359         LLT Ty = MRI->getType(Reg);
1360         if (!Ty.isValid()) {
1361           report("Generic virtual register must have a valid type", MO,
1362                  MONum);
1363           return;
1364         }
1365 
1366         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1367 
1368         // If we're post-RegBankSelect, the gvreg must have a bank.
1369         if (!RegBank && isFunctionRegBankSelected) {
1370           report("Generic virtual register must have a bank in a "
1371                  "RegBankSelected function",
1372                  MO, MONum);
1373           return;
1374         }
1375 
1376         // Make sure the register fits into its register bank if any.
1377         if (RegBank && Ty.isValid() &&
1378             RegBank->getSize() < Ty.getSizeInBits()) {
1379           report("Register bank is too small for virtual register", MO,
1380                  MONum);
1381           errs() << "Register bank " << RegBank->getName() << " too small("
1382                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1383                  << "-bits\n";
1384           return;
1385         }
1386         if (SubIdx)  {
1387           report("Generic virtual register does not subregister index", MO,
1388                  MONum);
1389           return;
1390         }
1391 
1392         // If this is a target specific instruction and this operand
1393         // has register class constraint, the virtual register must
1394         // comply to it.
1395         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1396             MONum < MCID.getNumOperands() &&
1397             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1398           report("Virtual register does not match instruction constraint", MO,
1399                  MONum);
1400           errs() << "Expect register class "
1401                  << TRI->getRegClassName(
1402                         TII->getRegClass(MCID, MONum, TRI, *MF))
1403                  << " but got nothing\n";
1404           return;
1405         }
1406 
1407         break;
1408       }
1409       if (SubIdx) {
1410         const TargetRegisterClass *SRC =
1411           TRI->getSubClassWithSubReg(RC, SubIdx);
1412         if (!SRC) {
1413           report("Invalid subregister index for virtual register", MO, MONum);
1414           errs() << "Register class " << TRI->getRegClassName(RC)
1415               << " does not support subreg index " << SubIdx << "\n";
1416           return;
1417         }
1418         if (RC != SRC) {
1419           report("Invalid register class for subregister index", MO, MONum);
1420           errs() << "Register class " << TRI->getRegClassName(RC)
1421               << " does not fully support subreg index " << SubIdx << "\n";
1422           return;
1423         }
1424       }
1425       if (MONum < MCID.getNumOperands()) {
1426         if (const TargetRegisterClass *DRC =
1427               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1428           if (SubIdx) {
1429             const TargetRegisterClass *SuperRC =
1430                 TRI->getLargestLegalSuperClass(RC, *MF);
1431             if (!SuperRC) {
1432               report("No largest legal super class exists.", MO, MONum);
1433               return;
1434             }
1435             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1436             if (!DRC) {
1437               report("No matching super-reg register class.", MO, MONum);
1438               return;
1439             }
1440           }
1441           if (!RC->hasSuperClassEq(DRC)) {
1442             report("Illegal virtual register for instruction", MO, MONum);
1443             errs() << "Expected a " << TRI->getRegClassName(DRC)
1444                 << " register, but got a " << TRI->getRegClassName(RC)
1445                 << " register\n";
1446           }
1447         }
1448       }
1449     }
1450     break;
1451   }
1452 
1453   case MachineOperand::MO_RegisterMask:
1454     regMasks.push_back(MO->getRegMask());
1455     break;
1456 
1457   case MachineOperand::MO_MachineBasicBlock:
1458     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1459       report("PHI operand is not in the CFG", MO, MONum);
1460     break;
1461 
1462   case MachineOperand::MO_FrameIndex:
1463     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1464         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1465       int FI = MO->getIndex();
1466       LiveInterval &LI = LiveStks->getInterval(FI);
1467       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1468 
1469       bool stores = MI->mayStore();
1470       bool loads = MI->mayLoad();
1471       // For a memory-to-memory move, we need to check if the frame
1472       // index is used for storing or loading, by inspecting the
1473       // memory operands.
1474       if (stores && loads) {
1475         for (auto *MMO : MI->memoperands()) {
1476           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1477           if (PSV == nullptr) continue;
1478           const FixedStackPseudoSourceValue *Value =
1479             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1480           if (Value == nullptr) continue;
1481           if (Value->getFrameIndex() != FI) continue;
1482 
1483           if (MMO->isStore())
1484             loads = false;
1485           else
1486             stores = false;
1487           break;
1488         }
1489         if (loads == stores)
1490           report("Missing fixed stack memoperand.", MI);
1491       }
1492       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1493         report("Instruction loads from dead spill slot", MO, MONum);
1494         errs() << "Live stack: " << LI << '\n';
1495       }
1496       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1497         report("Instruction stores to dead spill slot", MO, MONum);
1498         errs() << "Live stack: " << LI << '\n';
1499       }
1500     }
1501     break;
1502 
1503   default:
1504     break;
1505   }
1506 }
1507 
1508 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1509     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1510     LaneBitmask LaneMask) {
1511   LiveQueryResult LRQ = LR.Query(UseIdx);
1512   // Check if we have a segment at the use, note however that we only need one
1513   // live subregister range, the others may be dead.
1514   if (!LRQ.valueIn() && LaneMask.none()) {
1515     report("No live segment at use", MO, MONum);
1516     report_context_liverange(LR);
1517     report_context_vreg_regunit(VRegOrUnit);
1518     report_context(UseIdx);
1519   }
1520   if (MO->isKill() && !LRQ.isKill()) {
1521     report("Live range continues after kill flag", MO, MONum);
1522     report_context_liverange(LR);
1523     report_context_vreg_regunit(VRegOrUnit);
1524     if (LaneMask.any())
1525       report_context_lanemask(LaneMask);
1526     report_context(UseIdx);
1527   }
1528 }
1529 
1530 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1531     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1532     bool SubRangeCheck, LaneBitmask LaneMask) {
1533   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1534     assert(VNI && "NULL valno is not allowed");
1535     if (VNI->def != DefIdx) {
1536       report("Inconsistent valno->def", MO, MONum);
1537       report_context_liverange(LR);
1538       report_context_vreg_regunit(VRegOrUnit);
1539       if (LaneMask.any())
1540         report_context_lanemask(LaneMask);
1541       report_context(*VNI);
1542       report_context(DefIdx);
1543     }
1544   } else {
1545     report("No live segment at def", MO, MONum);
1546     report_context_liverange(LR);
1547     report_context_vreg_regunit(VRegOrUnit);
1548     if (LaneMask.any())
1549       report_context_lanemask(LaneMask);
1550     report_context(DefIdx);
1551   }
1552   // Check that, if the dead def flag is present, LiveInts agree.
1553   if (MO->isDead()) {
1554     LiveQueryResult LRQ = LR.Query(DefIdx);
1555     if (!LRQ.isDeadDef()) {
1556       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1557              "Expecting a virtual register.");
1558       // A dead subreg def only tells us that the specific subreg is dead. There
1559       // could be other non-dead defs of other subregs, or we could have other
1560       // parts of the register being live through the instruction. So unless we
1561       // are checking liveness for a subrange it is ok for the live range to
1562       // continue, given that we have a dead def of a subregister.
1563       if (SubRangeCheck || MO->getSubReg() == 0) {
1564         report("Live range continues after dead def flag", MO, MONum);
1565         report_context_liverange(LR);
1566         report_context_vreg_regunit(VRegOrUnit);
1567         if (LaneMask.any())
1568           report_context_lanemask(LaneMask);
1569       }
1570     }
1571   }
1572 }
1573 
1574 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1575   const MachineInstr *MI = MO->getParent();
1576   const unsigned Reg = MO->getReg();
1577 
1578   // Both use and def operands can read a register.
1579   if (MO->readsReg()) {
1580     if (MO->isKill())
1581       addRegWithSubRegs(regsKilled, Reg);
1582 
1583     // Check that LiveVars knows this kill.
1584     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1585         MO->isKill()) {
1586       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1587       if (!is_contained(VI.Kills, MI))
1588         report("Kill missing from LiveVariables", MO, MONum);
1589     }
1590 
1591     // Check LiveInts liveness and kill.
1592     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1593       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1594       // Check the cached regunit intervals.
1595       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1596         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1597           if (MRI->isReservedRegUnit(*Units))
1598             continue;
1599           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1600             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1601         }
1602       }
1603 
1604       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1605         if (LiveInts->hasInterval(Reg)) {
1606           // This is a virtual register interval.
1607           const LiveInterval &LI = LiveInts->getInterval(Reg);
1608           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1609 
1610           if (LI.hasSubRanges() && !MO->isDef()) {
1611             unsigned SubRegIdx = MO->getSubReg();
1612             LaneBitmask MOMask = SubRegIdx != 0
1613                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1614                                : MRI->getMaxLaneMaskForVReg(Reg);
1615             LaneBitmask LiveInMask;
1616             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1617               if ((MOMask & SR.LaneMask).none())
1618                 continue;
1619               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1620               LiveQueryResult LRQ = SR.Query(UseIdx);
1621               if (LRQ.valueIn())
1622                 LiveInMask |= SR.LaneMask;
1623             }
1624             // At least parts of the register has to be live at the use.
1625             if ((LiveInMask & MOMask).none()) {
1626               report("No live subrange at use", MO, MONum);
1627               report_context(LI);
1628               report_context(UseIdx);
1629             }
1630           }
1631         } else {
1632           report("Virtual register has no live interval", MO, MONum);
1633         }
1634       }
1635     }
1636 
1637     // Use of a dead register.
1638     if (!regsLive.count(Reg)) {
1639       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1640         // Reserved registers may be used even when 'dead'.
1641         bool Bad = !isReserved(Reg);
1642         // We are fine if just any subregister has a defined value.
1643         if (Bad) {
1644           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1645                ++SubRegs) {
1646             if (regsLive.count(*SubRegs)) {
1647               Bad = false;
1648               break;
1649             }
1650           }
1651         }
1652         // If there is an additional implicit-use of a super register we stop
1653         // here. By definition we are fine if the super register is not
1654         // (completely) dead, if the complete super register is dead we will
1655         // get a report for its operand.
1656         if (Bad) {
1657           for (const MachineOperand &MOP : MI->uses()) {
1658             if (!MOP.isReg() || !MOP.isImplicit())
1659               continue;
1660 
1661             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1662               continue;
1663 
1664             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1665                  ++SubRegs) {
1666               if (*SubRegs == Reg) {
1667                 Bad = false;
1668                 break;
1669               }
1670             }
1671           }
1672         }
1673         if (Bad)
1674           report("Using an undefined physical register", MO, MONum);
1675       } else if (MRI->def_empty(Reg)) {
1676         report("Reading virtual register without a def", MO, MONum);
1677       } else {
1678         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1679         // We don't know which virtual registers are live in, so only complain
1680         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1681         // must be live in. PHI instructions are handled separately.
1682         if (MInfo.regsKilled.count(Reg))
1683           report("Using a killed virtual register", MO, MONum);
1684         else if (!MI->isPHI())
1685           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1686       }
1687     }
1688   }
1689 
1690   if (MO->isDef()) {
1691     // Register defined.
1692     // TODO: verify that earlyclobber ops are not used.
1693     if (MO->isDead())
1694       addRegWithSubRegs(regsDead, Reg);
1695     else
1696       addRegWithSubRegs(regsDefined, Reg);
1697 
1698     // Verify SSA form.
1699     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1700         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1701       report("Multiple virtual register defs in SSA form", MO, MONum);
1702 
1703     // Check LiveInts for a live segment, but only for virtual registers.
1704     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1705       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1706       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1707 
1708       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1709         if (LiveInts->hasInterval(Reg)) {
1710           const LiveInterval &LI = LiveInts->getInterval(Reg);
1711           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1712 
1713           if (LI.hasSubRanges()) {
1714             unsigned SubRegIdx = MO->getSubReg();
1715             LaneBitmask MOMask = SubRegIdx != 0
1716               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1717               : MRI->getMaxLaneMaskForVReg(Reg);
1718             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1719               if ((SR.LaneMask & MOMask).none())
1720                 continue;
1721               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1722             }
1723           }
1724         } else {
1725           report("Virtual register has no Live interval", MO, MONum);
1726         }
1727       }
1728     }
1729   }
1730 }
1731 
1732 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1733 
1734 // This function gets called after visiting all instructions in a bundle. The
1735 // argument points to the bundle header.
1736 // Normal stand-alone instructions are also considered 'bundles', and this
1737 // function is called for all of them.
1738 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1739   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1740   set_union(MInfo.regsKilled, regsKilled);
1741   set_subtract(regsLive, regsKilled); regsKilled.clear();
1742   // Kill any masked registers.
1743   while (!regMasks.empty()) {
1744     const uint32_t *Mask = regMasks.pop_back_val();
1745     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1746       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1747           MachineOperand::clobbersPhysReg(Mask, *I))
1748         regsDead.push_back(*I);
1749   }
1750   set_subtract(regsLive, regsDead);   regsDead.clear();
1751   set_union(regsLive, regsDefined);   regsDefined.clear();
1752 }
1753 
1754 void
1755 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1756   MBBInfoMap[MBB].regsLiveOut = regsLive;
1757   regsLive.clear();
1758 
1759   if (Indexes) {
1760     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1761     if (!(stop > lastIndex)) {
1762       report("Block ends before last instruction index", MBB);
1763       errs() << "Block ends at " << stop
1764           << " last instruction was at " << lastIndex << '\n';
1765     }
1766     lastIndex = stop;
1767   }
1768 }
1769 
1770 // Calculate the largest possible vregsPassed sets. These are the registers that
1771 // can pass through an MBB live, but may not be live every time. It is assumed
1772 // that all vregsPassed sets are empty before the call.
1773 void MachineVerifier::calcRegsPassed() {
1774   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1775   // have any vregsPassed.
1776   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1777   for (const auto &MBB : *MF) {
1778     BBInfo &MInfo = MBBInfoMap[&MBB];
1779     if (!MInfo.reachable)
1780       continue;
1781     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1782            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1783       BBInfo &SInfo = MBBInfoMap[*SuI];
1784       if (SInfo.addPassed(MInfo.regsLiveOut))
1785         todo.insert(*SuI);
1786     }
1787   }
1788 
1789   // Iteratively push vregsPassed to successors. This will converge to the same
1790   // final state regardless of DenseSet iteration order.
1791   while (!todo.empty()) {
1792     const MachineBasicBlock *MBB = *todo.begin();
1793     todo.erase(MBB);
1794     BBInfo &MInfo = MBBInfoMap[MBB];
1795     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1796            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1797       if (*SuI == MBB)
1798         continue;
1799       BBInfo &SInfo = MBBInfoMap[*SuI];
1800       if (SInfo.addPassed(MInfo.vregsPassed))
1801         todo.insert(*SuI);
1802     }
1803   }
1804 }
1805 
1806 // Calculate the set of virtual registers that must be passed through each basic
1807 // block in order to satisfy the requirements of successor blocks. This is very
1808 // similar to calcRegsPassed, only backwards.
1809 void MachineVerifier::calcRegsRequired() {
1810   // First push live-in regs to predecessors' vregsRequired.
1811   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1812   for (const auto &MBB : *MF) {
1813     BBInfo &MInfo = MBBInfoMap[&MBB];
1814     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1815            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1816       BBInfo &PInfo = MBBInfoMap[*PrI];
1817       if (PInfo.addRequired(MInfo.vregsLiveIn))
1818         todo.insert(*PrI);
1819     }
1820   }
1821 
1822   // Iteratively push vregsRequired to predecessors. This will converge to the
1823   // same final state regardless of DenseSet iteration order.
1824   while (!todo.empty()) {
1825     const MachineBasicBlock *MBB = *todo.begin();
1826     todo.erase(MBB);
1827     BBInfo &MInfo = MBBInfoMap[MBB];
1828     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1829            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1830       if (*PrI == MBB)
1831         continue;
1832       BBInfo &SInfo = MBBInfoMap[*PrI];
1833       if (SInfo.addRequired(MInfo.vregsRequired))
1834         todo.insert(*PrI);
1835     }
1836   }
1837 }
1838 
1839 // Check PHI instructions at the beginning of MBB. It is assumed that
1840 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1841 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1842   BBInfo &MInfo = MBBInfoMap[&MBB];
1843 
1844   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1845   for (const MachineInstr &Phi : MBB) {
1846     if (!Phi.isPHI())
1847       break;
1848     seen.clear();
1849 
1850     const MachineOperand &MODef = Phi.getOperand(0);
1851     if (!MODef.isReg() || !MODef.isDef()) {
1852       report("Expected first PHI operand to be a register def", &MODef, 0);
1853       continue;
1854     }
1855     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1856         MODef.isEarlyClobber() || MODef.isDebug())
1857       report("Unexpected flag on PHI operand", &MODef, 0);
1858     unsigned DefReg = MODef.getReg();
1859     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1860       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1861 
1862     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1863       const MachineOperand &MO0 = Phi.getOperand(I);
1864       if (!MO0.isReg()) {
1865         report("Expected PHI operand to be a register", &MO0, I);
1866         continue;
1867       }
1868       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1869           MO0.isDebug() || MO0.isTied())
1870         report("Unexpected flag on PHI operand", &MO0, I);
1871 
1872       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1873       if (!MO1.isMBB()) {
1874         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1875         continue;
1876       }
1877 
1878       const MachineBasicBlock &Pre = *MO1.getMBB();
1879       if (!Pre.isSuccessor(&MBB)) {
1880         report("PHI input is not a predecessor block", &MO1, I + 1);
1881         continue;
1882       }
1883 
1884       if (MInfo.reachable) {
1885         seen.insert(&Pre);
1886         BBInfo &PrInfo = MBBInfoMap[&Pre];
1887         if (!MO0.isUndef() && PrInfo.reachable &&
1888             !PrInfo.isLiveOut(MO0.getReg()))
1889           report("PHI operand is not live-out from predecessor", &MO0, I);
1890       }
1891     }
1892 
1893     // Did we see all predecessors?
1894     if (MInfo.reachable) {
1895       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1896         if (!seen.count(Pred)) {
1897           report("Missing PHI operand", &Phi);
1898           errs() << printMBBReference(*Pred)
1899                  << " is a predecessor according to the CFG.\n";
1900         }
1901       }
1902     }
1903   }
1904 }
1905 
1906 void MachineVerifier::visitMachineFunctionAfter() {
1907   calcRegsPassed();
1908 
1909   for (const MachineBasicBlock &MBB : *MF)
1910     checkPHIOps(MBB);
1911 
1912   // Now check liveness info if available
1913   calcRegsRequired();
1914 
1915   // Check for killed virtual registers that should be live out.
1916   for (const auto &MBB : *MF) {
1917     BBInfo &MInfo = MBBInfoMap[&MBB];
1918     for (RegSet::iterator
1919          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1920          ++I)
1921       if (MInfo.regsKilled.count(*I)) {
1922         report("Virtual register killed in block, but needed live out.", &MBB);
1923         errs() << "Virtual register " << printReg(*I)
1924                << " is used after the block.\n";
1925       }
1926   }
1927 
1928   if (!MF->empty()) {
1929     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1930     for (RegSet::iterator
1931          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1932          ++I) {
1933       report("Virtual register defs don't dominate all uses.", MF);
1934       report_context_vreg(*I);
1935     }
1936   }
1937 
1938   if (LiveVars)
1939     verifyLiveVariables();
1940   if (LiveInts)
1941     verifyLiveIntervals();
1942 }
1943 
1944 void MachineVerifier::verifyLiveVariables() {
1945   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1946   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1947     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1948     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1949     for (const auto &MBB : *MF) {
1950       BBInfo &MInfo = MBBInfoMap[&MBB];
1951 
1952       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1953       if (MInfo.vregsRequired.count(Reg)) {
1954         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1955           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1956           errs() << "Virtual register " << printReg(Reg)
1957                  << " must be live through the block.\n";
1958         }
1959       } else {
1960         if (VI.AliveBlocks.test(MBB.getNumber())) {
1961           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1962           errs() << "Virtual register " << printReg(Reg)
1963                  << " is not needed live through the block.\n";
1964         }
1965       }
1966     }
1967   }
1968 }
1969 
1970 void MachineVerifier::verifyLiveIntervals() {
1971   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1972   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1973     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1974 
1975     // Spilling and splitting may leave unused registers around. Skip them.
1976     if (MRI->reg_nodbg_empty(Reg))
1977       continue;
1978 
1979     if (!LiveInts->hasInterval(Reg)) {
1980       report("Missing live interval for virtual register", MF);
1981       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1982       continue;
1983     }
1984 
1985     const LiveInterval &LI = LiveInts->getInterval(Reg);
1986     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1987     verifyLiveInterval(LI);
1988   }
1989 
1990   // Verify all the cached regunit intervals.
1991   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1992     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1993       verifyLiveRange(*LR, i);
1994 }
1995 
1996 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1997                                            const VNInfo *VNI, unsigned Reg,
1998                                            LaneBitmask LaneMask) {
1999   if (VNI->isUnused())
2000     return;
2001 
2002   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2003 
2004   if (!DefVNI) {
2005     report("Value not live at VNInfo def and not marked unused", MF);
2006     report_context(LR, Reg, LaneMask);
2007     report_context(*VNI);
2008     return;
2009   }
2010 
2011   if (DefVNI != VNI) {
2012     report("Live segment at def has different VNInfo", MF);
2013     report_context(LR, Reg, LaneMask);
2014     report_context(*VNI);
2015     return;
2016   }
2017 
2018   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2019   if (!MBB) {
2020     report("Invalid VNInfo definition index", MF);
2021     report_context(LR, Reg, LaneMask);
2022     report_context(*VNI);
2023     return;
2024   }
2025 
2026   if (VNI->isPHIDef()) {
2027     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2028       report("PHIDef VNInfo is not defined at MBB start", MBB);
2029       report_context(LR, Reg, LaneMask);
2030       report_context(*VNI);
2031     }
2032     return;
2033   }
2034 
2035   // Non-PHI def.
2036   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2037   if (!MI) {
2038     report("No instruction at VNInfo def index", MBB);
2039     report_context(LR, Reg, LaneMask);
2040     report_context(*VNI);
2041     return;
2042   }
2043 
2044   if (Reg != 0) {
2045     bool hasDef = false;
2046     bool isEarlyClobber = false;
2047     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2048       if (!MOI->isReg() || !MOI->isDef())
2049         continue;
2050       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2051         if (MOI->getReg() != Reg)
2052           continue;
2053       } else {
2054         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2055             !TRI->hasRegUnit(MOI->getReg(), Reg))
2056           continue;
2057       }
2058       if (LaneMask.any() &&
2059           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2060         continue;
2061       hasDef = true;
2062       if (MOI->isEarlyClobber())
2063         isEarlyClobber = true;
2064     }
2065 
2066     if (!hasDef) {
2067       report("Defining instruction does not modify register", MI);
2068       report_context(LR, Reg, LaneMask);
2069       report_context(*VNI);
2070     }
2071 
2072     // Early clobber defs begin at USE slots, but other defs must begin at
2073     // DEF slots.
2074     if (isEarlyClobber) {
2075       if (!VNI->def.isEarlyClobber()) {
2076         report("Early clobber def must be at an early-clobber slot", MBB);
2077         report_context(LR, Reg, LaneMask);
2078         report_context(*VNI);
2079       }
2080     } else if (!VNI->def.isRegister()) {
2081       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2082       report_context(LR, Reg, LaneMask);
2083       report_context(*VNI);
2084     }
2085   }
2086 }
2087 
2088 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2089                                              const LiveRange::const_iterator I,
2090                                              unsigned Reg, LaneBitmask LaneMask)
2091 {
2092   const LiveRange::Segment &S = *I;
2093   const VNInfo *VNI = S.valno;
2094   assert(VNI && "Live segment has no valno");
2095 
2096   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2097     report("Foreign valno in live segment", MF);
2098     report_context(LR, Reg, LaneMask);
2099     report_context(S);
2100     report_context(*VNI);
2101   }
2102 
2103   if (VNI->isUnused()) {
2104     report("Live segment valno is marked unused", MF);
2105     report_context(LR, Reg, LaneMask);
2106     report_context(S);
2107   }
2108 
2109   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2110   if (!MBB) {
2111     report("Bad start of live segment, no basic block", MF);
2112     report_context(LR, Reg, LaneMask);
2113     report_context(S);
2114     return;
2115   }
2116   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2117   if (S.start != MBBStartIdx && S.start != VNI->def) {
2118     report("Live segment must begin at MBB entry or valno def", MBB);
2119     report_context(LR, Reg, LaneMask);
2120     report_context(S);
2121   }
2122 
2123   const MachineBasicBlock *EndMBB =
2124     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2125   if (!EndMBB) {
2126     report("Bad end of live segment, no basic block", MF);
2127     report_context(LR, Reg, LaneMask);
2128     report_context(S);
2129     return;
2130   }
2131 
2132   // No more checks for live-out segments.
2133   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2134     return;
2135 
2136   // RegUnit intervals are allowed dead phis.
2137   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2138       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2139     return;
2140 
2141   // The live segment is ending inside EndMBB
2142   const MachineInstr *MI =
2143     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2144   if (!MI) {
2145     report("Live segment doesn't end at a valid instruction", EndMBB);
2146     report_context(LR, Reg, LaneMask);
2147     report_context(S);
2148     return;
2149   }
2150 
2151   // The block slot must refer to a basic block boundary.
2152   if (S.end.isBlock()) {
2153     report("Live segment ends at B slot of an instruction", EndMBB);
2154     report_context(LR, Reg, LaneMask);
2155     report_context(S);
2156   }
2157 
2158   if (S.end.isDead()) {
2159     // Segment ends on the dead slot.
2160     // That means there must be a dead def.
2161     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2162       report("Live segment ending at dead slot spans instructions", EndMBB);
2163       report_context(LR, Reg, LaneMask);
2164       report_context(S);
2165     }
2166   }
2167 
2168   // A live segment can only end at an early-clobber slot if it is being
2169   // redefined by an early-clobber def.
2170   if (S.end.isEarlyClobber()) {
2171     if (I+1 == LR.end() || (I+1)->start != S.end) {
2172       report("Live segment ending at early clobber slot must be "
2173              "redefined by an EC def in the same instruction", EndMBB);
2174       report_context(LR, Reg, LaneMask);
2175       report_context(S);
2176     }
2177   }
2178 
2179   // The following checks only apply to virtual registers. Physreg liveness
2180   // is too weird to check.
2181   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2182     // A live segment can end with either a redefinition, a kill flag on a
2183     // use, or a dead flag on a def.
2184     bool hasRead = false;
2185     bool hasSubRegDef = false;
2186     bool hasDeadDef = false;
2187     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2188       if (!MOI->isReg() || MOI->getReg() != Reg)
2189         continue;
2190       unsigned Sub = MOI->getSubReg();
2191       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2192                                  : LaneBitmask::getAll();
2193       if (MOI->isDef()) {
2194         if (Sub != 0) {
2195           hasSubRegDef = true;
2196           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2197           // mask for subregister defs. Read-undef defs will be handled by
2198           // readsReg below.
2199           SLM = ~SLM;
2200         }
2201         if (MOI->isDead())
2202           hasDeadDef = true;
2203       }
2204       if (LaneMask.any() && (LaneMask & SLM).none())
2205         continue;
2206       if (MOI->readsReg())
2207         hasRead = true;
2208     }
2209     if (S.end.isDead()) {
2210       // Make sure that the corresponding machine operand for a "dead" live
2211       // range has the dead flag. We cannot perform this check for subregister
2212       // liveranges as partially dead values are allowed.
2213       if (LaneMask.none() && !hasDeadDef) {
2214         report("Instruction ending live segment on dead slot has no dead flag",
2215                MI);
2216         report_context(LR, Reg, LaneMask);
2217         report_context(S);
2218       }
2219     } else {
2220       if (!hasRead) {
2221         // When tracking subregister liveness, the main range must start new
2222         // values on partial register writes, even if there is no read.
2223         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2224             !hasSubRegDef) {
2225           report("Instruction ending live segment doesn't read the register",
2226                  MI);
2227           report_context(LR, Reg, LaneMask);
2228           report_context(S);
2229         }
2230       }
2231     }
2232   }
2233 
2234   // Now check all the basic blocks in this live segment.
2235   MachineFunction::const_iterator MFI = MBB->getIterator();
2236   // Is this live segment the beginning of a non-PHIDef VN?
2237   if (S.start == VNI->def && !VNI->isPHIDef()) {
2238     // Not live-in to any blocks.
2239     if (MBB == EndMBB)
2240       return;
2241     // Skip this block.
2242     ++MFI;
2243   }
2244 
2245   SmallVector<SlotIndex, 4> Undefs;
2246   if (LaneMask.any()) {
2247     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2248     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2249   }
2250 
2251   while (true) {
2252     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2253     // We don't know how to track physregs into a landing pad.
2254     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2255         MFI->isEHPad()) {
2256       if (&*MFI == EndMBB)
2257         break;
2258       ++MFI;
2259       continue;
2260     }
2261 
2262     // Is VNI a PHI-def in the current block?
2263     bool IsPHI = VNI->isPHIDef() &&
2264       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2265 
2266     // Check that VNI is live-out of all predecessors.
2267     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2268          PE = MFI->pred_end(); PI != PE; ++PI) {
2269       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2270       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2271 
2272       // All predecessors must have a live-out value. However for a phi
2273       // instruction with subregister intervals
2274       // only one of the subregisters (not necessarily the current one) needs to
2275       // be defined.
2276       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2277         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2278           continue;
2279         report("Register not marked live out of predecessor", *PI);
2280         report_context(LR, Reg, LaneMask);
2281         report_context(*VNI);
2282         errs() << " live into " << printMBBReference(*MFI) << '@'
2283                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2284                << PEnd << '\n';
2285         continue;
2286       }
2287 
2288       // Only PHI-defs can take different predecessor values.
2289       if (!IsPHI && PVNI != VNI) {
2290         report("Different value live out of predecessor", *PI);
2291         report_context(LR, Reg, LaneMask);
2292         errs() << "Valno #" << PVNI->id << " live out of "
2293                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2294                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2295                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2296       }
2297     }
2298     if (&*MFI == EndMBB)
2299       break;
2300     ++MFI;
2301   }
2302 }
2303 
2304 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2305                                       LaneBitmask LaneMask) {
2306   for (const VNInfo *VNI : LR.valnos)
2307     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2308 
2309   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2310     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2311 }
2312 
2313 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2314   unsigned Reg = LI.reg;
2315   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2316   verifyLiveRange(LI, Reg);
2317 
2318   LaneBitmask Mask;
2319   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2320   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2321     if ((Mask & SR.LaneMask).any()) {
2322       report("Lane masks of sub ranges overlap in live interval", MF);
2323       report_context(LI);
2324     }
2325     if ((SR.LaneMask & ~MaxMask).any()) {
2326       report("Subrange lanemask is invalid", MF);
2327       report_context(LI);
2328     }
2329     if (SR.empty()) {
2330       report("Subrange must not be empty", MF);
2331       report_context(SR, LI.reg, SR.LaneMask);
2332     }
2333     Mask |= SR.LaneMask;
2334     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2335     if (!LI.covers(SR)) {
2336       report("A Subrange is not covered by the main range", MF);
2337       report_context(LI);
2338     }
2339   }
2340 
2341   // Check the LI only has one connected component.
2342   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2343   unsigned NumComp = ConEQ.Classify(LI);
2344   if (NumComp > 1) {
2345     report("Multiple connected components in live interval", MF);
2346     report_context(LI);
2347     for (unsigned comp = 0; comp != NumComp; ++comp) {
2348       errs() << comp << ": valnos";
2349       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2350            E = LI.vni_end(); I!=E; ++I)
2351         if (comp == ConEQ.getEqClass(*I))
2352           errs() << ' ' << (*I)->id;
2353       errs() << '\n';
2354     }
2355   }
2356 }
2357 
2358 namespace {
2359 
2360   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2361   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2362   // value is zero.
2363   // We use a bool plus an integer to capture the stack state.
2364   struct StackStateOfBB {
2365     StackStateOfBB() = default;
2366     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2367       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2368       ExitIsSetup(ExitSetup) {}
2369 
2370     // Can be negative, which means we are setting up a frame.
2371     int EntryValue = 0;
2372     int ExitValue = 0;
2373     bool EntryIsSetup = false;
2374     bool ExitIsSetup = false;
2375   };
2376 
2377 } // end anonymous namespace
2378 
2379 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2380 /// by a FrameDestroy <n>, stack adjustments are identical on all
2381 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2382 void MachineVerifier::verifyStackFrame() {
2383   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2384   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2385   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2386     return;
2387 
2388   SmallVector<StackStateOfBB, 8> SPState;
2389   SPState.resize(MF->getNumBlockIDs());
2390   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2391 
2392   // Visit the MBBs in DFS order.
2393   for (df_ext_iterator<const MachineFunction *,
2394                        df_iterator_default_set<const MachineBasicBlock *>>
2395        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2396        DFI != DFE; ++DFI) {
2397     const MachineBasicBlock *MBB = *DFI;
2398 
2399     StackStateOfBB BBState;
2400     // Check the exit state of the DFS stack predecessor.
2401     if (DFI.getPathLength() >= 2) {
2402       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2403       assert(Reachable.count(StackPred) &&
2404              "DFS stack predecessor is already visited.\n");
2405       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2406       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2407       BBState.ExitValue = BBState.EntryValue;
2408       BBState.ExitIsSetup = BBState.EntryIsSetup;
2409     }
2410 
2411     // Update stack state by checking contents of MBB.
2412     for (const auto &I : *MBB) {
2413       if (I.getOpcode() == FrameSetupOpcode) {
2414         if (BBState.ExitIsSetup)
2415           report("FrameSetup is after another FrameSetup", &I);
2416         BBState.ExitValue -= TII->getFrameTotalSize(I);
2417         BBState.ExitIsSetup = true;
2418       }
2419 
2420       if (I.getOpcode() == FrameDestroyOpcode) {
2421         int Size = TII->getFrameTotalSize(I);
2422         if (!BBState.ExitIsSetup)
2423           report("FrameDestroy is not after a FrameSetup", &I);
2424         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2425                                                BBState.ExitValue;
2426         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2427           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2428           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2429               << AbsSPAdj << ">.\n";
2430         }
2431         BBState.ExitValue += Size;
2432         BBState.ExitIsSetup = false;
2433       }
2434     }
2435     SPState[MBB->getNumber()] = BBState;
2436 
2437     // Make sure the exit state of any predecessor is consistent with the entry
2438     // state.
2439     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2440          E = MBB->pred_end(); I != E; ++I) {
2441       if (Reachable.count(*I) &&
2442           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2443            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2444         report("The exit stack state of a predecessor is inconsistent.", MBB);
2445         errs() << "Predecessor " << printMBBReference(*(*I))
2446                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2447                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2448                << printMBBReference(*MBB) << " has entry state ("
2449                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2450       }
2451     }
2452 
2453     // Make sure the entry state of any successor is consistent with the exit
2454     // state.
2455     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2456          E = MBB->succ_end(); I != E; ++I) {
2457       if (Reachable.count(*I) &&
2458           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2459            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2460         report("The entry stack state of a successor is inconsistent.", MBB);
2461         errs() << "Successor " << printMBBReference(*(*I))
2462                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2463                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2464                << printMBBReference(*MBB) << " has exit state ("
2465                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2466       }
2467     }
2468 
2469     // Make sure a basic block with return ends with zero stack adjustment.
2470     if (!MBB->empty() && MBB->back().isReturn()) {
2471       if (BBState.ExitIsSetup)
2472         report("A return block ends with a FrameSetup.", MBB);
2473       if (BBState.ExitValue)
2474         report("A return block ends with a nonzero stack adjustment.", MBB);
2475     }
2476   }
2477 }
2478