1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "LiveRangeCalc.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetOperations.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/EHPersonalities.h" 38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 39 #include "llvm/CodeGen/LiveInterval.h" 40 #include "llvm/CodeGen/LiveIntervals.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/LiveVariables.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/PseudoSourceValue.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/MC/LaneBitmask.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCInstrDesc.h" 66 #include "llvm/MC/MCRegisterInfo.h" 67 #include "llvm/MC/MCTargetOptions.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/LowLevelTypeImpl.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 struct MachineVerifier { 88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 89 90 unsigned verify(MachineFunction &MF); 91 92 Pass *const PASS; 93 const char *Banner; 94 const MachineFunction *MF; 95 const TargetMachine *TM; 96 const TargetInstrInfo *TII; 97 const TargetRegisterInfo *TRI; 98 const MachineRegisterInfo *MRI; 99 100 unsigned foundErrors; 101 102 // Avoid querying the MachineFunctionProperties for each operand. 103 bool isFunctionRegBankSelected; 104 bool isFunctionSelected; 105 106 using RegVector = SmallVector<unsigned, 16>; 107 using RegMaskVector = SmallVector<const uint32_t *, 4>; 108 using RegSet = DenseSet<unsigned>; 109 using RegMap = DenseMap<unsigned, const MachineInstr *>; 110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 111 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 void visitMachineInstrBefore(const MachineInstr *MI); 234 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 235 void visitMachineInstrAfter(const MachineInstr *MI); 236 void visitMachineBundleAfter(const MachineInstr *MI); 237 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 238 void visitMachineFunctionAfter(); 239 240 void report(const char *msg, const MachineFunction *MF); 241 void report(const char *msg, const MachineBasicBlock *MBB); 242 void report(const char *msg, const MachineInstr *MI); 243 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 244 LLT MOVRegType = LLT{}); 245 246 void report_context(const LiveInterval &LI) const; 247 void report_context(const LiveRange &LR, unsigned VRegUnit, 248 LaneBitmask LaneMask) const; 249 void report_context(const LiveRange::Segment &S) const; 250 void report_context(const VNInfo &VNI) const; 251 void report_context(SlotIndex Pos) const; 252 void report_context_liverange(const LiveRange &LR) const; 253 void report_context_lanemask(LaneBitmask LaneMask) const; 254 void report_context_vreg(unsigned VReg) const; 255 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 256 257 void verifyInlineAsm(const MachineInstr *MI); 258 259 void checkLiveness(const MachineOperand *MO, unsigned MONum); 260 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 261 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 262 LaneBitmask LaneMask = LaneBitmask::getNone()); 263 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 264 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 265 bool SubRangeCheck = false, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 268 void markReachable(const MachineBasicBlock *MBB); 269 void calcRegsPassed(); 270 void checkPHIOps(const MachineBasicBlock &MBB); 271 272 void calcRegsRequired(); 273 void verifyLiveVariables(); 274 void verifyLiveIntervals(); 275 void verifyLiveInterval(const LiveInterval&); 276 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 277 LaneBitmask); 278 void verifyLiveRangeSegment(const LiveRange&, 279 const LiveRange::const_iterator I, unsigned, 280 LaneBitmask); 281 void verifyLiveRange(const LiveRange&, unsigned, 282 LaneBitmask LaneMask = LaneBitmask::getNone()); 283 284 void verifyStackFrame(); 285 286 void verifySlotIndexes() const; 287 void verifyProperties(const MachineFunction &MF); 288 }; 289 290 struct MachineVerifierPass : public MachineFunctionPass { 291 static char ID; // Pass ID, replacement for typeid 292 293 const std::string Banner; 294 295 MachineVerifierPass(std::string banner = std::string()) 296 : MachineFunctionPass(ID), Banner(std::move(banner)) { 297 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 298 } 299 300 void getAnalysisUsage(AnalysisUsage &AU) const override { 301 AU.setPreservesAll(); 302 MachineFunctionPass::getAnalysisUsage(AU); 303 } 304 305 bool runOnMachineFunction(MachineFunction &MF) override { 306 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 307 if (FoundErrors) 308 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 309 return false; 310 } 311 }; 312 313 } // end anonymous namespace 314 315 char MachineVerifierPass::ID = 0; 316 317 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 318 "Verify generated machine code", false, false) 319 320 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 321 return new MachineVerifierPass(Banner); 322 } 323 324 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 325 const { 326 MachineFunction &MF = const_cast<MachineFunction&>(*this); 327 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 328 if (AbortOnErrors && FoundErrors) 329 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 330 return FoundErrors == 0; 331 } 332 333 void MachineVerifier::verifySlotIndexes() const { 334 if (Indexes == nullptr) 335 return; 336 337 // Ensure the IdxMBB list is sorted by slot indexes. 338 SlotIndex Last; 339 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 340 E = Indexes->MBBIndexEnd(); I != E; ++I) { 341 assert(!Last.isValid() || I->first > Last); 342 Last = I->first; 343 } 344 } 345 346 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 347 // If a pass has introduced virtual registers without clearing the 348 // NoVRegs property (or set it without allocating the vregs) 349 // then report an error. 350 if (MF.getProperties().hasProperty( 351 MachineFunctionProperties::Property::NoVRegs) && 352 MRI->getNumVirtRegs()) 353 report("Function has NoVRegs property but there are VReg operands", &MF); 354 } 355 356 unsigned MachineVerifier::verify(MachineFunction &MF) { 357 foundErrors = 0; 358 359 this->MF = &MF; 360 TM = &MF.getTarget(); 361 TII = MF.getSubtarget().getInstrInfo(); 362 TRI = MF.getSubtarget().getRegisterInfo(); 363 MRI = &MF.getRegInfo(); 364 365 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 366 MachineFunctionProperties::Property::FailedISel); 367 isFunctionRegBankSelected = 368 !isFunctionFailedISel && 369 MF.getProperties().hasProperty( 370 MachineFunctionProperties::Property::RegBankSelected); 371 isFunctionSelected = !isFunctionFailedISel && 372 MF.getProperties().hasProperty( 373 MachineFunctionProperties::Property::Selected); 374 LiveVars = nullptr; 375 LiveInts = nullptr; 376 LiveStks = nullptr; 377 Indexes = nullptr; 378 if (PASS) { 379 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 380 // We don't want to verify LiveVariables if LiveIntervals is available. 381 if (!LiveInts) 382 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 383 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 384 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 385 } 386 387 verifySlotIndexes(); 388 389 verifyProperties(MF); 390 391 visitMachineFunctionBefore(); 392 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 393 MFI!=MFE; ++MFI) { 394 visitMachineBasicBlockBefore(&*MFI); 395 // Keep track of the current bundle header. 396 const MachineInstr *CurBundle = nullptr; 397 // Do we expect the next instruction to be part of the same bundle? 398 bool InBundle = false; 399 400 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 401 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 402 if (MBBI->getParent() != &*MFI) { 403 report("Bad instruction parent pointer", &*MFI); 404 errs() << "Instruction: " << *MBBI; 405 continue; 406 } 407 408 // Check for consistent bundle flags. 409 if (InBundle && !MBBI->isBundledWithPred()) 410 report("Missing BundledPred flag, " 411 "BundledSucc was set on predecessor", 412 &*MBBI); 413 if (!InBundle && MBBI->isBundledWithPred()) 414 report("BundledPred flag is set, " 415 "but BundledSucc not set on predecessor", 416 &*MBBI); 417 418 // Is this a bundle header? 419 if (!MBBI->isInsideBundle()) { 420 if (CurBundle) 421 visitMachineBundleAfter(CurBundle); 422 CurBundle = &*MBBI; 423 visitMachineBundleBefore(CurBundle); 424 } else if (!CurBundle) 425 report("No bundle header", &*MBBI); 426 visitMachineInstrBefore(&*MBBI); 427 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 428 const MachineInstr &MI = *MBBI; 429 const MachineOperand &Op = MI.getOperand(I); 430 if (Op.getParent() != &MI) { 431 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 432 // functions when replacing operands of a MachineInstr. 433 report("Instruction has operand with wrong parent set", &MI); 434 } 435 436 visitMachineOperand(&Op, I); 437 } 438 439 visitMachineInstrAfter(&*MBBI); 440 441 // Was this the last bundled instruction? 442 InBundle = MBBI->isBundledWithSucc(); 443 } 444 if (CurBundle) 445 visitMachineBundleAfter(CurBundle); 446 if (InBundle) 447 report("BundledSucc flag set on last instruction in block", &MFI->back()); 448 visitMachineBasicBlockAfter(&*MFI); 449 } 450 visitMachineFunctionAfter(); 451 452 // Clean up. 453 regsLive.clear(); 454 regsDefined.clear(); 455 regsDead.clear(); 456 regsKilled.clear(); 457 regMasks.clear(); 458 MBBInfoMap.clear(); 459 460 return foundErrors; 461 } 462 463 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 464 assert(MF); 465 errs() << '\n'; 466 if (!foundErrors++) { 467 if (Banner) 468 errs() << "# " << Banner << '\n'; 469 if (LiveInts != nullptr) 470 LiveInts->print(errs()); 471 else 472 MF->print(errs(), Indexes); 473 } 474 errs() << "*** Bad machine code: " << msg << " ***\n" 475 << "- function: " << MF->getName() << "\n"; 476 } 477 478 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 479 assert(MBB); 480 report(msg, MBB->getParent()); 481 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 482 << MBB->getName() << " (" << (const void *)MBB << ')'; 483 if (Indexes) 484 errs() << " [" << Indexes->getMBBStartIdx(MBB) 485 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 486 errs() << '\n'; 487 } 488 489 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 490 assert(MI); 491 report(msg, MI->getParent()); 492 errs() << "- instruction: "; 493 if (Indexes && Indexes->hasIndex(*MI)) 494 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 495 MI->print(errs(), /*SkipOpers=*/true); 496 } 497 498 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 499 unsigned MONum, LLT MOVRegType) { 500 assert(MO); 501 report(msg, MO->getParent()); 502 errs() << "- operand " << MONum << ": "; 503 MO->print(errs(), MOVRegType, TRI); 504 errs() << "\n"; 505 } 506 507 void MachineVerifier::report_context(SlotIndex Pos) const { 508 errs() << "- at: " << Pos << '\n'; 509 } 510 511 void MachineVerifier::report_context(const LiveInterval &LI) const { 512 errs() << "- interval: " << LI << '\n'; 513 } 514 515 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 516 LaneBitmask LaneMask) const { 517 report_context_liverange(LR); 518 report_context_vreg_regunit(VRegUnit); 519 if (LaneMask.any()) 520 report_context_lanemask(LaneMask); 521 } 522 523 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 524 errs() << "- segment: " << S << '\n'; 525 } 526 527 void MachineVerifier::report_context(const VNInfo &VNI) const { 528 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 529 } 530 531 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 532 errs() << "- liverange: " << LR << '\n'; 533 } 534 535 void MachineVerifier::report_context_vreg(unsigned VReg) const { 536 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 537 } 538 539 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 540 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 541 report_context_vreg(VRegOrUnit); 542 } else { 543 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 544 } 545 } 546 547 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 548 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 549 } 550 551 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 552 BBInfo &MInfo = MBBInfoMap[MBB]; 553 if (!MInfo.reachable) { 554 MInfo.reachable = true; 555 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 556 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 557 markReachable(*SuI); 558 } 559 } 560 561 void MachineVerifier::visitMachineFunctionBefore() { 562 lastIndex = SlotIndex(); 563 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 564 : TRI->getReservedRegs(*MF); 565 566 if (!MF->empty()) 567 markReachable(&MF->front()); 568 569 // Build a set of the basic blocks in the function. 570 FunctionBlocks.clear(); 571 for (const auto &MBB : *MF) { 572 FunctionBlocks.insert(&MBB); 573 BBInfo &MInfo = MBBInfoMap[&MBB]; 574 575 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 576 if (MInfo.Preds.size() != MBB.pred_size()) 577 report("MBB has duplicate entries in its predecessor list.", &MBB); 578 579 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 580 if (MInfo.Succs.size() != MBB.succ_size()) 581 report("MBB has duplicate entries in its successor list.", &MBB); 582 } 583 584 // Check that the register use lists are sane. 585 MRI->verifyUseLists(); 586 587 if (!MF->empty()) 588 verifyStackFrame(); 589 } 590 591 // Does iterator point to a and b as the first two elements? 592 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 593 const MachineBasicBlock *a, const MachineBasicBlock *b) { 594 if (*i == a) 595 return *++i == b; 596 if (*i == b) 597 return *++i == a; 598 return false; 599 } 600 601 void 602 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 603 FirstTerminator = nullptr; 604 605 if (!MF->getProperties().hasProperty( 606 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 607 // If this block has allocatable physical registers live-in, check that 608 // it is an entry block or landing pad. 609 for (const auto &LI : MBB->liveins()) { 610 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 611 MBB->getIterator() != MBB->getParent()->begin()) { 612 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 613 } 614 } 615 } 616 617 // Count the number of landing pad successors. 618 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 619 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 620 E = MBB->succ_end(); I != E; ++I) { 621 if ((*I)->isEHPad()) 622 LandingPadSuccs.insert(*I); 623 if (!FunctionBlocks.count(*I)) 624 report("MBB has successor that isn't part of the function.", MBB); 625 if (!MBBInfoMap[*I].Preds.count(MBB)) { 626 report("Inconsistent CFG", MBB); 627 errs() << "MBB is not in the predecessor list of the successor " 628 << printMBBReference(*(*I)) << ".\n"; 629 } 630 } 631 632 // Check the predecessor list. 633 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 634 E = MBB->pred_end(); I != E; ++I) { 635 if (!FunctionBlocks.count(*I)) 636 report("MBB has predecessor that isn't part of the function.", MBB); 637 if (!MBBInfoMap[*I].Succs.count(MBB)) { 638 report("Inconsistent CFG", MBB); 639 errs() << "MBB is not in the successor list of the predecessor " 640 << printMBBReference(*(*I)) << ".\n"; 641 } 642 } 643 644 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 645 const BasicBlock *BB = MBB->getBasicBlock(); 646 const Function &F = MF->getFunction(); 647 if (LandingPadSuccs.size() > 1 && 648 !(AsmInfo && 649 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 650 BB && isa<SwitchInst>(BB->getTerminator())) && 651 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 652 report("MBB has more than one landing pad successor", MBB); 653 654 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 655 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 656 SmallVector<MachineOperand, 4> Cond; 657 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 658 Cond)) { 659 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 660 // check whether its answers match up with reality. 661 if (!TBB && !FBB) { 662 // Block falls through to its successor. 663 MachineFunction::const_iterator MBBI = MBB->getIterator(); 664 ++MBBI; 665 if (MBBI == MF->end()) { 666 // It's possible that the block legitimately ends with a noreturn 667 // call or an unreachable, in which case it won't actually fall 668 // out the bottom of the function. 669 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 670 // It's possible that the block legitimately ends with a noreturn 671 // call or an unreachable, in which case it won't actuall fall 672 // out of the block. 673 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 674 report("MBB exits via unconditional fall-through but doesn't have " 675 "exactly one CFG successor!", MBB); 676 } else if (!MBB->isSuccessor(&*MBBI)) { 677 report("MBB exits via unconditional fall-through but its successor " 678 "differs from its CFG successor!", MBB); 679 } 680 if (!MBB->empty() && MBB->back().isBarrier() && 681 !TII->isPredicated(MBB->back())) { 682 report("MBB exits via unconditional fall-through but ends with a " 683 "barrier instruction!", MBB); 684 } 685 if (!Cond.empty()) { 686 report("MBB exits via unconditional fall-through but has a condition!", 687 MBB); 688 } 689 } else if (TBB && !FBB && Cond.empty()) { 690 // Block unconditionally branches somewhere. 691 // If the block has exactly one successor, that happens to be a 692 // landingpad, accept it as valid control flow. 693 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 694 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 695 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 696 report("MBB exits via unconditional branch but doesn't have " 697 "exactly one CFG successor!", MBB); 698 } else if (!MBB->isSuccessor(TBB)) { 699 report("MBB exits via unconditional branch but the CFG " 700 "successor doesn't match the actual successor!", MBB); 701 } 702 if (MBB->empty()) { 703 report("MBB exits via unconditional branch but doesn't contain " 704 "any instructions!", MBB); 705 } else if (!MBB->back().isBarrier()) { 706 report("MBB exits via unconditional branch but doesn't end with a " 707 "barrier instruction!", MBB); 708 } else if (!MBB->back().isTerminator()) { 709 report("MBB exits via unconditional branch but the branch isn't a " 710 "terminator instruction!", MBB); 711 } 712 } else if (TBB && !FBB && !Cond.empty()) { 713 // Block conditionally branches somewhere, otherwise falls through. 714 MachineFunction::const_iterator MBBI = MBB->getIterator(); 715 ++MBBI; 716 if (MBBI == MF->end()) { 717 report("MBB conditionally falls through out of function!", MBB); 718 } else if (MBB->succ_size() == 1) { 719 // A conditional branch with only one successor is weird, but allowed. 720 if (&*MBBI != TBB) 721 report("MBB exits via conditional branch/fall-through but only has " 722 "one CFG successor!", MBB); 723 else if (TBB != *MBB->succ_begin()) 724 report("MBB exits via conditional branch/fall-through but the CFG " 725 "successor don't match the actual successor!", MBB); 726 } else if (MBB->succ_size() != 2) { 727 report("MBB exits via conditional branch/fall-through but doesn't have " 728 "exactly two CFG successors!", MBB); 729 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 730 report("MBB exits via conditional branch/fall-through but the CFG " 731 "successors don't match the actual successors!", MBB); 732 } 733 if (MBB->empty()) { 734 report("MBB exits via conditional branch/fall-through but doesn't " 735 "contain any instructions!", MBB); 736 } else if (MBB->back().isBarrier()) { 737 report("MBB exits via conditional branch/fall-through but ends with a " 738 "barrier instruction!", MBB); 739 } else if (!MBB->back().isTerminator()) { 740 report("MBB exits via conditional branch/fall-through but the branch " 741 "isn't a terminator instruction!", MBB); 742 } 743 } else if (TBB && FBB) { 744 // Block conditionally branches somewhere, otherwise branches 745 // somewhere else. 746 if (MBB->succ_size() == 1) { 747 // A conditional branch with only one successor is weird, but allowed. 748 if (FBB != TBB) 749 report("MBB exits via conditional branch/branch through but only has " 750 "one CFG successor!", MBB); 751 else if (TBB != *MBB->succ_begin()) 752 report("MBB exits via conditional branch/branch through but the CFG " 753 "successor don't match the actual successor!", MBB); 754 } else if (MBB->succ_size() != 2) { 755 report("MBB exits via conditional branch/branch but doesn't have " 756 "exactly two CFG successors!", MBB); 757 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 758 report("MBB exits via conditional branch/branch but the CFG " 759 "successors don't match the actual successors!", MBB); 760 } 761 if (MBB->empty()) { 762 report("MBB exits via conditional branch/branch but doesn't " 763 "contain any instructions!", MBB); 764 } else if (!MBB->back().isBarrier()) { 765 report("MBB exits via conditional branch/branch but doesn't end with a " 766 "barrier instruction!", MBB); 767 } else if (!MBB->back().isTerminator()) { 768 report("MBB exits via conditional branch/branch but the branch " 769 "isn't a terminator instruction!", MBB); 770 } 771 if (Cond.empty()) { 772 report("MBB exits via conditinal branch/branch but there's no " 773 "condition!", MBB); 774 } 775 } else { 776 report("AnalyzeBranch returned invalid data!", MBB); 777 } 778 } 779 780 regsLive.clear(); 781 if (MRI->tracksLiveness()) { 782 for (const auto &LI : MBB->liveins()) { 783 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 784 report("MBB live-in list contains non-physical register", MBB); 785 continue; 786 } 787 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 788 SubRegs.isValid(); ++SubRegs) 789 regsLive.insert(*SubRegs); 790 } 791 } 792 793 const MachineFrameInfo &MFI = MF->getFrameInfo(); 794 BitVector PR = MFI.getPristineRegs(*MF); 795 for (unsigned I : PR.set_bits()) { 796 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 797 SubRegs.isValid(); ++SubRegs) 798 regsLive.insert(*SubRegs); 799 } 800 801 regsKilled.clear(); 802 regsDefined.clear(); 803 804 if (Indexes) 805 lastIndex = Indexes->getMBBStartIdx(MBB); 806 } 807 808 // This function gets called for all bundle headers, including normal 809 // stand-alone unbundled instructions. 810 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 811 if (Indexes && Indexes->hasIndex(*MI)) { 812 SlotIndex idx = Indexes->getInstructionIndex(*MI); 813 if (!(idx > lastIndex)) { 814 report("Instruction index out of order", MI); 815 errs() << "Last instruction was at " << lastIndex << '\n'; 816 } 817 lastIndex = idx; 818 } 819 820 // Ensure non-terminators don't follow terminators. 821 // Ignore predicated terminators formed by if conversion. 822 // FIXME: If conversion shouldn't need to violate this rule. 823 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 824 if (!FirstTerminator) 825 FirstTerminator = MI; 826 } else if (FirstTerminator) { 827 report("Non-terminator instruction after the first terminator", MI); 828 errs() << "First terminator was:\t" << *FirstTerminator; 829 } 830 } 831 832 // The operands on an INLINEASM instruction must follow a template. 833 // Verify that the flag operands make sense. 834 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 835 // The first two operands on INLINEASM are the asm string and global flags. 836 if (MI->getNumOperands() < 2) { 837 report("Too few operands on inline asm", MI); 838 return; 839 } 840 if (!MI->getOperand(0).isSymbol()) 841 report("Asm string must be an external symbol", MI); 842 if (!MI->getOperand(1).isImm()) 843 report("Asm flags must be an immediate", MI); 844 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 845 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 846 // and Extra_IsConvergent = 32. 847 if (!isUInt<6>(MI->getOperand(1).getImm())) 848 report("Unknown asm flags", &MI->getOperand(1), 1); 849 850 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 851 852 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 853 unsigned NumOps; 854 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 855 const MachineOperand &MO = MI->getOperand(OpNo); 856 // There may be implicit ops after the fixed operands. 857 if (!MO.isImm()) 858 break; 859 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 860 } 861 862 if (OpNo > MI->getNumOperands()) 863 report("Missing operands in last group", MI); 864 865 // An optional MDNode follows the groups. 866 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 867 ++OpNo; 868 869 // All trailing operands must be implicit registers. 870 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 871 const MachineOperand &MO = MI->getOperand(OpNo); 872 if (!MO.isReg() || !MO.isImplicit()) 873 report("Expected implicit register after groups", &MO, OpNo); 874 } 875 } 876 877 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 878 const MCInstrDesc &MCID = MI->getDesc(); 879 if (MI->getNumOperands() < MCID.getNumOperands()) { 880 report("Too few operands", MI); 881 errs() << MCID.getNumOperands() << " operands expected, but " 882 << MI->getNumOperands() << " given.\n"; 883 } 884 885 if (MI->isPHI() && MF->getProperties().hasProperty( 886 MachineFunctionProperties::Property::NoPHIs)) 887 report("Found PHI instruction with NoPHIs property set", MI); 888 889 // Check the tied operands. 890 if (MI->isInlineAsm()) 891 verifyInlineAsm(MI); 892 893 // Check the MachineMemOperands for basic consistency. 894 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 895 E = MI->memoperands_end(); 896 I != E; ++I) { 897 if ((*I)->isLoad() && !MI->mayLoad()) 898 report("Missing mayLoad flag", MI); 899 if ((*I)->isStore() && !MI->mayStore()) 900 report("Missing mayStore flag", MI); 901 } 902 903 // Debug values must not have a slot index. 904 // Other instructions must have one, unless they are inside a bundle. 905 if (LiveInts) { 906 bool mapped = !LiveInts->isNotInMIMap(*MI); 907 if (MI->isDebugInstr()) { 908 if (mapped) 909 report("Debug instruction has a slot index", MI); 910 } else if (MI->isInsideBundle()) { 911 if (mapped) 912 report("Instruction inside bundle has a slot index", MI); 913 } else { 914 if (!mapped) 915 report("Missing slot index", MI); 916 } 917 } 918 919 if (isPreISelGenericOpcode(MCID.getOpcode())) { 920 if (isFunctionSelected) 921 report("Unexpected generic instruction in a Selected function", MI); 922 923 // Check types. 924 SmallVector<LLT, 4> Types; 925 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) { 926 if (!MCID.OpInfo[I].isGenericType()) 927 continue; 928 // Generic instructions specify type equality constraints between some of 929 // their operands. Make sure these are consistent. 930 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 931 Types.resize(std::max(TypeIdx + 1, Types.size())); 932 933 const MachineOperand *MO = &MI->getOperand(I); 934 LLT OpTy = MRI->getType(MO->getReg()); 935 // Don't report a type mismatch if there is no actual mismatch, only a 936 // type missing, to reduce noise: 937 if (OpTy.isValid()) { 938 // Only the first valid type for a type index will be printed: don't 939 // overwrite it later so it's always clear which type was expected: 940 if (!Types[TypeIdx].isValid()) 941 Types[TypeIdx] = OpTy; 942 else if (Types[TypeIdx] != OpTy) 943 report("Type mismatch in generic instruction", MO, I, OpTy); 944 } else { 945 // Generic instructions must have types attached to their operands. 946 report("Generic instruction is missing a virtual register type", MO, I); 947 } 948 } 949 950 // Generic opcodes must not have physical register operands. 951 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 952 const MachineOperand *MO = &MI->getOperand(I); 953 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 954 report("Generic instruction cannot have physical register", MO, I); 955 } 956 } 957 958 StringRef ErrorInfo; 959 if (!TII->verifyInstruction(*MI, ErrorInfo)) 960 report(ErrorInfo.data(), MI); 961 962 // Verify properties of various specific instruction types 963 switch(MI->getOpcode()) { 964 default: 965 break; 966 case TargetOpcode::G_LOAD: 967 case TargetOpcode::G_STORE: 968 // Generic loads and stores must have a single MachineMemOperand 969 // describing that access. 970 if (!MI->hasOneMemOperand()) 971 report("Generic instruction accessing memory must have one mem operand", 972 MI); 973 break; 974 case TargetOpcode::G_PHI: { 975 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 976 if (!DstTy.isValid() || 977 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 978 [this, &DstTy](const MachineOperand &MO) { 979 if (!MO.isReg()) 980 return true; 981 LLT Ty = MRI->getType(MO.getReg()); 982 if (!Ty.isValid() || (Ty != DstTy)) 983 return false; 984 return true; 985 })) 986 report("Generic Instruction G_PHI has operands with incompatible/missing " 987 "types", 988 MI); 989 break; 990 } 991 case TargetOpcode::G_SEXT: 992 case TargetOpcode::G_ZEXT: 993 case TargetOpcode::G_ANYEXT: 994 case TargetOpcode::G_TRUNC: 995 case TargetOpcode::G_FPEXT: 996 case TargetOpcode::G_FPTRUNC: { 997 // Number of operands and presense of types is already checked (and 998 // reported in case of any issues), so no need to report them again. As 999 // we're trying to report as many issues as possible at once, however, the 1000 // instructions aren't guaranteed to have the right number of operands or 1001 // types attached to them at this point 1002 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1003 if (MI->getNumOperands() < MCID.getNumOperands()) 1004 break; 1005 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1006 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1007 if (!DstTy.isValid() || !SrcTy.isValid()) 1008 break; 1009 1010 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1011 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1012 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1013 report("Generic extend/truncate can not operate on pointers", MI); 1014 1015 if (DstTy.isVector() != SrcTy.isVector()) { 1016 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1017 // Generally we try to report as many issues as possible at once, but in 1018 // this case it's not clear what should we be comparing the size of the 1019 // scalar with: the size of the whole vector or its lane. Instead of 1020 // making an arbitrary choice and emitting not so helpful message, let's 1021 // avoid the extra noise and stop here. 1022 break; 1023 } 1024 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1025 report("Generic vector extend/truncate must preserve number of lanes", 1026 MI); 1027 unsigned DstSize = DstElTy.getSizeInBits(); 1028 unsigned SrcSize = SrcElTy.getSizeInBits(); 1029 switch (MI->getOpcode()) { 1030 default: 1031 if (DstSize <= SrcSize) 1032 report("Generic extend has destination type no larger than source", MI); 1033 break; 1034 case TargetOpcode::G_TRUNC: 1035 case TargetOpcode::G_FPTRUNC: 1036 if (DstSize >= SrcSize) 1037 report("Generic truncate has destination type no smaller than source", 1038 MI); 1039 break; 1040 } 1041 break; 1042 } 1043 case TargetOpcode::COPY: { 1044 if (foundErrors) 1045 break; 1046 const MachineOperand &DstOp = MI->getOperand(0); 1047 const MachineOperand &SrcOp = MI->getOperand(1); 1048 LLT DstTy = MRI->getType(DstOp.getReg()); 1049 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1050 if (SrcTy.isValid() && DstTy.isValid()) { 1051 // If both types are valid, check that the types are the same. 1052 if (SrcTy != DstTy) { 1053 report("Copy Instruction is illegal with mismatching types", MI); 1054 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1055 } 1056 } 1057 if (SrcTy.isValid() || DstTy.isValid()) { 1058 // If one of them have valid types, let's just check they have the same 1059 // size. 1060 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1061 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1062 assert(SrcSize && "Expecting size here"); 1063 assert(DstSize && "Expecting size here"); 1064 if (SrcSize != DstSize) 1065 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1066 report("Copy Instruction is illegal with mismatching sizes", MI); 1067 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1068 << "\n"; 1069 } 1070 } 1071 break; 1072 } 1073 case TargetOpcode::STATEPOINT: 1074 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1075 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1076 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1077 report("meta operands to STATEPOINT not constant!", MI); 1078 break; 1079 1080 auto VerifyStackMapConstant = [&](unsigned Offset) { 1081 if (!MI->getOperand(Offset).isImm() || 1082 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1083 !MI->getOperand(Offset + 1).isImm()) 1084 report("stack map constant to STATEPOINT not well formed!", MI); 1085 }; 1086 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1087 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1088 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1089 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1090 1091 // TODO: verify we have properly encoded deopt arguments 1092 }; 1093 } 1094 1095 void 1096 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1097 const MachineInstr *MI = MO->getParent(); 1098 const MCInstrDesc &MCID = MI->getDesc(); 1099 unsigned NumDefs = MCID.getNumDefs(); 1100 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1101 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1102 1103 // The first MCID.NumDefs operands must be explicit register defines 1104 if (MONum < NumDefs) { 1105 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1106 if (!MO->isReg()) 1107 report("Explicit definition must be a register", MO, MONum); 1108 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1109 report("Explicit definition marked as use", MO, MONum); 1110 else if (MO->isImplicit()) 1111 report("Explicit definition marked as implicit", MO, MONum); 1112 } else if (MONum < MCID.getNumOperands()) { 1113 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1114 // Don't check if it's the last operand in a variadic instruction. See, 1115 // e.g., LDM_RET in the arm back end. 1116 if (MO->isReg() && 1117 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1118 if (MO->isDef() && !MCOI.isOptionalDef()) 1119 report("Explicit operand marked as def", MO, MONum); 1120 if (MO->isImplicit()) 1121 report("Explicit operand marked as implicit", MO, MONum); 1122 } 1123 1124 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1125 if (TiedTo != -1) { 1126 if (!MO->isReg()) 1127 report("Tied use must be a register", MO, MONum); 1128 else if (!MO->isTied()) 1129 report("Operand should be tied", MO, MONum); 1130 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1131 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1132 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1133 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1134 if (!MOTied.isReg()) 1135 report("Tied counterpart must be a register", &MOTied, TiedTo); 1136 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1137 MO->getReg() != MOTied.getReg()) 1138 report("Tied physical registers must match.", &MOTied, TiedTo); 1139 } 1140 } else if (MO->isReg() && MO->isTied()) 1141 report("Explicit operand should not be tied", MO, MONum); 1142 } else { 1143 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1144 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1145 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1146 } 1147 1148 switch (MO->getType()) { 1149 case MachineOperand::MO_Register: { 1150 const unsigned Reg = MO->getReg(); 1151 if (!Reg) 1152 return; 1153 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1154 checkLiveness(MO, MONum); 1155 1156 // Verify the consistency of tied operands. 1157 if (MO->isTied()) { 1158 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1159 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1160 if (!OtherMO.isReg()) 1161 report("Must be tied to a register", MO, MONum); 1162 if (!OtherMO.isTied()) 1163 report("Missing tie flags on tied operand", MO, MONum); 1164 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1165 report("Inconsistent tie links", MO, MONum); 1166 if (MONum < MCID.getNumDefs()) { 1167 if (OtherIdx < MCID.getNumOperands()) { 1168 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1169 report("Explicit def tied to explicit use without tie constraint", 1170 MO, MONum); 1171 } else { 1172 if (!OtherMO.isImplicit()) 1173 report("Explicit def should be tied to implicit use", MO, MONum); 1174 } 1175 } 1176 } 1177 1178 // Verify two-address constraints after leaving SSA form. 1179 unsigned DefIdx; 1180 if (!MRI->isSSA() && MO->isUse() && 1181 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1182 Reg != MI->getOperand(DefIdx).getReg()) 1183 report("Two-address instruction operands must be identical", MO, MONum); 1184 1185 // Check register classes. 1186 unsigned SubIdx = MO->getSubReg(); 1187 1188 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1189 if (SubIdx) { 1190 report("Illegal subregister index for physical register", MO, MONum); 1191 return; 1192 } 1193 if (MONum < MCID.getNumOperands()) { 1194 if (const TargetRegisterClass *DRC = 1195 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1196 if (!DRC->contains(Reg)) { 1197 report("Illegal physical register for instruction", MO, MONum); 1198 errs() << printReg(Reg, TRI) << " is not a " 1199 << TRI->getRegClassName(DRC) << " register.\n"; 1200 } 1201 } 1202 } 1203 if (MO->isRenamable()) { 1204 if (MRI->isReserved(Reg)) { 1205 report("isRenamable set on reserved register", MO, MONum); 1206 return; 1207 } 1208 } 1209 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1210 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1211 return; 1212 } 1213 } else { 1214 // Virtual register. 1215 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1216 if (!RC) { 1217 // This is a generic virtual register. 1218 1219 // If we're post-Select, we can't have gvregs anymore. 1220 if (isFunctionSelected) { 1221 report("Generic virtual register invalid in a Selected function", 1222 MO, MONum); 1223 return; 1224 } 1225 1226 // The gvreg must have a type and it must not have a SubIdx. 1227 LLT Ty = MRI->getType(Reg); 1228 if (!Ty.isValid()) { 1229 report("Generic virtual register must have a valid type", MO, 1230 MONum); 1231 return; 1232 } 1233 1234 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1235 1236 // If we're post-RegBankSelect, the gvreg must have a bank. 1237 if (!RegBank && isFunctionRegBankSelected) { 1238 report("Generic virtual register must have a bank in a " 1239 "RegBankSelected function", 1240 MO, MONum); 1241 return; 1242 } 1243 1244 // Make sure the register fits into its register bank if any. 1245 if (RegBank && Ty.isValid() && 1246 RegBank->getSize() < Ty.getSizeInBits()) { 1247 report("Register bank is too small for virtual register", MO, 1248 MONum); 1249 errs() << "Register bank " << RegBank->getName() << " too small(" 1250 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1251 << "-bits\n"; 1252 return; 1253 } 1254 if (SubIdx) { 1255 report("Generic virtual register does not subregister index", MO, 1256 MONum); 1257 return; 1258 } 1259 1260 // If this is a target specific instruction and this operand 1261 // has register class constraint, the virtual register must 1262 // comply to it. 1263 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1264 MONum < MCID.getNumOperands() && 1265 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1266 report("Virtual register does not match instruction constraint", MO, 1267 MONum); 1268 errs() << "Expect register class " 1269 << TRI->getRegClassName( 1270 TII->getRegClass(MCID, MONum, TRI, *MF)) 1271 << " but got nothing\n"; 1272 return; 1273 } 1274 1275 break; 1276 } 1277 if (SubIdx) { 1278 const TargetRegisterClass *SRC = 1279 TRI->getSubClassWithSubReg(RC, SubIdx); 1280 if (!SRC) { 1281 report("Invalid subregister index for virtual register", MO, MONum); 1282 errs() << "Register class " << TRI->getRegClassName(RC) 1283 << " does not support subreg index " << SubIdx << "\n"; 1284 return; 1285 } 1286 if (RC != SRC) { 1287 report("Invalid register class for subregister index", MO, MONum); 1288 errs() << "Register class " << TRI->getRegClassName(RC) 1289 << " does not fully support subreg index " << SubIdx << "\n"; 1290 return; 1291 } 1292 } 1293 if (MONum < MCID.getNumOperands()) { 1294 if (const TargetRegisterClass *DRC = 1295 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1296 if (SubIdx) { 1297 const TargetRegisterClass *SuperRC = 1298 TRI->getLargestLegalSuperClass(RC, *MF); 1299 if (!SuperRC) { 1300 report("No largest legal super class exists.", MO, MONum); 1301 return; 1302 } 1303 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1304 if (!DRC) { 1305 report("No matching super-reg register class.", MO, MONum); 1306 return; 1307 } 1308 } 1309 if (!RC->hasSuperClassEq(DRC)) { 1310 report("Illegal virtual register for instruction", MO, MONum); 1311 errs() << "Expected a " << TRI->getRegClassName(DRC) 1312 << " register, but got a " << TRI->getRegClassName(RC) 1313 << " register\n"; 1314 } 1315 } 1316 } 1317 } 1318 break; 1319 } 1320 1321 case MachineOperand::MO_RegisterMask: 1322 regMasks.push_back(MO->getRegMask()); 1323 break; 1324 1325 case MachineOperand::MO_MachineBasicBlock: 1326 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1327 report("PHI operand is not in the CFG", MO, MONum); 1328 break; 1329 1330 case MachineOperand::MO_FrameIndex: 1331 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1332 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1333 int FI = MO->getIndex(); 1334 LiveInterval &LI = LiveStks->getInterval(FI); 1335 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1336 1337 bool stores = MI->mayStore(); 1338 bool loads = MI->mayLoad(); 1339 // For a memory-to-memory move, we need to check if the frame 1340 // index is used for storing or loading, by inspecting the 1341 // memory operands. 1342 if (stores && loads) { 1343 for (auto *MMO : MI->memoperands()) { 1344 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1345 if (PSV == nullptr) continue; 1346 const FixedStackPseudoSourceValue *Value = 1347 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1348 if (Value == nullptr) continue; 1349 if (Value->getFrameIndex() != FI) continue; 1350 1351 if (MMO->isStore()) 1352 loads = false; 1353 else 1354 stores = false; 1355 break; 1356 } 1357 if (loads == stores) 1358 report("Missing fixed stack memoperand.", MI); 1359 } 1360 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1361 report("Instruction loads from dead spill slot", MO, MONum); 1362 errs() << "Live stack: " << LI << '\n'; 1363 } 1364 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1365 report("Instruction stores to dead spill slot", MO, MONum); 1366 errs() << "Live stack: " << LI << '\n'; 1367 } 1368 } 1369 break; 1370 1371 default: 1372 break; 1373 } 1374 } 1375 1376 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1377 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1378 LaneBitmask LaneMask) { 1379 LiveQueryResult LRQ = LR.Query(UseIdx); 1380 // Check if we have a segment at the use, note however that we only need one 1381 // live subregister range, the others may be dead. 1382 if (!LRQ.valueIn() && LaneMask.none()) { 1383 report("No live segment at use", MO, MONum); 1384 report_context_liverange(LR); 1385 report_context_vreg_regunit(VRegOrUnit); 1386 report_context(UseIdx); 1387 } 1388 if (MO->isKill() && !LRQ.isKill()) { 1389 report("Live range continues after kill flag", MO, MONum); 1390 report_context_liverange(LR); 1391 report_context_vreg_regunit(VRegOrUnit); 1392 if (LaneMask.any()) 1393 report_context_lanemask(LaneMask); 1394 report_context(UseIdx); 1395 } 1396 } 1397 1398 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1399 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1400 bool SubRangeCheck, LaneBitmask LaneMask) { 1401 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1402 assert(VNI && "NULL valno is not allowed"); 1403 if (VNI->def != DefIdx) { 1404 report("Inconsistent valno->def", MO, MONum); 1405 report_context_liverange(LR); 1406 report_context_vreg_regunit(VRegOrUnit); 1407 if (LaneMask.any()) 1408 report_context_lanemask(LaneMask); 1409 report_context(*VNI); 1410 report_context(DefIdx); 1411 } 1412 } else { 1413 report("No live segment at def", MO, MONum); 1414 report_context_liverange(LR); 1415 report_context_vreg_regunit(VRegOrUnit); 1416 if (LaneMask.any()) 1417 report_context_lanemask(LaneMask); 1418 report_context(DefIdx); 1419 } 1420 // Check that, if the dead def flag is present, LiveInts agree. 1421 if (MO->isDead()) { 1422 LiveQueryResult LRQ = LR.Query(DefIdx); 1423 if (!LRQ.isDeadDef()) { 1424 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1425 "Expecting a virtual register."); 1426 // A dead subreg def only tells us that the specific subreg is dead. There 1427 // could be other non-dead defs of other subregs, or we could have other 1428 // parts of the register being live through the instruction. So unless we 1429 // are checking liveness for a subrange it is ok for the live range to 1430 // continue, given that we have a dead def of a subregister. 1431 if (SubRangeCheck || MO->getSubReg() == 0) { 1432 report("Live range continues after dead def flag", MO, MONum); 1433 report_context_liverange(LR); 1434 report_context_vreg_regunit(VRegOrUnit); 1435 if (LaneMask.any()) 1436 report_context_lanemask(LaneMask); 1437 } 1438 } 1439 } 1440 } 1441 1442 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1443 const MachineInstr *MI = MO->getParent(); 1444 const unsigned Reg = MO->getReg(); 1445 1446 // Both use and def operands can read a register. 1447 if (MO->readsReg()) { 1448 if (MO->isKill()) 1449 addRegWithSubRegs(regsKilled, Reg); 1450 1451 // Check that LiveVars knows this kill. 1452 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1453 MO->isKill()) { 1454 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1455 if (!is_contained(VI.Kills, MI)) 1456 report("Kill missing from LiveVariables", MO, MONum); 1457 } 1458 1459 // Check LiveInts liveness and kill. 1460 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1461 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1462 // Check the cached regunit intervals. 1463 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1464 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1465 if (MRI->isReservedRegUnit(*Units)) 1466 continue; 1467 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1468 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1469 } 1470 } 1471 1472 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1473 if (LiveInts->hasInterval(Reg)) { 1474 // This is a virtual register interval. 1475 const LiveInterval &LI = LiveInts->getInterval(Reg); 1476 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1477 1478 if (LI.hasSubRanges() && !MO->isDef()) { 1479 unsigned SubRegIdx = MO->getSubReg(); 1480 LaneBitmask MOMask = SubRegIdx != 0 1481 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1482 : MRI->getMaxLaneMaskForVReg(Reg); 1483 LaneBitmask LiveInMask; 1484 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1485 if ((MOMask & SR.LaneMask).none()) 1486 continue; 1487 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1488 LiveQueryResult LRQ = SR.Query(UseIdx); 1489 if (LRQ.valueIn()) 1490 LiveInMask |= SR.LaneMask; 1491 } 1492 // At least parts of the register has to be live at the use. 1493 if ((LiveInMask & MOMask).none()) { 1494 report("No live subrange at use", MO, MONum); 1495 report_context(LI); 1496 report_context(UseIdx); 1497 } 1498 } 1499 } else { 1500 report("Virtual register has no live interval", MO, MONum); 1501 } 1502 } 1503 } 1504 1505 // Use of a dead register. 1506 if (!regsLive.count(Reg)) { 1507 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1508 // Reserved registers may be used even when 'dead'. 1509 bool Bad = !isReserved(Reg); 1510 // We are fine if just any subregister has a defined value. 1511 if (Bad) { 1512 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1513 ++SubRegs) { 1514 if (regsLive.count(*SubRegs)) { 1515 Bad = false; 1516 break; 1517 } 1518 } 1519 } 1520 // If there is an additional implicit-use of a super register we stop 1521 // here. By definition we are fine if the super register is not 1522 // (completely) dead, if the complete super register is dead we will 1523 // get a report for its operand. 1524 if (Bad) { 1525 for (const MachineOperand &MOP : MI->uses()) { 1526 if (!MOP.isReg() || !MOP.isImplicit()) 1527 continue; 1528 1529 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1530 continue; 1531 1532 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1533 ++SubRegs) { 1534 if (*SubRegs == Reg) { 1535 Bad = false; 1536 break; 1537 } 1538 } 1539 } 1540 } 1541 if (Bad) 1542 report("Using an undefined physical register", MO, MONum); 1543 } else if (MRI->def_empty(Reg)) { 1544 report("Reading virtual register without a def", MO, MONum); 1545 } else { 1546 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1547 // We don't know which virtual registers are live in, so only complain 1548 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1549 // must be live in. PHI instructions are handled separately. 1550 if (MInfo.regsKilled.count(Reg)) 1551 report("Using a killed virtual register", MO, MONum); 1552 else if (!MI->isPHI()) 1553 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1554 } 1555 } 1556 } 1557 1558 if (MO->isDef()) { 1559 // Register defined. 1560 // TODO: verify that earlyclobber ops are not used. 1561 if (MO->isDead()) 1562 addRegWithSubRegs(regsDead, Reg); 1563 else 1564 addRegWithSubRegs(regsDefined, Reg); 1565 1566 // Verify SSA form. 1567 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1568 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1569 report("Multiple virtual register defs in SSA form", MO, MONum); 1570 1571 // Check LiveInts for a live segment, but only for virtual registers. 1572 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1573 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1574 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1575 1576 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1577 if (LiveInts->hasInterval(Reg)) { 1578 const LiveInterval &LI = LiveInts->getInterval(Reg); 1579 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1580 1581 if (LI.hasSubRanges()) { 1582 unsigned SubRegIdx = MO->getSubReg(); 1583 LaneBitmask MOMask = SubRegIdx != 0 1584 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1585 : MRI->getMaxLaneMaskForVReg(Reg); 1586 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1587 if ((SR.LaneMask & MOMask).none()) 1588 continue; 1589 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1590 } 1591 } 1592 } else { 1593 report("Virtual register has no Live interval", MO, MONum); 1594 } 1595 } 1596 } 1597 } 1598 } 1599 1600 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1601 1602 // This function gets called after visiting all instructions in a bundle. The 1603 // argument points to the bundle header. 1604 // Normal stand-alone instructions are also considered 'bundles', and this 1605 // function is called for all of them. 1606 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1607 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1608 set_union(MInfo.regsKilled, regsKilled); 1609 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1610 // Kill any masked registers. 1611 while (!regMasks.empty()) { 1612 const uint32_t *Mask = regMasks.pop_back_val(); 1613 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1614 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1615 MachineOperand::clobbersPhysReg(Mask, *I)) 1616 regsDead.push_back(*I); 1617 } 1618 set_subtract(regsLive, regsDead); regsDead.clear(); 1619 set_union(regsLive, regsDefined); regsDefined.clear(); 1620 } 1621 1622 void 1623 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1624 MBBInfoMap[MBB].regsLiveOut = regsLive; 1625 regsLive.clear(); 1626 1627 if (Indexes) { 1628 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1629 if (!(stop > lastIndex)) { 1630 report("Block ends before last instruction index", MBB); 1631 errs() << "Block ends at " << stop 1632 << " last instruction was at " << lastIndex << '\n'; 1633 } 1634 lastIndex = stop; 1635 } 1636 } 1637 1638 // Calculate the largest possible vregsPassed sets. These are the registers that 1639 // can pass through an MBB live, but may not be live every time. It is assumed 1640 // that all vregsPassed sets are empty before the call. 1641 void MachineVerifier::calcRegsPassed() { 1642 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1643 // have any vregsPassed. 1644 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1645 for (const auto &MBB : *MF) { 1646 BBInfo &MInfo = MBBInfoMap[&MBB]; 1647 if (!MInfo.reachable) 1648 continue; 1649 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1650 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1651 BBInfo &SInfo = MBBInfoMap[*SuI]; 1652 if (SInfo.addPassed(MInfo.regsLiveOut)) 1653 todo.insert(*SuI); 1654 } 1655 } 1656 1657 // Iteratively push vregsPassed to successors. This will converge to the same 1658 // final state regardless of DenseSet iteration order. 1659 while (!todo.empty()) { 1660 const MachineBasicBlock *MBB = *todo.begin(); 1661 todo.erase(MBB); 1662 BBInfo &MInfo = MBBInfoMap[MBB]; 1663 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1664 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1665 if (*SuI == MBB) 1666 continue; 1667 BBInfo &SInfo = MBBInfoMap[*SuI]; 1668 if (SInfo.addPassed(MInfo.vregsPassed)) 1669 todo.insert(*SuI); 1670 } 1671 } 1672 } 1673 1674 // Calculate the set of virtual registers that must be passed through each basic 1675 // block in order to satisfy the requirements of successor blocks. This is very 1676 // similar to calcRegsPassed, only backwards. 1677 void MachineVerifier::calcRegsRequired() { 1678 // First push live-in regs to predecessors' vregsRequired. 1679 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1680 for (const auto &MBB : *MF) { 1681 BBInfo &MInfo = MBBInfoMap[&MBB]; 1682 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1683 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1684 BBInfo &PInfo = MBBInfoMap[*PrI]; 1685 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1686 todo.insert(*PrI); 1687 } 1688 } 1689 1690 // Iteratively push vregsRequired to predecessors. This will converge to the 1691 // same final state regardless of DenseSet iteration order. 1692 while (!todo.empty()) { 1693 const MachineBasicBlock *MBB = *todo.begin(); 1694 todo.erase(MBB); 1695 BBInfo &MInfo = MBBInfoMap[MBB]; 1696 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1697 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1698 if (*PrI == MBB) 1699 continue; 1700 BBInfo &SInfo = MBBInfoMap[*PrI]; 1701 if (SInfo.addRequired(MInfo.vregsRequired)) 1702 todo.insert(*PrI); 1703 } 1704 } 1705 } 1706 1707 // Check PHI instructions at the beginning of MBB. It is assumed that 1708 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1709 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1710 BBInfo &MInfo = MBBInfoMap[&MBB]; 1711 1712 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1713 for (const MachineInstr &Phi : MBB) { 1714 if (!Phi.isPHI()) 1715 break; 1716 seen.clear(); 1717 1718 const MachineOperand &MODef = Phi.getOperand(0); 1719 if (!MODef.isReg() || !MODef.isDef()) { 1720 report("Expected first PHI operand to be a register def", &MODef, 0); 1721 continue; 1722 } 1723 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1724 MODef.isEarlyClobber() || MODef.isDebug()) 1725 report("Unexpected flag on PHI operand", &MODef, 0); 1726 unsigned DefReg = MODef.getReg(); 1727 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1728 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1729 1730 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1731 const MachineOperand &MO0 = Phi.getOperand(I); 1732 if (!MO0.isReg()) { 1733 report("Expected PHI operand to be a register", &MO0, I); 1734 continue; 1735 } 1736 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1737 MO0.isDebug() || MO0.isTied()) 1738 report("Unexpected flag on PHI operand", &MO0, I); 1739 1740 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1741 if (!MO1.isMBB()) { 1742 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1743 continue; 1744 } 1745 1746 const MachineBasicBlock &Pre = *MO1.getMBB(); 1747 if (!Pre.isSuccessor(&MBB)) { 1748 report("PHI input is not a predecessor block", &MO1, I + 1); 1749 continue; 1750 } 1751 1752 if (MInfo.reachable) { 1753 seen.insert(&Pre); 1754 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1755 if (!MO0.isUndef() && PrInfo.reachable && 1756 !PrInfo.isLiveOut(MO0.getReg())) 1757 report("PHI operand is not live-out from predecessor", &MO0, I); 1758 } 1759 } 1760 1761 // Did we see all predecessors? 1762 if (MInfo.reachable) { 1763 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1764 if (!seen.count(Pred)) { 1765 report("Missing PHI operand", &Phi); 1766 errs() << printMBBReference(*Pred) 1767 << " is a predecessor according to the CFG.\n"; 1768 } 1769 } 1770 } 1771 } 1772 } 1773 1774 void MachineVerifier::visitMachineFunctionAfter() { 1775 calcRegsPassed(); 1776 1777 for (const MachineBasicBlock &MBB : *MF) 1778 checkPHIOps(MBB); 1779 1780 // Now check liveness info if available 1781 calcRegsRequired(); 1782 1783 // Check for killed virtual registers that should be live out. 1784 for (const auto &MBB : *MF) { 1785 BBInfo &MInfo = MBBInfoMap[&MBB]; 1786 for (RegSet::iterator 1787 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1788 ++I) 1789 if (MInfo.regsKilled.count(*I)) { 1790 report("Virtual register killed in block, but needed live out.", &MBB); 1791 errs() << "Virtual register " << printReg(*I) 1792 << " is used after the block.\n"; 1793 } 1794 } 1795 1796 if (!MF->empty()) { 1797 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1798 for (RegSet::iterator 1799 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1800 ++I) { 1801 report("Virtual register defs don't dominate all uses.", MF); 1802 report_context_vreg(*I); 1803 } 1804 } 1805 1806 if (LiveVars) 1807 verifyLiveVariables(); 1808 if (LiveInts) 1809 verifyLiveIntervals(); 1810 } 1811 1812 void MachineVerifier::verifyLiveVariables() { 1813 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1814 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1815 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1816 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1817 for (const auto &MBB : *MF) { 1818 BBInfo &MInfo = MBBInfoMap[&MBB]; 1819 1820 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1821 if (MInfo.vregsRequired.count(Reg)) { 1822 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1823 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1824 errs() << "Virtual register " << printReg(Reg) 1825 << " must be live through the block.\n"; 1826 } 1827 } else { 1828 if (VI.AliveBlocks.test(MBB.getNumber())) { 1829 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1830 errs() << "Virtual register " << printReg(Reg) 1831 << " is not needed live through the block.\n"; 1832 } 1833 } 1834 } 1835 } 1836 } 1837 1838 void MachineVerifier::verifyLiveIntervals() { 1839 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1840 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1841 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1842 1843 // Spilling and splitting may leave unused registers around. Skip them. 1844 if (MRI->reg_nodbg_empty(Reg)) 1845 continue; 1846 1847 if (!LiveInts->hasInterval(Reg)) { 1848 report("Missing live interval for virtual register", MF); 1849 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1850 continue; 1851 } 1852 1853 const LiveInterval &LI = LiveInts->getInterval(Reg); 1854 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1855 verifyLiveInterval(LI); 1856 } 1857 1858 // Verify all the cached regunit intervals. 1859 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1860 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1861 verifyLiveRange(*LR, i); 1862 } 1863 1864 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1865 const VNInfo *VNI, unsigned Reg, 1866 LaneBitmask LaneMask) { 1867 if (VNI->isUnused()) 1868 return; 1869 1870 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1871 1872 if (!DefVNI) { 1873 report("Value not live at VNInfo def and not marked unused", MF); 1874 report_context(LR, Reg, LaneMask); 1875 report_context(*VNI); 1876 return; 1877 } 1878 1879 if (DefVNI != VNI) { 1880 report("Live segment at def has different VNInfo", MF); 1881 report_context(LR, Reg, LaneMask); 1882 report_context(*VNI); 1883 return; 1884 } 1885 1886 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1887 if (!MBB) { 1888 report("Invalid VNInfo definition index", MF); 1889 report_context(LR, Reg, LaneMask); 1890 report_context(*VNI); 1891 return; 1892 } 1893 1894 if (VNI->isPHIDef()) { 1895 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1896 report("PHIDef VNInfo is not defined at MBB start", MBB); 1897 report_context(LR, Reg, LaneMask); 1898 report_context(*VNI); 1899 } 1900 return; 1901 } 1902 1903 // Non-PHI def. 1904 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1905 if (!MI) { 1906 report("No instruction at VNInfo def index", MBB); 1907 report_context(LR, Reg, LaneMask); 1908 report_context(*VNI); 1909 return; 1910 } 1911 1912 if (Reg != 0) { 1913 bool hasDef = false; 1914 bool isEarlyClobber = false; 1915 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1916 if (!MOI->isReg() || !MOI->isDef()) 1917 continue; 1918 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1919 if (MOI->getReg() != Reg) 1920 continue; 1921 } else { 1922 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1923 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1924 continue; 1925 } 1926 if (LaneMask.any() && 1927 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1928 continue; 1929 hasDef = true; 1930 if (MOI->isEarlyClobber()) 1931 isEarlyClobber = true; 1932 } 1933 1934 if (!hasDef) { 1935 report("Defining instruction does not modify register", MI); 1936 report_context(LR, Reg, LaneMask); 1937 report_context(*VNI); 1938 } 1939 1940 // Early clobber defs begin at USE slots, but other defs must begin at 1941 // DEF slots. 1942 if (isEarlyClobber) { 1943 if (!VNI->def.isEarlyClobber()) { 1944 report("Early clobber def must be at an early-clobber slot", MBB); 1945 report_context(LR, Reg, LaneMask); 1946 report_context(*VNI); 1947 } 1948 } else if (!VNI->def.isRegister()) { 1949 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1950 report_context(LR, Reg, LaneMask); 1951 report_context(*VNI); 1952 } 1953 } 1954 } 1955 1956 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1957 const LiveRange::const_iterator I, 1958 unsigned Reg, LaneBitmask LaneMask) 1959 { 1960 const LiveRange::Segment &S = *I; 1961 const VNInfo *VNI = S.valno; 1962 assert(VNI && "Live segment has no valno"); 1963 1964 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1965 report("Foreign valno in live segment", MF); 1966 report_context(LR, Reg, LaneMask); 1967 report_context(S); 1968 report_context(*VNI); 1969 } 1970 1971 if (VNI->isUnused()) { 1972 report("Live segment valno is marked unused", MF); 1973 report_context(LR, Reg, LaneMask); 1974 report_context(S); 1975 } 1976 1977 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1978 if (!MBB) { 1979 report("Bad start of live segment, no basic block", MF); 1980 report_context(LR, Reg, LaneMask); 1981 report_context(S); 1982 return; 1983 } 1984 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1985 if (S.start != MBBStartIdx && S.start != VNI->def) { 1986 report("Live segment must begin at MBB entry or valno def", MBB); 1987 report_context(LR, Reg, LaneMask); 1988 report_context(S); 1989 } 1990 1991 const MachineBasicBlock *EndMBB = 1992 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1993 if (!EndMBB) { 1994 report("Bad end of live segment, no basic block", MF); 1995 report_context(LR, Reg, LaneMask); 1996 report_context(S); 1997 return; 1998 } 1999 2000 // No more checks for live-out segments. 2001 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2002 return; 2003 2004 // RegUnit intervals are allowed dead phis. 2005 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2006 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2007 return; 2008 2009 // The live segment is ending inside EndMBB 2010 const MachineInstr *MI = 2011 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2012 if (!MI) { 2013 report("Live segment doesn't end at a valid instruction", EndMBB); 2014 report_context(LR, Reg, LaneMask); 2015 report_context(S); 2016 return; 2017 } 2018 2019 // The block slot must refer to a basic block boundary. 2020 if (S.end.isBlock()) { 2021 report("Live segment ends at B slot of an instruction", EndMBB); 2022 report_context(LR, Reg, LaneMask); 2023 report_context(S); 2024 } 2025 2026 if (S.end.isDead()) { 2027 // Segment ends on the dead slot. 2028 // That means there must be a dead def. 2029 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2030 report("Live segment ending at dead slot spans instructions", EndMBB); 2031 report_context(LR, Reg, LaneMask); 2032 report_context(S); 2033 } 2034 } 2035 2036 // A live segment can only end at an early-clobber slot if it is being 2037 // redefined by an early-clobber def. 2038 if (S.end.isEarlyClobber()) { 2039 if (I+1 == LR.end() || (I+1)->start != S.end) { 2040 report("Live segment ending at early clobber slot must be " 2041 "redefined by an EC def in the same instruction", EndMBB); 2042 report_context(LR, Reg, LaneMask); 2043 report_context(S); 2044 } 2045 } 2046 2047 // The following checks only apply to virtual registers. Physreg liveness 2048 // is too weird to check. 2049 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2050 // A live segment can end with either a redefinition, a kill flag on a 2051 // use, or a dead flag on a def. 2052 bool hasRead = false; 2053 bool hasSubRegDef = false; 2054 bool hasDeadDef = false; 2055 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2056 if (!MOI->isReg() || MOI->getReg() != Reg) 2057 continue; 2058 unsigned Sub = MOI->getSubReg(); 2059 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2060 : LaneBitmask::getAll(); 2061 if (MOI->isDef()) { 2062 if (Sub != 0) { 2063 hasSubRegDef = true; 2064 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2065 // mask for subregister defs. Read-undef defs will be handled by 2066 // readsReg below. 2067 SLM = ~SLM; 2068 } 2069 if (MOI->isDead()) 2070 hasDeadDef = true; 2071 } 2072 if (LaneMask.any() && (LaneMask & SLM).none()) 2073 continue; 2074 if (MOI->readsReg()) 2075 hasRead = true; 2076 } 2077 if (S.end.isDead()) { 2078 // Make sure that the corresponding machine operand for a "dead" live 2079 // range has the dead flag. We cannot perform this check for subregister 2080 // liveranges as partially dead values are allowed. 2081 if (LaneMask.none() && !hasDeadDef) { 2082 report("Instruction ending live segment on dead slot has no dead flag", 2083 MI); 2084 report_context(LR, Reg, LaneMask); 2085 report_context(S); 2086 } 2087 } else { 2088 if (!hasRead) { 2089 // When tracking subregister liveness, the main range must start new 2090 // values on partial register writes, even if there is no read. 2091 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2092 !hasSubRegDef) { 2093 report("Instruction ending live segment doesn't read the register", 2094 MI); 2095 report_context(LR, Reg, LaneMask); 2096 report_context(S); 2097 } 2098 } 2099 } 2100 } 2101 2102 // Now check all the basic blocks in this live segment. 2103 MachineFunction::const_iterator MFI = MBB->getIterator(); 2104 // Is this live segment the beginning of a non-PHIDef VN? 2105 if (S.start == VNI->def && !VNI->isPHIDef()) { 2106 // Not live-in to any blocks. 2107 if (MBB == EndMBB) 2108 return; 2109 // Skip this block. 2110 ++MFI; 2111 } 2112 2113 SmallVector<SlotIndex, 4> Undefs; 2114 if (LaneMask.any()) { 2115 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2116 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2117 } 2118 2119 while (true) { 2120 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2121 // We don't know how to track physregs into a landing pad. 2122 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2123 MFI->isEHPad()) { 2124 if (&*MFI == EndMBB) 2125 break; 2126 ++MFI; 2127 continue; 2128 } 2129 2130 // Is VNI a PHI-def in the current block? 2131 bool IsPHI = VNI->isPHIDef() && 2132 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2133 2134 // Check that VNI is live-out of all predecessors. 2135 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2136 PE = MFI->pred_end(); PI != PE; ++PI) { 2137 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2138 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2139 2140 // All predecessors must have a live-out value. However for a phi 2141 // instruction with subregister intervals 2142 // only one of the subregisters (not necessarily the current one) needs to 2143 // be defined. 2144 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2145 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2146 continue; 2147 report("Register not marked live out of predecessor", *PI); 2148 report_context(LR, Reg, LaneMask); 2149 report_context(*VNI); 2150 errs() << " live into " << printMBBReference(*MFI) << '@' 2151 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2152 << PEnd << '\n'; 2153 continue; 2154 } 2155 2156 // Only PHI-defs can take different predecessor values. 2157 if (!IsPHI && PVNI != VNI) { 2158 report("Different value live out of predecessor", *PI); 2159 report_context(LR, Reg, LaneMask); 2160 errs() << "Valno #" << PVNI->id << " live out of " 2161 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2162 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2163 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2164 } 2165 } 2166 if (&*MFI == EndMBB) 2167 break; 2168 ++MFI; 2169 } 2170 } 2171 2172 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2173 LaneBitmask LaneMask) { 2174 for (const VNInfo *VNI : LR.valnos) 2175 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2176 2177 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2178 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2179 } 2180 2181 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2182 unsigned Reg = LI.reg; 2183 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2184 verifyLiveRange(LI, Reg); 2185 2186 LaneBitmask Mask; 2187 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2188 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2189 if ((Mask & SR.LaneMask).any()) { 2190 report("Lane masks of sub ranges overlap in live interval", MF); 2191 report_context(LI); 2192 } 2193 if ((SR.LaneMask & ~MaxMask).any()) { 2194 report("Subrange lanemask is invalid", MF); 2195 report_context(LI); 2196 } 2197 if (SR.empty()) { 2198 report("Subrange must not be empty", MF); 2199 report_context(SR, LI.reg, SR.LaneMask); 2200 } 2201 Mask |= SR.LaneMask; 2202 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2203 if (!LI.covers(SR)) { 2204 report("A Subrange is not covered by the main range", MF); 2205 report_context(LI); 2206 } 2207 } 2208 2209 // Check the LI only has one connected component. 2210 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2211 unsigned NumComp = ConEQ.Classify(LI); 2212 if (NumComp > 1) { 2213 report("Multiple connected components in live interval", MF); 2214 report_context(LI); 2215 for (unsigned comp = 0; comp != NumComp; ++comp) { 2216 errs() << comp << ": valnos"; 2217 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2218 E = LI.vni_end(); I!=E; ++I) 2219 if (comp == ConEQ.getEqClass(*I)) 2220 errs() << ' ' << (*I)->id; 2221 errs() << '\n'; 2222 } 2223 } 2224 } 2225 2226 namespace { 2227 2228 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2229 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2230 // value is zero. 2231 // We use a bool plus an integer to capture the stack state. 2232 struct StackStateOfBB { 2233 StackStateOfBB() = default; 2234 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2235 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2236 ExitIsSetup(ExitSetup) {} 2237 2238 // Can be negative, which means we are setting up a frame. 2239 int EntryValue = 0; 2240 int ExitValue = 0; 2241 bool EntryIsSetup = false; 2242 bool ExitIsSetup = false; 2243 }; 2244 2245 } // end anonymous namespace 2246 2247 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2248 /// by a FrameDestroy <n>, stack adjustments are identical on all 2249 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2250 void MachineVerifier::verifyStackFrame() { 2251 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2252 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2253 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2254 return; 2255 2256 SmallVector<StackStateOfBB, 8> SPState; 2257 SPState.resize(MF->getNumBlockIDs()); 2258 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2259 2260 // Visit the MBBs in DFS order. 2261 for (df_ext_iterator<const MachineFunction *, 2262 df_iterator_default_set<const MachineBasicBlock *>> 2263 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2264 DFI != DFE; ++DFI) { 2265 const MachineBasicBlock *MBB = *DFI; 2266 2267 StackStateOfBB BBState; 2268 // Check the exit state of the DFS stack predecessor. 2269 if (DFI.getPathLength() >= 2) { 2270 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2271 assert(Reachable.count(StackPred) && 2272 "DFS stack predecessor is already visited.\n"); 2273 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2274 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2275 BBState.ExitValue = BBState.EntryValue; 2276 BBState.ExitIsSetup = BBState.EntryIsSetup; 2277 } 2278 2279 // Update stack state by checking contents of MBB. 2280 for (const auto &I : *MBB) { 2281 if (I.getOpcode() == FrameSetupOpcode) { 2282 if (BBState.ExitIsSetup) 2283 report("FrameSetup is after another FrameSetup", &I); 2284 BBState.ExitValue -= TII->getFrameTotalSize(I); 2285 BBState.ExitIsSetup = true; 2286 } 2287 2288 if (I.getOpcode() == FrameDestroyOpcode) { 2289 int Size = TII->getFrameTotalSize(I); 2290 if (!BBState.ExitIsSetup) 2291 report("FrameDestroy is not after a FrameSetup", &I); 2292 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2293 BBState.ExitValue; 2294 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2295 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2296 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2297 << AbsSPAdj << ">.\n"; 2298 } 2299 BBState.ExitValue += Size; 2300 BBState.ExitIsSetup = false; 2301 } 2302 } 2303 SPState[MBB->getNumber()] = BBState; 2304 2305 // Make sure the exit state of any predecessor is consistent with the entry 2306 // state. 2307 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2308 E = MBB->pred_end(); I != E; ++I) { 2309 if (Reachable.count(*I) && 2310 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2311 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2312 report("The exit stack state of a predecessor is inconsistent.", MBB); 2313 errs() << "Predecessor " << printMBBReference(*(*I)) 2314 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2315 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2316 << printMBBReference(*MBB) << " has entry state (" 2317 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2318 } 2319 } 2320 2321 // Make sure the entry state of any successor is consistent with the exit 2322 // state. 2323 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2324 E = MBB->succ_end(); I != E; ++I) { 2325 if (Reachable.count(*I) && 2326 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2327 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2328 report("The entry stack state of a successor is inconsistent.", MBB); 2329 errs() << "Successor " << printMBBReference(*(*I)) 2330 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2331 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2332 << printMBBReference(*MBB) << " has exit state (" 2333 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2334 } 2335 } 2336 2337 // Make sure a basic block with return ends with zero stack adjustment. 2338 if (!MBB->empty() && MBB->back().isReturn()) { 2339 if (BBState.ExitIsSetup) 2340 report("A return block ends with a FrameSetup.", MBB); 2341 if (BBState.ExitValue) 2342 report("A return block ends with a nonzero stack adjustment.", MBB); 2343 } 2344 } 2345 } 2346