xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision f90fe701efbbcf30e7d53c16aa7f99f73237ae19)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <map>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "machine-sink"
57 
58 static cl::opt<bool>
59 SplitEdges("machine-sink-split",
60            cl::desc("Split critical edges during machine sinking"),
61            cl::init(true), cl::Hidden);
62 
63 static cl::opt<bool>
64 UseBlockFreqInfo("machine-sink-bfi",
65            cl::desc("Use block frequency info to find successors to sink"),
66            cl::init(true), cl::Hidden);
67 
68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
69     "machine-sink-split-probability-threshold",
70     cl::desc(
71         "Percentage threshold for splitting single-instruction critical edge. "
72         "If the branch threshold is higher than this threshold, we allow "
73         "speculative execution of up to 1 instruction to avoid branching to "
74         "splitted critical edge"),
75     cl::init(40), cl::Hidden);
76 
77 STATISTIC(NumSunk,      "Number of machine instructions sunk");
78 STATISTIC(NumSplit,     "Number of critical edges split");
79 STATISTIC(NumCoalesces, "Number of copies coalesced");
80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81 
82 namespace {
83 
84   class MachineSinking : public MachineFunctionPass {
85     const TargetInstrInfo *TII;
86     const TargetRegisterInfo *TRI;
87     MachineRegisterInfo  *MRI;     // Machine register information
88     MachineDominatorTree *DT;      // Machine dominator tree
89     MachinePostDominatorTree *PDT; // Machine post dominator tree
90     MachineLoopInfo *LI;
91     const MachineBlockFrequencyInfo *MBFI;
92     const MachineBranchProbabilityInfo *MBPI;
93     AliasAnalysis *AA;
94 
95     // Remember which edges have been considered for breaking.
96     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
97     CEBCandidates;
98     // Remember which edges we are about to split.
99     // This is different from CEBCandidates since those edges
100     // will be split.
101     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102 
103     SparseBitVector<> RegsToClearKillFlags;
104 
105     using AllSuccsCache =
106         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107 
108   public:
109     static char ID; // Pass identification
110 
111     MachineSinking() : MachineFunctionPass(ID) {
112       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
113     }
114 
115     bool runOnMachineFunction(MachineFunction &MF) override;
116 
117     void getAnalysisUsage(AnalysisUsage &AU) const override {
118       AU.setPreservesCFG();
119       MachineFunctionPass::getAnalysisUsage(AU);
120       AU.addRequired<AAResultsWrapperPass>();
121       AU.addRequired<MachineDominatorTree>();
122       AU.addRequired<MachinePostDominatorTree>();
123       AU.addRequired<MachineLoopInfo>();
124       AU.addRequired<MachineBranchProbabilityInfo>();
125       AU.addPreserved<MachineDominatorTree>();
126       AU.addPreserved<MachinePostDominatorTree>();
127       AU.addPreserved<MachineLoopInfo>();
128       if (UseBlockFreqInfo)
129         AU.addRequired<MachineBlockFrequencyInfo>();
130     }
131 
132     void releaseMemory() override {
133       CEBCandidates.clear();
134     }
135 
136   private:
137     bool ProcessBlock(MachineBasicBlock &MBB);
138     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
139                                      MachineBasicBlock *From,
140                                      MachineBasicBlock *To);
141 
142     /// \brief Postpone the splitting of the given critical
143     /// edge (\p From, \p To).
144     ///
145     /// We do not split the edges on the fly. Indeed, this invalidates
146     /// the dominance information and thus triggers a lot of updates
147     /// of that information underneath.
148     /// Instead, we postpone all the splits after each iteration of
149     /// the main loop. That way, the information is at least valid
150     /// for the lifetime of an iteration.
151     ///
152     /// \return True if the edge is marked as toSplit, false otherwise.
153     /// False can be returned if, for instance, this is not profitable.
154     bool PostponeSplitCriticalEdge(MachineInstr &MI,
155                                    MachineBasicBlock *From,
156                                    MachineBasicBlock *To,
157                                    bool BreakPHIEdge);
158     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159 
160                          AllSuccsCache &AllSuccessors);
161     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
162                                  MachineBasicBlock *DefMBB,
163                                  bool &BreakPHIEdge, bool &LocalUse) const;
164     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
165                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
166     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
167                               MachineBasicBlock *MBB,
168                               MachineBasicBlock *SuccToSinkTo,
169                               AllSuccsCache &AllSuccessors);
170 
171     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
172                                          MachineBasicBlock *MBB);
173 
174     SmallVector<MachineBasicBlock *, 4> &
175     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
176                            AllSuccsCache &AllSuccessors) const;
177   };
178 
179 } // end anonymous namespace
180 
181 char MachineSinking::ID = 0;
182 
183 char &llvm::MachineSinkingID = MachineSinking::ID;
184 
185 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
186                       "Machine code sinking", false, false)
187 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
191 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
192                     "Machine code sinking", false, false)
193 
194 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
195                                                      MachineBasicBlock *MBB) {
196   if (!MI.isCopy())
197     return false;
198 
199   unsigned SrcReg = MI.getOperand(1).getReg();
200   unsigned DstReg = MI.getOperand(0).getReg();
201   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
202       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
203       !MRI->hasOneNonDBGUse(SrcReg))
204     return false;
205 
206   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
207   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
208   if (SRC != DRC)
209     return false;
210 
211   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
212   if (DefMI->isCopyLike())
213     return false;
214   DEBUG(dbgs() << "Coalescing: " << *DefMI);
215   DEBUG(dbgs() << "*** to: " << MI);
216   MRI->replaceRegWith(DstReg, SrcReg);
217   MI.eraseFromParent();
218 
219   // Conservatively, clear any kill flags, since it's possible that they are no
220   // longer correct.
221   MRI->clearKillFlags(SrcReg);
222 
223   ++NumCoalesces;
224   return true;
225 }
226 
227 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
228 /// occur in blocks dominated by the specified block. If any use is in the
229 /// definition block, then return false since it is never legal to move def
230 /// after uses.
231 bool
232 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
233                                         MachineBasicBlock *MBB,
234                                         MachineBasicBlock *DefMBB,
235                                         bool &BreakPHIEdge,
236                                         bool &LocalUse) const {
237   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
238          "Only makes sense for vregs");
239 
240   // Ignore debug uses because debug info doesn't affect the code.
241   if (MRI->use_nodbg_empty(Reg))
242     return true;
243 
244   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
245   // into and they are all PHI nodes. In this case, machine-sink must break
246   // the critical edge first. e.g.
247   //
248   // %bb.1: derived from LLVM BB %bb4.preheader
249   //   Predecessors according to CFG: %bb.0
250   //     ...
251   //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
252   //     ...
253   //     JE_4 <%bb.37>, implicit %eflags
254   //   Successors according to CFG: %bb.37 %bb.2
255   //
256   // %bb.2: derived from LLVM BB %bb.nph
257   //   Predecessors according to CFG: %bb.0 %bb.1
258   //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
259   BreakPHIEdge = true;
260   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
261     MachineInstr *UseInst = MO.getParent();
262     unsigned OpNo = &MO - &UseInst->getOperand(0);
263     MachineBasicBlock *UseBlock = UseInst->getParent();
264     if (!(UseBlock == MBB && UseInst->isPHI() &&
265           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
266       BreakPHIEdge = false;
267       break;
268     }
269   }
270   if (BreakPHIEdge)
271     return true;
272 
273   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
274     // Determine the block of the use.
275     MachineInstr *UseInst = MO.getParent();
276     unsigned OpNo = &MO - &UseInst->getOperand(0);
277     MachineBasicBlock *UseBlock = UseInst->getParent();
278     if (UseInst->isPHI()) {
279       // PHI nodes use the operand in the predecessor block, not the block with
280       // the PHI.
281       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
282     } else if (UseBlock == DefMBB) {
283       LocalUse = true;
284       return false;
285     }
286 
287     // Check that it dominates.
288     if (!DT->dominates(MBB, UseBlock))
289       return false;
290   }
291 
292   return true;
293 }
294 
295 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
296   if (skipFunction(MF.getFunction()))
297     return false;
298 
299   DEBUG(dbgs() << "******** Machine Sinking ********\n");
300 
301   TII = MF.getSubtarget().getInstrInfo();
302   TRI = MF.getSubtarget().getRegisterInfo();
303   MRI = &MF.getRegInfo();
304   DT = &getAnalysis<MachineDominatorTree>();
305   PDT = &getAnalysis<MachinePostDominatorTree>();
306   LI = &getAnalysis<MachineLoopInfo>();
307   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
308   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
309   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
310 
311   bool EverMadeChange = false;
312 
313   while (true) {
314     bool MadeChange = false;
315 
316     // Process all basic blocks.
317     CEBCandidates.clear();
318     ToSplit.clear();
319     for (auto &MBB: MF)
320       MadeChange |= ProcessBlock(MBB);
321 
322     // If we have anything we marked as toSplit, split it now.
323     for (auto &Pair : ToSplit) {
324       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
325       if (NewSucc != nullptr) {
326         DEBUG(dbgs() << " *** Splitting critical edge: "
327                      << printMBBReference(*Pair.first) << " -- "
328                      << printMBBReference(*NewSucc) << " -- "
329                      << printMBBReference(*Pair.second) << '\n');
330         MadeChange = true;
331         ++NumSplit;
332       } else
333         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
334     }
335     // If this iteration over the code changed anything, keep iterating.
336     if (!MadeChange) break;
337     EverMadeChange = true;
338   }
339 
340   // Now clear any kill flags for recorded registers.
341   for (auto I : RegsToClearKillFlags)
342     MRI->clearKillFlags(I);
343   RegsToClearKillFlags.clear();
344 
345   return EverMadeChange;
346 }
347 
348 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
349   // Can't sink anything out of a block that has less than two successors.
350   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
351 
352   // Don't bother sinking code out of unreachable blocks. In addition to being
353   // unprofitable, it can also lead to infinite looping, because in an
354   // unreachable loop there may be nowhere to stop.
355   if (!DT->isReachableFromEntry(&MBB)) return false;
356 
357   bool MadeChange = false;
358 
359   // Cache all successors, sorted by frequency info and loop depth.
360   AllSuccsCache AllSuccessors;
361 
362   // Walk the basic block bottom-up.  Remember if we saw a store.
363   MachineBasicBlock::iterator I = MBB.end();
364   --I;
365   bool ProcessedBegin, SawStore = false;
366   do {
367     MachineInstr &MI = *I;  // The instruction to sink.
368 
369     // Predecrement I (if it's not begin) so that it isn't invalidated by
370     // sinking.
371     ProcessedBegin = I == MBB.begin();
372     if (!ProcessedBegin)
373       --I;
374 
375     if (MI.isDebugValue())
376       continue;
377 
378     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
379     if (Joined) {
380       MadeChange = true;
381       continue;
382     }
383 
384     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
385       ++NumSunk;
386       MadeChange = true;
387     }
388 
389     // If we just processed the first instruction in the block, we're done.
390   } while (!ProcessedBegin);
391 
392   return MadeChange;
393 }
394 
395 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
396                                                  MachineBasicBlock *From,
397                                                  MachineBasicBlock *To) {
398   // FIXME: Need much better heuristics.
399 
400   // If the pass has already considered breaking this edge (during this pass
401   // through the function), then let's go ahead and break it. This means
402   // sinking multiple "cheap" instructions into the same block.
403   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
404     return true;
405 
406   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
407     return true;
408 
409   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
410       BranchProbability(SplitEdgeProbabilityThreshold, 100))
411     return true;
412 
413   // MI is cheap, we probably don't want to break the critical edge for it.
414   // However, if this would allow some definitions of its source operands
415   // to be sunk then it's probably worth it.
416   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
417     const MachineOperand &MO = MI.getOperand(i);
418     if (!MO.isReg() || !MO.isUse())
419       continue;
420     unsigned Reg = MO.getReg();
421     if (Reg == 0)
422       continue;
423 
424     // We don't move live definitions of physical registers,
425     // so sinking their uses won't enable any opportunities.
426     if (TargetRegisterInfo::isPhysicalRegister(Reg))
427       continue;
428 
429     // If this instruction is the only user of a virtual register,
430     // check if breaking the edge will enable sinking
431     // both this instruction and the defining instruction.
432     if (MRI->hasOneNonDBGUse(Reg)) {
433       // If the definition resides in same MBB,
434       // claim it's likely we can sink these together.
435       // If definition resides elsewhere, we aren't
436       // blocking it from being sunk so don't break the edge.
437       MachineInstr *DefMI = MRI->getVRegDef(Reg);
438       if (DefMI->getParent() == MI.getParent())
439         return true;
440     }
441   }
442 
443   return false;
444 }
445 
446 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
447                                                MachineBasicBlock *FromBB,
448                                                MachineBasicBlock *ToBB,
449                                                bool BreakPHIEdge) {
450   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
451     return false;
452 
453   // Avoid breaking back edge. From == To means backedge for single BB loop.
454   if (!SplitEdges || FromBB == ToBB)
455     return false;
456 
457   // Check for backedges of more "complex" loops.
458   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
459       LI->isLoopHeader(ToBB))
460     return false;
461 
462   // It's not always legal to break critical edges and sink the computation
463   // to the edge.
464   //
465   // %bb.1:
466   // v1024
467   // Beq %bb.3
468   // <fallthrough>
469   // %bb.2:
470   // ... no uses of v1024
471   // <fallthrough>
472   // %bb.3:
473   // ...
474   //       = v1024
475   //
476   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
477   //
478   // %bb.1:
479   // ...
480   // Bne %bb.2
481   // %bb.4:
482   // v1024 =
483   // B %bb.3
484   // %bb.2:
485   // ... no uses of v1024
486   // <fallthrough>
487   // %bb.3:
488   // ...
489   //       = v1024
490   //
491   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
492   // flow. We need to ensure the new basic block where the computation is
493   // sunk to dominates all the uses.
494   // It's only legal to break critical edge and sink the computation to the
495   // new block if all the predecessors of "To", except for "From", are
496   // not dominated by "From". Given SSA property, this means these
497   // predecessors are dominated by "To".
498   //
499   // There is no need to do this check if all the uses are PHI nodes. PHI
500   // sources are only defined on the specific predecessor edges.
501   if (!BreakPHIEdge) {
502     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
503            E = ToBB->pred_end(); PI != E; ++PI) {
504       if (*PI == FromBB)
505         continue;
506       if (!DT->dominates(ToBB, *PI))
507         return false;
508     }
509   }
510 
511   ToSplit.insert(std::make_pair(FromBB, ToBB));
512 
513   return true;
514 }
515 
516 /// collectDebgValues - Scan instructions following MI and collect any
517 /// matching DBG_VALUEs.
518 static void collectDebugValues(MachineInstr &MI,
519                                SmallVectorImpl<MachineInstr *> &DbgValues) {
520   DbgValues.clear();
521   if (!MI.getOperand(0).isReg())
522     return;
523 
524   MachineBasicBlock::iterator DI = MI; ++DI;
525   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
526        DI != DE; ++DI) {
527     if (!DI->isDebugValue())
528       return;
529     if (DI->getOperand(0).isReg() &&
530         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
531       DbgValues.push_back(&*DI);
532   }
533 }
534 
535 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
536 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
537                                           MachineBasicBlock *MBB,
538                                           MachineBasicBlock *SuccToSinkTo,
539                                           AllSuccsCache &AllSuccessors) {
540   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
541 
542   if (MBB == SuccToSinkTo)
543     return false;
544 
545   // It is profitable if SuccToSinkTo does not post dominate current block.
546   if (!PDT->dominates(SuccToSinkTo, MBB))
547     return true;
548 
549   // It is profitable to sink an instruction from a deeper loop to a shallower
550   // loop, even if the latter post-dominates the former (PR21115).
551   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
552     return true;
553 
554   // Check if only use in post dominated block is PHI instruction.
555   bool NonPHIUse = false;
556   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
557     MachineBasicBlock *UseBlock = UseInst.getParent();
558     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
559       NonPHIUse = true;
560   }
561   if (!NonPHIUse)
562     return true;
563 
564   // If SuccToSinkTo post dominates then also it may be profitable if MI
565   // can further profitably sinked into another block in next round.
566   bool BreakPHIEdge = false;
567   // FIXME - If finding successor is compile time expensive then cache results.
568   if (MachineBasicBlock *MBB2 =
569           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
570     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
571 
572   // If SuccToSinkTo is final destination and it is a post dominator of current
573   // block then it is not profitable to sink MI into SuccToSinkTo block.
574   return false;
575 }
576 
577 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
578 /// computing it if it was not already cached.
579 SmallVector<MachineBasicBlock *, 4> &
580 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
581                                        AllSuccsCache &AllSuccessors) const {
582   // Do we have the sorted successors in cache ?
583   auto Succs = AllSuccessors.find(MBB);
584   if (Succs != AllSuccessors.end())
585     return Succs->second;
586 
587   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
588                                                MBB->succ_end());
589 
590   // Handle cases where sinking can happen but where the sink point isn't a
591   // successor. For example:
592   //
593   //   x = computation
594   //   if () {} else {}
595   //   use x
596   //
597   const std::vector<MachineDomTreeNode *> &Children =
598     DT->getNode(MBB)->getChildren();
599   for (const auto &DTChild : Children)
600     // DomTree children of MBB that have MBB as immediate dominator are added.
601     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
602         // Skip MBBs already added to the AllSuccs vector above.
603         !MBB->isSuccessor(DTChild->getBlock()))
604       AllSuccs.push_back(DTChild->getBlock());
605 
606   // Sort Successors according to their loop depth or block frequency info.
607   std::stable_sort(
608       AllSuccs.begin(), AllSuccs.end(),
609       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
610         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
611         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
612         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
613         return HasBlockFreq ? LHSFreq < RHSFreq
614                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
615       });
616 
617   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
618 
619   return it.first->second;
620 }
621 
622 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
623 MachineBasicBlock *
624 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
625                                  bool &BreakPHIEdge,
626                                  AllSuccsCache &AllSuccessors) {
627   assert (MBB && "Invalid MachineBasicBlock!");
628 
629   // Loop over all the operands of the specified instruction.  If there is
630   // anything we can't handle, bail out.
631 
632   // SuccToSinkTo - This is the successor to sink this instruction to, once we
633   // decide.
634   MachineBasicBlock *SuccToSinkTo = nullptr;
635   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
636     const MachineOperand &MO = MI.getOperand(i);
637     if (!MO.isReg()) continue;  // Ignore non-register operands.
638 
639     unsigned Reg = MO.getReg();
640     if (Reg == 0) continue;
641 
642     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
643       if (MO.isUse()) {
644         // If the physreg has no defs anywhere, it's just an ambient register
645         // and we can freely move its uses. Alternatively, if it's allocatable,
646         // it could get allocated to something with a def during allocation.
647         if (!MRI->isConstantPhysReg(Reg))
648           return nullptr;
649       } else if (!MO.isDead()) {
650         // A def that isn't dead. We can't move it.
651         return nullptr;
652       }
653     } else {
654       // Virtual register uses are always safe to sink.
655       if (MO.isUse()) continue;
656 
657       // If it's not safe to move defs of the register class, then abort.
658       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
659         return nullptr;
660 
661       // Virtual register defs can only be sunk if all their uses are in blocks
662       // dominated by one of the successors.
663       if (SuccToSinkTo) {
664         // If a previous operand picked a block to sink to, then this operand
665         // must be sinkable to the same block.
666         bool LocalUse = false;
667         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
668                                      BreakPHIEdge, LocalUse))
669           return nullptr;
670 
671         continue;
672       }
673 
674       // Otherwise, we should look at all the successors and decide which one
675       // we should sink to. If we have reliable block frequency information
676       // (frequency != 0) available, give successors with smaller frequencies
677       // higher priority, otherwise prioritize smaller loop depths.
678       for (MachineBasicBlock *SuccBlock :
679            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
680         bool LocalUse = false;
681         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
682                                     BreakPHIEdge, LocalUse)) {
683           SuccToSinkTo = SuccBlock;
684           break;
685         }
686         if (LocalUse)
687           // Def is used locally, it's never safe to move this def.
688           return nullptr;
689       }
690 
691       // If we couldn't find a block to sink to, ignore this instruction.
692       if (!SuccToSinkTo)
693         return nullptr;
694       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
695         return nullptr;
696     }
697   }
698 
699   // It is not possible to sink an instruction into its own block.  This can
700   // happen with loops.
701   if (MBB == SuccToSinkTo)
702     return nullptr;
703 
704   // It's not safe to sink instructions to EH landing pad. Control flow into
705   // landing pad is implicitly defined.
706   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
707     return nullptr;
708 
709   return SuccToSinkTo;
710 }
711 
712 /// \brief Return true if MI is likely to be usable as a memory operation by the
713 /// implicit null check optimization.
714 ///
715 /// This is a "best effort" heuristic, and should not be relied upon for
716 /// correctness.  This returning true does not guarantee that the implicit null
717 /// check optimization is legal over MI, and this returning false does not
718 /// guarantee MI cannot possibly be used to do a null check.
719 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
720                                              const TargetInstrInfo *TII,
721                                              const TargetRegisterInfo *TRI) {
722   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
723 
724   auto *MBB = MI.getParent();
725   if (MBB->pred_size() != 1)
726     return false;
727 
728   auto *PredMBB = *MBB->pred_begin();
729   auto *PredBB = PredMBB->getBasicBlock();
730 
731   // Frontends that don't use implicit null checks have no reason to emit
732   // branches with make.implicit metadata, and this function should always
733   // return false for them.
734   if (!PredBB ||
735       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
736     return false;
737 
738   unsigned BaseReg;
739   int64_t Offset;
740   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
741     return false;
742 
743   if (!(MI.mayLoad() && !MI.isPredicable()))
744     return false;
745 
746   MachineBranchPredicate MBP;
747   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
748     return false;
749 
750   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
751          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
752           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
753          MBP.LHS.getReg() == BaseReg;
754 }
755 
756 /// SinkInstruction - Determine whether it is safe to sink the specified machine
757 /// instruction out of its current block into a successor.
758 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
759                                      AllSuccsCache &AllSuccessors) {
760   // Don't sink instructions that the target prefers not to sink.
761   if (!TII->shouldSink(MI))
762     return false;
763 
764   // Check if it's safe to move the instruction.
765   if (!MI.isSafeToMove(AA, SawStore))
766     return false;
767 
768   // Convergent operations may not be made control-dependent on additional
769   // values.
770   if (MI.isConvergent())
771     return false;
772 
773   // Don't break implicit null checks.  This is a performance heuristic, and not
774   // required for correctness.
775   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
776     return false;
777 
778   // FIXME: This should include support for sinking instructions within the
779   // block they are currently in to shorten the live ranges.  We often get
780   // instructions sunk into the top of a large block, but it would be better to
781   // also sink them down before their first use in the block.  This xform has to
782   // be careful not to *increase* register pressure though, e.g. sinking
783   // "x = y + z" down if it kills y and z would increase the live ranges of y
784   // and z and only shrink the live range of x.
785 
786   bool BreakPHIEdge = false;
787   MachineBasicBlock *ParentBlock = MI.getParent();
788   MachineBasicBlock *SuccToSinkTo =
789       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
790 
791   // If there are no outputs, it must have side-effects.
792   if (!SuccToSinkTo)
793     return false;
794 
795   // If the instruction to move defines a dead physical register which is live
796   // when leaving the basic block, don't move it because it could turn into a
797   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
798   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
799     const MachineOperand &MO = MI.getOperand(I);
800     if (!MO.isReg()) continue;
801     unsigned Reg = MO.getReg();
802     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
803     if (SuccToSinkTo->isLiveIn(Reg))
804       return false;
805   }
806 
807   DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
808 
809   // If the block has multiple predecessors, this is a critical edge.
810   // Decide if we can sink along it or need to break the edge.
811   if (SuccToSinkTo->pred_size() > 1) {
812     // We cannot sink a load across a critical edge - there may be stores in
813     // other code paths.
814     bool TryBreak = false;
815     bool store = true;
816     if (!MI.isSafeToMove(AA, store)) {
817       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
818       TryBreak = true;
819     }
820 
821     // We don't want to sink across a critical edge if we don't dominate the
822     // successor. We could be introducing calculations to new code paths.
823     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
824       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
825       TryBreak = true;
826     }
827 
828     // Don't sink instructions into a loop.
829     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
830       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
831       TryBreak = true;
832     }
833 
834     // Otherwise we are OK with sinking along a critical edge.
835     if (!TryBreak)
836       DEBUG(dbgs() << "Sinking along critical edge.\n");
837     else {
838       // Mark this edge as to be split.
839       // If the edge can actually be split, the next iteration of the main loop
840       // will sink MI in the newly created block.
841       bool Status =
842         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
843       if (!Status)
844         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
845               "break critical edge\n");
846       // The instruction will not be sunk this time.
847       return false;
848     }
849   }
850 
851   if (BreakPHIEdge) {
852     // BreakPHIEdge is true if all the uses are in the successor MBB being
853     // sunken into and they are all PHI nodes. In this case, machine-sink must
854     // break the critical edge first.
855     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
856                                             SuccToSinkTo, BreakPHIEdge);
857     if (!Status)
858       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
859             "break critical edge\n");
860     // The instruction will not be sunk this time.
861     return false;
862   }
863 
864   // Determine where to insert into. Skip phi nodes.
865   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
866   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
867     ++InsertPos;
868 
869   // collect matching debug values.
870   SmallVector<MachineInstr *, 2> DbgValuesToSink;
871   collectDebugValues(MI, DbgValuesToSink);
872 
873   // Merge or erase debug location to ensure consistent stepping in profilers
874   // and debuggers.
875   if (!SuccToSinkTo->empty() && InsertPos != SuccToSinkTo->end())
876     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
877                                                  InsertPos->getDebugLoc()));
878   else
879     MI.setDebugLoc(DebugLoc());
880 
881 
882   // Move the instruction.
883   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
884                        ++MachineBasicBlock::iterator(MI));
885 
886   // Move previously adjacent debug value instructions to the insert position.
887   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
888          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
889     MachineInstr *DbgMI = *DBI;
890     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
891                          ++MachineBasicBlock::iterator(DbgMI));
892   }
893 
894   // Conservatively, clear any kill flags, since it's possible that they are no
895   // longer correct.
896   // Note that we have to clear the kill flags for any register this instruction
897   // uses as we may sink over another instruction which currently kills the
898   // used registers.
899   for (MachineOperand &MO : MI.operands()) {
900     if (MO.isReg() && MO.isUse())
901       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
902   }
903 
904   return true;
905 }
906 
907 //===----------------------------------------------------------------------===//
908 // This pass is not intended to be a replacement or a complete alternative
909 // for the pre-ra machine sink pass. It is only designed to sink COPY
910 // instructions which should be handled after RA.
911 //
912 // This pass sinks COPY instructions into a successor block, if the COPY is not
913 // used in the current block and the COPY is live-in to a single successor
914 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
915 // copy on paths where their results aren't needed.  This also exposes
916 // additional opportunites for dead copy elimination and shrink wrapping.
917 //
918 // These copies were either not handled by or are inserted after the MachineSink
919 // pass. As an example of the former case, the MachineSink pass cannot sink
920 // COPY instructions with allocatable source registers; for AArch64 these type
921 // of copy instructions are frequently used to move function parameters (PhyReg)
922 // into virtual registers in the entry block.
923 //
924 // For the machine IR below, this pass will sink %w19 in the entry into its
925 // successor (%bb.1) because %w19 is only live-in in %bb.1.
926 // %bb.0:
927 //   %wzr = SUBSWri %w1, 1
928 //   %w19 = COPY %w0
929 //   Bcc 11, %bb.2
930 // %bb.1:
931 //   Live Ins: %w19
932 //   BL @fun
933 //   %w0 = ADDWrr %w0, %w19
934 //   RET %w0
935 // %bb.2:
936 //   %w0 = COPY %wzr
937 //   RET %w0
938 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
939 // able to see %bb.0 as a candidate.
940 //===----------------------------------------------------------------------===//
941 namespace {
942 
943 class PostRAMachineSinking : public MachineFunctionPass {
944 public:
945   bool runOnMachineFunction(MachineFunction &MF) override;
946 
947   static char ID;
948   PostRAMachineSinking() : MachineFunctionPass(ID) {}
949   StringRef getPassName() const override { return "PostRA Machine Sink"; }
950 
951   void getAnalysisUsage(AnalysisUsage &AU) const override {
952     AU.setPreservesCFG();
953     MachineFunctionPass::getAnalysisUsage(AU);
954   }
955 
956 private:
957   /// Track which registers have been modified and used.
958   BitVector ModifiedRegs, UsedRegs;
959 
960   /// Sink Copy instructions unused in the same block close to their uses in
961   /// successors.
962   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
963                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
964 };
965 } // namespace
966 
967 char PostRAMachineSinking::ID = 0;
968 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
969 
970 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
971                 "PostRA Machine Sink", false, false)
972 
973 static MachineBasicBlock *
974 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
975                       ArrayRef<MachineBasicBlock *> SinkableBBs, unsigned Reg,
976                       const TargetRegisterInfo *TRI) {
977   SmallSet<unsigned, 8> AliasedRegs;
978   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
979     AliasedRegs.insert(*AI);
980 
981   // Try to find a single sinkable successor in which Reg is live-in.
982   MachineBasicBlock *BB = nullptr;
983   for (auto *SI : SinkableBBs) {
984     if (SI->isLiveIn(Reg)) {
985       // If BB is set here, Reg is live-in to at least two sinkable successors,
986       // so quit.
987       if (BB)
988         return nullptr;
989       BB = SI;
990     }
991   }
992   // Reg is not live-in to any sinkable successors.
993   if (!BB)
994     return nullptr;
995 
996   // Check if any register aliased with Reg is live-in in other successors.
997   for (auto *SI : CurBB.successors()) {
998     if (SI == BB)
999       continue;
1000     for (const auto LI : SI->liveins())
1001       if (AliasedRegs.count(LI.PhysReg))
1002         return nullptr;
1003   }
1004   return BB;
1005 }
1006 
1007 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1008                                          MachineFunction &MF,
1009                                          const TargetRegisterInfo *TRI,
1010                                          const TargetInstrInfo *TII) {
1011   SmallVector<MachineBasicBlock *, 2> SinkableBBs;
1012   // FIXME: For now, we sink only to a successor which has a single predecessor
1013   // so that we can directly sink COPY instructions to the successor without
1014   // adding any new block or branch instruction.
1015   for (MachineBasicBlock *SI : CurBB.successors())
1016     if (!SI->livein_empty() && SI->pred_size() == 1)
1017       SinkableBBs.push_back(SI);
1018 
1019   if (SinkableBBs.empty())
1020     return false;
1021 
1022   bool Changed = false;
1023 
1024   // Track which registers have been modified and used between the end of the
1025   // block and the current instruction.
1026   ModifiedRegs.reset();
1027   UsedRegs.reset();
1028 
1029   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1030     MachineInstr *MI = &*I;
1031     ++I;
1032 
1033     // Do not move any instruction across function call.
1034     if (MI->isCall())
1035       return false;
1036 
1037     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1038       TII->trackRegDefsUses(*MI, ModifiedRegs, UsedRegs, TRI);
1039       continue;
1040     }
1041 
1042     unsigned DefReg = MI->getOperand(0).getReg();
1043     unsigned SrcReg = MI->getOperand(1).getReg();
1044     // Don't sink the COPY if it would violate a register dependency.
1045     if (ModifiedRegs[DefReg] || ModifiedRegs[SrcReg] || UsedRegs[DefReg]) {
1046       TII->trackRegDefsUses(*MI, ModifiedRegs, UsedRegs, TRI);
1047       continue;
1048     }
1049 
1050     MachineBasicBlock *SuccBB =
1051         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1052     // Don't sink if we cannot find a single sinkable successor in which Reg
1053     // is live-in.
1054     if (!SuccBB) {
1055       TII->trackRegDefsUses(*MI, ModifiedRegs, UsedRegs, TRI);
1056       continue;
1057     }
1058     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1059            "Unexpected predecessor");
1060 
1061     // Clear the kill flag if SrcReg is killed between MI and the end of the
1062     // block.
1063     if (UsedRegs[SrcReg]) {
1064       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1065       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1066         if (UI.killsRegister(SrcReg, TRI)) {
1067           UI.clearRegisterKills(SrcReg, TRI);
1068           MI->getOperand(1).setIsKill(true);
1069           break;
1070         }
1071       }
1072     }
1073 
1074     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1075     SuccBB->splice(InsertPos, &CurBB, MI);
1076     SuccBB->removeLiveIn(DefReg);
1077     if (!SuccBB->isLiveIn(SrcReg))
1078       SuccBB->addLiveIn(SrcReg);
1079 
1080     Changed = true;
1081     ++NumPostRACopySink;
1082   }
1083   return Changed;
1084 }
1085 
1086 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1087   bool Changed = false;
1088   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1089   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1090   ModifiedRegs.resize(TRI->getNumRegs());
1091   UsedRegs.resize(TRI->getNumRegs());
1092 
1093   for (auto &BB : MF)
1094     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1095 
1096   return Changed;
1097 }
1098