1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseBitVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachinePostDominators.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <map> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "machine-sink" 57 58 static cl::opt<bool> 59 SplitEdges("machine-sink-split", 60 cl::desc("Split critical edges during machine sinking"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> 64 UseBlockFreqInfo("machine-sink-bfi", 65 cl::desc("Use block frequency info to find successors to sink"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 69 "machine-sink-split-probability-threshold", 70 cl::desc( 71 "Percentage threshold for splitting single-instruction critical edge. " 72 "If the branch threshold is higher than this threshold, we allow " 73 "speculative execution of up to 1 instruction to avoid branching to " 74 "splitted critical edge"), 75 cl::init(40), cl::Hidden); 76 77 STATISTIC(NumSunk, "Number of machine instructions sunk"); 78 STATISTIC(NumSplit, "Number of critical edges split"); 79 STATISTIC(NumCoalesces, "Number of copies coalesced"); 80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 81 82 namespace { 83 84 class MachineSinking : public MachineFunctionPass { 85 const TargetInstrInfo *TII; 86 const TargetRegisterInfo *TRI; 87 MachineRegisterInfo *MRI; // Machine register information 88 MachineDominatorTree *DT; // Machine dominator tree 89 MachinePostDominatorTree *PDT; // Machine post dominator tree 90 MachineLoopInfo *LI; 91 const MachineBlockFrequencyInfo *MBFI; 92 const MachineBranchProbabilityInfo *MBPI; 93 AliasAnalysis *AA; 94 95 // Remember which edges have been considered for breaking. 96 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 97 CEBCandidates; 98 // Remember which edges we are about to split. 99 // This is different from CEBCandidates since those edges 100 // will be split. 101 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 102 103 SparseBitVector<> RegsToClearKillFlags; 104 105 using AllSuccsCache = 106 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 107 108 public: 109 static char ID; // Pass identification 110 111 MachineSinking() : MachineFunctionPass(ID) { 112 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 113 } 114 115 bool runOnMachineFunction(MachineFunction &MF) override; 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 AU.addRequired<AAResultsWrapperPass>(); 121 AU.addRequired<MachineDominatorTree>(); 122 AU.addRequired<MachinePostDominatorTree>(); 123 AU.addRequired<MachineLoopInfo>(); 124 AU.addRequired<MachineBranchProbabilityInfo>(); 125 AU.addPreserved<MachineDominatorTree>(); 126 AU.addPreserved<MachinePostDominatorTree>(); 127 AU.addPreserved<MachineLoopInfo>(); 128 if (UseBlockFreqInfo) 129 AU.addRequired<MachineBlockFrequencyInfo>(); 130 } 131 132 void releaseMemory() override { 133 CEBCandidates.clear(); 134 } 135 136 private: 137 bool ProcessBlock(MachineBasicBlock &MBB); 138 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 139 MachineBasicBlock *From, 140 MachineBasicBlock *To); 141 142 /// \brief Postpone the splitting of the given critical 143 /// edge (\p From, \p To). 144 /// 145 /// We do not split the edges on the fly. Indeed, this invalidates 146 /// the dominance information and thus triggers a lot of updates 147 /// of that information underneath. 148 /// Instead, we postpone all the splits after each iteration of 149 /// the main loop. That way, the information is at least valid 150 /// for the lifetime of an iteration. 151 /// 152 /// \return True if the edge is marked as toSplit, false otherwise. 153 /// False can be returned if, for instance, this is not profitable. 154 bool PostponeSplitCriticalEdge(MachineInstr &MI, 155 MachineBasicBlock *From, 156 MachineBasicBlock *To, 157 bool BreakPHIEdge); 158 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 159 160 AllSuccsCache &AllSuccessors); 161 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 162 MachineBasicBlock *DefMBB, 163 bool &BreakPHIEdge, bool &LocalUse) const; 164 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 165 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 166 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 167 MachineBasicBlock *MBB, 168 MachineBasicBlock *SuccToSinkTo, 169 AllSuccsCache &AllSuccessors); 170 171 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 172 MachineBasicBlock *MBB); 173 174 SmallVector<MachineBasicBlock *, 4> & 175 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 176 AllSuccsCache &AllSuccessors) const; 177 }; 178 179 } // end anonymous namespace 180 181 char MachineSinking::ID = 0; 182 183 char &llvm::MachineSinkingID = MachineSinking::ID; 184 185 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 186 "Machine code sinking", false, false) 187 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 190 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 191 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 192 "Machine code sinking", false, false) 193 194 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 195 MachineBasicBlock *MBB) { 196 if (!MI.isCopy()) 197 return false; 198 199 unsigned SrcReg = MI.getOperand(1).getReg(); 200 unsigned DstReg = MI.getOperand(0).getReg(); 201 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 202 !TargetRegisterInfo::isVirtualRegister(DstReg) || 203 !MRI->hasOneNonDBGUse(SrcReg)) 204 return false; 205 206 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 207 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 208 if (SRC != DRC) 209 return false; 210 211 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 212 if (DefMI->isCopyLike()) 213 return false; 214 DEBUG(dbgs() << "Coalescing: " << *DefMI); 215 DEBUG(dbgs() << "*** to: " << MI); 216 MRI->replaceRegWith(DstReg, SrcReg); 217 MI.eraseFromParent(); 218 219 // Conservatively, clear any kill flags, since it's possible that they are no 220 // longer correct. 221 MRI->clearKillFlags(SrcReg); 222 223 ++NumCoalesces; 224 return true; 225 } 226 227 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 228 /// occur in blocks dominated by the specified block. If any use is in the 229 /// definition block, then return false since it is never legal to move def 230 /// after uses. 231 bool 232 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 233 MachineBasicBlock *MBB, 234 MachineBasicBlock *DefMBB, 235 bool &BreakPHIEdge, 236 bool &LocalUse) const { 237 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 238 "Only makes sense for vregs"); 239 240 // Ignore debug uses because debug info doesn't affect the code. 241 if (MRI->use_nodbg_empty(Reg)) 242 return true; 243 244 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 245 // into and they are all PHI nodes. In this case, machine-sink must break 246 // the critical edge first. e.g. 247 // 248 // %bb.1: derived from LLVM BB %bb4.preheader 249 // Predecessors according to CFG: %bb.0 250 // ... 251 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags 252 // ... 253 // JE_4 <%bb.37>, implicit %eflags 254 // Successors according to CFG: %bb.37 %bb.2 255 // 256 // %bb.2: derived from LLVM BB %bb.nph 257 // Predecessors according to CFG: %bb.0 %bb.1 258 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1 259 BreakPHIEdge = true; 260 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 261 MachineInstr *UseInst = MO.getParent(); 262 unsigned OpNo = &MO - &UseInst->getOperand(0); 263 MachineBasicBlock *UseBlock = UseInst->getParent(); 264 if (!(UseBlock == MBB && UseInst->isPHI() && 265 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 266 BreakPHIEdge = false; 267 break; 268 } 269 } 270 if (BreakPHIEdge) 271 return true; 272 273 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 274 // Determine the block of the use. 275 MachineInstr *UseInst = MO.getParent(); 276 unsigned OpNo = &MO - &UseInst->getOperand(0); 277 MachineBasicBlock *UseBlock = UseInst->getParent(); 278 if (UseInst->isPHI()) { 279 // PHI nodes use the operand in the predecessor block, not the block with 280 // the PHI. 281 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 282 } else if (UseBlock == DefMBB) { 283 LocalUse = true; 284 return false; 285 } 286 287 // Check that it dominates. 288 if (!DT->dominates(MBB, UseBlock)) 289 return false; 290 } 291 292 return true; 293 } 294 295 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 296 if (skipFunction(MF.getFunction())) 297 return false; 298 299 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 300 301 TII = MF.getSubtarget().getInstrInfo(); 302 TRI = MF.getSubtarget().getRegisterInfo(); 303 MRI = &MF.getRegInfo(); 304 DT = &getAnalysis<MachineDominatorTree>(); 305 PDT = &getAnalysis<MachinePostDominatorTree>(); 306 LI = &getAnalysis<MachineLoopInfo>(); 307 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 308 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 309 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 310 311 bool EverMadeChange = false; 312 313 while (true) { 314 bool MadeChange = false; 315 316 // Process all basic blocks. 317 CEBCandidates.clear(); 318 ToSplit.clear(); 319 for (auto &MBB: MF) 320 MadeChange |= ProcessBlock(MBB); 321 322 // If we have anything we marked as toSplit, split it now. 323 for (auto &Pair : ToSplit) { 324 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 325 if (NewSucc != nullptr) { 326 DEBUG(dbgs() << " *** Splitting critical edge: " 327 << printMBBReference(*Pair.first) << " -- " 328 << printMBBReference(*NewSucc) << " -- " 329 << printMBBReference(*Pair.second) << '\n'); 330 MadeChange = true; 331 ++NumSplit; 332 } else 333 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 334 } 335 // If this iteration over the code changed anything, keep iterating. 336 if (!MadeChange) break; 337 EverMadeChange = true; 338 } 339 340 // Now clear any kill flags for recorded registers. 341 for (auto I : RegsToClearKillFlags) 342 MRI->clearKillFlags(I); 343 RegsToClearKillFlags.clear(); 344 345 return EverMadeChange; 346 } 347 348 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 349 // Can't sink anything out of a block that has less than two successors. 350 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 351 352 // Don't bother sinking code out of unreachable blocks. In addition to being 353 // unprofitable, it can also lead to infinite looping, because in an 354 // unreachable loop there may be nowhere to stop. 355 if (!DT->isReachableFromEntry(&MBB)) return false; 356 357 bool MadeChange = false; 358 359 // Cache all successors, sorted by frequency info and loop depth. 360 AllSuccsCache AllSuccessors; 361 362 // Walk the basic block bottom-up. Remember if we saw a store. 363 MachineBasicBlock::iterator I = MBB.end(); 364 --I; 365 bool ProcessedBegin, SawStore = false; 366 do { 367 MachineInstr &MI = *I; // The instruction to sink. 368 369 // Predecrement I (if it's not begin) so that it isn't invalidated by 370 // sinking. 371 ProcessedBegin = I == MBB.begin(); 372 if (!ProcessedBegin) 373 --I; 374 375 if (MI.isDebugValue()) 376 continue; 377 378 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 379 if (Joined) { 380 MadeChange = true; 381 continue; 382 } 383 384 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 385 ++NumSunk; 386 MadeChange = true; 387 } 388 389 // If we just processed the first instruction in the block, we're done. 390 } while (!ProcessedBegin); 391 392 return MadeChange; 393 } 394 395 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 396 MachineBasicBlock *From, 397 MachineBasicBlock *To) { 398 // FIXME: Need much better heuristics. 399 400 // If the pass has already considered breaking this edge (during this pass 401 // through the function), then let's go ahead and break it. This means 402 // sinking multiple "cheap" instructions into the same block. 403 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 404 return true; 405 406 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 407 return true; 408 409 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 410 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 411 return true; 412 413 // MI is cheap, we probably don't want to break the critical edge for it. 414 // However, if this would allow some definitions of its source operands 415 // to be sunk then it's probably worth it. 416 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 417 const MachineOperand &MO = MI.getOperand(i); 418 if (!MO.isReg() || !MO.isUse()) 419 continue; 420 unsigned Reg = MO.getReg(); 421 if (Reg == 0) 422 continue; 423 424 // We don't move live definitions of physical registers, 425 // so sinking their uses won't enable any opportunities. 426 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 427 continue; 428 429 // If this instruction is the only user of a virtual register, 430 // check if breaking the edge will enable sinking 431 // both this instruction and the defining instruction. 432 if (MRI->hasOneNonDBGUse(Reg)) { 433 // If the definition resides in same MBB, 434 // claim it's likely we can sink these together. 435 // If definition resides elsewhere, we aren't 436 // blocking it from being sunk so don't break the edge. 437 MachineInstr *DefMI = MRI->getVRegDef(Reg); 438 if (DefMI->getParent() == MI.getParent()) 439 return true; 440 } 441 } 442 443 return false; 444 } 445 446 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 447 MachineBasicBlock *FromBB, 448 MachineBasicBlock *ToBB, 449 bool BreakPHIEdge) { 450 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 451 return false; 452 453 // Avoid breaking back edge. From == To means backedge for single BB loop. 454 if (!SplitEdges || FromBB == ToBB) 455 return false; 456 457 // Check for backedges of more "complex" loops. 458 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 459 LI->isLoopHeader(ToBB)) 460 return false; 461 462 // It's not always legal to break critical edges and sink the computation 463 // to the edge. 464 // 465 // %bb.1: 466 // v1024 467 // Beq %bb.3 468 // <fallthrough> 469 // %bb.2: 470 // ... no uses of v1024 471 // <fallthrough> 472 // %bb.3: 473 // ... 474 // = v1024 475 // 476 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 477 // 478 // %bb.1: 479 // ... 480 // Bne %bb.2 481 // %bb.4: 482 // v1024 = 483 // B %bb.3 484 // %bb.2: 485 // ... no uses of v1024 486 // <fallthrough> 487 // %bb.3: 488 // ... 489 // = v1024 490 // 491 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 492 // flow. We need to ensure the new basic block where the computation is 493 // sunk to dominates all the uses. 494 // It's only legal to break critical edge and sink the computation to the 495 // new block if all the predecessors of "To", except for "From", are 496 // not dominated by "From". Given SSA property, this means these 497 // predecessors are dominated by "To". 498 // 499 // There is no need to do this check if all the uses are PHI nodes. PHI 500 // sources are only defined on the specific predecessor edges. 501 if (!BreakPHIEdge) { 502 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 503 E = ToBB->pred_end(); PI != E; ++PI) { 504 if (*PI == FromBB) 505 continue; 506 if (!DT->dominates(ToBB, *PI)) 507 return false; 508 } 509 } 510 511 ToSplit.insert(std::make_pair(FromBB, ToBB)); 512 513 return true; 514 } 515 516 /// collectDebgValues - Scan instructions following MI and collect any 517 /// matching DBG_VALUEs. 518 static void collectDebugValues(MachineInstr &MI, 519 SmallVectorImpl<MachineInstr *> &DbgValues) { 520 DbgValues.clear(); 521 if (!MI.getOperand(0).isReg()) 522 return; 523 524 MachineBasicBlock::iterator DI = MI; ++DI; 525 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 526 DI != DE; ++DI) { 527 if (!DI->isDebugValue()) 528 return; 529 if (DI->getOperand(0).isReg() && 530 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 531 DbgValues.push_back(&*DI); 532 } 533 } 534 535 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 536 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 537 MachineBasicBlock *MBB, 538 MachineBasicBlock *SuccToSinkTo, 539 AllSuccsCache &AllSuccessors) { 540 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 541 542 if (MBB == SuccToSinkTo) 543 return false; 544 545 // It is profitable if SuccToSinkTo does not post dominate current block. 546 if (!PDT->dominates(SuccToSinkTo, MBB)) 547 return true; 548 549 // It is profitable to sink an instruction from a deeper loop to a shallower 550 // loop, even if the latter post-dominates the former (PR21115). 551 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 552 return true; 553 554 // Check if only use in post dominated block is PHI instruction. 555 bool NonPHIUse = false; 556 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 557 MachineBasicBlock *UseBlock = UseInst.getParent(); 558 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 559 NonPHIUse = true; 560 } 561 if (!NonPHIUse) 562 return true; 563 564 // If SuccToSinkTo post dominates then also it may be profitable if MI 565 // can further profitably sinked into another block in next round. 566 bool BreakPHIEdge = false; 567 // FIXME - If finding successor is compile time expensive then cache results. 568 if (MachineBasicBlock *MBB2 = 569 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 570 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 571 572 // If SuccToSinkTo is final destination and it is a post dominator of current 573 // block then it is not profitable to sink MI into SuccToSinkTo block. 574 return false; 575 } 576 577 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 578 /// computing it if it was not already cached. 579 SmallVector<MachineBasicBlock *, 4> & 580 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 581 AllSuccsCache &AllSuccessors) const { 582 // Do we have the sorted successors in cache ? 583 auto Succs = AllSuccessors.find(MBB); 584 if (Succs != AllSuccessors.end()) 585 return Succs->second; 586 587 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 588 MBB->succ_end()); 589 590 // Handle cases where sinking can happen but where the sink point isn't a 591 // successor. For example: 592 // 593 // x = computation 594 // if () {} else {} 595 // use x 596 // 597 const std::vector<MachineDomTreeNode *> &Children = 598 DT->getNode(MBB)->getChildren(); 599 for (const auto &DTChild : Children) 600 // DomTree children of MBB that have MBB as immediate dominator are added. 601 if (DTChild->getIDom()->getBlock() == MI.getParent() && 602 // Skip MBBs already added to the AllSuccs vector above. 603 !MBB->isSuccessor(DTChild->getBlock())) 604 AllSuccs.push_back(DTChild->getBlock()); 605 606 // Sort Successors according to their loop depth or block frequency info. 607 std::stable_sort( 608 AllSuccs.begin(), AllSuccs.end(), 609 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 610 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 611 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 612 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 613 return HasBlockFreq ? LHSFreq < RHSFreq 614 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 615 }); 616 617 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 618 619 return it.first->second; 620 } 621 622 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 623 MachineBasicBlock * 624 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 625 bool &BreakPHIEdge, 626 AllSuccsCache &AllSuccessors) { 627 assert (MBB && "Invalid MachineBasicBlock!"); 628 629 // Loop over all the operands of the specified instruction. If there is 630 // anything we can't handle, bail out. 631 632 // SuccToSinkTo - This is the successor to sink this instruction to, once we 633 // decide. 634 MachineBasicBlock *SuccToSinkTo = nullptr; 635 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 636 const MachineOperand &MO = MI.getOperand(i); 637 if (!MO.isReg()) continue; // Ignore non-register operands. 638 639 unsigned Reg = MO.getReg(); 640 if (Reg == 0) continue; 641 642 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 643 if (MO.isUse()) { 644 // If the physreg has no defs anywhere, it's just an ambient register 645 // and we can freely move its uses. Alternatively, if it's allocatable, 646 // it could get allocated to something with a def during allocation. 647 if (!MRI->isConstantPhysReg(Reg)) 648 return nullptr; 649 } else if (!MO.isDead()) { 650 // A def that isn't dead. We can't move it. 651 return nullptr; 652 } 653 } else { 654 // Virtual register uses are always safe to sink. 655 if (MO.isUse()) continue; 656 657 // If it's not safe to move defs of the register class, then abort. 658 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 659 return nullptr; 660 661 // Virtual register defs can only be sunk if all their uses are in blocks 662 // dominated by one of the successors. 663 if (SuccToSinkTo) { 664 // If a previous operand picked a block to sink to, then this operand 665 // must be sinkable to the same block. 666 bool LocalUse = false; 667 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 668 BreakPHIEdge, LocalUse)) 669 return nullptr; 670 671 continue; 672 } 673 674 // Otherwise, we should look at all the successors and decide which one 675 // we should sink to. If we have reliable block frequency information 676 // (frequency != 0) available, give successors with smaller frequencies 677 // higher priority, otherwise prioritize smaller loop depths. 678 for (MachineBasicBlock *SuccBlock : 679 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 680 bool LocalUse = false; 681 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 682 BreakPHIEdge, LocalUse)) { 683 SuccToSinkTo = SuccBlock; 684 break; 685 } 686 if (LocalUse) 687 // Def is used locally, it's never safe to move this def. 688 return nullptr; 689 } 690 691 // If we couldn't find a block to sink to, ignore this instruction. 692 if (!SuccToSinkTo) 693 return nullptr; 694 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 695 return nullptr; 696 } 697 } 698 699 // It is not possible to sink an instruction into its own block. This can 700 // happen with loops. 701 if (MBB == SuccToSinkTo) 702 return nullptr; 703 704 // It's not safe to sink instructions to EH landing pad. Control flow into 705 // landing pad is implicitly defined. 706 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 707 return nullptr; 708 709 return SuccToSinkTo; 710 } 711 712 /// \brief Return true if MI is likely to be usable as a memory operation by the 713 /// implicit null check optimization. 714 /// 715 /// This is a "best effort" heuristic, and should not be relied upon for 716 /// correctness. This returning true does not guarantee that the implicit null 717 /// check optimization is legal over MI, and this returning false does not 718 /// guarantee MI cannot possibly be used to do a null check. 719 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 720 const TargetInstrInfo *TII, 721 const TargetRegisterInfo *TRI) { 722 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 723 724 auto *MBB = MI.getParent(); 725 if (MBB->pred_size() != 1) 726 return false; 727 728 auto *PredMBB = *MBB->pred_begin(); 729 auto *PredBB = PredMBB->getBasicBlock(); 730 731 // Frontends that don't use implicit null checks have no reason to emit 732 // branches with make.implicit metadata, and this function should always 733 // return false for them. 734 if (!PredBB || 735 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 736 return false; 737 738 unsigned BaseReg; 739 int64_t Offset; 740 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 741 return false; 742 743 if (!(MI.mayLoad() && !MI.isPredicable())) 744 return false; 745 746 MachineBranchPredicate MBP; 747 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 748 return false; 749 750 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 751 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 752 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 753 MBP.LHS.getReg() == BaseReg; 754 } 755 756 /// SinkInstruction - Determine whether it is safe to sink the specified machine 757 /// instruction out of its current block into a successor. 758 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 759 AllSuccsCache &AllSuccessors) { 760 // Don't sink instructions that the target prefers not to sink. 761 if (!TII->shouldSink(MI)) 762 return false; 763 764 // Check if it's safe to move the instruction. 765 if (!MI.isSafeToMove(AA, SawStore)) 766 return false; 767 768 // Convergent operations may not be made control-dependent on additional 769 // values. 770 if (MI.isConvergent()) 771 return false; 772 773 // Don't break implicit null checks. This is a performance heuristic, and not 774 // required for correctness. 775 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 776 return false; 777 778 // FIXME: This should include support for sinking instructions within the 779 // block they are currently in to shorten the live ranges. We often get 780 // instructions sunk into the top of a large block, but it would be better to 781 // also sink them down before their first use in the block. This xform has to 782 // be careful not to *increase* register pressure though, e.g. sinking 783 // "x = y + z" down if it kills y and z would increase the live ranges of y 784 // and z and only shrink the live range of x. 785 786 bool BreakPHIEdge = false; 787 MachineBasicBlock *ParentBlock = MI.getParent(); 788 MachineBasicBlock *SuccToSinkTo = 789 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 790 791 // If there are no outputs, it must have side-effects. 792 if (!SuccToSinkTo) 793 return false; 794 795 // If the instruction to move defines a dead physical register which is live 796 // when leaving the basic block, don't move it because it could turn into a 797 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 798 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 799 const MachineOperand &MO = MI.getOperand(I); 800 if (!MO.isReg()) continue; 801 unsigned Reg = MO.getReg(); 802 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 803 if (SuccToSinkTo->isLiveIn(Reg)) 804 return false; 805 } 806 807 DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 808 809 // If the block has multiple predecessors, this is a critical edge. 810 // Decide if we can sink along it or need to break the edge. 811 if (SuccToSinkTo->pred_size() > 1) { 812 // We cannot sink a load across a critical edge - there may be stores in 813 // other code paths. 814 bool TryBreak = false; 815 bool store = true; 816 if (!MI.isSafeToMove(AA, store)) { 817 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 818 TryBreak = true; 819 } 820 821 // We don't want to sink across a critical edge if we don't dominate the 822 // successor. We could be introducing calculations to new code paths. 823 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 824 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 825 TryBreak = true; 826 } 827 828 // Don't sink instructions into a loop. 829 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 830 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 831 TryBreak = true; 832 } 833 834 // Otherwise we are OK with sinking along a critical edge. 835 if (!TryBreak) 836 DEBUG(dbgs() << "Sinking along critical edge.\n"); 837 else { 838 // Mark this edge as to be split. 839 // If the edge can actually be split, the next iteration of the main loop 840 // will sink MI in the newly created block. 841 bool Status = 842 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 843 if (!Status) 844 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 845 "break critical edge\n"); 846 // The instruction will not be sunk this time. 847 return false; 848 } 849 } 850 851 if (BreakPHIEdge) { 852 // BreakPHIEdge is true if all the uses are in the successor MBB being 853 // sunken into and they are all PHI nodes. In this case, machine-sink must 854 // break the critical edge first. 855 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 856 SuccToSinkTo, BreakPHIEdge); 857 if (!Status) 858 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 859 "break critical edge\n"); 860 // The instruction will not be sunk this time. 861 return false; 862 } 863 864 // Determine where to insert into. Skip phi nodes. 865 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 866 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 867 ++InsertPos; 868 869 // collect matching debug values. 870 SmallVector<MachineInstr *, 2> DbgValuesToSink; 871 collectDebugValues(MI, DbgValuesToSink); 872 873 // Merge or erase debug location to ensure consistent stepping in profilers 874 // and debuggers. 875 if (!SuccToSinkTo->empty() && InsertPos != SuccToSinkTo->end()) 876 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 877 InsertPos->getDebugLoc())); 878 else 879 MI.setDebugLoc(DebugLoc()); 880 881 882 // Move the instruction. 883 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 884 ++MachineBasicBlock::iterator(MI)); 885 886 // Move previously adjacent debug value instructions to the insert position. 887 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 888 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 889 MachineInstr *DbgMI = *DBI; 890 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 891 ++MachineBasicBlock::iterator(DbgMI)); 892 } 893 894 // Conservatively, clear any kill flags, since it's possible that they are no 895 // longer correct. 896 // Note that we have to clear the kill flags for any register this instruction 897 // uses as we may sink over another instruction which currently kills the 898 // used registers. 899 for (MachineOperand &MO : MI.operands()) { 900 if (MO.isReg() && MO.isUse()) 901 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 902 } 903 904 return true; 905 } 906 907 //===----------------------------------------------------------------------===// 908 // This pass is not intended to be a replacement or a complete alternative 909 // for the pre-ra machine sink pass. It is only designed to sink COPY 910 // instructions which should be handled after RA. 911 // 912 // This pass sinks COPY instructions into a successor block, if the COPY is not 913 // used in the current block and the COPY is live-in to a single successor 914 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 915 // copy on paths where their results aren't needed. This also exposes 916 // additional opportunites for dead copy elimination and shrink wrapping. 917 // 918 // These copies were either not handled by or are inserted after the MachineSink 919 // pass. As an example of the former case, the MachineSink pass cannot sink 920 // COPY instructions with allocatable source registers; for AArch64 these type 921 // of copy instructions are frequently used to move function parameters (PhyReg) 922 // into virtual registers in the entry block. 923 // 924 // For the machine IR below, this pass will sink %w19 in the entry into its 925 // successor (%bb.1) because %w19 is only live-in in %bb.1. 926 // %bb.0: 927 // %wzr = SUBSWri %w1, 1 928 // %w19 = COPY %w0 929 // Bcc 11, %bb.2 930 // %bb.1: 931 // Live Ins: %w19 932 // BL @fun 933 // %w0 = ADDWrr %w0, %w19 934 // RET %w0 935 // %bb.2: 936 // %w0 = COPY %wzr 937 // RET %w0 938 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 939 // able to see %bb.0 as a candidate. 940 //===----------------------------------------------------------------------===// 941 namespace { 942 943 class PostRAMachineSinking : public MachineFunctionPass { 944 public: 945 bool runOnMachineFunction(MachineFunction &MF) override; 946 947 static char ID; 948 PostRAMachineSinking() : MachineFunctionPass(ID) {} 949 StringRef getPassName() const override { return "PostRA Machine Sink"; } 950 951 void getAnalysisUsage(AnalysisUsage &AU) const override { 952 AU.setPreservesCFG(); 953 MachineFunctionPass::getAnalysisUsage(AU); 954 } 955 956 private: 957 /// Track which registers have been modified and used. 958 BitVector ModifiedRegs, UsedRegs; 959 960 /// Sink Copy instructions unused in the same block close to their uses in 961 /// successors. 962 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 963 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 964 }; 965 } // namespace 966 967 char PostRAMachineSinking::ID = 0; 968 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 969 970 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 971 "PostRA Machine Sink", false, false) 972 973 static MachineBasicBlock * 974 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 975 ArrayRef<MachineBasicBlock *> SinkableBBs, unsigned Reg, 976 const TargetRegisterInfo *TRI) { 977 SmallSet<unsigned, 8> AliasedRegs; 978 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 979 AliasedRegs.insert(*AI); 980 981 // Try to find a single sinkable successor in which Reg is live-in. 982 MachineBasicBlock *BB = nullptr; 983 for (auto *SI : SinkableBBs) { 984 if (SI->isLiveIn(Reg)) { 985 // If BB is set here, Reg is live-in to at least two sinkable successors, 986 // so quit. 987 if (BB) 988 return nullptr; 989 BB = SI; 990 } 991 } 992 // Reg is not live-in to any sinkable successors. 993 if (!BB) 994 return nullptr; 995 996 // Check if any register aliased with Reg is live-in in other successors. 997 for (auto *SI : CurBB.successors()) { 998 if (SI == BB) 999 continue; 1000 for (const auto LI : SI->liveins()) 1001 if (AliasedRegs.count(LI.PhysReg)) 1002 return nullptr; 1003 } 1004 return BB; 1005 } 1006 1007 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1008 MachineFunction &MF, 1009 const TargetRegisterInfo *TRI, 1010 const TargetInstrInfo *TII) { 1011 SmallVector<MachineBasicBlock *, 2> SinkableBBs; 1012 // FIXME: For now, we sink only to a successor which has a single predecessor 1013 // so that we can directly sink COPY instructions to the successor without 1014 // adding any new block or branch instruction. 1015 for (MachineBasicBlock *SI : CurBB.successors()) 1016 if (!SI->livein_empty() && SI->pred_size() == 1) 1017 SinkableBBs.push_back(SI); 1018 1019 if (SinkableBBs.empty()) 1020 return false; 1021 1022 bool Changed = false; 1023 1024 // Track which registers have been modified and used between the end of the 1025 // block and the current instruction. 1026 ModifiedRegs.reset(); 1027 UsedRegs.reset(); 1028 1029 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1030 MachineInstr *MI = &*I; 1031 ++I; 1032 1033 // Do not move any instruction across function call. 1034 if (MI->isCall()) 1035 return false; 1036 1037 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1038 TII->trackRegDefsUses(*MI, ModifiedRegs, UsedRegs, TRI); 1039 continue; 1040 } 1041 1042 unsigned DefReg = MI->getOperand(0).getReg(); 1043 unsigned SrcReg = MI->getOperand(1).getReg(); 1044 // Don't sink the COPY if it would violate a register dependency. 1045 if (ModifiedRegs[DefReg] || ModifiedRegs[SrcReg] || UsedRegs[DefReg]) { 1046 TII->trackRegDefsUses(*MI, ModifiedRegs, UsedRegs, TRI); 1047 continue; 1048 } 1049 1050 MachineBasicBlock *SuccBB = 1051 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1052 // Don't sink if we cannot find a single sinkable successor in which Reg 1053 // is live-in. 1054 if (!SuccBB) { 1055 TII->trackRegDefsUses(*MI, ModifiedRegs, UsedRegs, TRI); 1056 continue; 1057 } 1058 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1059 "Unexpected predecessor"); 1060 1061 // Clear the kill flag if SrcReg is killed between MI and the end of the 1062 // block. 1063 if (UsedRegs[SrcReg]) { 1064 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1065 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1066 if (UI.killsRegister(SrcReg, TRI)) { 1067 UI.clearRegisterKills(SrcReg, TRI); 1068 MI->getOperand(1).setIsKill(true); 1069 break; 1070 } 1071 } 1072 } 1073 1074 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1075 SuccBB->splice(InsertPos, &CurBB, MI); 1076 SuccBB->removeLiveIn(DefReg); 1077 if (!SuccBB->isLiveIn(SrcReg)) 1078 SuccBB->addLiveIn(SrcReg); 1079 1080 Changed = true; 1081 ++NumPostRACopySink; 1082 } 1083 return Changed; 1084 } 1085 1086 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1087 bool Changed = false; 1088 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1089 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1090 ModifiedRegs.resize(TRI->getNumRegs()); 1091 UsedRegs.resize(TRI->getNumRegs()); 1092 1093 for (auto &BB : MF) 1094 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1095 1096 return Changed; 1097 } 1098