1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SparseBitVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePostDominators.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <map> 46 #include <utility> 47 #include <vector> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "machine-sink" 52 53 static cl::opt<bool> 54 SplitEdges("machine-sink-split", 55 cl::desc("Split critical edges during machine sinking"), 56 cl::init(true), cl::Hidden); 57 58 static cl::opt<bool> 59 UseBlockFreqInfo("machine-sink-bfi", 60 cl::desc("Use block frequency info to find successors to sink"), 61 cl::init(true), cl::Hidden); 62 63 STATISTIC(NumSunk, "Number of machine instructions sunk"); 64 STATISTIC(NumSplit, "Number of critical edges split"); 65 STATISTIC(NumCoalesces, "Number of copies coalesced"); 66 67 namespace { 68 69 class MachineSinking : public MachineFunctionPass { 70 const TargetInstrInfo *TII; 71 const TargetRegisterInfo *TRI; 72 MachineRegisterInfo *MRI; // Machine register information 73 MachineDominatorTree *DT; // Machine dominator tree 74 MachinePostDominatorTree *PDT; // Machine post dominator tree 75 MachineLoopInfo *LI; 76 const MachineBlockFrequencyInfo *MBFI; 77 AliasAnalysis *AA; 78 79 // Remember which edges have been considered for breaking. 80 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 81 CEBCandidates; 82 // Remember which edges we are about to split. 83 // This is different from CEBCandidates since those edges 84 // will be split. 85 SetVector<std::pair<MachineBasicBlock*, MachineBasicBlock*> > ToSplit; 86 87 SparseBitVector<> RegsToClearKillFlags; 88 89 typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>> 90 AllSuccsCache; 91 92 public: 93 static char ID; // Pass identification 94 95 MachineSinking() : MachineFunctionPass(ID) { 96 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 97 } 98 99 bool runOnMachineFunction(MachineFunction &MF) override; 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 AU.setPreservesCFG(); 103 MachineFunctionPass::getAnalysisUsage(AU); 104 AU.addRequired<AAResultsWrapperPass>(); 105 AU.addRequired<MachineDominatorTree>(); 106 AU.addRequired<MachinePostDominatorTree>(); 107 AU.addRequired<MachineLoopInfo>(); 108 AU.addPreserved<MachineDominatorTree>(); 109 AU.addPreserved<MachinePostDominatorTree>(); 110 AU.addPreserved<MachineLoopInfo>(); 111 if (UseBlockFreqInfo) 112 AU.addRequired<MachineBlockFrequencyInfo>(); 113 } 114 115 void releaseMemory() override { 116 CEBCandidates.clear(); 117 } 118 119 private: 120 bool ProcessBlock(MachineBasicBlock &MBB); 121 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 122 MachineBasicBlock *From, 123 MachineBasicBlock *To); 124 /// \brief Postpone the splitting of the given critical 125 /// edge (\p From, \p To). 126 /// 127 /// We do not split the edges on the fly. Indeed, this invalidates 128 /// the dominance information and thus triggers a lot of updates 129 /// of that information underneath. 130 /// Instead, we postpone all the splits after each iteration of 131 /// the main loop. That way, the information is at least valid 132 /// for the lifetime of an iteration. 133 /// 134 /// \return True if the edge is marked as toSplit, false otherwise. 135 /// False can be returned if, for instance, this is not profitable. 136 bool PostponeSplitCriticalEdge(MachineInstr &MI, 137 MachineBasicBlock *From, 138 MachineBasicBlock *To, 139 bool BreakPHIEdge); 140 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 141 AllSuccsCache &AllSuccessors); 142 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 143 MachineBasicBlock *DefMBB, 144 bool &BreakPHIEdge, bool &LocalUse) const; 145 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 146 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 147 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 148 MachineBasicBlock *MBB, 149 MachineBasicBlock *SuccToSinkTo, 150 AllSuccsCache &AllSuccessors); 151 152 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 153 MachineBasicBlock *MBB); 154 155 SmallVector<MachineBasicBlock *, 4> & 156 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 157 AllSuccsCache &AllSuccessors) const; 158 }; 159 160 } // end anonymous namespace 161 162 char MachineSinking::ID = 0; 163 char &llvm::MachineSinkingID = MachineSinking::ID; 164 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 165 "Machine code sinking", false, false) 166 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 167 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 168 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 169 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 170 "Machine code sinking", false, false) 171 172 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 173 MachineBasicBlock *MBB) { 174 if (!MI.isCopy()) 175 return false; 176 177 unsigned SrcReg = MI.getOperand(1).getReg(); 178 unsigned DstReg = MI.getOperand(0).getReg(); 179 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 180 !TargetRegisterInfo::isVirtualRegister(DstReg) || 181 !MRI->hasOneNonDBGUse(SrcReg)) 182 return false; 183 184 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 185 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 186 if (SRC != DRC) 187 return false; 188 189 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 190 if (DefMI->isCopyLike()) 191 return false; 192 DEBUG(dbgs() << "Coalescing: " << *DefMI); 193 DEBUG(dbgs() << "*** to: " << MI); 194 MRI->replaceRegWith(DstReg, SrcReg); 195 MI.eraseFromParent(); 196 197 // Conservatively, clear any kill flags, since it's possible that they are no 198 // longer correct. 199 MRI->clearKillFlags(SrcReg); 200 201 ++NumCoalesces; 202 return true; 203 } 204 205 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 206 /// occur in blocks dominated by the specified block. If any use is in the 207 /// definition block, then return false since it is never legal to move def 208 /// after uses. 209 bool 210 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 211 MachineBasicBlock *MBB, 212 MachineBasicBlock *DefMBB, 213 bool &BreakPHIEdge, 214 bool &LocalUse) const { 215 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 216 "Only makes sense for vregs"); 217 218 // Ignore debug uses because debug info doesn't affect the code. 219 if (MRI->use_nodbg_empty(Reg)) 220 return true; 221 222 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 223 // into and they are all PHI nodes. In this case, machine-sink must break 224 // the critical edge first. e.g. 225 // 226 // BB#1: derived from LLVM BB %bb4.preheader 227 // Predecessors according to CFG: BB#0 228 // ... 229 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 230 // ... 231 // JE_4 <BB#37>, %EFLAGS<imp-use> 232 // Successors according to CFG: BB#37 BB#2 233 // 234 // BB#2: derived from LLVM BB %bb.nph 235 // Predecessors according to CFG: BB#0 BB#1 236 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 237 BreakPHIEdge = true; 238 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 239 MachineInstr *UseInst = MO.getParent(); 240 unsigned OpNo = &MO - &UseInst->getOperand(0); 241 MachineBasicBlock *UseBlock = UseInst->getParent(); 242 if (!(UseBlock == MBB && UseInst->isPHI() && 243 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 244 BreakPHIEdge = false; 245 break; 246 } 247 } 248 if (BreakPHIEdge) 249 return true; 250 251 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 252 // Determine the block of the use. 253 MachineInstr *UseInst = MO.getParent(); 254 unsigned OpNo = &MO - &UseInst->getOperand(0); 255 MachineBasicBlock *UseBlock = UseInst->getParent(); 256 if (UseInst->isPHI()) { 257 // PHI nodes use the operand in the predecessor block, not the block with 258 // the PHI. 259 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 260 } else if (UseBlock == DefMBB) { 261 LocalUse = true; 262 return false; 263 } 264 265 // Check that it dominates. 266 if (!DT->dominates(MBB, UseBlock)) 267 return false; 268 } 269 270 return true; 271 } 272 273 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 274 if (skipFunction(*MF.getFunction())) 275 return false; 276 277 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 278 279 TII = MF.getSubtarget().getInstrInfo(); 280 TRI = MF.getSubtarget().getRegisterInfo(); 281 MRI = &MF.getRegInfo(); 282 DT = &getAnalysis<MachineDominatorTree>(); 283 PDT = &getAnalysis<MachinePostDominatorTree>(); 284 LI = &getAnalysis<MachineLoopInfo>(); 285 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 286 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 287 288 bool EverMadeChange = false; 289 290 while (true) { 291 bool MadeChange = false; 292 293 // Process all basic blocks. 294 CEBCandidates.clear(); 295 ToSplit.clear(); 296 for (auto &MBB: MF) 297 MadeChange |= ProcessBlock(MBB); 298 299 // If we have anything we marked as toSplit, split it now. 300 for (auto &Pair : ToSplit) { 301 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 302 if (NewSucc != nullptr) { 303 DEBUG(dbgs() << " *** Splitting critical edge:" 304 " BB#" << Pair.first->getNumber() 305 << " -- BB#" << NewSucc->getNumber() 306 << " -- BB#" << Pair.second->getNumber() << '\n'); 307 MadeChange = true; 308 ++NumSplit; 309 } else 310 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 311 } 312 // If this iteration over the code changed anything, keep iterating. 313 if (!MadeChange) break; 314 EverMadeChange = true; 315 } 316 317 // Now clear any kill flags for recorded registers. 318 for (auto I : RegsToClearKillFlags) 319 MRI->clearKillFlags(I); 320 RegsToClearKillFlags.clear(); 321 322 return EverMadeChange; 323 } 324 325 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 326 // Can't sink anything out of a block that has less than two successors. 327 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 328 329 // Don't bother sinking code out of unreachable blocks. In addition to being 330 // unprofitable, it can also lead to infinite looping, because in an 331 // unreachable loop there may be nowhere to stop. 332 if (!DT->isReachableFromEntry(&MBB)) return false; 333 334 bool MadeChange = false; 335 336 // Cache all successors, sorted by frequency info and loop depth. 337 AllSuccsCache AllSuccessors; 338 339 // Walk the basic block bottom-up. Remember if we saw a store. 340 MachineBasicBlock::iterator I = MBB.end(); 341 --I; 342 bool ProcessedBegin, SawStore = false; 343 do { 344 MachineInstr &MI = *I; // The instruction to sink. 345 346 // Predecrement I (if it's not begin) so that it isn't invalidated by 347 // sinking. 348 ProcessedBegin = I == MBB.begin(); 349 if (!ProcessedBegin) 350 --I; 351 352 if (MI.isDebugValue()) 353 continue; 354 355 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 356 if (Joined) { 357 MadeChange = true; 358 continue; 359 } 360 361 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 362 ++NumSunk; 363 MadeChange = true; 364 } 365 366 // If we just processed the first instruction in the block, we're done. 367 } while (!ProcessedBegin); 368 369 return MadeChange; 370 } 371 372 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 373 MachineBasicBlock *From, 374 MachineBasicBlock *To) { 375 // FIXME: Need much better heuristics. 376 377 // If the pass has already considered breaking this edge (during this pass 378 // through the function), then let's go ahead and break it. This means 379 // sinking multiple "cheap" instructions into the same block. 380 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 381 return true; 382 383 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 384 return true; 385 386 // MI is cheap, we probably don't want to break the critical edge for it. 387 // However, if this would allow some definitions of its source operands 388 // to be sunk then it's probably worth it. 389 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 390 const MachineOperand &MO = MI.getOperand(i); 391 if (!MO.isReg() || !MO.isUse()) 392 continue; 393 unsigned Reg = MO.getReg(); 394 if (Reg == 0) 395 continue; 396 397 // We don't move live definitions of physical registers, 398 // so sinking their uses won't enable any opportunities. 399 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 400 continue; 401 402 // If this instruction is the only user of a virtual register, 403 // check if breaking the edge will enable sinking 404 // both this instruction and the defining instruction. 405 if (MRI->hasOneNonDBGUse(Reg)) { 406 // If the definition resides in same MBB, 407 // claim it's likely we can sink these together. 408 // If definition resides elsewhere, we aren't 409 // blocking it from being sunk so don't break the edge. 410 MachineInstr *DefMI = MRI->getVRegDef(Reg); 411 if (DefMI->getParent() == MI.getParent()) 412 return true; 413 } 414 } 415 416 return false; 417 } 418 419 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 420 MachineBasicBlock *FromBB, 421 MachineBasicBlock *ToBB, 422 bool BreakPHIEdge) { 423 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 424 return false; 425 426 // Avoid breaking back edge. From == To means backedge for single BB loop. 427 if (!SplitEdges || FromBB == ToBB) 428 return false; 429 430 // Check for backedges of more "complex" loops. 431 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 432 LI->isLoopHeader(ToBB)) 433 return false; 434 435 // It's not always legal to break critical edges and sink the computation 436 // to the edge. 437 // 438 // BB#1: 439 // v1024 440 // Beq BB#3 441 // <fallthrough> 442 // BB#2: 443 // ... no uses of v1024 444 // <fallthrough> 445 // BB#3: 446 // ... 447 // = v1024 448 // 449 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 450 // 451 // BB#1: 452 // ... 453 // Bne BB#2 454 // BB#4: 455 // v1024 = 456 // B BB#3 457 // BB#2: 458 // ... no uses of v1024 459 // <fallthrough> 460 // BB#3: 461 // ... 462 // = v1024 463 // 464 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 465 // flow. We need to ensure the new basic block where the computation is 466 // sunk to dominates all the uses. 467 // It's only legal to break critical edge and sink the computation to the 468 // new block if all the predecessors of "To", except for "From", are 469 // not dominated by "From". Given SSA property, this means these 470 // predecessors are dominated by "To". 471 // 472 // There is no need to do this check if all the uses are PHI nodes. PHI 473 // sources are only defined on the specific predecessor edges. 474 if (!BreakPHIEdge) { 475 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 476 E = ToBB->pred_end(); PI != E; ++PI) { 477 if (*PI == FromBB) 478 continue; 479 if (!DT->dominates(ToBB, *PI)) 480 return false; 481 } 482 } 483 484 ToSplit.insert(std::make_pair(FromBB, ToBB)); 485 486 return true; 487 } 488 489 /// collectDebgValues - Scan instructions following MI and collect any 490 /// matching DBG_VALUEs. 491 static void collectDebugValues(MachineInstr &MI, 492 SmallVectorImpl<MachineInstr *> &DbgValues) { 493 DbgValues.clear(); 494 if (!MI.getOperand(0).isReg()) 495 return; 496 497 MachineBasicBlock::iterator DI = MI; ++DI; 498 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 499 DI != DE; ++DI) { 500 if (!DI->isDebugValue()) 501 return; 502 if (DI->getOperand(0).isReg() && 503 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 504 DbgValues.push_back(&*DI); 505 } 506 } 507 508 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 509 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 510 MachineBasicBlock *MBB, 511 MachineBasicBlock *SuccToSinkTo, 512 AllSuccsCache &AllSuccessors) { 513 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 514 515 if (MBB == SuccToSinkTo) 516 return false; 517 518 // It is profitable if SuccToSinkTo does not post dominate current block. 519 if (!PDT->dominates(SuccToSinkTo, MBB)) 520 return true; 521 522 // It is profitable to sink an instruction from a deeper loop to a shallower 523 // loop, even if the latter post-dominates the former (PR21115). 524 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 525 return true; 526 527 // Check if only use in post dominated block is PHI instruction. 528 bool NonPHIUse = false; 529 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 530 MachineBasicBlock *UseBlock = UseInst.getParent(); 531 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 532 NonPHIUse = true; 533 } 534 if (!NonPHIUse) 535 return true; 536 537 // If SuccToSinkTo post dominates then also it may be profitable if MI 538 // can further profitably sinked into another block in next round. 539 bool BreakPHIEdge = false; 540 // FIXME - If finding successor is compile time expensive then cache results. 541 if (MachineBasicBlock *MBB2 = 542 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 543 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 544 545 // If SuccToSinkTo is final destination and it is a post dominator of current 546 // block then it is not profitable to sink MI into SuccToSinkTo block. 547 return false; 548 } 549 550 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 551 /// computing it if it was not already cached. 552 SmallVector<MachineBasicBlock *, 4> & 553 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 554 AllSuccsCache &AllSuccessors) const { 555 556 // Do we have the sorted successors in cache ? 557 auto Succs = AllSuccessors.find(MBB); 558 if (Succs != AllSuccessors.end()) 559 return Succs->second; 560 561 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 562 MBB->succ_end()); 563 564 // Handle cases where sinking can happen but where the sink point isn't a 565 // successor. For example: 566 // 567 // x = computation 568 // if () {} else {} 569 // use x 570 // 571 const std::vector<MachineDomTreeNode *> &Children = 572 DT->getNode(MBB)->getChildren(); 573 for (const auto &DTChild : Children) 574 // DomTree children of MBB that have MBB as immediate dominator are added. 575 if (DTChild->getIDom()->getBlock() == MI.getParent() && 576 // Skip MBBs already added to the AllSuccs vector above. 577 !MBB->isSuccessor(DTChild->getBlock())) 578 AllSuccs.push_back(DTChild->getBlock()); 579 580 // Sort Successors according to their loop depth or block frequency info. 581 std::stable_sort( 582 AllSuccs.begin(), AllSuccs.end(), 583 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 584 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 585 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 586 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 587 return HasBlockFreq ? LHSFreq < RHSFreq 588 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 589 }); 590 591 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 592 593 return it.first->second; 594 } 595 596 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 597 MachineBasicBlock * 598 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 599 bool &BreakPHIEdge, 600 AllSuccsCache &AllSuccessors) { 601 assert (MBB && "Invalid MachineBasicBlock!"); 602 603 // Loop over all the operands of the specified instruction. If there is 604 // anything we can't handle, bail out. 605 606 // SuccToSinkTo - This is the successor to sink this instruction to, once we 607 // decide. 608 MachineBasicBlock *SuccToSinkTo = nullptr; 609 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 610 const MachineOperand &MO = MI.getOperand(i); 611 if (!MO.isReg()) continue; // Ignore non-register operands. 612 613 unsigned Reg = MO.getReg(); 614 if (Reg == 0) continue; 615 616 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 617 if (MO.isUse()) { 618 // If the physreg has no defs anywhere, it's just an ambient register 619 // and we can freely move its uses. Alternatively, if it's allocatable, 620 // it could get allocated to something with a def during allocation. 621 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 622 return nullptr; 623 } else if (!MO.isDead()) { 624 // A def that isn't dead. We can't move it. 625 return nullptr; 626 } 627 } else { 628 // Virtual register uses are always safe to sink. 629 if (MO.isUse()) continue; 630 631 // If it's not safe to move defs of the register class, then abort. 632 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 633 return nullptr; 634 635 // Virtual register defs can only be sunk if all their uses are in blocks 636 // dominated by one of the successors. 637 if (SuccToSinkTo) { 638 // If a previous operand picked a block to sink to, then this operand 639 // must be sinkable to the same block. 640 bool LocalUse = false; 641 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 642 BreakPHIEdge, LocalUse)) 643 return nullptr; 644 645 continue; 646 } 647 648 // Otherwise, we should look at all the successors and decide which one 649 // we should sink to. If we have reliable block frequency information 650 // (frequency != 0) available, give successors with smaller frequencies 651 // higher priority, otherwise prioritize smaller loop depths. 652 for (MachineBasicBlock *SuccBlock : 653 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 654 bool LocalUse = false; 655 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 656 BreakPHIEdge, LocalUse)) { 657 SuccToSinkTo = SuccBlock; 658 break; 659 } 660 if (LocalUse) 661 // Def is used locally, it's never safe to move this def. 662 return nullptr; 663 } 664 665 // If we couldn't find a block to sink to, ignore this instruction. 666 if (!SuccToSinkTo) 667 return nullptr; 668 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 669 return nullptr; 670 } 671 } 672 673 // It is not possible to sink an instruction into its own block. This can 674 // happen with loops. 675 if (MBB == SuccToSinkTo) 676 return nullptr; 677 678 // It's not safe to sink instructions to EH landing pad. Control flow into 679 // landing pad is implicitly defined. 680 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 681 return nullptr; 682 683 return SuccToSinkTo; 684 } 685 686 /// \brief Return true if MI is likely to be usable as a memory operation by the 687 /// implicit null check optimization. 688 /// 689 /// This is a "best effort" heuristic, and should not be relied upon for 690 /// correctness. This returning true does not guarantee that the implicit null 691 /// check optimization is legal over MI, and this returning false does not 692 /// guarantee MI cannot possibly be used to do a null check. 693 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 694 const TargetInstrInfo *TII, 695 const TargetRegisterInfo *TRI) { 696 typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; 697 698 auto *MBB = MI.getParent(); 699 if (MBB->pred_size() != 1) 700 return false; 701 702 auto *PredMBB = *MBB->pred_begin(); 703 auto *PredBB = PredMBB->getBasicBlock(); 704 705 // Frontends that don't use implicit null checks have no reason to emit 706 // branches with make.implicit metadata, and this function should always 707 // return false for them. 708 if (!PredBB || 709 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 710 return false; 711 712 unsigned BaseReg; 713 int64_t Offset; 714 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 715 return false; 716 717 if (!(MI.mayLoad() && !MI.isPredicable())) 718 return false; 719 720 MachineBranchPredicate MBP; 721 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 722 return false; 723 724 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 725 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 726 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 727 MBP.LHS.getReg() == BaseReg; 728 } 729 730 /// SinkInstruction - Determine whether it is safe to sink the specified machine 731 /// instruction out of its current block into a successor. 732 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 733 AllSuccsCache &AllSuccessors) { 734 // Don't sink instructions that the target prefers not to sink. 735 if (!TII->shouldSink(MI)) 736 return false; 737 738 // Check if it's safe to move the instruction. 739 if (!MI.isSafeToMove(AA, SawStore)) 740 return false; 741 742 // Convergent operations may not be made control-dependent on additional 743 // values. 744 if (MI.isConvergent()) 745 return false; 746 747 // Don't break implicit null checks. This is a performance heuristic, and not 748 // required for correctness. 749 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 750 return false; 751 752 // FIXME: This should include support for sinking instructions within the 753 // block they are currently in to shorten the live ranges. We often get 754 // instructions sunk into the top of a large block, but it would be better to 755 // also sink them down before their first use in the block. This xform has to 756 // be careful not to *increase* register pressure though, e.g. sinking 757 // "x = y + z" down if it kills y and z would increase the live ranges of y 758 // and z and only shrink the live range of x. 759 760 bool BreakPHIEdge = false; 761 MachineBasicBlock *ParentBlock = MI.getParent(); 762 MachineBasicBlock *SuccToSinkTo = 763 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 764 765 // If there are no outputs, it must have side-effects. 766 if (!SuccToSinkTo) 767 return false; 768 769 770 // If the instruction to move defines a dead physical register which is live 771 // when leaving the basic block, don't move it because it could turn into a 772 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 773 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 774 const MachineOperand &MO = MI.getOperand(I); 775 if (!MO.isReg()) continue; 776 unsigned Reg = MO.getReg(); 777 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 778 if (SuccToSinkTo->isLiveIn(Reg)) 779 return false; 780 } 781 782 DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 783 784 // If the block has multiple predecessors, this is a critical edge. 785 // Decide if we can sink along it or need to break the edge. 786 if (SuccToSinkTo->pred_size() > 1) { 787 // We cannot sink a load across a critical edge - there may be stores in 788 // other code paths. 789 bool TryBreak = false; 790 bool store = true; 791 if (!MI.isSafeToMove(AA, store)) { 792 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 793 TryBreak = true; 794 } 795 796 // We don't want to sink across a critical edge if we don't dominate the 797 // successor. We could be introducing calculations to new code paths. 798 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 799 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 800 TryBreak = true; 801 } 802 803 // Don't sink instructions into a loop. 804 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 805 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 806 TryBreak = true; 807 } 808 809 // Otherwise we are OK with sinking along a critical edge. 810 if (!TryBreak) 811 DEBUG(dbgs() << "Sinking along critical edge.\n"); 812 else { 813 // Mark this edge as to be split. 814 // If the edge can actually be split, the next iteration of the main loop 815 // will sink MI in the newly created block. 816 bool Status = 817 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 818 if (!Status) 819 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 820 "break critical edge\n"); 821 // The instruction will not be sunk this time. 822 return false; 823 } 824 } 825 826 if (BreakPHIEdge) { 827 // BreakPHIEdge is true if all the uses are in the successor MBB being 828 // sunken into and they are all PHI nodes. In this case, machine-sink must 829 // break the critical edge first. 830 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 831 SuccToSinkTo, BreakPHIEdge); 832 if (!Status) 833 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 834 "break critical edge\n"); 835 // The instruction will not be sunk this time. 836 return false; 837 } 838 839 // Determine where to insert into. Skip phi nodes. 840 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 841 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 842 ++InsertPos; 843 844 // collect matching debug values. 845 SmallVector<MachineInstr *, 2> DbgValuesToSink; 846 collectDebugValues(MI, DbgValuesToSink); 847 848 // Move the instruction. 849 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 850 ++MachineBasicBlock::iterator(MI)); 851 852 // Move debug values. 853 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 854 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 855 MachineInstr *DbgMI = *DBI; 856 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 857 ++MachineBasicBlock::iterator(DbgMI)); 858 } 859 860 // Conservatively, clear any kill flags, since it's possible that they are no 861 // longer correct. 862 // Note that we have to clear the kill flags for any register this instruction 863 // uses as we may sink over another instruction which currently kills the 864 // used registers. 865 for (MachineOperand &MO : MI.operands()) { 866 if (MO.isReg() && MO.isUse()) 867 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 868 } 869 870 return true; 871 } 872