xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision 25528d6de70e98683722e28655d8568d5f09b5c7)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <map>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "machine-sink"
56 
57 static cl::opt<bool>
58 SplitEdges("machine-sink-split",
59            cl::desc("Split critical edges during machine sinking"),
60            cl::init(true), cl::Hidden);
61 
62 static cl::opt<bool>
63 UseBlockFreqInfo("machine-sink-bfi",
64            cl::desc("Use block frequency info to find successors to sink"),
65            cl::init(true), cl::Hidden);
66 
67 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
68     "machine-sink-split-probability-threshold",
69     cl::desc(
70         "Percentage threshold for splitting single-instruction critical edge. "
71         "If the branch threshold is higher than this threshold, we allow "
72         "speculative execution of up to 1 instruction to avoid branching to "
73         "splitted critical edge"),
74     cl::init(40), cl::Hidden);
75 
76 STATISTIC(NumSunk,      "Number of machine instructions sunk");
77 STATISTIC(NumSplit,     "Number of critical edges split");
78 STATISTIC(NumCoalesces, "Number of copies coalesced");
79 
80 namespace {
81 
82   class MachineSinking : public MachineFunctionPass {
83     const TargetInstrInfo *TII;
84     const TargetRegisterInfo *TRI;
85     MachineRegisterInfo  *MRI;     // Machine register information
86     MachineDominatorTree *DT;      // Machine dominator tree
87     MachinePostDominatorTree *PDT; // Machine post dominator tree
88     MachineLoopInfo *LI;
89     const MachineBlockFrequencyInfo *MBFI;
90     const MachineBranchProbabilityInfo *MBPI;
91     AliasAnalysis *AA;
92 
93     // Remember which edges have been considered for breaking.
94     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
95     CEBCandidates;
96     // Remember which edges we are about to split.
97     // This is different from CEBCandidates since those edges
98     // will be split.
99     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
100 
101     SparseBitVector<> RegsToClearKillFlags;
102 
103     using AllSuccsCache =
104         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
105 
106   public:
107     static char ID; // Pass identification
108 
109     MachineSinking() : MachineFunctionPass(ID) {
110       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
111     }
112 
113     bool runOnMachineFunction(MachineFunction &MF) override;
114 
115     void getAnalysisUsage(AnalysisUsage &AU) const override {
116       AU.setPreservesCFG();
117       MachineFunctionPass::getAnalysisUsage(AU);
118       AU.addRequired<AAResultsWrapperPass>();
119       AU.addRequired<MachineDominatorTree>();
120       AU.addRequired<MachinePostDominatorTree>();
121       AU.addRequired<MachineLoopInfo>();
122       AU.addRequired<MachineBranchProbabilityInfo>();
123       AU.addPreserved<MachineDominatorTree>();
124       AU.addPreserved<MachinePostDominatorTree>();
125       AU.addPreserved<MachineLoopInfo>();
126       if (UseBlockFreqInfo)
127         AU.addRequired<MachineBlockFrequencyInfo>();
128     }
129 
130     void releaseMemory() override {
131       CEBCandidates.clear();
132     }
133 
134   private:
135     bool ProcessBlock(MachineBasicBlock &MBB);
136     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
137                                      MachineBasicBlock *From,
138                                      MachineBasicBlock *To);
139 
140     /// \brief Postpone the splitting of the given critical
141     /// edge (\p From, \p To).
142     ///
143     /// We do not split the edges on the fly. Indeed, this invalidates
144     /// the dominance information and thus triggers a lot of updates
145     /// of that information underneath.
146     /// Instead, we postpone all the splits after each iteration of
147     /// the main loop. That way, the information is at least valid
148     /// for the lifetime of an iteration.
149     ///
150     /// \return True if the edge is marked as toSplit, false otherwise.
151     /// False can be returned if, for instance, this is not profitable.
152     bool PostponeSplitCriticalEdge(MachineInstr &MI,
153                                    MachineBasicBlock *From,
154                                    MachineBasicBlock *To,
155                                    bool BreakPHIEdge);
156     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
157 
158                          AllSuccsCache &AllSuccessors);
159     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
160                                  MachineBasicBlock *DefMBB,
161                                  bool &BreakPHIEdge, bool &LocalUse) const;
162     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
163                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
164     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
165                               MachineBasicBlock *MBB,
166                               MachineBasicBlock *SuccToSinkTo,
167                               AllSuccsCache &AllSuccessors);
168 
169     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
170                                          MachineBasicBlock *MBB);
171 
172     SmallVector<MachineBasicBlock *, 4> &
173     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
174                            AllSuccsCache &AllSuccessors) const;
175   };
176 
177 } // end anonymous namespace
178 
179 char MachineSinking::ID = 0;
180 
181 char &llvm::MachineSinkingID = MachineSinking::ID;
182 
183 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
184                       "Machine code sinking", false, false)
185 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
186 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
187 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
190                     "Machine code sinking", false, false)
191 
192 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
193                                                      MachineBasicBlock *MBB) {
194   if (!MI.isCopy())
195     return false;
196 
197   unsigned SrcReg = MI.getOperand(1).getReg();
198   unsigned DstReg = MI.getOperand(0).getReg();
199   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
200       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
201       !MRI->hasOneNonDBGUse(SrcReg))
202     return false;
203 
204   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
205   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
206   if (SRC != DRC)
207     return false;
208 
209   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
210   if (DefMI->isCopyLike())
211     return false;
212   DEBUG(dbgs() << "Coalescing: " << *DefMI);
213   DEBUG(dbgs() << "*** to: " << MI);
214   MRI->replaceRegWith(DstReg, SrcReg);
215   MI.eraseFromParent();
216 
217   // Conservatively, clear any kill flags, since it's possible that they are no
218   // longer correct.
219   MRI->clearKillFlags(SrcReg);
220 
221   ++NumCoalesces;
222   return true;
223 }
224 
225 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
226 /// occur in blocks dominated by the specified block. If any use is in the
227 /// definition block, then return false since it is never legal to move def
228 /// after uses.
229 bool
230 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
231                                         MachineBasicBlock *MBB,
232                                         MachineBasicBlock *DefMBB,
233                                         bool &BreakPHIEdge,
234                                         bool &LocalUse) const {
235   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
236          "Only makes sense for vregs");
237 
238   // Ignore debug uses because debug info doesn't affect the code.
239   if (MRI->use_nodbg_empty(Reg))
240     return true;
241 
242   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
243   // into and they are all PHI nodes. In this case, machine-sink must break
244   // the critical edge first. e.g.
245   //
246   // %bb.1: derived from LLVM BB %bb4.preheader
247   //   Predecessors according to CFG: %bb.0
248   //     ...
249   //     %reg16385<def> = DEC64_32r %reg16437, %eflags<imp-def,dead>
250   //     ...
251   //     JE_4 <%bb.37>, %eflags<imp-use>
252   //   Successors according to CFG: %bb.37 %bb.2
253   //
254   // %bb.2: derived from LLVM BB %bb.nph
255   //   Predecessors according to CFG: %bb.0 %bb.1
256   //     %reg16386<def> = PHI %reg16434, %bb.0, %reg16385, %bb.1
257   BreakPHIEdge = true;
258   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
259     MachineInstr *UseInst = MO.getParent();
260     unsigned OpNo = &MO - &UseInst->getOperand(0);
261     MachineBasicBlock *UseBlock = UseInst->getParent();
262     if (!(UseBlock == MBB && UseInst->isPHI() &&
263           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
264       BreakPHIEdge = false;
265       break;
266     }
267   }
268   if (BreakPHIEdge)
269     return true;
270 
271   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
272     // Determine the block of the use.
273     MachineInstr *UseInst = MO.getParent();
274     unsigned OpNo = &MO - &UseInst->getOperand(0);
275     MachineBasicBlock *UseBlock = UseInst->getParent();
276     if (UseInst->isPHI()) {
277       // PHI nodes use the operand in the predecessor block, not the block with
278       // the PHI.
279       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
280     } else if (UseBlock == DefMBB) {
281       LocalUse = true;
282       return false;
283     }
284 
285     // Check that it dominates.
286     if (!DT->dominates(MBB, UseBlock))
287       return false;
288   }
289 
290   return true;
291 }
292 
293 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
294   if (skipFunction(*MF.getFunction()))
295     return false;
296 
297   DEBUG(dbgs() << "******** Machine Sinking ********\n");
298 
299   TII = MF.getSubtarget().getInstrInfo();
300   TRI = MF.getSubtarget().getRegisterInfo();
301   MRI = &MF.getRegInfo();
302   DT = &getAnalysis<MachineDominatorTree>();
303   PDT = &getAnalysis<MachinePostDominatorTree>();
304   LI = &getAnalysis<MachineLoopInfo>();
305   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
306   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
307   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
308 
309   bool EverMadeChange = false;
310 
311   while (true) {
312     bool MadeChange = false;
313 
314     // Process all basic blocks.
315     CEBCandidates.clear();
316     ToSplit.clear();
317     for (auto &MBB: MF)
318       MadeChange |= ProcessBlock(MBB);
319 
320     // If we have anything we marked as toSplit, split it now.
321     for (auto &Pair : ToSplit) {
322       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
323       if (NewSucc != nullptr) {
324         DEBUG(dbgs() << " *** Splitting critical edge: "
325                      << printMBBReference(*Pair.first) << " -- "
326                      << printMBBReference(*NewSucc) << " -- "
327                      << printMBBReference(*Pair.second) << '\n');
328         MadeChange = true;
329         ++NumSplit;
330       } else
331         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
332     }
333     // If this iteration over the code changed anything, keep iterating.
334     if (!MadeChange) break;
335     EverMadeChange = true;
336   }
337 
338   // Now clear any kill flags for recorded registers.
339   for (auto I : RegsToClearKillFlags)
340     MRI->clearKillFlags(I);
341   RegsToClearKillFlags.clear();
342 
343   return EverMadeChange;
344 }
345 
346 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
347   // Can't sink anything out of a block that has less than two successors.
348   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
349 
350   // Don't bother sinking code out of unreachable blocks. In addition to being
351   // unprofitable, it can also lead to infinite looping, because in an
352   // unreachable loop there may be nowhere to stop.
353   if (!DT->isReachableFromEntry(&MBB)) return false;
354 
355   bool MadeChange = false;
356 
357   // Cache all successors, sorted by frequency info and loop depth.
358   AllSuccsCache AllSuccessors;
359 
360   // Walk the basic block bottom-up.  Remember if we saw a store.
361   MachineBasicBlock::iterator I = MBB.end();
362   --I;
363   bool ProcessedBegin, SawStore = false;
364   do {
365     MachineInstr &MI = *I;  // The instruction to sink.
366 
367     // Predecrement I (if it's not begin) so that it isn't invalidated by
368     // sinking.
369     ProcessedBegin = I == MBB.begin();
370     if (!ProcessedBegin)
371       --I;
372 
373     if (MI.isDebugValue())
374       continue;
375 
376     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
377     if (Joined) {
378       MadeChange = true;
379       continue;
380     }
381 
382     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
383       ++NumSunk;
384       MadeChange = true;
385     }
386 
387     // If we just processed the first instruction in the block, we're done.
388   } while (!ProcessedBegin);
389 
390   return MadeChange;
391 }
392 
393 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
394                                                  MachineBasicBlock *From,
395                                                  MachineBasicBlock *To) {
396   // FIXME: Need much better heuristics.
397 
398   // If the pass has already considered breaking this edge (during this pass
399   // through the function), then let's go ahead and break it. This means
400   // sinking multiple "cheap" instructions into the same block.
401   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
402     return true;
403 
404   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
405     return true;
406 
407   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
408       BranchProbability(SplitEdgeProbabilityThreshold, 100))
409     return true;
410 
411   // MI is cheap, we probably don't want to break the critical edge for it.
412   // However, if this would allow some definitions of its source operands
413   // to be sunk then it's probably worth it.
414   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
415     const MachineOperand &MO = MI.getOperand(i);
416     if (!MO.isReg() || !MO.isUse())
417       continue;
418     unsigned Reg = MO.getReg();
419     if (Reg == 0)
420       continue;
421 
422     // We don't move live definitions of physical registers,
423     // so sinking their uses won't enable any opportunities.
424     if (TargetRegisterInfo::isPhysicalRegister(Reg))
425       continue;
426 
427     // If this instruction is the only user of a virtual register,
428     // check if breaking the edge will enable sinking
429     // both this instruction and the defining instruction.
430     if (MRI->hasOneNonDBGUse(Reg)) {
431       // If the definition resides in same MBB,
432       // claim it's likely we can sink these together.
433       // If definition resides elsewhere, we aren't
434       // blocking it from being sunk so don't break the edge.
435       MachineInstr *DefMI = MRI->getVRegDef(Reg);
436       if (DefMI->getParent() == MI.getParent())
437         return true;
438     }
439   }
440 
441   return false;
442 }
443 
444 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
445                                                MachineBasicBlock *FromBB,
446                                                MachineBasicBlock *ToBB,
447                                                bool BreakPHIEdge) {
448   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
449     return false;
450 
451   // Avoid breaking back edge. From == To means backedge for single BB loop.
452   if (!SplitEdges || FromBB == ToBB)
453     return false;
454 
455   // Check for backedges of more "complex" loops.
456   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
457       LI->isLoopHeader(ToBB))
458     return false;
459 
460   // It's not always legal to break critical edges and sink the computation
461   // to the edge.
462   //
463   // %bb.1:
464   // v1024
465   // Beq %bb.3
466   // <fallthrough>
467   // %bb.2:
468   // ... no uses of v1024
469   // <fallthrough>
470   // %bb.3:
471   // ...
472   //       = v1024
473   //
474   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
475   //
476   // %bb.1:
477   // ...
478   // Bne %bb.2
479   // %bb.4:
480   // v1024 =
481   // B %bb.3
482   // %bb.2:
483   // ... no uses of v1024
484   // <fallthrough>
485   // %bb.3:
486   // ...
487   //       = v1024
488   //
489   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
490   // flow. We need to ensure the new basic block where the computation is
491   // sunk to dominates all the uses.
492   // It's only legal to break critical edge and sink the computation to the
493   // new block if all the predecessors of "To", except for "From", are
494   // not dominated by "From". Given SSA property, this means these
495   // predecessors are dominated by "To".
496   //
497   // There is no need to do this check if all the uses are PHI nodes. PHI
498   // sources are only defined on the specific predecessor edges.
499   if (!BreakPHIEdge) {
500     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
501            E = ToBB->pred_end(); PI != E; ++PI) {
502       if (*PI == FromBB)
503         continue;
504       if (!DT->dominates(ToBB, *PI))
505         return false;
506     }
507   }
508 
509   ToSplit.insert(std::make_pair(FromBB, ToBB));
510 
511   return true;
512 }
513 
514 /// collectDebgValues - Scan instructions following MI and collect any
515 /// matching DBG_VALUEs.
516 static void collectDebugValues(MachineInstr &MI,
517                                SmallVectorImpl<MachineInstr *> &DbgValues) {
518   DbgValues.clear();
519   if (!MI.getOperand(0).isReg())
520     return;
521 
522   MachineBasicBlock::iterator DI = MI; ++DI;
523   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
524        DI != DE; ++DI) {
525     if (!DI->isDebugValue())
526       return;
527     if (DI->getOperand(0).isReg() &&
528         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
529       DbgValues.push_back(&*DI);
530   }
531 }
532 
533 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
534 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
535                                           MachineBasicBlock *MBB,
536                                           MachineBasicBlock *SuccToSinkTo,
537                                           AllSuccsCache &AllSuccessors) {
538   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
539 
540   if (MBB == SuccToSinkTo)
541     return false;
542 
543   // It is profitable if SuccToSinkTo does not post dominate current block.
544   if (!PDT->dominates(SuccToSinkTo, MBB))
545     return true;
546 
547   // It is profitable to sink an instruction from a deeper loop to a shallower
548   // loop, even if the latter post-dominates the former (PR21115).
549   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
550     return true;
551 
552   // Check if only use in post dominated block is PHI instruction.
553   bool NonPHIUse = false;
554   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
555     MachineBasicBlock *UseBlock = UseInst.getParent();
556     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
557       NonPHIUse = true;
558   }
559   if (!NonPHIUse)
560     return true;
561 
562   // If SuccToSinkTo post dominates then also it may be profitable if MI
563   // can further profitably sinked into another block in next round.
564   bool BreakPHIEdge = false;
565   // FIXME - If finding successor is compile time expensive then cache results.
566   if (MachineBasicBlock *MBB2 =
567           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
568     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
569 
570   // If SuccToSinkTo is final destination and it is a post dominator of current
571   // block then it is not profitable to sink MI into SuccToSinkTo block.
572   return false;
573 }
574 
575 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
576 /// computing it if it was not already cached.
577 SmallVector<MachineBasicBlock *, 4> &
578 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
579                                        AllSuccsCache &AllSuccessors) const {
580   // Do we have the sorted successors in cache ?
581   auto Succs = AllSuccessors.find(MBB);
582   if (Succs != AllSuccessors.end())
583     return Succs->second;
584 
585   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
586                                                MBB->succ_end());
587 
588   // Handle cases where sinking can happen but where the sink point isn't a
589   // successor. For example:
590   //
591   //   x = computation
592   //   if () {} else {}
593   //   use x
594   //
595   const std::vector<MachineDomTreeNode *> &Children =
596     DT->getNode(MBB)->getChildren();
597   for (const auto &DTChild : Children)
598     // DomTree children of MBB that have MBB as immediate dominator are added.
599     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
600         // Skip MBBs already added to the AllSuccs vector above.
601         !MBB->isSuccessor(DTChild->getBlock()))
602       AllSuccs.push_back(DTChild->getBlock());
603 
604   // Sort Successors according to their loop depth or block frequency info.
605   std::stable_sort(
606       AllSuccs.begin(), AllSuccs.end(),
607       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
608         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
609         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
610         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
611         return HasBlockFreq ? LHSFreq < RHSFreq
612                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
613       });
614 
615   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
616 
617   return it.first->second;
618 }
619 
620 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
621 MachineBasicBlock *
622 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
623                                  bool &BreakPHIEdge,
624                                  AllSuccsCache &AllSuccessors) {
625   assert (MBB && "Invalid MachineBasicBlock!");
626 
627   // Loop over all the operands of the specified instruction.  If there is
628   // anything we can't handle, bail out.
629 
630   // SuccToSinkTo - This is the successor to sink this instruction to, once we
631   // decide.
632   MachineBasicBlock *SuccToSinkTo = nullptr;
633   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
634     const MachineOperand &MO = MI.getOperand(i);
635     if (!MO.isReg()) continue;  // Ignore non-register operands.
636 
637     unsigned Reg = MO.getReg();
638     if (Reg == 0) continue;
639 
640     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
641       if (MO.isUse()) {
642         // If the physreg has no defs anywhere, it's just an ambient register
643         // and we can freely move its uses. Alternatively, if it's allocatable,
644         // it could get allocated to something with a def during allocation.
645         if (!MRI->isConstantPhysReg(Reg))
646           return nullptr;
647       } else if (!MO.isDead()) {
648         // A def that isn't dead. We can't move it.
649         return nullptr;
650       }
651     } else {
652       // Virtual register uses are always safe to sink.
653       if (MO.isUse()) continue;
654 
655       // If it's not safe to move defs of the register class, then abort.
656       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
657         return nullptr;
658 
659       // Virtual register defs can only be sunk if all their uses are in blocks
660       // dominated by one of the successors.
661       if (SuccToSinkTo) {
662         // If a previous operand picked a block to sink to, then this operand
663         // must be sinkable to the same block.
664         bool LocalUse = false;
665         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
666                                      BreakPHIEdge, LocalUse))
667           return nullptr;
668 
669         continue;
670       }
671 
672       // Otherwise, we should look at all the successors and decide which one
673       // we should sink to. If we have reliable block frequency information
674       // (frequency != 0) available, give successors with smaller frequencies
675       // higher priority, otherwise prioritize smaller loop depths.
676       for (MachineBasicBlock *SuccBlock :
677            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
678         bool LocalUse = false;
679         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
680                                     BreakPHIEdge, LocalUse)) {
681           SuccToSinkTo = SuccBlock;
682           break;
683         }
684         if (LocalUse)
685           // Def is used locally, it's never safe to move this def.
686           return nullptr;
687       }
688 
689       // If we couldn't find a block to sink to, ignore this instruction.
690       if (!SuccToSinkTo)
691         return nullptr;
692       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
693         return nullptr;
694     }
695   }
696 
697   // It is not possible to sink an instruction into its own block.  This can
698   // happen with loops.
699   if (MBB == SuccToSinkTo)
700     return nullptr;
701 
702   // It's not safe to sink instructions to EH landing pad. Control flow into
703   // landing pad is implicitly defined.
704   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
705     return nullptr;
706 
707   return SuccToSinkTo;
708 }
709 
710 /// \brief Return true if MI is likely to be usable as a memory operation by the
711 /// implicit null check optimization.
712 ///
713 /// This is a "best effort" heuristic, and should not be relied upon for
714 /// correctness.  This returning true does not guarantee that the implicit null
715 /// check optimization is legal over MI, and this returning false does not
716 /// guarantee MI cannot possibly be used to do a null check.
717 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
718                                              const TargetInstrInfo *TII,
719                                              const TargetRegisterInfo *TRI) {
720   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
721 
722   auto *MBB = MI.getParent();
723   if (MBB->pred_size() != 1)
724     return false;
725 
726   auto *PredMBB = *MBB->pred_begin();
727   auto *PredBB = PredMBB->getBasicBlock();
728 
729   // Frontends that don't use implicit null checks have no reason to emit
730   // branches with make.implicit metadata, and this function should always
731   // return false for them.
732   if (!PredBB ||
733       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
734     return false;
735 
736   unsigned BaseReg;
737   int64_t Offset;
738   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
739     return false;
740 
741   if (!(MI.mayLoad() && !MI.isPredicable()))
742     return false;
743 
744   MachineBranchPredicate MBP;
745   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
746     return false;
747 
748   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
749          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
750           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
751          MBP.LHS.getReg() == BaseReg;
752 }
753 
754 /// SinkInstruction - Determine whether it is safe to sink the specified machine
755 /// instruction out of its current block into a successor.
756 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
757                                      AllSuccsCache &AllSuccessors) {
758   // Don't sink instructions that the target prefers not to sink.
759   if (!TII->shouldSink(MI))
760     return false;
761 
762   // Check if it's safe to move the instruction.
763   if (!MI.isSafeToMove(AA, SawStore))
764     return false;
765 
766   // Convergent operations may not be made control-dependent on additional
767   // values.
768   if (MI.isConvergent())
769     return false;
770 
771   // Don't break implicit null checks.  This is a performance heuristic, and not
772   // required for correctness.
773   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
774     return false;
775 
776   // FIXME: This should include support for sinking instructions within the
777   // block they are currently in to shorten the live ranges.  We often get
778   // instructions sunk into the top of a large block, but it would be better to
779   // also sink them down before their first use in the block.  This xform has to
780   // be careful not to *increase* register pressure though, e.g. sinking
781   // "x = y + z" down if it kills y and z would increase the live ranges of y
782   // and z and only shrink the live range of x.
783 
784   bool BreakPHIEdge = false;
785   MachineBasicBlock *ParentBlock = MI.getParent();
786   MachineBasicBlock *SuccToSinkTo =
787       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
788 
789   // If there are no outputs, it must have side-effects.
790   if (!SuccToSinkTo)
791     return false;
792 
793   // If the instruction to move defines a dead physical register which is live
794   // when leaving the basic block, don't move it because it could turn into a
795   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
796   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
797     const MachineOperand &MO = MI.getOperand(I);
798     if (!MO.isReg()) continue;
799     unsigned Reg = MO.getReg();
800     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
801     if (SuccToSinkTo->isLiveIn(Reg))
802       return false;
803   }
804 
805   DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
806 
807   // If the block has multiple predecessors, this is a critical edge.
808   // Decide if we can sink along it or need to break the edge.
809   if (SuccToSinkTo->pred_size() > 1) {
810     // We cannot sink a load across a critical edge - there may be stores in
811     // other code paths.
812     bool TryBreak = false;
813     bool store = true;
814     if (!MI.isSafeToMove(AA, store)) {
815       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
816       TryBreak = true;
817     }
818 
819     // We don't want to sink across a critical edge if we don't dominate the
820     // successor. We could be introducing calculations to new code paths.
821     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
822       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
823       TryBreak = true;
824     }
825 
826     // Don't sink instructions into a loop.
827     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
828       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
829       TryBreak = true;
830     }
831 
832     // Otherwise we are OK with sinking along a critical edge.
833     if (!TryBreak)
834       DEBUG(dbgs() << "Sinking along critical edge.\n");
835     else {
836       // Mark this edge as to be split.
837       // If the edge can actually be split, the next iteration of the main loop
838       // will sink MI in the newly created block.
839       bool Status =
840         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
841       if (!Status)
842         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
843               "break critical edge\n");
844       // The instruction will not be sunk this time.
845       return false;
846     }
847   }
848 
849   if (BreakPHIEdge) {
850     // BreakPHIEdge is true if all the uses are in the successor MBB being
851     // sunken into and they are all PHI nodes. In this case, machine-sink must
852     // break the critical edge first.
853     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
854                                             SuccToSinkTo, BreakPHIEdge);
855     if (!Status)
856       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
857             "break critical edge\n");
858     // The instruction will not be sunk this time.
859     return false;
860   }
861 
862   // Determine where to insert into. Skip phi nodes.
863   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
864   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
865     ++InsertPos;
866 
867   // collect matching debug values.
868   SmallVector<MachineInstr *, 2> DbgValuesToSink;
869   collectDebugValues(MI, DbgValuesToSink);
870 
871   // Move the instruction.
872   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
873                        ++MachineBasicBlock::iterator(MI));
874 
875   // Move debug values.
876   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
877          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
878     MachineInstr *DbgMI = *DBI;
879     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
880                          ++MachineBasicBlock::iterator(DbgMI));
881   }
882 
883   // Conservatively, clear any kill flags, since it's possible that they are no
884   // longer correct.
885   // Note that we have to clear the kill flags for any register this instruction
886   // uses as we may sink over another instruction which currently kills the
887   // used registers.
888   for (MachineOperand &MO : MI.operands()) {
889     if (MO.isReg() && MO.isUse())
890       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
891   }
892 
893   return true;
894 }
895