1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseBitVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachinePostDominators.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/BranchProbability.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstdint> 49 #include <map> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "machine-sink" 56 57 static cl::opt<bool> 58 SplitEdges("machine-sink-split", 59 cl::desc("Split critical edges during machine sinking"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> 63 UseBlockFreqInfo("machine-sink-bfi", 64 cl::desc("Use block frequency info to find successors to sink"), 65 cl::init(true), cl::Hidden); 66 67 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 68 "machine-sink-split-probability-threshold", 69 cl::desc( 70 "Percentage threshold for splitting single-instruction critical edge. " 71 "If the branch threshold is higher than this threshold, we allow " 72 "speculative execution of up to 1 instruction to avoid branching to " 73 "splitted critical edge"), 74 cl::init(40), cl::Hidden); 75 76 STATISTIC(NumSunk, "Number of machine instructions sunk"); 77 STATISTIC(NumSplit, "Number of critical edges split"); 78 STATISTIC(NumCoalesces, "Number of copies coalesced"); 79 80 namespace { 81 82 class MachineSinking : public MachineFunctionPass { 83 const TargetInstrInfo *TII; 84 const TargetRegisterInfo *TRI; 85 MachineRegisterInfo *MRI; // Machine register information 86 MachineDominatorTree *DT; // Machine dominator tree 87 MachinePostDominatorTree *PDT; // Machine post dominator tree 88 MachineLoopInfo *LI; 89 const MachineBlockFrequencyInfo *MBFI; 90 const MachineBranchProbabilityInfo *MBPI; 91 AliasAnalysis *AA; 92 93 // Remember which edges have been considered for breaking. 94 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 95 CEBCandidates; 96 // Remember which edges we are about to split. 97 // This is different from CEBCandidates since those edges 98 // will be split. 99 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 100 101 SparseBitVector<> RegsToClearKillFlags; 102 103 using AllSuccsCache = 104 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 105 106 public: 107 static char ID; // Pass identification 108 109 MachineSinking() : MachineFunctionPass(ID) { 110 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.setPreservesCFG(); 117 MachineFunctionPass::getAnalysisUsage(AU); 118 AU.addRequired<AAResultsWrapperPass>(); 119 AU.addRequired<MachineDominatorTree>(); 120 AU.addRequired<MachinePostDominatorTree>(); 121 AU.addRequired<MachineLoopInfo>(); 122 AU.addRequired<MachineBranchProbabilityInfo>(); 123 AU.addPreserved<MachineDominatorTree>(); 124 AU.addPreserved<MachinePostDominatorTree>(); 125 AU.addPreserved<MachineLoopInfo>(); 126 if (UseBlockFreqInfo) 127 AU.addRequired<MachineBlockFrequencyInfo>(); 128 } 129 130 void releaseMemory() override { 131 CEBCandidates.clear(); 132 } 133 134 private: 135 bool ProcessBlock(MachineBasicBlock &MBB); 136 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 137 MachineBasicBlock *From, 138 MachineBasicBlock *To); 139 140 /// \brief Postpone the splitting of the given critical 141 /// edge (\p From, \p To). 142 /// 143 /// We do not split the edges on the fly. Indeed, this invalidates 144 /// the dominance information and thus triggers a lot of updates 145 /// of that information underneath. 146 /// Instead, we postpone all the splits after each iteration of 147 /// the main loop. That way, the information is at least valid 148 /// for the lifetime of an iteration. 149 /// 150 /// \return True if the edge is marked as toSplit, false otherwise. 151 /// False can be returned if, for instance, this is not profitable. 152 bool PostponeSplitCriticalEdge(MachineInstr &MI, 153 MachineBasicBlock *From, 154 MachineBasicBlock *To, 155 bool BreakPHIEdge); 156 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 157 158 AllSuccsCache &AllSuccessors); 159 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 160 MachineBasicBlock *DefMBB, 161 bool &BreakPHIEdge, bool &LocalUse) const; 162 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 163 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 164 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 165 MachineBasicBlock *MBB, 166 MachineBasicBlock *SuccToSinkTo, 167 AllSuccsCache &AllSuccessors); 168 169 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 170 MachineBasicBlock *MBB); 171 172 SmallVector<MachineBasicBlock *, 4> & 173 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 174 AllSuccsCache &AllSuccessors) const; 175 }; 176 177 } // end anonymous namespace 178 179 char MachineSinking::ID = 0; 180 181 char &llvm::MachineSinkingID = MachineSinking::ID; 182 183 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 184 "Machine code sinking", false, false) 185 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 186 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 187 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 189 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 190 "Machine code sinking", false, false) 191 192 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 193 MachineBasicBlock *MBB) { 194 if (!MI.isCopy()) 195 return false; 196 197 unsigned SrcReg = MI.getOperand(1).getReg(); 198 unsigned DstReg = MI.getOperand(0).getReg(); 199 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 200 !TargetRegisterInfo::isVirtualRegister(DstReg) || 201 !MRI->hasOneNonDBGUse(SrcReg)) 202 return false; 203 204 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 205 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 206 if (SRC != DRC) 207 return false; 208 209 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 210 if (DefMI->isCopyLike()) 211 return false; 212 DEBUG(dbgs() << "Coalescing: " << *DefMI); 213 DEBUG(dbgs() << "*** to: " << MI); 214 MRI->replaceRegWith(DstReg, SrcReg); 215 MI.eraseFromParent(); 216 217 // Conservatively, clear any kill flags, since it's possible that they are no 218 // longer correct. 219 MRI->clearKillFlags(SrcReg); 220 221 ++NumCoalesces; 222 return true; 223 } 224 225 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 226 /// occur in blocks dominated by the specified block. If any use is in the 227 /// definition block, then return false since it is never legal to move def 228 /// after uses. 229 bool 230 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 231 MachineBasicBlock *MBB, 232 MachineBasicBlock *DefMBB, 233 bool &BreakPHIEdge, 234 bool &LocalUse) const { 235 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 236 "Only makes sense for vregs"); 237 238 // Ignore debug uses because debug info doesn't affect the code. 239 if (MRI->use_nodbg_empty(Reg)) 240 return true; 241 242 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 243 // into and they are all PHI nodes. In this case, machine-sink must break 244 // the critical edge first. e.g. 245 // 246 // %bb.1: derived from LLVM BB %bb4.preheader 247 // Predecessors according to CFG: %bb.0 248 // ... 249 // %reg16385<def> = DEC64_32r %reg16437, %eflags<imp-def,dead> 250 // ... 251 // JE_4 <%bb.37>, %eflags<imp-use> 252 // Successors according to CFG: %bb.37 %bb.2 253 // 254 // %bb.2: derived from LLVM BB %bb.nph 255 // Predecessors according to CFG: %bb.0 %bb.1 256 // %reg16386<def> = PHI %reg16434, %bb.0, %reg16385, %bb.1 257 BreakPHIEdge = true; 258 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 259 MachineInstr *UseInst = MO.getParent(); 260 unsigned OpNo = &MO - &UseInst->getOperand(0); 261 MachineBasicBlock *UseBlock = UseInst->getParent(); 262 if (!(UseBlock == MBB && UseInst->isPHI() && 263 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 264 BreakPHIEdge = false; 265 break; 266 } 267 } 268 if (BreakPHIEdge) 269 return true; 270 271 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 272 // Determine the block of the use. 273 MachineInstr *UseInst = MO.getParent(); 274 unsigned OpNo = &MO - &UseInst->getOperand(0); 275 MachineBasicBlock *UseBlock = UseInst->getParent(); 276 if (UseInst->isPHI()) { 277 // PHI nodes use the operand in the predecessor block, not the block with 278 // the PHI. 279 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 280 } else if (UseBlock == DefMBB) { 281 LocalUse = true; 282 return false; 283 } 284 285 // Check that it dominates. 286 if (!DT->dominates(MBB, UseBlock)) 287 return false; 288 } 289 290 return true; 291 } 292 293 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 294 if (skipFunction(*MF.getFunction())) 295 return false; 296 297 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 298 299 TII = MF.getSubtarget().getInstrInfo(); 300 TRI = MF.getSubtarget().getRegisterInfo(); 301 MRI = &MF.getRegInfo(); 302 DT = &getAnalysis<MachineDominatorTree>(); 303 PDT = &getAnalysis<MachinePostDominatorTree>(); 304 LI = &getAnalysis<MachineLoopInfo>(); 305 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 306 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 307 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 308 309 bool EverMadeChange = false; 310 311 while (true) { 312 bool MadeChange = false; 313 314 // Process all basic blocks. 315 CEBCandidates.clear(); 316 ToSplit.clear(); 317 for (auto &MBB: MF) 318 MadeChange |= ProcessBlock(MBB); 319 320 // If we have anything we marked as toSplit, split it now. 321 for (auto &Pair : ToSplit) { 322 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 323 if (NewSucc != nullptr) { 324 DEBUG(dbgs() << " *** Splitting critical edge: " 325 << printMBBReference(*Pair.first) << " -- " 326 << printMBBReference(*NewSucc) << " -- " 327 << printMBBReference(*Pair.second) << '\n'); 328 MadeChange = true; 329 ++NumSplit; 330 } else 331 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 332 } 333 // If this iteration over the code changed anything, keep iterating. 334 if (!MadeChange) break; 335 EverMadeChange = true; 336 } 337 338 // Now clear any kill flags for recorded registers. 339 for (auto I : RegsToClearKillFlags) 340 MRI->clearKillFlags(I); 341 RegsToClearKillFlags.clear(); 342 343 return EverMadeChange; 344 } 345 346 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 347 // Can't sink anything out of a block that has less than two successors. 348 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 349 350 // Don't bother sinking code out of unreachable blocks. In addition to being 351 // unprofitable, it can also lead to infinite looping, because in an 352 // unreachable loop there may be nowhere to stop. 353 if (!DT->isReachableFromEntry(&MBB)) return false; 354 355 bool MadeChange = false; 356 357 // Cache all successors, sorted by frequency info and loop depth. 358 AllSuccsCache AllSuccessors; 359 360 // Walk the basic block bottom-up. Remember if we saw a store. 361 MachineBasicBlock::iterator I = MBB.end(); 362 --I; 363 bool ProcessedBegin, SawStore = false; 364 do { 365 MachineInstr &MI = *I; // The instruction to sink. 366 367 // Predecrement I (if it's not begin) so that it isn't invalidated by 368 // sinking. 369 ProcessedBegin = I == MBB.begin(); 370 if (!ProcessedBegin) 371 --I; 372 373 if (MI.isDebugValue()) 374 continue; 375 376 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 377 if (Joined) { 378 MadeChange = true; 379 continue; 380 } 381 382 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 383 ++NumSunk; 384 MadeChange = true; 385 } 386 387 // If we just processed the first instruction in the block, we're done. 388 } while (!ProcessedBegin); 389 390 return MadeChange; 391 } 392 393 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 394 MachineBasicBlock *From, 395 MachineBasicBlock *To) { 396 // FIXME: Need much better heuristics. 397 398 // If the pass has already considered breaking this edge (during this pass 399 // through the function), then let's go ahead and break it. This means 400 // sinking multiple "cheap" instructions into the same block. 401 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 402 return true; 403 404 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 405 return true; 406 407 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 408 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 409 return true; 410 411 // MI is cheap, we probably don't want to break the critical edge for it. 412 // However, if this would allow some definitions of its source operands 413 // to be sunk then it's probably worth it. 414 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 415 const MachineOperand &MO = MI.getOperand(i); 416 if (!MO.isReg() || !MO.isUse()) 417 continue; 418 unsigned Reg = MO.getReg(); 419 if (Reg == 0) 420 continue; 421 422 // We don't move live definitions of physical registers, 423 // so sinking their uses won't enable any opportunities. 424 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 425 continue; 426 427 // If this instruction is the only user of a virtual register, 428 // check if breaking the edge will enable sinking 429 // both this instruction and the defining instruction. 430 if (MRI->hasOneNonDBGUse(Reg)) { 431 // If the definition resides in same MBB, 432 // claim it's likely we can sink these together. 433 // If definition resides elsewhere, we aren't 434 // blocking it from being sunk so don't break the edge. 435 MachineInstr *DefMI = MRI->getVRegDef(Reg); 436 if (DefMI->getParent() == MI.getParent()) 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 445 MachineBasicBlock *FromBB, 446 MachineBasicBlock *ToBB, 447 bool BreakPHIEdge) { 448 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 449 return false; 450 451 // Avoid breaking back edge. From == To means backedge for single BB loop. 452 if (!SplitEdges || FromBB == ToBB) 453 return false; 454 455 // Check for backedges of more "complex" loops. 456 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 457 LI->isLoopHeader(ToBB)) 458 return false; 459 460 // It's not always legal to break critical edges and sink the computation 461 // to the edge. 462 // 463 // %bb.1: 464 // v1024 465 // Beq %bb.3 466 // <fallthrough> 467 // %bb.2: 468 // ... no uses of v1024 469 // <fallthrough> 470 // %bb.3: 471 // ... 472 // = v1024 473 // 474 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 475 // 476 // %bb.1: 477 // ... 478 // Bne %bb.2 479 // %bb.4: 480 // v1024 = 481 // B %bb.3 482 // %bb.2: 483 // ... no uses of v1024 484 // <fallthrough> 485 // %bb.3: 486 // ... 487 // = v1024 488 // 489 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 490 // flow. We need to ensure the new basic block where the computation is 491 // sunk to dominates all the uses. 492 // It's only legal to break critical edge and sink the computation to the 493 // new block if all the predecessors of "To", except for "From", are 494 // not dominated by "From". Given SSA property, this means these 495 // predecessors are dominated by "To". 496 // 497 // There is no need to do this check if all the uses are PHI nodes. PHI 498 // sources are only defined on the specific predecessor edges. 499 if (!BreakPHIEdge) { 500 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 501 E = ToBB->pred_end(); PI != E; ++PI) { 502 if (*PI == FromBB) 503 continue; 504 if (!DT->dominates(ToBB, *PI)) 505 return false; 506 } 507 } 508 509 ToSplit.insert(std::make_pair(FromBB, ToBB)); 510 511 return true; 512 } 513 514 /// collectDebgValues - Scan instructions following MI and collect any 515 /// matching DBG_VALUEs. 516 static void collectDebugValues(MachineInstr &MI, 517 SmallVectorImpl<MachineInstr *> &DbgValues) { 518 DbgValues.clear(); 519 if (!MI.getOperand(0).isReg()) 520 return; 521 522 MachineBasicBlock::iterator DI = MI; ++DI; 523 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 524 DI != DE; ++DI) { 525 if (!DI->isDebugValue()) 526 return; 527 if (DI->getOperand(0).isReg() && 528 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 529 DbgValues.push_back(&*DI); 530 } 531 } 532 533 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 534 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 535 MachineBasicBlock *MBB, 536 MachineBasicBlock *SuccToSinkTo, 537 AllSuccsCache &AllSuccessors) { 538 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 539 540 if (MBB == SuccToSinkTo) 541 return false; 542 543 // It is profitable if SuccToSinkTo does not post dominate current block. 544 if (!PDT->dominates(SuccToSinkTo, MBB)) 545 return true; 546 547 // It is profitable to sink an instruction from a deeper loop to a shallower 548 // loop, even if the latter post-dominates the former (PR21115). 549 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 550 return true; 551 552 // Check if only use in post dominated block is PHI instruction. 553 bool NonPHIUse = false; 554 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 555 MachineBasicBlock *UseBlock = UseInst.getParent(); 556 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 557 NonPHIUse = true; 558 } 559 if (!NonPHIUse) 560 return true; 561 562 // If SuccToSinkTo post dominates then also it may be profitable if MI 563 // can further profitably sinked into another block in next round. 564 bool BreakPHIEdge = false; 565 // FIXME - If finding successor is compile time expensive then cache results. 566 if (MachineBasicBlock *MBB2 = 567 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 568 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 569 570 // If SuccToSinkTo is final destination and it is a post dominator of current 571 // block then it is not profitable to sink MI into SuccToSinkTo block. 572 return false; 573 } 574 575 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 576 /// computing it if it was not already cached. 577 SmallVector<MachineBasicBlock *, 4> & 578 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 579 AllSuccsCache &AllSuccessors) const { 580 // Do we have the sorted successors in cache ? 581 auto Succs = AllSuccessors.find(MBB); 582 if (Succs != AllSuccessors.end()) 583 return Succs->second; 584 585 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 586 MBB->succ_end()); 587 588 // Handle cases where sinking can happen but where the sink point isn't a 589 // successor. For example: 590 // 591 // x = computation 592 // if () {} else {} 593 // use x 594 // 595 const std::vector<MachineDomTreeNode *> &Children = 596 DT->getNode(MBB)->getChildren(); 597 for (const auto &DTChild : Children) 598 // DomTree children of MBB that have MBB as immediate dominator are added. 599 if (DTChild->getIDom()->getBlock() == MI.getParent() && 600 // Skip MBBs already added to the AllSuccs vector above. 601 !MBB->isSuccessor(DTChild->getBlock())) 602 AllSuccs.push_back(DTChild->getBlock()); 603 604 // Sort Successors according to their loop depth or block frequency info. 605 std::stable_sort( 606 AllSuccs.begin(), AllSuccs.end(), 607 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 608 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 609 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 610 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 611 return HasBlockFreq ? LHSFreq < RHSFreq 612 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 613 }); 614 615 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 616 617 return it.first->second; 618 } 619 620 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 621 MachineBasicBlock * 622 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 623 bool &BreakPHIEdge, 624 AllSuccsCache &AllSuccessors) { 625 assert (MBB && "Invalid MachineBasicBlock!"); 626 627 // Loop over all the operands of the specified instruction. If there is 628 // anything we can't handle, bail out. 629 630 // SuccToSinkTo - This is the successor to sink this instruction to, once we 631 // decide. 632 MachineBasicBlock *SuccToSinkTo = nullptr; 633 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 634 const MachineOperand &MO = MI.getOperand(i); 635 if (!MO.isReg()) continue; // Ignore non-register operands. 636 637 unsigned Reg = MO.getReg(); 638 if (Reg == 0) continue; 639 640 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 641 if (MO.isUse()) { 642 // If the physreg has no defs anywhere, it's just an ambient register 643 // and we can freely move its uses. Alternatively, if it's allocatable, 644 // it could get allocated to something with a def during allocation. 645 if (!MRI->isConstantPhysReg(Reg)) 646 return nullptr; 647 } else if (!MO.isDead()) { 648 // A def that isn't dead. We can't move it. 649 return nullptr; 650 } 651 } else { 652 // Virtual register uses are always safe to sink. 653 if (MO.isUse()) continue; 654 655 // If it's not safe to move defs of the register class, then abort. 656 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 657 return nullptr; 658 659 // Virtual register defs can only be sunk if all their uses are in blocks 660 // dominated by one of the successors. 661 if (SuccToSinkTo) { 662 // If a previous operand picked a block to sink to, then this operand 663 // must be sinkable to the same block. 664 bool LocalUse = false; 665 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 666 BreakPHIEdge, LocalUse)) 667 return nullptr; 668 669 continue; 670 } 671 672 // Otherwise, we should look at all the successors and decide which one 673 // we should sink to. If we have reliable block frequency information 674 // (frequency != 0) available, give successors with smaller frequencies 675 // higher priority, otherwise prioritize smaller loop depths. 676 for (MachineBasicBlock *SuccBlock : 677 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 678 bool LocalUse = false; 679 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 680 BreakPHIEdge, LocalUse)) { 681 SuccToSinkTo = SuccBlock; 682 break; 683 } 684 if (LocalUse) 685 // Def is used locally, it's never safe to move this def. 686 return nullptr; 687 } 688 689 // If we couldn't find a block to sink to, ignore this instruction. 690 if (!SuccToSinkTo) 691 return nullptr; 692 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 693 return nullptr; 694 } 695 } 696 697 // It is not possible to sink an instruction into its own block. This can 698 // happen with loops. 699 if (MBB == SuccToSinkTo) 700 return nullptr; 701 702 // It's not safe to sink instructions to EH landing pad. Control flow into 703 // landing pad is implicitly defined. 704 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 705 return nullptr; 706 707 return SuccToSinkTo; 708 } 709 710 /// \brief Return true if MI is likely to be usable as a memory operation by the 711 /// implicit null check optimization. 712 /// 713 /// This is a "best effort" heuristic, and should not be relied upon for 714 /// correctness. This returning true does not guarantee that the implicit null 715 /// check optimization is legal over MI, and this returning false does not 716 /// guarantee MI cannot possibly be used to do a null check. 717 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 718 const TargetInstrInfo *TII, 719 const TargetRegisterInfo *TRI) { 720 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 721 722 auto *MBB = MI.getParent(); 723 if (MBB->pred_size() != 1) 724 return false; 725 726 auto *PredMBB = *MBB->pred_begin(); 727 auto *PredBB = PredMBB->getBasicBlock(); 728 729 // Frontends that don't use implicit null checks have no reason to emit 730 // branches with make.implicit metadata, and this function should always 731 // return false for them. 732 if (!PredBB || 733 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 734 return false; 735 736 unsigned BaseReg; 737 int64_t Offset; 738 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 739 return false; 740 741 if (!(MI.mayLoad() && !MI.isPredicable())) 742 return false; 743 744 MachineBranchPredicate MBP; 745 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 746 return false; 747 748 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 749 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 750 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 751 MBP.LHS.getReg() == BaseReg; 752 } 753 754 /// SinkInstruction - Determine whether it is safe to sink the specified machine 755 /// instruction out of its current block into a successor. 756 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 757 AllSuccsCache &AllSuccessors) { 758 // Don't sink instructions that the target prefers not to sink. 759 if (!TII->shouldSink(MI)) 760 return false; 761 762 // Check if it's safe to move the instruction. 763 if (!MI.isSafeToMove(AA, SawStore)) 764 return false; 765 766 // Convergent operations may not be made control-dependent on additional 767 // values. 768 if (MI.isConvergent()) 769 return false; 770 771 // Don't break implicit null checks. This is a performance heuristic, and not 772 // required for correctness. 773 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 774 return false; 775 776 // FIXME: This should include support for sinking instructions within the 777 // block they are currently in to shorten the live ranges. We often get 778 // instructions sunk into the top of a large block, but it would be better to 779 // also sink them down before their first use in the block. This xform has to 780 // be careful not to *increase* register pressure though, e.g. sinking 781 // "x = y + z" down if it kills y and z would increase the live ranges of y 782 // and z and only shrink the live range of x. 783 784 bool BreakPHIEdge = false; 785 MachineBasicBlock *ParentBlock = MI.getParent(); 786 MachineBasicBlock *SuccToSinkTo = 787 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 788 789 // If there are no outputs, it must have side-effects. 790 if (!SuccToSinkTo) 791 return false; 792 793 // If the instruction to move defines a dead physical register which is live 794 // when leaving the basic block, don't move it because it could turn into a 795 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 796 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 797 const MachineOperand &MO = MI.getOperand(I); 798 if (!MO.isReg()) continue; 799 unsigned Reg = MO.getReg(); 800 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 801 if (SuccToSinkTo->isLiveIn(Reg)) 802 return false; 803 } 804 805 DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 806 807 // If the block has multiple predecessors, this is a critical edge. 808 // Decide if we can sink along it or need to break the edge. 809 if (SuccToSinkTo->pred_size() > 1) { 810 // We cannot sink a load across a critical edge - there may be stores in 811 // other code paths. 812 bool TryBreak = false; 813 bool store = true; 814 if (!MI.isSafeToMove(AA, store)) { 815 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 816 TryBreak = true; 817 } 818 819 // We don't want to sink across a critical edge if we don't dominate the 820 // successor. We could be introducing calculations to new code paths. 821 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 822 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 823 TryBreak = true; 824 } 825 826 // Don't sink instructions into a loop. 827 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 828 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 829 TryBreak = true; 830 } 831 832 // Otherwise we are OK with sinking along a critical edge. 833 if (!TryBreak) 834 DEBUG(dbgs() << "Sinking along critical edge.\n"); 835 else { 836 // Mark this edge as to be split. 837 // If the edge can actually be split, the next iteration of the main loop 838 // will sink MI in the newly created block. 839 bool Status = 840 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 841 if (!Status) 842 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 843 "break critical edge\n"); 844 // The instruction will not be sunk this time. 845 return false; 846 } 847 } 848 849 if (BreakPHIEdge) { 850 // BreakPHIEdge is true if all the uses are in the successor MBB being 851 // sunken into and they are all PHI nodes. In this case, machine-sink must 852 // break the critical edge first. 853 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 854 SuccToSinkTo, BreakPHIEdge); 855 if (!Status) 856 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 857 "break critical edge\n"); 858 // The instruction will not be sunk this time. 859 return false; 860 } 861 862 // Determine where to insert into. Skip phi nodes. 863 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 864 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 865 ++InsertPos; 866 867 // collect matching debug values. 868 SmallVector<MachineInstr *, 2> DbgValuesToSink; 869 collectDebugValues(MI, DbgValuesToSink); 870 871 // Move the instruction. 872 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 873 ++MachineBasicBlock::iterator(MI)); 874 875 // Move debug values. 876 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 877 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 878 MachineInstr *DbgMI = *DBI; 879 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 880 ++MachineBasicBlock::iterator(DbgMI)); 881 } 882 883 // Conservatively, clear any kill flags, since it's possible that they are no 884 // longer correct. 885 // Note that we have to clear the kill flags for any register this instruction 886 // uses as we may sink over another instruction which currently kills the 887 // used registers. 888 for (MachineOperand &MO : MI.operands()) { 889 if (MO.isReg() && MO.isUse()) 890 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 891 } 892 893 return true; 894 } 895