1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineDominators.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include <algorithm> 53 using namespace llvm; 54 55 #define DEBUG_TYPE "block-placement" 56 57 STATISTIC(NumCondBranches, "Number of conditional branches"); 58 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 59 STATISTIC(CondBranchTakenFreq, 60 "Potential frequency of taking conditional branches"); 61 STATISTIC(UncondBranchTakenFreq, 62 "Potential frequency of taking unconditional branches"); 63 64 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 65 cl::desc("Force the alignment of all " 66 "blocks in the function."), 67 cl::init(0), cl::Hidden); 68 69 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 70 "align-all-nofallthru-blocks", 71 cl::desc("Force the alignment of all " 72 "blocks that have no fall-through predecessors (i.e. don't add " 73 "nops that are executed)."), 74 cl::init(0), cl::Hidden); 75 76 // FIXME: Find a good default for this flag and remove the flag. 77 static cl::opt<unsigned> ExitBlockBias( 78 "block-placement-exit-block-bias", 79 cl::desc("Block frequency percentage a loop exit block needs " 80 "over the original exit to be considered the new exit."), 81 cl::init(0), cl::Hidden); 82 83 // Definition: 84 // - Outlining: placement of a basic block outside the chain or hot path. 85 86 static cl::opt<bool> OutlineOptionalBranches( 87 "outline-optional-branches", 88 cl::desc("Outlining optional branches will place blocks that are optional " 89 "branches, i.e. branches with a common post dominator, outside " 90 "the hot path or chain"), 91 cl::init(false), cl::Hidden); 92 93 static cl::opt<unsigned> OutlineOptionalThreshold( 94 "outline-optional-threshold", 95 cl::desc("Don't outline optional branches that are a single block with an " 96 "instruction count below this threshold"), 97 cl::init(4), cl::Hidden); 98 99 static cl::opt<unsigned> LoopToColdBlockRatio( 100 "loop-to-cold-block-ratio", 101 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 102 "(frequency of block) is greater than this ratio"), 103 cl::init(5), cl::Hidden); 104 105 static cl::opt<bool> 106 PreciseRotationCost("precise-rotation-cost", 107 cl::desc("Model the cost of loop rotation more " 108 "precisely by using profile data."), 109 cl::init(false), cl::Hidden); 110 static cl::opt<bool> 111 ForcePreciseRotationCost("force-precise-rotation-cost", 112 cl::desc("Force the use of precise cost " 113 "loop rotation strategy."), 114 cl::init(false), cl::Hidden); 115 116 static cl::opt<unsigned> MisfetchCost( 117 "misfetch-cost", 118 cl::desc("Cost that models the probabilistic risk of an instruction " 119 "misfetch due to a jump comparing to falling through, whose cost " 120 "is zero."), 121 cl::init(1), cl::Hidden); 122 123 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 124 cl::desc("Cost of jump instructions."), 125 cl::init(1), cl::Hidden); 126 static cl::opt<bool> 127 TailDupPlacement("tail-dup-placement", 128 cl::desc("Perform tail duplication during placement. " 129 "Creates more fallthrough opportunites in " 130 "outline branches."), 131 cl::init(true), cl::Hidden); 132 133 static cl::opt<bool> 134 BranchFoldPlacement("branch-fold-placement", 135 cl::desc("Perform branch folding during placement. " 136 "Reduces code size."), 137 cl::init(true), cl::Hidden); 138 139 // Heuristic for tail duplication. 140 static cl::opt<unsigned> TailDuplicatePlacementThreshold( 141 "tail-dup-placement-threshold", 142 cl::desc("Instruction cutoff for tail duplication during layout. " 143 "Tail merging during layout is forced to have a threshold " 144 "that won't conflict."), cl::init(2), 145 cl::Hidden); 146 147 extern cl::opt<unsigned> StaticLikelyProb; 148 extern cl::opt<unsigned> ProfileLikelyProb; 149 150 #ifndef NDEBUG 151 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 152 extern cl::opt<std::string> ViewBlockFreqFuncName; 153 #endif 154 155 namespace { 156 class BlockChain; 157 /// \brief Type for our function-wide basic block -> block chain mapping. 158 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 159 } 160 161 namespace { 162 /// \brief A chain of blocks which will be laid out contiguously. 163 /// 164 /// This is the datastructure representing a chain of consecutive blocks that 165 /// are profitable to layout together in order to maximize fallthrough 166 /// probabilities and code locality. We also can use a block chain to represent 167 /// a sequence of basic blocks which have some external (correctness) 168 /// requirement for sequential layout. 169 /// 170 /// Chains can be built around a single basic block and can be merged to grow 171 /// them. They participate in a block-to-chain mapping, which is updated 172 /// automatically as chains are merged together. 173 class BlockChain { 174 /// \brief The sequence of blocks belonging to this chain. 175 /// 176 /// This is the sequence of blocks for a particular chain. These will be laid 177 /// out in-order within the function. 178 SmallVector<MachineBasicBlock *, 4> Blocks; 179 180 /// \brief A handle to the function-wide basic block to block chain mapping. 181 /// 182 /// This is retained in each block chain to simplify the computation of child 183 /// block chains for SCC-formation and iteration. We store the edges to child 184 /// basic blocks, and map them back to their associated chains using this 185 /// structure. 186 BlockToChainMapType &BlockToChain; 187 188 public: 189 /// \brief Construct a new BlockChain. 190 /// 191 /// This builds a new block chain representing a single basic block in the 192 /// function. It also registers itself as the chain that block participates 193 /// in with the BlockToChain mapping. 194 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 195 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 196 assert(BB && "Cannot create a chain with a null basic block"); 197 BlockToChain[BB] = this; 198 } 199 200 /// \brief Iterator over blocks within the chain. 201 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 202 203 /// \brief Beginning of blocks within the chain. 204 iterator begin() { return Blocks.begin(); } 205 206 /// \brief End of blocks within the chain. 207 iterator end() { return Blocks.end(); } 208 209 bool remove(MachineBasicBlock* BB) { 210 for(iterator i = begin(); i != end(); ++i) { 211 if (*i == BB) { 212 Blocks.erase(i); 213 return true; 214 } 215 } 216 return false; 217 } 218 219 /// \brief Merge a block chain into this one. 220 /// 221 /// This routine merges a block chain into this one. It takes care of forming 222 /// a contiguous sequence of basic blocks, updating the edge list, and 223 /// updating the block -> chain mapping. It does not free or tear down the 224 /// old chain, but the old chain's block list is no longer valid. 225 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 226 assert(BB); 227 assert(!Blocks.empty()); 228 229 // Fast path in case we don't have a chain already. 230 if (!Chain) { 231 assert(!BlockToChain[BB]); 232 Blocks.push_back(BB); 233 BlockToChain[BB] = this; 234 return; 235 } 236 237 assert(BB == *Chain->begin()); 238 assert(Chain->begin() != Chain->end()); 239 240 // Update the incoming blocks to point to this chain, and add them to the 241 // chain structure. 242 for (MachineBasicBlock *ChainBB : *Chain) { 243 Blocks.push_back(ChainBB); 244 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 245 BlockToChain[ChainBB] = this; 246 } 247 } 248 249 #ifndef NDEBUG 250 /// \brief Dump the blocks in this chain. 251 LLVM_DUMP_METHOD void dump() { 252 for (MachineBasicBlock *MBB : *this) 253 MBB->dump(); 254 } 255 #endif // NDEBUG 256 257 /// \brief Count of predecessors of any block within the chain which have not 258 /// yet been scheduled. In general, we will delay scheduling this chain 259 /// until those predecessors are scheduled (or we find a sufficiently good 260 /// reason to override this heuristic.) Note that when forming loop chains, 261 /// blocks outside the loop are ignored and treated as if they were already 262 /// scheduled. 263 /// 264 /// Note: This field is reinitialized multiple times - once for each loop, 265 /// and then once for the function as a whole. 266 unsigned UnscheduledPredecessors; 267 }; 268 } 269 270 namespace { 271 class MachineBlockPlacement : public MachineFunctionPass { 272 /// \brief A typedef for a block filter set. 273 typedef SmallSetVector<MachineBasicBlock *, 16> BlockFilterSet; 274 275 /// \brief work lists of blocks that are ready to be laid out 276 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 277 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 278 279 /// \brief Machine Function 280 MachineFunction *F; 281 282 /// \brief A handle to the branch probability pass. 283 const MachineBranchProbabilityInfo *MBPI; 284 285 /// \brief A handle to the function-wide block frequency pass. 286 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 287 288 /// \brief A handle to the loop info. 289 MachineLoopInfo *MLI; 290 291 /// \brief Preferred loop exit. 292 /// Member variable for convenience. It may be removed by duplication deep 293 /// in the call stack. 294 MachineBasicBlock *PreferredLoopExit; 295 296 /// \brief A handle to the target's instruction info. 297 const TargetInstrInfo *TII; 298 299 /// \brief A handle to the target's lowering info. 300 const TargetLoweringBase *TLI; 301 302 /// \brief A handle to the post dominator tree. 303 MachineDominatorTree *MDT; 304 305 /// \brief Duplicator used to duplicate tails during placement. 306 /// 307 /// Placement decisions can open up new tail duplication opportunities, but 308 /// since tail duplication affects placement decisions of later blocks, it 309 /// must be done inline. 310 TailDuplicator TailDup; 311 312 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 313 /// all terminators of the MachineFunction. 314 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 315 316 /// \brief Allocator and owner of BlockChain structures. 317 /// 318 /// We build BlockChains lazily while processing the loop structure of 319 /// a function. To reduce malloc traffic, we allocate them using this 320 /// slab-like allocator, and destroy them after the pass completes. An 321 /// important guarantee is that this allocator produces stable pointers to 322 /// the chains. 323 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 324 325 /// \brief Function wide BasicBlock to BlockChain mapping. 326 /// 327 /// This mapping allows efficiently moving from any given basic block to the 328 /// BlockChain it participates in, if any. We use it to, among other things, 329 /// allow implicitly defining edges between chains as the existing edges 330 /// between basic blocks. 331 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 332 333 #ifndef NDEBUG 334 /// The set of basic blocks that have terminators that cannot be fully 335 /// analyzed. These basic blocks cannot be re-ordered safely by 336 /// MachineBlockPlacement, and we must preserve physical layout of these 337 /// blocks and their successors through the pass. 338 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 339 #endif 340 341 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 342 /// if the count goes to 0, add them to the appropriate work list. 343 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 344 const BlockFilterSet *BlockFilter = nullptr); 345 346 /// Decrease the UnscheduledPredecessors count for a single block, and 347 /// if the count goes to 0, add them to the appropriate work list. 348 void markBlockSuccessors( 349 BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB, 350 const BlockFilterSet *BlockFilter = nullptr); 351 352 353 BranchProbability 354 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 355 const BlockFilterSet *BlockFilter, 356 SmallVector<MachineBasicBlock *, 4> &Successors); 357 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 358 BlockChain &Chain, 359 const BlockFilterSet *BlockFilter, 360 BranchProbability SuccProb, 361 BranchProbability HotProb); 362 bool repeatedlyTailDuplicateBlock( 363 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 364 MachineBasicBlock *LoopHeaderBB, 365 BlockChain &Chain, BlockFilterSet *BlockFilter, 366 MachineFunction::iterator &PrevUnplacedBlockIt); 367 bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, 368 const BlockChain &Chain, 369 BlockFilterSet *BlockFilter, 370 MachineFunction::iterator &PrevUnplacedBlockIt, 371 bool &DuplicatedToPred); 372 bool 373 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 374 BlockChain &SuccChain, BranchProbability SuccProb, 375 BranchProbability RealSuccProb, BlockChain &Chain, 376 const BlockFilterSet *BlockFilter); 377 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 378 BlockChain &Chain, 379 const BlockFilterSet *BlockFilter); 380 MachineBasicBlock * 381 selectBestCandidateBlock(BlockChain &Chain, 382 SmallVectorImpl<MachineBasicBlock *> &WorkList); 383 MachineBasicBlock * 384 getFirstUnplacedBlock(const BlockChain &PlacedChain, 385 MachineFunction::iterator &PrevUnplacedBlockIt, 386 const BlockFilterSet *BlockFilter); 387 388 /// \brief Add a basic block to the work list if it is appropriate. 389 /// 390 /// If the optional parameter BlockFilter is provided, only MBB 391 /// present in the set will be added to the worklist. If nullptr 392 /// is provided, no filtering occurs. 393 void fillWorkLists(MachineBasicBlock *MBB, 394 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 395 const BlockFilterSet *BlockFilter); 396 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 397 BlockFilterSet *BlockFilter = nullptr); 398 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 399 const BlockFilterSet &LoopBlockSet); 400 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 401 const BlockFilterSet &LoopBlockSet); 402 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 403 void buildLoopChains(MachineLoop &L); 404 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 405 const BlockFilterSet &LoopBlockSet); 406 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 407 const BlockFilterSet &LoopBlockSet); 408 void collectMustExecuteBBs(); 409 void buildCFGChains(); 410 void optimizeBranches(); 411 void alignBlocks(); 412 413 public: 414 static char ID; // Pass identification, replacement for typeid 415 MachineBlockPlacement() : MachineFunctionPass(ID) { 416 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 417 } 418 419 bool runOnMachineFunction(MachineFunction &F) override; 420 421 void getAnalysisUsage(AnalysisUsage &AU) const override { 422 AU.addRequired<MachineBranchProbabilityInfo>(); 423 AU.addRequired<MachineBlockFrequencyInfo>(); 424 AU.addRequired<MachineDominatorTree>(); 425 AU.addRequired<MachineLoopInfo>(); 426 AU.addRequired<TargetPassConfig>(); 427 MachineFunctionPass::getAnalysisUsage(AU); 428 } 429 }; 430 } 431 432 char MachineBlockPlacement::ID = 0; 433 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 434 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 435 "Branch Probability Basic Block Placement", false, false) 436 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 437 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 438 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 439 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 440 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 441 "Branch Probability Basic Block Placement", false, false) 442 443 #ifndef NDEBUG 444 /// \brief Helper to print the name of a MBB. 445 /// 446 /// Only used by debug logging. 447 static std::string getBlockName(MachineBasicBlock *BB) { 448 std::string Result; 449 raw_string_ostream OS(Result); 450 OS << "BB#" << BB->getNumber(); 451 OS << " ('" << BB->getName() << "')"; 452 OS.flush(); 453 return Result; 454 } 455 #endif 456 457 /// \brief Mark a chain's successors as having one fewer preds. 458 /// 459 /// When a chain is being merged into the "placed" chain, this routine will 460 /// quickly walk the successors of each block in the chain and mark them as 461 /// having one fewer active predecessor. It also adds any successors of this 462 /// chain which reach the zero-predecessor state to the appropriate worklist. 463 void MachineBlockPlacement::markChainSuccessors( 464 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 465 const BlockFilterSet *BlockFilter) { 466 // Walk all the blocks in this chain, marking their successors as having 467 // a predecessor placed. 468 for (MachineBasicBlock *MBB : Chain) { 469 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 470 } 471 } 472 473 /// \brief Mark a single block's successors as having one fewer preds. 474 /// 475 /// Under normal circumstances, this is only called by markChainSuccessors, 476 /// but if a block that was to be placed is completely tail-duplicated away, 477 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 478 /// for just that block. 479 void MachineBlockPlacement::markBlockSuccessors( 480 BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB, 481 const BlockFilterSet *BlockFilter) { 482 // Add any successors for which this is the only un-placed in-loop 483 // predecessor to the worklist as a viable candidate for CFG-neutral 484 // placement. No subsequent placement of this block will violate the CFG 485 // shape, so we get to use heuristics to choose a favorable placement. 486 for (MachineBasicBlock *Succ : MBB->successors()) { 487 if (BlockFilter && !BlockFilter->count(Succ)) 488 continue; 489 BlockChain &SuccChain = *BlockToChain[Succ]; 490 // Disregard edges within a fixed chain, or edges to the loop header. 491 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 492 continue; 493 494 // This is a cross-chain edge that is within the loop, so decrement the 495 // loop predecessor count of the destination chain. 496 if (SuccChain.UnscheduledPredecessors == 0 || 497 --SuccChain.UnscheduledPredecessors > 0) 498 continue; 499 500 auto *NewBB = *SuccChain.begin(); 501 if (NewBB->isEHPad()) 502 EHPadWorkList.push_back(NewBB); 503 else 504 BlockWorkList.push_back(NewBB); 505 } 506 } 507 508 /// This helper function collects the set of successors of block 509 /// \p BB that are allowed to be its layout successors, and return 510 /// the total branch probability of edges from \p BB to those 511 /// blocks. 512 BranchProbability MachineBlockPlacement::collectViableSuccessors( 513 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 514 SmallVector<MachineBasicBlock *, 4> &Successors) { 515 // Adjust edge probabilities by excluding edges pointing to blocks that is 516 // either not in BlockFilter or is already in the current chain. Consider the 517 // following CFG: 518 // 519 // --->A 520 // | / \ 521 // | B C 522 // | \ / \ 523 // ----D E 524 // 525 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 526 // A->C is chosen as a fall-through, D won't be selected as a successor of C 527 // due to CFG constraint (the probability of C->D is not greater than 528 // HotProb to break top-order). If we exclude E that is not in BlockFilter 529 // when calculating the probability of C->D, D will be selected and we 530 // will get A C D B as the layout of this loop. 531 auto AdjustedSumProb = BranchProbability::getOne(); 532 for (MachineBasicBlock *Succ : BB->successors()) { 533 bool SkipSucc = false; 534 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 535 SkipSucc = true; 536 } else { 537 BlockChain *SuccChain = BlockToChain[Succ]; 538 if (SuccChain == &Chain) { 539 SkipSucc = true; 540 } else if (Succ != *SuccChain->begin()) { 541 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 542 continue; 543 } 544 } 545 if (SkipSucc) 546 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 547 else 548 Successors.push_back(Succ); 549 } 550 551 return AdjustedSumProb; 552 } 553 554 /// The helper function returns the branch probability that is adjusted 555 /// or normalized over the new total \p AdjustedSumProb. 556 static BranchProbability 557 getAdjustedProbability(BranchProbability OrigProb, 558 BranchProbability AdjustedSumProb) { 559 BranchProbability SuccProb; 560 uint32_t SuccProbN = OrigProb.getNumerator(); 561 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 562 if (SuccProbN >= SuccProbD) 563 SuccProb = BranchProbability::getOne(); 564 else 565 SuccProb = BranchProbability(SuccProbN, SuccProbD); 566 567 return SuccProb; 568 } 569 570 /// When the option OutlineOptionalBranches is on, this method 571 /// checks if the fallthrough candidate block \p Succ (of block 572 /// \p BB) also has other unscheduled predecessor blocks which 573 /// are also successors of \p BB (forming triangular shape CFG). 574 /// If none of such predecessors are small, it returns true. 575 /// The caller can choose to select \p Succ as the layout successors 576 /// so that \p Succ's predecessors (optional branches) can be 577 /// outlined. 578 /// FIXME: fold this with more general layout cost analysis. 579 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 580 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 581 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 582 BranchProbability HotProb) { 583 if (!OutlineOptionalBranches) 584 return false; 585 // If we outline optional branches, look whether Succ is unavoidable, i.e. 586 // dominates all terminators of the MachineFunction. If it does, other 587 // successors must be optional. Don't do this for cold branches. 588 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 589 for (MachineBasicBlock *Pred : Succ->predecessors()) { 590 // Check whether there is an unplaced optional branch. 591 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 592 BlockToChain[Pred] == &Chain) 593 continue; 594 // Check whether the optional branch has exactly one BB. 595 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 596 continue; 597 // Check whether the optional branch is small. 598 if (Pred->size() < OutlineOptionalThreshold) 599 return false; 600 } 601 return true; 602 } else 603 return false; 604 } 605 606 // When profile is not present, return the StaticLikelyProb. 607 // When profile is available, we need to handle the triangle-shape CFG. 608 static BranchProbability getLayoutSuccessorProbThreshold( 609 MachineBasicBlock *BB) { 610 if (!BB->getParent()->getFunction()->getEntryCount()) 611 return BranchProbability(StaticLikelyProb, 100); 612 if (BB->succ_size() == 2) { 613 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 614 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 615 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 616 /* See case 1 below for the cost analysis. For BB->Succ to 617 * be taken with smaller cost, the following needs to hold: 618 * Prob(BB->Succ) > 2* Prob(BB->Pred) 619 * So the threshold T 620 * T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1, 621 * We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified 622 * branch bias, we have 623 * T = (2/3)*(ProfileLikelyProb/50) 624 * = (2*ProfileLikelyProb)/150) 625 */ 626 return BranchProbability(2 * ProfileLikelyProb, 150); 627 } 628 } 629 return BranchProbability(ProfileLikelyProb, 100); 630 } 631 632 /// Checks to see if the layout candidate block \p Succ has a better layout 633 /// predecessor than \c BB. If yes, returns true. 634 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 635 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 636 BranchProbability SuccProb, BranchProbability RealSuccProb, 637 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 638 639 // There isn't a better layout when there are no unscheduled predecessors. 640 if (SuccChain.UnscheduledPredecessors == 0) 641 return false; 642 643 // There are two basic scenarios here: 644 // ------------------------------------- 645 // Case 1: triangular shape CFG (if-then): 646 // BB 647 // | \ 648 // | \ 649 // | Pred 650 // | / 651 // Succ 652 // In this case, we are evaluating whether to select edge -> Succ, e.g. 653 // set Succ as the layout successor of BB. Picking Succ as BB's 654 // successor breaks the CFG constraints (FIXME: define these constraints). 655 // With this layout, Pred BB 656 // is forced to be outlined, so the overall cost will be cost of the 657 // branch taken from BB to Pred, plus the cost of back taken branch 658 // from Pred to Succ, as well as the additional cost associated 659 // with the needed unconditional jump instruction from Pred To Succ. 660 661 // The cost of the topological order layout is the taken branch cost 662 // from BB to Succ, so to make BB->Succ a viable candidate, the following 663 // must hold: 664 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 665 // < freq(BB->Succ) * taken_branch_cost. 666 // Ignoring unconditional jump cost, we get 667 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 668 // prob(BB->Succ) > 2 * prob(BB->Pred) 669 // 670 // When real profile data is available, we can precisely compute the 671 // probability threshold that is needed for edge BB->Succ to be considered. 672 // Without profile data, the heuristic requires the branch bias to be 673 // a lot larger to make sure the signal is very strong (e.g. 80% default). 674 // ----------------------------------------------------------------- 675 // Case 2: diamond like CFG (if-then-else): 676 // S 677 // / \ 678 // | \ 679 // BB Pred 680 // \ / 681 // Succ 682 // .. 683 // 684 // The current block is BB and edge BB->Succ is now being evaluated. 685 // Note that edge S->BB was previously already selected because 686 // prob(S->BB) > prob(S->Pred). 687 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 688 // choose Pred, we will have a topological ordering as shown on the left 689 // in the picture below. If we choose Succ, we have the solution as shown 690 // on the right: 691 // 692 // topo-order: 693 // 694 // S----- ---S 695 // | | | | 696 // ---BB | | BB 697 // | | | | 698 // | pred-- | Succ-- 699 // | | | | 700 // ---succ ---pred-- 701 // 702 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 703 // = freq(S->Pred) + freq(S->BB) 704 // 705 // If we have profile data (i.e, branch probabilities can be trusted), the 706 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 707 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 708 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 709 // means the cost of topological order is greater. 710 // When profile data is not available, however, we need to be more 711 // conservative. If the branch prediction is wrong, breaking the topo-order 712 // will actually yield a layout with large cost. For this reason, we need 713 // strong biased branch at block S with Prob(S->BB) in order to select 714 // BB->Succ. This is equivalent to looking the CFG backward with backward 715 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 716 // profile data). 717 // -------------------------------------------------------------------------- 718 // Case 3: forked diamond 719 // S 720 // / \ 721 // / \ 722 // BB Pred 723 // | \ / | 724 // | \ / | 725 // | X | 726 // | / \ | 727 // | / \ | 728 // S1 S2 729 // 730 // The current block is BB and edge BB->S1 is now being evaluated. 731 // As above S->BB was already selected because 732 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 733 // 734 // topo-order: 735 // 736 // S-------| ---S 737 // | | | | 738 // ---BB | | BB 739 // | | | | 740 // | Pred----| | S1---- 741 // | | | | 742 // --(S1 or S2) ---Pred-- 743 // 744 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 745 // + min(freq(Pred->S1), freq(Pred->S2)) 746 // Non-topo-order cost: 747 // In the worst case, S2 will not get laid out after Pred. 748 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 749 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 750 // is 0. Then the non topo layout is better when 751 // freq(S->Pred) < freq(BB->S1). 752 // This is exactly what is checked below. 753 // Note there are other shapes that apply (Pred may not be a single block, 754 // but they all fit this general pattern.) 755 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 756 757 // Make sure that a hot successor doesn't have a globally more 758 // important predecessor. 759 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 760 bool BadCFGConflict = false; 761 762 for (MachineBasicBlock *Pred : Succ->predecessors()) { 763 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 764 (BlockFilter && !BlockFilter->count(Pred)) || 765 BlockToChain[Pred] == &Chain) 766 continue; 767 // Do backward checking. 768 // For all cases above, we need a backward checking to filter out edges that 769 // are not 'strongly' biased. With profile data available, the check is 770 // mostly redundant for case 2 (when threshold prob is set at 50%) unless S 771 // has more than two successors. 772 // BB Pred 773 // \ / 774 // Succ 775 // We select edge BB->Succ if 776 // freq(BB->Succ) > freq(Succ) * HotProb 777 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 778 // HotProb 779 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 780 // Case 1 is covered too, because the first equation reduces to: 781 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 782 BlockFrequency PredEdgeFreq = 783 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 784 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 785 BadCFGConflict = true; 786 break; 787 } 788 } 789 790 if (BadCFGConflict) { 791 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 792 << " (prob) (non-cold CFG conflict)\n"); 793 return true; 794 } 795 796 return false; 797 } 798 799 /// \brief Select the best successor for a block. 800 /// 801 /// This looks across all successors of a particular block and attempts to 802 /// select the "best" one to be the layout successor. It only considers direct 803 /// successors which also pass the block filter. It will attempt to avoid 804 /// breaking CFG structure, but cave and break such structures in the case of 805 /// very hot successor edges. 806 /// 807 /// \returns The best successor block found, or null if none are viable. 808 MachineBasicBlock * 809 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 810 BlockChain &Chain, 811 const BlockFilterSet *BlockFilter) { 812 const BranchProbability HotProb(StaticLikelyProb, 100); 813 814 MachineBasicBlock *BestSucc = nullptr; 815 auto BestProb = BranchProbability::getZero(); 816 817 SmallVector<MachineBasicBlock *, 4> Successors; 818 auto AdjustedSumProb = 819 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 820 821 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 822 for (MachineBasicBlock *Succ : Successors) { 823 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 824 BranchProbability SuccProb = 825 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 826 827 // This heuristic is off by default. 828 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 829 HotProb)) 830 return Succ; 831 832 BlockChain &SuccChain = *BlockToChain[Succ]; 833 // Skip the edge \c BB->Succ if block \c Succ has a better layout 834 // predecessor that yields lower global cost. 835 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 836 Chain, BlockFilter)) 837 continue; 838 839 DEBUG( 840 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 841 << SuccProb 842 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 843 << "\n"); 844 845 if (BestSucc && BestProb >= SuccProb) { 846 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 847 continue; 848 } 849 850 DEBUG(dbgs() << " Setting it as best candidate\n"); 851 BestSucc = Succ; 852 BestProb = SuccProb; 853 } 854 if (BestSucc) 855 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc) << "\n"); 856 857 return BestSucc; 858 } 859 860 /// \brief Select the best block from a worklist. 861 /// 862 /// This looks through the provided worklist as a list of candidate basic 863 /// blocks and select the most profitable one to place. The definition of 864 /// profitable only really makes sense in the context of a loop. This returns 865 /// the most frequently visited block in the worklist, which in the case of 866 /// a loop, is the one most desirable to be physically close to the rest of the 867 /// loop body in order to improve i-cache behavior. 868 /// 869 /// \returns The best block found, or null if none are viable. 870 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 871 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 872 // Once we need to walk the worklist looking for a candidate, cleanup the 873 // worklist of already placed entries. 874 // FIXME: If this shows up on profiles, it could be folded (at the cost of 875 // some code complexity) into the loop below. 876 WorkList.erase(remove_if(WorkList, 877 [&](MachineBasicBlock *BB) { 878 return BlockToChain.lookup(BB) == &Chain; 879 }), 880 WorkList.end()); 881 882 if (WorkList.empty()) 883 return nullptr; 884 885 bool IsEHPad = WorkList[0]->isEHPad(); 886 887 MachineBasicBlock *BestBlock = nullptr; 888 BlockFrequency BestFreq; 889 for (MachineBasicBlock *MBB : WorkList) { 890 assert(MBB->isEHPad() == IsEHPad); 891 892 BlockChain &SuccChain = *BlockToChain[MBB]; 893 if (&SuccChain == &Chain) 894 continue; 895 896 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 897 898 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 899 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 900 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 901 902 // For ehpad, we layout the least probable first as to avoid jumping back 903 // from least probable landingpads to more probable ones. 904 // 905 // FIXME: Using probability is probably (!) not the best way to achieve 906 // this. We should probably have a more principled approach to layout 907 // cleanup code. 908 // 909 // The goal is to get: 910 // 911 // +--------------------------+ 912 // | V 913 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 914 // 915 // Rather than: 916 // 917 // +-------------------------------------+ 918 // V | 919 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 920 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 921 continue; 922 923 BestBlock = MBB; 924 BestFreq = CandidateFreq; 925 } 926 927 return BestBlock; 928 } 929 930 /// \brief Retrieve the first unplaced basic block. 931 /// 932 /// This routine is called when we are unable to use the CFG to walk through 933 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 934 /// We walk through the function's blocks in order, starting from the 935 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 936 /// re-scanning the entire sequence on repeated calls to this routine. 937 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 938 const BlockChain &PlacedChain, 939 MachineFunction::iterator &PrevUnplacedBlockIt, 940 const BlockFilterSet *BlockFilter) { 941 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 942 ++I) { 943 if (BlockFilter && !BlockFilter->count(&*I)) 944 continue; 945 if (BlockToChain[&*I] != &PlacedChain) { 946 PrevUnplacedBlockIt = I; 947 // Now select the head of the chain to which the unplaced block belongs 948 // as the block to place. This will force the entire chain to be placed, 949 // and satisfies the requirements of merging chains. 950 return *BlockToChain[&*I]->begin(); 951 } 952 } 953 return nullptr; 954 } 955 956 void MachineBlockPlacement::fillWorkLists( 957 MachineBasicBlock *MBB, 958 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 959 const BlockFilterSet *BlockFilter = nullptr) { 960 BlockChain &Chain = *BlockToChain[MBB]; 961 if (!UpdatedPreds.insert(&Chain).second) 962 return; 963 964 assert(Chain.UnscheduledPredecessors == 0); 965 for (MachineBasicBlock *ChainBB : Chain) { 966 assert(BlockToChain[ChainBB] == &Chain); 967 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 968 if (BlockFilter && !BlockFilter->count(Pred)) 969 continue; 970 if (BlockToChain[Pred] == &Chain) 971 continue; 972 ++Chain.UnscheduledPredecessors; 973 } 974 } 975 976 if (Chain.UnscheduledPredecessors != 0) 977 return; 978 979 MBB = *Chain.begin(); 980 if (MBB->isEHPad()) 981 EHPadWorkList.push_back(MBB); 982 else 983 BlockWorkList.push_back(MBB); 984 } 985 986 void MachineBlockPlacement::buildChain( 987 MachineBasicBlock *BB, BlockChain &Chain, 988 BlockFilterSet *BlockFilter) { 989 assert(BB && "BB must not be null.\n"); 990 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); 991 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 992 993 MachineBasicBlock *LoopHeaderBB = BB; 994 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 995 BB = *std::prev(Chain.end()); 996 for (;;) { 997 assert(BB && "null block found at end of chain in loop."); 998 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 999 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1000 1001 1002 // Look for the best viable successor if there is one to place immediately 1003 // after this block. 1004 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 1005 1006 // If an immediate successor isn't available, look for the best viable 1007 // block among those we've identified as not violating the loop's CFG at 1008 // this point. This won't be a fallthrough, but it will increase locality. 1009 if (!BestSucc) 1010 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1011 if (!BestSucc) 1012 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1013 1014 if (!BestSucc) { 1015 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1016 if (!BestSucc) 1017 break; 1018 1019 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1020 "layout successor until the CFG reduces\n"); 1021 } 1022 1023 // Placement may have changed tail duplication opportunities. 1024 // Check for that now. 1025 if (TailDupPlacement && BestSucc) { 1026 // If the chosen successor was duplicated into all its predecessors, 1027 // don't bother laying it out, just go round the loop again with BB as 1028 // the chain end. 1029 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1030 BlockFilter, PrevUnplacedBlockIt)) 1031 continue; 1032 } 1033 1034 // Place this block, updating the datastructures to reflect its placement. 1035 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1036 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1037 // we selected a successor that didn't fit naturally into the CFG. 1038 SuccChain.UnscheduledPredecessors = 0; 1039 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1040 << getBlockName(BestSucc) << "\n"); 1041 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1042 Chain.merge(BestSucc, &SuccChain); 1043 BB = *std::prev(Chain.end()); 1044 } 1045 1046 DEBUG(dbgs() << "Finished forming chain for header block " 1047 << getBlockName(*Chain.begin()) << "\n"); 1048 } 1049 1050 /// \brief Find the best loop top block for layout. 1051 /// 1052 /// Look for a block which is strictly better than the loop header for laying 1053 /// out at the top of the loop. This looks for one and only one pattern: 1054 /// a latch block with no conditional exit. This block will cause a conditional 1055 /// jump around it or will be the bottom of the loop if we lay it out in place, 1056 /// but if it it doesn't end up at the bottom of the loop for any reason, 1057 /// rotation alone won't fix it. Because such a block will always result in an 1058 /// unconditional jump (for the backedge) rotating it in front of the loop 1059 /// header is always profitable. 1060 MachineBasicBlock * 1061 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 1062 const BlockFilterSet &LoopBlockSet) { 1063 // Placing the latch block before the header may introduce an extra branch 1064 // that skips this block the first time the loop is executed, which we want 1065 // to avoid when optimising for size. 1066 // FIXME: in theory there is a case that does not introduce a new branch, 1067 // i.e. when the layout predecessor does not fallthrough to the loop header. 1068 // In practice this never happens though: there always seems to be a preheader 1069 // that can fallthrough and that is also placed before the header. 1070 if (F->getFunction()->optForSize()) 1071 return L.getHeader(); 1072 1073 // Check that the header hasn't been fused with a preheader block due to 1074 // crazy branches. If it has, we need to start with the header at the top to 1075 // prevent pulling the preheader into the loop body. 1076 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1077 if (!LoopBlockSet.count(*HeaderChain.begin())) 1078 return L.getHeader(); 1079 1080 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1081 << "\n"); 1082 1083 BlockFrequency BestPredFreq; 1084 MachineBasicBlock *BestPred = nullptr; 1085 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1086 if (!LoopBlockSet.count(Pred)) 1087 continue; 1088 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1089 << Pred->succ_size() << " successors, "; 1090 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1091 if (Pred->succ_size() > 1) 1092 continue; 1093 1094 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1095 if (!BestPred || PredFreq > BestPredFreq || 1096 (!(PredFreq < BestPredFreq) && 1097 Pred->isLayoutSuccessor(L.getHeader()))) { 1098 BestPred = Pred; 1099 BestPredFreq = PredFreq; 1100 } 1101 } 1102 1103 // If no direct predecessor is fine, just use the loop header. 1104 if (!BestPred) { 1105 DEBUG(dbgs() << " final top unchanged\n"); 1106 return L.getHeader(); 1107 } 1108 1109 // Walk backwards through any straight line of predecessors. 1110 while (BestPred->pred_size() == 1 && 1111 (*BestPred->pred_begin())->succ_size() == 1 && 1112 *BestPred->pred_begin() != L.getHeader()) 1113 BestPred = *BestPred->pred_begin(); 1114 1115 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1116 return BestPred; 1117 } 1118 1119 /// \brief Find the best loop exiting block for layout. 1120 /// 1121 /// This routine implements the logic to analyze the loop looking for the best 1122 /// block to layout at the top of the loop. Typically this is done to maximize 1123 /// fallthrough opportunities. 1124 MachineBasicBlock * 1125 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 1126 const BlockFilterSet &LoopBlockSet) { 1127 // We don't want to layout the loop linearly in all cases. If the loop header 1128 // is just a normal basic block in the loop, we want to look for what block 1129 // within the loop is the best one to layout at the top. However, if the loop 1130 // header has be pre-merged into a chain due to predecessors not having 1131 // analyzable branches, *and* the predecessor it is merged with is *not* part 1132 // of the loop, rotating the header into the middle of the loop will create 1133 // a non-contiguous range of blocks which is Very Bad. So start with the 1134 // header and only rotate if safe. 1135 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1136 if (!LoopBlockSet.count(*HeaderChain.begin())) 1137 return nullptr; 1138 1139 BlockFrequency BestExitEdgeFreq; 1140 unsigned BestExitLoopDepth = 0; 1141 MachineBasicBlock *ExitingBB = nullptr; 1142 // If there are exits to outer loops, loop rotation can severely limit 1143 // fallthrough opportunities unless it selects such an exit. Keep a set of 1144 // blocks where rotating to exit with that block will reach an outer loop. 1145 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1146 1147 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1148 << "\n"); 1149 for (MachineBasicBlock *MBB : L.getBlocks()) { 1150 BlockChain &Chain = *BlockToChain[MBB]; 1151 // Ensure that this block is at the end of a chain; otherwise it could be 1152 // mid-way through an inner loop or a successor of an unanalyzable branch. 1153 if (MBB != *std::prev(Chain.end())) 1154 continue; 1155 1156 // Now walk the successors. We need to establish whether this has a viable 1157 // exiting successor and whether it has a viable non-exiting successor. 1158 // We store the old exiting state and restore it if a viable looping 1159 // successor isn't found. 1160 MachineBasicBlock *OldExitingBB = ExitingBB; 1161 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1162 bool HasLoopingSucc = false; 1163 for (MachineBasicBlock *Succ : MBB->successors()) { 1164 if (Succ->isEHPad()) 1165 continue; 1166 if (Succ == MBB) 1167 continue; 1168 BlockChain &SuccChain = *BlockToChain[Succ]; 1169 // Don't split chains, either this chain or the successor's chain. 1170 if (&Chain == &SuccChain) { 1171 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1172 << getBlockName(Succ) << " (chain conflict)\n"); 1173 continue; 1174 } 1175 1176 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1177 if (LoopBlockSet.count(Succ)) { 1178 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1179 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1180 HasLoopingSucc = true; 1181 continue; 1182 } 1183 1184 unsigned SuccLoopDepth = 0; 1185 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1186 SuccLoopDepth = ExitLoop->getLoopDepth(); 1187 if (ExitLoop->contains(&L)) 1188 BlocksExitingToOuterLoop.insert(MBB); 1189 } 1190 1191 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1192 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1193 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1194 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1195 // Note that we bias this toward an existing layout successor to retain 1196 // incoming order in the absence of better information. The exit must have 1197 // a frequency higher than the current exit before we consider breaking 1198 // the layout. 1199 BranchProbability Bias(100 - ExitBlockBias, 100); 1200 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1201 ExitEdgeFreq > BestExitEdgeFreq || 1202 (MBB->isLayoutSuccessor(Succ) && 1203 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1204 BestExitEdgeFreq = ExitEdgeFreq; 1205 ExitingBB = MBB; 1206 } 1207 } 1208 1209 if (!HasLoopingSucc) { 1210 // Restore the old exiting state, no viable looping successor was found. 1211 ExitingBB = OldExitingBB; 1212 BestExitEdgeFreq = OldBestExitEdgeFreq; 1213 } 1214 } 1215 // Without a candidate exiting block or with only a single block in the 1216 // loop, just use the loop header to layout the loop. 1217 if (!ExitingBB) { 1218 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1219 return nullptr; 1220 } 1221 if (L.getNumBlocks() == 1) { 1222 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1223 return nullptr; 1224 } 1225 1226 // Also, if we have exit blocks which lead to outer loops but didn't select 1227 // one of them as the exiting block we are rotating toward, disable loop 1228 // rotation altogether. 1229 if (!BlocksExitingToOuterLoop.empty() && 1230 !BlocksExitingToOuterLoop.count(ExitingBB)) 1231 return nullptr; 1232 1233 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1234 return ExitingBB; 1235 } 1236 1237 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1238 /// 1239 /// Once we have built a chain, try to rotate it to line up the hot exit block 1240 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1241 /// branches. For example, if the loop has fallthrough into its header and out 1242 /// of its bottom already, don't rotate it. 1243 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1244 MachineBasicBlock *ExitingBB, 1245 const BlockFilterSet &LoopBlockSet) { 1246 if (!ExitingBB) 1247 return; 1248 1249 MachineBasicBlock *Top = *LoopChain.begin(); 1250 bool ViableTopFallthrough = false; 1251 for (MachineBasicBlock *Pred : Top->predecessors()) { 1252 BlockChain *PredChain = BlockToChain[Pred]; 1253 if (!LoopBlockSet.count(Pred) && 1254 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1255 ViableTopFallthrough = true; 1256 break; 1257 } 1258 } 1259 1260 // If the header has viable fallthrough, check whether the current loop 1261 // bottom is a viable exiting block. If so, bail out as rotating will 1262 // introduce an unnecessary branch. 1263 if (ViableTopFallthrough) { 1264 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1265 for (MachineBasicBlock *Succ : Bottom->successors()) { 1266 BlockChain *SuccChain = BlockToChain[Succ]; 1267 if (!LoopBlockSet.count(Succ) && 1268 (!SuccChain || Succ == *SuccChain->begin())) 1269 return; 1270 } 1271 } 1272 1273 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1274 if (ExitIt == LoopChain.end()) 1275 return; 1276 1277 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1278 } 1279 1280 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1281 /// 1282 /// With profile data, we can determine the cost in terms of missed fall through 1283 /// opportunities when rotating a loop chain and select the best rotation. 1284 /// Basically, there are three kinds of cost to consider for each rotation: 1285 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1286 /// the loop to the loop header. 1287 /// 2. The possibly missed fall through edges (if they exist) from the loop 1288 /// exits to BB out of the loop. 1289 /// 3. The missed fall through edge (if it exists) from the last BB to the 1290 /// first BB in the loop chain. 1291 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1292 /// We select the best rotation with the smallest cost. 1293 void MachineBlockPlacement::rotateLoopWithProfile( 1294 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1295 auto HeaderBB = L.getHeader(); 1296 auto HeaderIter = find(LoopChain, HeaderBB); 1297 auto RotationPos = LoopChain.end(); 1298 1299 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1300 1301 // A utility lambda that scales up a block frequency by dividing it by a 1302 // branch probability which is the reciprocal of the scale. 1303 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1304 unsigned Scale) -> BlockFrequency { 1305 if (Scale == 0) 1306 return 0; 1307 // Use operator / between BlockFrequency and BranchProbability to implement 1308 // saturating multiplication. 1309 return Freq / BranchProbability(1, Scale); 1310 }; 1311 1312 // Compute the cost of the missed fall-through edge to the loop header if the 1313 // chain head is not the loop header. As we only consider natural loops with 1314 // single header, this computation can be done only once. 1315 BlockFrequency HeaderFallThroughCost(0); 1316 for (auto *Pred : HeaderBB->predecessors()) { 1317 BlockChain *PredChain = BlockToChain[Pred]; 1318 if (!LoopBlockSet.count(Pred) && 1319 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1320 auto EdgeFreq = 1321 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1322 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1323 // If the predecessor has only an unconditional jump to the header, we 1324 // need to consider the cost of this jump. 1325 if (Pred->succ_size() == 1) 1326 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1327 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1328 } 1329 } 1330 1331 // Here we collect all exit blocks in the loop, and for each exit we find out 1332 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1333 // as the sum of frequencies of exit edges we collect here, excluding the exit 1334 // edge from the tail of the loop chain. 1335 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1336 for (auto BB : LoopChain) { 1337 auto LargestExitEdgeProb = BranchProbability::getZero(); 1338 for (auto *Succ : BB->successors()) { 1339 BlockChain *SuccChain = BlockToChain[Succ]; 1340 if (!LoopBlockSet.count(Succ) && 1341 (!SuccChain || Succ == *SuccChain->begin())) { 1342 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1343 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1344 } 1345 } 1346 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1347 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1348 ExitsWithFreq.emplace_back(BB, ExitFreq); 1349 } 1350 } 1351 1352 // In this loop we iterate every block in the loop chain and calculate the 1353 // cost assuming the block is the head of the loop chain. When the loop ends, 1354 // we should have found the best candidate as the loop chain's head. 1355 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1356 EndIter = LoopChain.end(); 1357 Iter != EndIter; Iter++, TailIter++) { 1358 // TailIter is used to track the tail of the loop chain if the block we are 1359 // checking (pointed by Iter) is the head of the chain. 1360 if (TailIter == LoopChain.end()) 1361 TailIter = LoopChain.begin(); 1362 1363 auto TailBB = *TailIter; 1364 1365 // Calculate the cost by putting this BB to the top. 1366 BlockFrequency Cost = 0; 1367 1368 // If the current BB is the loop header, we need to take into account the 1369 // cost of the missed fall through edge from outside of the loop to the 1370 // header. 1371 if (Iter != HeaderIter) 1372 Cost += HeaderFallThroughCost; 1373 1374 // Collect the loop exit cost by summing up frequencies of all exit edges 1375 // except the one from the chain tail. 1376 for (auto &ExitWithFreq : ExitsWithFreq) 1377 if (TailBB != ExitWithFreq.first) 1378 Cost += ExitWithFreq.second; 1379 1380 // The cost of breaking the once fall-through edge from the tail to the top 1381 // of the loop chain. Here we need to consider three cases: 1382 // 1. If the tail node has only one successor, then we will get an 1383 // additional jmp instruction. So the cost here is (MisfetchCost + 1384 // JumpInstCost) * tail node frequency. 1385 // 2. If the tail node has two successors, then we may still get an 1386 // additional jmp instruction if the layout successor after the loop 1387 // chain is not its CFG successor. Note that the more frequently executed 1388 // jmp instruction will be put ahead of the other one. Assume the 1389 // frequency of those two branches are x and y, where x is the frequency 1390 // of the edge to the chain head, then the cost will be 1391 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1392 // 3. If the tail node has more than two successors (this rarely happens), 1393 // we won't consider any additional cost. 1394 if (TailBB->isSuccessor(*Iter)) { 1395 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1396 if (TailBB->succ_size() == 1) 1397 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1398 MisfetchCost + JumpInstCost); 1399 else if (TailBB->succ_size() == 2) { 1400 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1401 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1402 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1403 ? TailBBFreq * TailToHeadProb.getCompl() 1404 : TailToHeadFreq; 1405 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1406 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1407 } 1408 } 1409 1410 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1411 << " to the top: " << Cost.getFrequency() << "\n"); 1412 1413 if (Cost < SmallestRotationCost) { 1414 SmallestRotationCost = Cost; 1415 RotationPos = Iter; 1416 } 1417 } 1418 1419 if (RotationPos != LoopChain.end()) { 1420 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1421 << " to the top\n"); 1422 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1423 } 1424 } 1425 1426 /// \brief Collect blocks in the given loop that are to be placed. 1427 /// 1428 /// When profile data is available, exclude cold blocks from the returned set; 1429 /// otherwise, collect all blocks in the loop. 1430 MachineBlockPlacement::BlockFilterSet 1431 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1432 BlockFilterSet LoopBlockSet; 1433 1434 // Filter cold blocks off from LoopBlockSet when profile data is available. 1435 // Collect the sum of frequencies of incoming edges to the loop header from 1436 // outside. If we treat the loop as a super block, this is the frequency of 1437 // the loop. Then for each block in the loop, we calculate the ratio between 1438 // its frequency and the frequency of the loop block. When it is too small, 1439 // don't add it to the loop chain. If there are outer loops, then this block 1440 // will be merged into the first outer loop chain for which this block is not 1441 // cold anymore. This needs precise profile data and we only do this when 1442 // profile data is available. 1443 if (F->getFunction()->getEntryCount()) { 1444 BlockFrequency LoopFreq(0); 1445 for (auto LoopPred : L.getHeader()->predecessors()) 1446 if (!L.contains(LoopPred)) 1447 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1448 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1449 1450 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1451 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1452 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1453 continue; 1454 LoopBlockSet.insert(LoopBB); 1455 } 1456 } else 1457 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1458 1459 return LoopBlockSet; 1460 } 1461 1462 /// \brief Forms basic block chains from the natural loop structures. 1463 /// 1464 /// These chains are designed to preserve the existing *structure* of the code 1465 /// as much as possible. We can then stitch the chains together in a way which 1466 /// both preserves the topological structure and minimizes taken conditional 1467 /// branches. 1468 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1469 // First recurse through any nested loops, building chains for those inner 1470 // loops. 1471 for (MachineLoop *InnerLoop : L) 1472 buildLoopChains(*InnerLoop); 1473 1474 assert(BlockWorkList.empty()); 1475 assert(EHPadWorkList.empty()); 1476 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1477 1478 // Check if we have profile data for this function. If yes, we will rotate 1479 // this loop by modeling costs more precisely which requires the profile data 1480 // for better layout. 1481 bool RotateLoopWithProfile = 1482 ForcePreciseRotationCost || 1483 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1484 1485 // First check to see if there is an obviously preferable top block for the 1486 // loop. This will default to the header, but may end up as one of the 1487 // predecessors to the header if there is one which will result in strictly 1488 // fewer branches in the loop body. 1489 // When we use profile data to rotate the loop, this is unnecessary. 1490 MachineBasicBlock *LoopTop = 1491 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1492 1493 // If we selected just the header for the loop top, look for a potentially 1494 // profitable exit block in the event that rotating the loop can eliminate 1495 // branches by placing an exit edge at the bottom. 1496 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1497 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 1498 1499 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1500 1501 // FIXME: This is a really lame way of walking the chains in the loop: we 1502 // walk the blocks, and use a set to prevent visiting a particular chain 1503 // twice. 1504 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1505 assert(LoopChain.UnscheduledPredecessors == 0); 1506 UpdatedPreds.insert(&LoopChain); 1507 1508 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1509 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 1510 1511 buildChain(LoopTop, LoopChain, &LoopBlockSet); 1512 1513 if (RotateLoopWithProfile) 1514 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1515 else 1516 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 1517 1518 DEBUG({ 1519 // Crash at the end so we get all of the debugging output first. 1520 bool BadLoop = false; 1521 if (LoopChain.UnscheduledPredecessors) { 1522 BadLoop = true; 1523 dbgs() << "Loop chain contains a block without its preds placed!\n" 1524 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1525 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1526 } 1527 for (MachineBasicBlock *ChainBB : LoopChain) { 1528 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1529 if (!LoopBlockSet.remove(ChainBB)) { 1530 // We don't mark the loop as bad here because there are real situations 1531 // where this can occur. For example, with an unanalyzable fallthrough 1532 // from a loop block to a non-loop block or vice versa. 1533 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1534 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1535 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1536 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1537 } 1538 } 1539 1540 if (!LoopBlockSet.empty()) { 1541 BadLoop = true; 1542 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1543 dbgs() << "Loop contains blocks never placed into a chain!\n" 1544 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1545 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1546 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1547 } 1548 assert(!BadLoop && "Detected problems with the placement of this loop."); 1549 }); 1550 1551 BlockWorkList.clear(); 1552 EHPadWorkList.clear(); 1553 } 1554 1555 /// When OutlineOpitonalBranches is on, this method collects BBs that 1556 /// dominates all terminator blocks of the function \p F. 1557 void MachineBlockPlacement::collectMustExecuteBBs() { 1558 if (OutlineOptionalBranches) { 1559 // Find the nearest common dominator of all of F's terminators. 1560 MachineBasicBlock *Terminator = nullptr; 1561 for (MachineBasicBlock &MBB : *F) { 1562 if (MBB.succ_size() == 0) { 1563 if (Terminator == nullptr) 1564 Terminator = &MBB; 1565 else 1566 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1567 } 1568 } 1569 1570 // MBBs dominating this common dominator are unavoidable. 1571 UnavoidableBlocks.clear(); 1572 for (MachineBasicBlock &MBB : *F) { 1573 if (MDT->dominates(&MBB, Terminator)) { 1574 UnavoidableBlocks.insert(&MBB); 1575 } 1576 } 1577 } 1578 } 1579 1580 void MachineBlockPlacement::buildCFGChains() { 1581 // Ensure that every BB in the function has an associated chain to simplify 1582 // the assumptions of the remaining algorithm. 1583 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1584 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1585 ++FI) { 1586 MachineBasicBlock *BB = &*FI; 1587 BlockChain *Chain = 1588 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1589 // Also, merge any blocks which we cannot reason about and must preserve 1590 // the exact fallthrough behavior for. 1591 for (;;) { 1592 Cond.clear(); 1593 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1594 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1595 break; 1596 1597 MachineFunction::iterator NextFI = std::next(FI); 1598 MachineBasicBlock *NextBB = &*NextFI; 1599 // Ensure that the layout successor is a viable block, as we know that 1600 // fallthrough is a possibility. 1601 assert(NextFI != FE && "Can't fallthrough past the last block."); 1602 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1603 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1604 << "\n"); 1605 Chain->merge(NextBB, nullptr); 1606 #ifndef NDEBUG 1607 BlocksWithUnanalyzableExits.insert(&*BB); 1608 #endif 1609 FI = NextFI; 1610 BB = NextBB; 1611 } 1612 } 1613 1614 // Turned on with OutlineOptionalBranches option 1615 collectMustExecuteBBs(); 1616 1617 // Build any loop-based chains. 1618 PreferredLoopExit = nullptr; 1619 for (MachineLoop *L : *MLI) 1620 buildLoopChains(*L); 1621 1622 assert(BlockWorkList.empty()); 1623 assert(EHPadWorkList.empty()); 1624 1625 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1626 for (MachineBasicBlock &MBB : *F) 1627 fillWorkLists(&MBB, UpdatedPreds); 1628 1629 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1630 buildChain(&F->front(), FunctionChain); 1631 1632 #ifndef NDEBUG 1633 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1634 #endif 1635 DEBUG({ 1636 // Crash at the end so we get all of the debugging output first. 1637 bool BadFunc = false; 1638 FunctionBlockSetType FunctionBlockSet; 1639 for (MachineBasicBlock &MBB : *F) 1640 FunctionBlockSet.insert(&MBB); 1641 1642 for (MachineBasicBlock *ChainBB : FunctionChain) 1643 if (!FunctionBlockSet.erase(ChainBB)) { 1644 BadFunc = true; 1645 dbgs() << "Function chain contains a block not in the function!\n" 1646 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1647 } 1648 1649 if (!FunctionBlockSet.empty()) { 1650 BadFunc = true; 1651 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1652 dbgs() << "Function contains blocks never placed into a chain!\n" 1653 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1654 } 1655 assert(!BadFunc && "Detected problems with the block placement."); 1656 }); 1657 1658 // Splice the blocks into place. 1659 MachineFunction::iterator InsertPos = F->begin(); 1660 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 1661 for (MachineBasicBlock *ChainBB : FunctionChain) { 1662 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1663 : " ... ") 1664 << getBlockName(ChainBB) << "\n"); 1665 if (InsertPos != MachineFunction::iterator(ChainBB)) 1666 F->splice(InsertPos, ChainBB); 1667 else 1668 ++InsertPos; 1669 1670 // Update the terminator of the previous block. 1671 if (ChainBB == *FunctionChain.begin()) 1672 continue; 1673 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1674 1675 // FIXME: It would be awesome of updateTerminator would just return rather 1676 // than assert when the branch cannot be analyzed in order to remove this 1677 // boiler plate. 1678 Cond.clear(); 1679 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1680 1681 #ifndef NDEBUG 1682 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 1683 // Given the exact block placement we chose, we may actually not _need_ to 1684 // be able to edit PrevBB's terminator sequence, but not being _able_ to 1685 // do that at this point is a bug. 1686 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 1687 !PrevBB->canFallThrough()) && 1688 "Unexpected block with un-analyzable fallthrough!"); 1689 Cond.clear(); 1690 TBB = FBB = nullptr; 1691 } 1692 #endif 1693 1694 // The "PrevBB" is not yet updated to reflect current code layout, so, 1695 // o. it may fall-through to a block without explicit "goto" instruction 1696 // before layout, and no longer fall-through it after layout; or 1697 // o. just opposite. 1698 // 1699 // analyzeBranch() may return erroneous value for FBB when these two 1700 // situations take place. For the first scenario FBB is mistakenly set NULL; 1701 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1702 // mistakenly pointing to "*BI". 1703 // Thus, if the future change needs to use FBB before the layout is set, it 1704 // has to correct FBB first by using the code similar to the following: 1705 // 1706 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1707 // PrevBB->updateTerminator(); 1708 // Cond.clear(); 1709 // TBB = FBB = nullptr; 1710 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1711 // // FIXME: This should never take place. 1712 // TBB = FBB = nullptr; 1713 // } 1714 // } 1715 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 1716 PrevBB->updateTerminator(); 1717 } 1718 1719 // Fixup the last block. 1720 Cond.clear(); 1721 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1722 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 1723 F->back().updateTerminator(); 1724 1725 BlockWorkList.clear(); 1726 EHPadWorkList.clear(); 1727 } 1728 1729 void MachineBlockPlacement::optimizeBranches() { 1730 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1731 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1732 1733 // Now that all the basic blocks in the chain have the proper layout, 1734 // make a final call to AnalyzeBranch with AllowModify set. 1735 // Indeed, the target may be able to optimize the branches in a way we 1736 // cannot because all branches may not be analyzable. 1737 // E.g., the target may be able to remove an unconditional branch to 1738 // a fallthrough when it occurs after predicated terminators. 1739 for (MachineBasicBlock *ChainBB : FunctionChain) { 1740 Cond.clear(); 1741 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1742 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1743 // If PrevBB has a two-way branch, try to re-order the branches 1744 // such that we branch to the successor with higher probability first. 1745 if (TBB && !Cond.empty() && FBB && 1746 MBPI->getEdgeProbability(ChainBB, FBB) > 1747 MBPI->getEdgeProbability(ChainBB, TBB) && 1748 !TII->reverseBranchCondition(Cond)) { 1749 DEBUG(dbgs() << "Reverse order of the two branches: " 1750 << getBlockName(ChainBB) << "\n"); 1751 DEBUG(dbgs() << " Edge probability: " 1752 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1753 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1754 DebugLoc dl; // FIXME: this is nowhere 1755 TII->removeBranch(*ChainBB); 1756 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 1757 ChainBB->updateTerminator(); 1758 } 1759 } 1760 } 1761 } 1762 1763 void MachineBlockPlacement::alignBlocks() { 1764 // Walk through the backedges of the function now that we have fully laid out 1765 // the basic blocks and align the destination of each backedge. We don't rely 1766 // exclusively on the loop info here so that we can align backedges in 1767 // unnatural CFGs and backedges that were introduced purely because of the 1768 // loop rotations done during this layout pass. 1769 if (F->getFunction()->optForSize()) 1770 return; 1771 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1772 if (FunctionChain.begin() == FunctionChain.end()) 1773 return; // Empty chain. 1774 1775 const BranchProbability ColdProb(1, 5); // 20% 1776 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 1777 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1778 for (MachineBasicBlock *ChainBB : FunctionChain) { 1779 if (ChainBB == *FunctionChain.begin()) 1780 continue; 1781 1782 // Don't align non-looping basic blocks. These are unlikely to execute 1783 // enough times to matter in practice. Note that we'll still handle 1784 // unnatural CFGs inside of a natural outer loop (the common case) and 1785 // rotated loops. 1786 MachineLoop *L = MLI->getLoopFor(ChainBB); 1787 if (!L) 1788 continue; 1789 1790 unsigned Align = TLI->getPrefLoopAlignment(L); 1791 if (!Align) 1792 continue; // Don't care about loop alignment. 1793 1794 // If the block is cold relative to the function entry don't waste space 1795 // aligning it. 1796 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1797 if (Freq < WeightedEntryFreq) 1798 continue; 1799 1800 // If the block is cold relative to its loop header, don't align it 1801 // regardless of what edges into the block exist. 1802 MachineBasicBlock *LoopHeader = L->getHeader(); 1803 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1804 if (Freq < (LoopHeaderFreq * ColdProb)) 1805 continue; 1806 1807 // Check for the existence of a non-layout predecessor which would benefit 1808 // from aligning this block. 1809 MachineBasicBlock *LayoutPred = 1810 &*std::prev(MachineFunction::iterator(ChainBB)); 1811 1812 // Force alignment if all the predecessors are jumps. We already checked 1813 // that the block isn't cold above. 1814 if (!LayoutPred->isSuccessor(ChainBB)) { 1815 ChainBB->setAlignment(Align); 1816 continue; 1817 } 1818 1819 // Align this block if the layout predecessor's edge into this block is 1820 // cold relative to the block. When this is true, other predecessors make up 1821 // all of the hot entries into the block and thus alignment is likely to be 1822 // important. 1823 BranchProbability LayoutProb = 1824 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1825 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1826 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1827 ChainBB->setAlignment(Align); 1828 } 1829 } 1830 1831 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 1832 /// it was duplicated into its chain predecessor and removed. 1833 /// \p BB - Basic block that may be duplicated. 1834 /// 1835 /// \p LPred - Chosen layout predecessor of \p BB. 1836 /// Updated to be the chain end if LPred is removed. 1837 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 1838 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 1839 /// Used to identify which blocks to update predecessor 1840 /// counts. 1841 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 1842 /// chosen in the given order due to unnatural CFG 1843 /// only needed if \p BB is removed and 1844 /// \p PrevUnplacedBlockIt pointed to \p BB. 1845 /// @return true if \p BB was removed. 1846 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 1847 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 1848 MachineBasicBlock *LoopHeaderBB, 1849 BlockChain &Chain, BlockFilterSet *BlockFilter, 1850 MachineFunction::iterator &PrevUnplacedBlockIt) { 1851 bool Removed, DuplicatedToLPred; 1852 bool DuplicatedToOriginalLPred; 1853 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 1854 PrevUnplacedBlockIt, 1855 DuplicatedToLPred); 1856 if (!Removed) 1857 return false; 1858 DuplicatedToOriginalLPred = DuplicatedToLPred; 1859 // Iteratively try to duplicate again. It can happen that a block that is 1860 // duplicated into is still small enough to be duplicated again. 1861 // No need to call markBlockSuccessors in this case, as the blocks being 1862 // duplicated from here on are already scheduled. 1863 // Note that DuplicatedToLPred always implies Removed. 1864 while (DuplicatedToLPred) { 1865 assert (Removed && "Block must have been removed to be duplicated into its " 1866 "layout predecessor."); 1867 MachineBasicBlock *DupBB, *DupPred; 1868 // The removal callback causes Chain.end() to be updated when a block is 1869 // removed. On the first pass through the loop, the chain end should be the 1870 // same as it was on function entry. On subsequent passes, because we are 1871 // duplicating the block at the end of the chain, if it is removed the 1872 // chain will have shrunk by one block. 1873 BlockChain::iterator ChainEnd = Chain.end(); 1874 DupBB = *(--ChainEnd); 1875 // Now try to duplicate again. 1876 if (ChainEnd == Chain.begin()) 1877 break; 1878 DupPred = *std::prev(ChainEnd); 1879 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 1880 PrevUnplacedBlockIt, 1881 DuplicatedToLPred); 1882 } 1883 // If BB was duplicated into LPred, it is now scheduled. But because it was 1884 // removed, markChainSuccessors won't be called for its chain. Instead we 1885 // call markBlockSuccessors for LPred to achieve the same effect. This must go 1886 // at the end because repeating the tail duplication can increase the number 1887 // of unscheduled predecessors. 1888 LPred = *std::prev(Chain.end()); 1889 if (DuplicatedToOriginalLPred) 1890 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 1891 return true; 1892 } 1893 1894 /// Tail duplicate \p BB into (some) predecessors if profitable. 1895 /// \p BB - Basic block that may be duplicated 1896 /// \p LPred - Chosen layout predecessor of \p BB 1897 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 1898 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 1899 /// Used to identify which blocks to update predecessor 1900 /// counts. 1901 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 1902 /// chosen in the given order due to unnatural CFG 1903 /// only needed if \p BB is removed and 1904 /// \p PrevUnplacedBlockIt pointed to \p BB. 1905 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 1906 /// only be true if the block was removed. 1907 /// \return - True if the block was duplicated into all preds and removed. 1908 bool MachineBlockPlacement::maybeTailDuplicateBlock( 1909 MachineBasicBlock *BB, MachineBasicBlock *LPred, 1910 const BlockChain &Chain, BlockFilterSet *BlockFilter, 1911 MachineFunction::iterator &PrevUnplacedBlockIt, 1912 bool &DuplicatedToLPred) { 1913 1914 DuplicatedToLPred = false; 1915 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 1916 << BB->getNumber() << "\n"); 1917 bool IsSimple = TailDup.isSimpleBB(BB); 1918 // Blocks with single successors don't create additional fallthrough 1919 // opportunities. Don't duplicate them. TODO: When conditional exits are 1920 // analyzable, allow them to be duplicated. 1921 if (!IsSimple && BB->succ_size() == 1) 1922 return false; 1923 if (!TailDup.shouldTailDuplicate(IsSimple, *BB)) 1924 return false; 1925 // This has to be a callback because none of it can be done after 1926 // BB is deleted. 1927 bool Removed = false; 1928 auto RemovalCallback = 1929 [&](MachineBasicBlock *RemBB) { 1930 // Signal to outer function 1931 Removed = true; 1932 1933 // Conservative default. 1934 bool InWorkList = true; 1935 // Remove from the Chain and Chain Map 1936 if (BlockToChain.count(RemBB)) { 1937 BlockChain *Chain = BlockToChain[RemBB]; 1938 InWorkList = Chain->UnscheduledPredecessors == 0; 1939 Chain->remove(RemBB); 1940 BlockToChain.erase(RemBB); 1941 } 1942 1943 // Handle the unplaced block iterator 1944 if (&(*PrevUnplacedBlockIt) == RemBB) { 1945 PrevUnplacedBlockIt++; 1946 } 1947 1948 // Handle the Work Lists 1949 if (InWorkList) { 1950 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 1951 if (RemBB->isEHPad()) 1952 RemoveList = EHPadWorkList; 1953 RemoveList.erase( 1954 remove_if(RemoveList, 1955 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 1956 RemoveList.end()); 1957 } 1958 1959 // Handle the filter set 1960 if (BlockFilter) { 1961 BlockFilter->remove(RemBB); 1962 } 1963 1964 // Remove the block from loop info. 1965 MLI->removeBlock(RemBB); 1966 if (RemBB == PreferredLoopExit) 1967 PreferredLoopExit = nullptr; 1968 1969 DEBUG(dbgs() << "TailDuplicator deleted block: " 1970 << getBlockName(RemBB) << "\n"); 1971 }; 1972 auto RemovalCallbackRef = 1973 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 1974 1975 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 1976 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 1977 &DuplicatedPreds, &RemovalCallbackRef); 1978 1979 // Update UnscheduledPredecessors to reflect tail-duplication. 1980 DuplicatedToLPred = false; 1981 for (MachineBasicBlock *Pred : DuplicatedPreds) { 1982 // We're only looking for unscheduled predecessors that match the filter. 1983 BlockChain* PredChain = BlockToChain[Pred]; 1984 if (Pred == LPred) 1985 DuplicatedToLPred = true; 1986 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 1987 || PredChain == &Chain) 1988 continue; 1989 for (MachineBasicBlock *NewSucc : Pred->successors()) { 1990 if (BlockFilter && !BlockFilter->count(NewSucc)) 1991 continue; 1992 BlockChain *NewChain = BlockToChain[NewSucc]; 1993 if (NewChain != &Chain && NewChain != PredChain) 1994 NewChain->UnscheduledPredecessors++; 1995 } 1996 } 1997 return Removed; 1998 } 1999 2000 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2001 if (skipFunction(*MF.getFunction())) 2002 return false; 2003 2004 // Check for single-block functions and skip them. 2005 if (std::next(MF.begin()) == MF.end()) 2006 return false; 2007 2008 F = &MF; 2009 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2010 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2011 getAnalysis<MachineBlockFrequencyInfo>()); 2012 MLI = &getAnalysis<MachineLoopInfo>(); 2013 TII = MF.getSubtarget().getInstrInfo(); 2014 TLI = MF.getSubtarget().getTargetLowering(); 2015 MDT = &getAnalysis<MachineDominatorTree>(); 2016 2017 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2018 // there are no MachineLoops. 2019 PreferredLoopExit = nullptr; 2020 2021 if (TailDupPlacement) { 2022 unsigned TailDupSize = TailDuplicatePlacementThreshold; 2023 if (MF.getFunction()->optForSize()) 2024 TailDupSize = 1; 2025 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2026 } 2027 2028 assert(BlockToChain.empty()); 2029 2030 buildCFGChains(); 2031 2032 // Changing the layout can create new tail merging opportunities. 2033 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2034 // TailMerge can create jump into if branches that make CFG irreducible for 2035 // HW that requires structured CFG. 2036 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2037 PassConfig->getEnableTailMerge() && 2038 BranchFoldPlacement; 2039 // No tail merging opportunities if the block number is less than four. 2040 if (MF.size() > 3 && EnableTailMerge) { 2041 unsigned TailMergeSize = TailDuplicatePlacementThreshold + 1; 2042 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2043 *MBPI, TailMergeSize); 2044 2045 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2046 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2047 /*AfterBlockPlacement=*/true)) { 2048 // Redo the layout if tail merging creates/removes/moves blocks. 2049 BlockToChain.clear(); 2050 // Must redo the dominator tree if blocks were changed. 2051 MDT->runOnMachineFunction(MF); 2052 ChainAllocator.DestroyAll(); 2053 buildCFGChains(); 2054 } 2055 } 2056 2057 optimizeBranches(); 2058 alignBlocks(); 2059 2060 BlockToChain.clear(); 2061 ChainAllocator.DestroyAll(); 2062 2063 if (AlignAllBlock) 2064 // Align all of the blocks in the function to a specific alignment. 2065 for (MachineBasicBlock &MBB : MF) 2066 MBB.setAlignment(AlignAllBlock); 2067 else if (AlignAllNonFallThruBlocks) { 2068 // Align all of the blocks that have no fall-through predecessors to a 2069 // specific alignment. 2070 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2071 auto LayoutPred = std::prev(MBI); 2072 if (!LayoutPred->isSuccessor(&*MBI)) 2073 MBI->setAlignment(AlignAllNonFallThruBlocks); 2074 } 2075 } 2076 #ifndef NDEBUG 2077 if (ViewBlockLayoutWithBFI != GVDT_None && 2078 (ViewBlockFreqFuncName.empty() || 2079 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2080 MBFI->view(false); 2081 } 2082 #endif 2083 2084 2085 // We always return true as we have no way to track whether the final order 2086 // differs from the original order. 2087 return true; 2088 } 2089 2090 namespace { 2091 /// \brief A pass to compute block placement statistics. 2092 /// 2093 /// A separate pass to compute interesting statistics for evaluating block 2094 /// placement. This is separate from the actual placement pass so that they can 2095 /// be computed in the absence of any placement transformations or when using 2096 /// alternative placement strategies. 2097 class MachineBlockPlacementStats : public MachineFunctionPass { 2098 /// \brief A handle to the branch probability pass. 2099 const MachineBranchProbabilityInfo *MBPI; 2100 2101 /// \brief A handle to the function-wide block frequency pass. 2102 const MachineBlockFrequencyInfo *MBFI; 2103 2104 public: 2105 static char ID; // Pass identification, replacement for typeid 2106 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2107 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2108 } 2109 2110 bool runOnMachineFunction(MachineFunction &F) override; 2111 2112 void getAnalysisUsage(AnalysisUsage &AU) const override { 2113 AU.addRequired<MachineBranchProbabilityInfo>(); 2114 AU.addRequired<MachineBlockFrequencyInfo>(); 2115 AU.setPreservesAll(); 2116 MachineFunctionPass::getAnalysisUsage(AU); 2117 } 2118 }; 2119 } 2120 2121 char MachineBlockPlacementStats::ID = 0; 2122 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2123 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2124 "Basic Block Placement Stats", false, false) 2125 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2126 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2127 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2128 "Basic Block Placement Stats", false, false) 2129 2130 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2131 // Check for single-block functions and skip them. 2132 if (std::next(F.begin()) == F.end()) 2133 return false; 2134 2135 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2136 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2137 2138 for (MachineBasicBlock &MBB : F) { 2139 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2140 Statistic &NumBranches = 2141 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2142 Statistic &BranchTakenFreq = 2143 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2144 for (MachineBasicBlock *Succ : MBB.successors()) { 2145 // Skip if this successor is a fallthrough. 2146 if (MBB.isLayoutSuccessor(Succ)) 2147 continue; 2148 2149 BlockFrequency EdgeFreq = 2150 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2151 ++NumBranches; 2152 BranchTakenFreq += EdgeFreq.getFrequency(); 2153 } 2154 } 2155 2156 return false; 2157 } 2158