1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineDominators.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/TailDuplicator.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include <algorithm> 54 #include <functional> 55 #include <utility> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "block-placement" 59 60 STATISTIC(NumCondBranches, "Number of conditional branches"); 61 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 62 STATISTIC(CondBranchTakenFreq, 63 "Potential frequency of taking conditional branches"); 64 STATISTIC(UncondBranchTakenFreq, 65 "Potential frequency of taking unconditional branches"); 66 67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 68 cl::desc("Force the alignment of all " 69 "blocks in the function."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 73 "align-all-nofallthru-blocks", 74 cl::desc("Force the alignment of all " 75 "blocks that have no fall-through predecessors (i.e. don't add " 76 "nops that are executed)."), 77 cl::init(0), cl::Hidden); 78 79 // FIXME: Find a good default for this flag and remove the flag. 80 static cl::opt<unsigned> ExitBlockBias( 81 "block-placement-exit-block-bias", 82 cl::desc("Block frequency percentage a loop exit block needs " 83 "over the original exit to be considered the new exit."), 84 cl::init(0), cl::Hidden); 85 86 // Definition: 87 // - Outlining: placement of a basic block outside the chain or hot path. 88 89 static cl::opt<bool> OutlineOptionalBranches( 90 "outline-optional-branches", 91 cl::desc("Outlining optional branches will place blocks that are optional " 92 "branches, i.e. branches with a common post dominator, outside " 93 "the hot path or chain"), 94 cl::init(false), cl::Hidden); 95 96 static cl::opt<unsigned> OutlineOptionalThreshold( 97 "outline-optional-threshold", 98 cl::desc("Don't outline optional branches that are a single block with an " 99 "instruction count below this threshold"), 100 cl::init(4), cl::Hidden); 101 102 static cl::opt<unsigned> LoopToColdBlockRatio( 103 "loop-to-cold-block-ratio", 104 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 105 "(frequency of block) is greater than this ratio"), 106 cl::init(5), cl::Hidden); 107 108 static cl::opt<bool> 109 PreciseRotationCost("precise-rotation-cost", 110 cl::desc("Model the cost of loop rotation more " 111 "precisely by using profile data."), 112 cl::init(false), cl::Hidden); 113 static cl::opt<bool> 114 ForcePreciseRotationCost("force-precise-rotation-cost", 115 cl::desc("Force the use of precise cost " 116 "loop rotation strategy."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<unsigned> MisfetchCost( 120 "misfetch-cost", 121 cl::desc("Cost that models the probabilistic risk of an instruction " 122 "misfetch due to a jump comparing to falling through, whose cost " 123 "is zero."), 124 cl::init(1), cl::Hidden); 125 126 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 127 cl::desc("Cost of jump instructions."), 128 cl::init(1), cl::Hidden); 129 static cl::opt<bool> 130 TailDupPlacement("tail-dup-placement", 131 cl::desc("Perform tail duplication during placement. " 132 "Creates more fallthrough opportunites in " 133 "outline branches."), 134 cl::init(true), cl::Hidden); 135 136 static cl::opt<bool> 137 BranchFoldPlacement("branch-fold-placement", 138 cl::desc("Perform branch folding during placement. " 139 "Reduces code size."), 140 cl::init(true), cl::Hidden); 141 142 // Heuristic for tail duplication. 143 static cl::opt<unsigned> TailDupPlacementThreshold( 144 "tail-dup-placement-threshold", 145 cl::desc("Instruction cutoff for tail duplication during layout. " 146 "Tail merging during layout is forced to have a threshold " 147 "that won't conflict."), cl::init(2), 148 cl::Hidden); 149 150 // Heuristic for tail duplication. 151 static cl::opt<unsigned> TailDupPlacementPenalty( 152 "tail-dup-placement-penalty", 153 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 154 "Copying can increase fallthrough, but it also increases icache " 155 "pressure. This parameter controls the penalty to account for that. " 156 "Percent as integer."), 157 cl::init(2), 158 cl::Hidden); 159 160 extern cl::opt<unsigned> StaticLikelyProb; 161 extern cl::opt<unsigned> ProfileLikelyProb; 162 163 // Internal option used to control BFI display only after MBP pass. 164 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 165 // -view-block-layout-with-bfi= 166 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 167 168 // Command line option to specify the name of the function for CFG dump 169 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 170 extern cl::opt<std::string> ViewBlockFreqFuncName; 171 172 namespace { 173 class BlockChain; 174 /// \brief Type for our function-wide basic block -> block chain mapping. 175 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType; 176 } 177 178 namespace { 179 /// \brief A chain of blocks which will be laid out contiguously. 180 /// 181 /// This is the datastructure representing a chain of consecutive blocks that 182 /// are profitable to layout together in order to maximize fallthrough 183 /// probabilities and code locality. We also can use a block chain to represent 184 /// a sequence of basic blocks which have some external (correctness) 185 /// requirement for sequential layout. 186 /// 187 /// Chains can be built around a single basic block and can be merged to grow 188 /// them. They participate in a block-to-chain mapping, which is updated 189 /// automatically as chains are merged together. 190 class BlockChain { 191 /// \brief The sequence of blocks belonging to this chain. 192 /// 193 /// This is the sequence of blocks for a particular chain. These will be laid 194 /// out in-order within the function. 195 SmallVector<MachineBasicBlock *, 4> Blocks; 196 197 /// \brief A handle to the function-wide basic block to block chain mapping. 198 /// 199 /// This is retained in each block chain to simplify the computation of child 200 /// block chains for SCC-formation and iteration. We store the edges to child 201 /// basic blocks, and map them back to their associated chains using this 202 /// structure. 203 BlockToChainMapType &BlockToChain; 204 205 public: 206 /// \brief Construct a new BlockChain. 207 /// 208 /// This builds a new block chain representing a single basic block in the 209 /// function. It also registers itself as the chain that block participates 210 /// in with the BlockToChain mapping. 211 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 212 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 213 assert(BB && "Cannot create a chain with a null basic block"); 214 BlockToChain[BB] = this; 215 } 216 217 /// \brief Iterator over blocks within the chain. 218 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 219 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator; 220 221 /// \brief Beginning of blocks within the chain. 222 iterator begin() { return Blocks.begin(); } 223 const_iterator begin() const { return Blocks.begin(); } 224 225 /// \brief End of blocks within the chain. 226 iterator end() { return Blocks.end(); } 227 const_iterator end() const { return Blocks.end(); } 228 229 bool remove(MachineBasicBlock* BB) { 230 for(iterator i = begin(); i != end(); ++i) { 231 if (*i == BB) { 232 Blocks.erase(i); 233 return true; 234 } 235 } 236 return false; 237 } 238 239 /// \brief Merge a block chain into this one. 240 /// 241 /// This routine merges a block chain into this one. It takes care of forming 242 /// a contiguous sequence of basic blocks, updating the edge list, and 243 /// updating the block -> chain mapping. It does not free or tear down the 244 /// old chain, but the old chain's block list is no longer valid. 245 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 246 assert(BB); 247 assert(!Blocks.empty()); 248 249 // Fast path in case we don't have a chain already. 250 if (!Chain) { 251 assert(!BlockToChain[BB]); 252 Blocks.push_back(BB); 253 BlockToChain[BB] = this; 254 return; 255 } 256 257 assert(BB == *Chain->begin()); 258 assert(Chain->begin() != Chain->end()); 259 260 // Update the incoming blocks to point to this chain, and add them to the 261 // chain structure. 262 for (MachineBasicBlock *ChainBB : *Chain) { 263 Blocks.push_back(ChainBB); 264 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 265 BlockToChain[ChainBB] = this; 266 } 267 } 268 269 #ifndef NDEBUG 270 /// \brief Dump the blocks in this chain. 271 LLVM_DUMP_METHOD void dump() { 272 for (MachineBasicBlock *MBB : *this) 273 MBB->dump(); 274 } 275 #endif // NDEBUG 276 277 /// \brief Count of predecessors of any block within the chain which have not 278 /// yet been scheduled. In general, we will delay scheduling this chain 279 /// until those predecessors are scheduled (or we find a sufficiently good 280 /// reason to override this heuristic.) Note that when forming loop chains, 281 /// blocks outside the loop are ignored and treated as if they were already 282 /// scheduled. 283 /// 284 /// Note: This field is reinitialized multiple times - once for each loop, 285 /// and then once for the function as a whole. 286 unsigned UnscheduledPredecessors; 287 }; 288 } 289 290 namespace { 291 class MachineBlockPlacement : public MachineFunctionPass { 292 /// \brief A typedef for a block filter set. 293 typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet; 294 295 /// Pair struct containing basic block and taildup profitiability 296 struct BlockAndTailDupResult { 297 MachineBasicBlock * BB; 298 bool ShouldTailDup; 299 }; 300 301 /// \brief work lists of blocks that are ready to be laid out 302 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 303 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 304 305 /// \brief Machine Function 306 MachineFunction *F; 307 308 /// \brief A handle to the branch probability pass. 309 const MachineBranchProbabilityInfo *MBPI; 310 311 /// \brief A handle to the function-wide block frequency pass. 312 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 313 314 /// \brief A handle to the loop info. 315 MachineLoopInfo *MLI; 316 317 /// \brief Preferred loop exit. 318 /// Member variable for convenience. It may be removed by duplication deep 319 /// in the call stack. 320 MachineBasicBlock *PreferredLoopExit; 321 322 /// \brief A handle to the target's instruction info. 323 const TargetInstrInfo *TII; 324 325 /// \brief A handle to the target's lowering info. 326 const TargetLoweringBase *TLI; 327 328 /// \brief A handle to the dominator tree. 329 MachineDominatorTree *MDT; 330 331 /// \brief A handle to the post dominator tree. 332 MachinePostDominatorTree *MPDT; 333 334 /// \brief Duplicator used to duplicate tails during placement. 335 /// 336 /// Placement decisions can open up new tail duplication opportunities, but 337 /// since tail duplication affects placement decisions of later blocks, it 338 /// must be done inline. 339 TailDuplicator TailDup; 340 341 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 342 /// all terminators of the MachineFunction. 343 SmallPtrSet<const MachineBasicBlock *, 4> UnavoidableBlocks; 344 345 /// \brief Allocator and owner of BlockChain structures. 346 /// 347 /// We build BlockChains lazily while processing the loop structure of 348 /// a function. To reduce malloc traffic, we allocate them using this 349 /// slab-like allocator, and destroy them after the pass completes. An 350 /// important guarantee is that this allocator produces stable pointers to 351 /// the chains. 352 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 353 354 /// \brief Function wide BasicBlock to BlockChain mapping. 355 /// 356 /// This mapping allows efficiently moving from any given basic block to the 357 /// BlockChain it participates in, if any. We use it to, among other things, 358 /// allow implicitly defining edges between chains as the existing edges 359 /// between basic blocks. 360 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 361 362 #ifndef NDEBUG 363 /// The set of basic blocks that have terminators that cannot be fully 364 /// analyzed. These basic blocks cannot be re-ordered safely by 365 /// MachineBlockPlacement, and we must preserve physical layout of these 366 /// blocks and their successors through the pass. 367 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 368 #endif 369 370 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 371 /// if the count goes to 0, add them to the appropriate work list. 372 void markChainSuccessors( 373 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 374 const BlockFilterSet *BlockFilter = nullptr); 375 376 /// Decrease the UnscheduledPredecessors count for a single block, and 377 /// if the count goes to 0, add them to the appropriate work list. 378 void markBlockSuccessors( 379 const BlockChain &Chain, const MachineBasicBlock *BB, 380 const MachineBasicBlock *LoopHeaderBB, 381 const BlockFilterSet *BlockFilter = nullptr); 382 383 BranchProbability 384 collectViableSuccessors( 385 const MachineBasicBlock *BB, const BlockChain &Chain, 386 const BlockFilterSet *BlockFilter, 387 SmallVector<MachineBasicBlock *, 4> &Successors); 388 bool shouldPredBlockBeOutlined( 389 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 390 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 391 BranchProbability SuccProb, BranchProbability HotProb); 392 bool repeatedlyTailDuplicateBlock( 393 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 394 const MachineBasicBlock *LoopHeaderBB, 395 BlockChain &Chain, BlockFilterSet *BlockFilter, 396 MachineFunction::iterator &PrevUnplacedBlockIt); 397 bool maybeTailDuplicateBlock( 398 MachineBasicBlock *BB, MachineBasicBlock *LPred, 399 BlockChain &Chain, BlockFilterSet *BlockFilter, 400 MachineFunction::iterator &PrevUnplacedBlockIt, 401 bool &DuplicatedToPred); 402 bool hasBetterLayoutPredecessor( 403 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 404 const BlockChain &SuccChain, BranchProbability SuccProb, 405 BranchProbability RealSuccProb, const BlockChain &Chain, 406 const BlockFilterSet *BlockFilter); 407 BlockAndTailDupResult selectBestSuccessor( 408 const MachineBasicBlock *BB, const BlockChain &Chain, 409 const BlockFilterSet *BlockFilter); 410 MachineBasicBlock *selectBestCandidateBlock( 411 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 412 MachineBasicBlock *getFirstUnplacedBlock( 413 const BlockChain &PlacedChain, 414 MachineFunction::iterator &PrevUnplacedBlockIt, 415 const BlockFilterSet *BlockFilter); 416 417 /// \brief Add a basic block to the work list if it is appropriate. 418 /// 419 /// If the optional parameter BlockFilter is provided, only MBB 420 /// present in the set will be added to the worklist. If nullptr 421 /// is provided, no filtering occurs. 422 void fillWorkLists(const MachineBasicBlock *MBB, 423 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 424 const BlockFilterSet *BlockFilter); 425 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 426 BlockFilterSet *BlockFilter = nullptr); 427 MachineBasicBlock *findBestLoopTop( 428 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 429 MachineBasicBlock *findBestLoopExit( 430 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 431 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 432 void buildLoopChains(const MachineLoop &L); 433 void rotateLoop( 434 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 435 const BlockFilterSet &LoopBlockSet); 436 void rotateLoopWithProfile( 437 BlockChain &LoopChain, const MachineLoop &L, 438 const BlockFilterSet &LoopBlockSet); 439 void collectMustExecuteBBs(); 440 void buildCFGChains(); 441 void optimizeBranches(); 442 void alignBlocks(); 443 bool shouldTailDuplicate(MachineBasicBlock *BB); 444 /// Check the edge frequencies to see if tail duplication will increase 445 /// fallthroughs. 446 bool isProfitableToTailDup( 447 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 448 BranchProbability AdjustedSumProb, 449 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 450 /// Returns true if a block can tail duplicate into all unplaced 451 /// predecessors. Filters based on loop. 452 bool canTailDuplicateUnplacedPreds( 453 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 454 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 455 456 public: 457 static char ID; // Pass identification, replacement for typeid 458 MachineBlockPlacement() : MachineFunctionPass(ID) { 459 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 460 } 461 462 bool runOnMachineFunction(MachineFunction &F) override; 463 464 void getAnalysisUsage(AnalysisUsage &AU) const override { 465 AU.addRequired<MachineBranchProbabilityInfo>(); 466 AU.addRequired<MachineBlockFrequencyInfo>(); 467 AU.addRequired<MachineDominatorTree>(); 468 if (TailDupPlacement) 469 AU.addRequired<MachinePostDominatorTree>(); 470 AU.addRequired<MachineLoopInfo>(); 471 AU.addRequired<TargetPassConfig>(); 472 MachineFunctionPass::getAnalysisUsage(AU); 473 } 474 }; 475 } 476 477 char MachineBlockPlacement::ID = 0; 478 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 479 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 480 "Branch Probability Basic Block Placement", false, false) 481 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 482 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 483 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 484 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 485 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 486 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 487 "Branch Probability Basic Block Placement", false, false) 488 489 #ifndef NDEBUG 490 /// \brief Helper to print the name of a MBB. 491 /// 492 /// Only used by debug logging. 493 static std::string getBlockName(const MachineBasicBlock *BB) { 494 std::string Result; 495 raw_string_ostream OS(Result); 496 OS << "BB#" << BB->getNumber(); 497 OS << " ('" << BB->getName() << "')"; 498 OS.flush(); 499 return Result; 500 } 501 #endif 502 503 /// \brief Mark a chain's successors as having one fewer preds. 504 /// 505 /// When a chain is being merged into the "placed" chain, this routine will 506 /// quickly walk the successors of each block in the chain and mark them as 507 /// having one fewer active predecessor. It also adds any successors of this 508 /// chain which reach the zero-predecessor state to the appropriate worklist. 509 void MachineBlockPlacement::markChainSuccessors( 510 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 511 const BlockFilterSet *BlockFilter) { 512 // Walk all the blocks in this chain, marking their successors as having 513 // a predecessor placed. 514 for (MachineBasicBlock *MBB : Chain) { 515 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 516 } 517 } 518 519 /// \brief Mark a single block's successors as having one fewer preds. 520 /// 521 /// Under normal circumstances, this is only called by markChainSuccessors, 522 /// but if a block that was to be placed is completely tail-duplicated away, 523 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 524 /// for just that block. 525 void MachineBlockPlacement::markBlockSuccessors( 526 const BlockChain &Chain, const MachineBasicBlock *MBB, 527 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 528 // Add any successors for which this is the only un-placed in-loop 529 // predecessor to the worklist as a viable candidate for CFG-neutral 530 // placement. No subsequent placement of this block will violate the CFG 531 // shape, so we get to use heuristics to choose a favorable placement. 532 for (MachineBasicBlock *Succ : MBB->successors()) { 533 if (BlockFilter && !BlockFilter->count(Succ)) 534 continue; 535 BlockChain &SuccChain = *BlockToChain[Succ]; 536 // Disregard edges within a fixed chain, or edges to the loop header. 537 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 538 continue; 539 540 // This is a cross-chain edge that is within the loop, so decrement the 541 // loop predecessor count of the destination chain. 542 if (SuccChain.UnscheduledPredecessors == 0 || 543 --SuccChain.UnscheduledPredecessors > 0) 544 continue; 545 546 auto *NewBB = *SuccChain.begin(); 547 if (NewBB->isEHPad()) 548 EHPadWorkList.push_back(NewBB); 549 else 550 BlockWorkList.push_back(NewBB); 551 } 552 } 553 554 /// This helper function collects the set of successors of block 555 /// \p BB that are allowed to be its layout successors, and return 556 /// the total branch probability of edges from \p BB to those 557 /// blocks. 558 BranchProbability MachineBlockPlacement::collectViableSuccessors( 559 const MachineBasicBlock *BB, const BlockChain &Chain, 560 const BlockFilterSet *BlockFilter, 561 SmallVector<MachineBasicBlock *, 4> &Successors) { 562 // Adjust edge probabilities by excluding edges pointing to blocks that is 563 // either not in BlockFilter or is already in the current chain. Consider the 564 // following CFG: 565 // 566 // --->A 567 // | / \ 568 // | B C 569 // | \ / \ 570 // ----D E 571 // 572 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 573 // A->C is chosen as a fall-through, D won't be selected as a successor of C 574 // due to CFG constraint (the probability of C->D is not greater than 575 // HotProb to break top-order). If we exclude E that is not in BlockFilter 576 // when calculating the probability of C->D, D will be selected and we 577 // will get A C D B as the layout of this loop. 578 auto AdjustedSumProb = BranchProbability::getOne(); 579 for (MachineBasicBlock *Succ : BB->successors()) { 580 bool SkipSucc = false; 581 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 582 SkipSucc = true; 583 } else { 584 BlockChain *SuccChain = BlockToChain[Succ]; 585 if (SuccChain == &Chain) { 586 SkipSucc = true; 587 } else if (Succ != *SuccChain->begin()) { 588 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 589 continue; 590 } 591 } 592 if (SkipSucc) 593 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 594 else 595 Successors.push_back(Succ); 596 } 597 598 return AdjustedSumProb; 599 } 600 601 /// The helper function returns the branch probability that is adjusted 602 /// or normalized over the new total \p AdjustedSumProb. 603 static BranchProbability 604 getAdjustedProbability(BranchProbability OrigProb, 605 BranchProbability AdjustedSumProb) { 606 BranchProbability SuccProb; 607 uint32_t SuccProbN = OrigProb.getNumerator(); 608 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 609 if (SuccProbN >= SuccProbD) 610 SuccProb = BranchProbability::getOne(); 611 else 612 SuccProb = BranchProbability(SuccProbN, SuccProbD); 613 614 return SuccProb; 615 } 616 617 /// Check if a block should be tail duplicated. 618 /// \p BB Block to check. 619 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 620 // Blocks with single successors don't create additional fallthrough 621 // opportunities. Don't duplicate them. TODO: When conditional exits are 622 // analyzable, allow them to be duplicated. 623 bool IsSimple = TailDup.isSimpleBB(BB); 624 625 if (BB->succ_size() == 1) 626 return false; 627 return TailDup.shouldTailDuplicate(IsSimple, *BB); 628 } 629 630 /// Compare 2 BlockFrequency's with a small penalty for \p A. 631 /// In order to be conservative, we apply a X% penalty to account for 632 /// increased icache pressure and static heuristics. For small frequencies 633 /// we use only the numerators to improve accuracy. For simplicity, we assume the 634 /// penalty is less than 100% 635 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 636 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 637 uint64_t EntryFreq) { 638 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 639 BlockFrequency Gain = A - B; 640 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 641 } 642 643 /// Check the edge frequencies to see if tail duplication will increase 644 /// fallthroughs. It only makes sense to call this function when 645 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 646 /// always locally profitable if we would have picked \p Succ without 647 /// considering duplication. 648 bool MachineBlockPlacement::isProfitableToTailDup( 649 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 650 BranchProbability QProb, 651 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 652 // We need to do a probability calculation to make sure this is profitable. 653 // First: does succ have a successor that post-dominates? This affects the 654 // calculation. The 2 relevant cases are: 655 // BB BB 656 // | \Qout | \Qout 657 // P| C |P C 658 // = C' = C' 659 // | /Qin | /Qin 660 // | / | / 661 // Succ Succ 662 // / \ | \ V 663 // U/ =V |U \ 664 // / \ = D 665 // D E | / 666 // | / 667 // |/ 668 // PDom 669 // '=' : Branch taken for that CFG edge 670 // In the second case, Placing Succ while duplicating it into C prevents the 671 // fallthrough of Succ into either D or PDom, because they now have C as an 672 // unplaced predecessor 673 674 // Start by figuring out which case we fall into 675 MachineBasicBlock *PDom = nullptr; 676 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 677 // Only scan the relevant successors 678 auto AdjustedSuccSumProb = 679 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 680 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 681 auto BBFreq = MBFI->getBlockFreq(BB); 682 auto SuccFreq = MBFI->getBlockFreq(Succ); 683 BlockFrequency P = BBFreq * PProb; 684 BlockFrequency Qout = BBFreq * QProb; 685 uint64_t EntryFreq = MBFI->getEntryFreq(); 686 // If there are no more successors, it is profitable to copy, as it strictly 687 // increases fallthrough. 688 if (SuccSuccs.size() == 0) 689 return greaterWithBias(P, Qout, EntryFreq); 690 691 auto BestSuccSucc = BranchProbability::getZero(); 692 // Find the PDom or the best Succ if no PDom exists. 693 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 694 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 695 if (Prob > BestSuccSucc) 696 BestSuccSucc = Prob; 697 if (PDom == nullptr) 698 if (MPDT->dominates(SuccSucc, Succ)) { 699 PDom = SuccSucc; 700 break; 701 } 702 } 703 // For the comparisons, we need to know Succ's best incoming edge that isn't 704 // from BB. 705 auto SuccBestPred = BlockFrequency(0); 706 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 707 if (SuccPred == Succ || SuccPred == BB 708 || BlockToChain[SuccPred] == &Chain 709 || (BlockFilter && !BlockFilter->count(SuccPred))) 710 continue; 711 auto Freq = MBFI->getBlockFreq(SuccPred) 712 * MBPI->getEdgeProbability(SuccPred, Succ); 713 if (Freq > SuccBestPred) 714 SuccBestPred = Freq; 715 } 716 // Qin is Succ's best unplaced incoming edge that isn't BB 717 BlockFrequency Qin = SuccBestPred; 718 // If it doesn't have a post-dominating successor, here is the calculation: 719 // BB BB 720 // | \Qout | \ 721 // P| C | = 722 // = C' | C 723 // | /Qin | | 724 // | / | C' (+Succ) 725 // Succ Succ /| 726 // / \ | \/ | 727 // U/ =V = /= = 728 // / \ | / \| 729 // D E D E 730 // '=' : Branch taken for that CFG edge 731 // Cost in the first case is: P + V 732 // For this calculation, we always assume P > Qout. If Qout > P 733 // The result of this function will be ignored at the caller. 734 // Cost in the second case is: Qout + Qin * V + P * U + P * V 735 // TODO(iteratee): If we lay out D after Succ, the P * U term 736 // goes away. This logic is coming in D28522. 737 738 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 739 BranchProbability UProb = BestSuccSucc; 740 BranchProbability VProb = AdjustedSuccSumProb - UProb; 741 BlockFrequency V = SuccFreq * VProb; 742 BlockFrequency QinV = Qin * VProb; 743 BlockFrequency BaseCost = P + V; 744 BlockFrequency DupCost = Qout + QinV + P * AdjustedSuccSumProb; 745 return greaterWithBias(BaseCost, DupCost, EntryFreq); 746 } 747 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 748 BranchProbability VProb = AdjustedSuccSumProb - UProb; 749 BlockFrequency U = SuccFreq * UProb; 750 BlockFrequency V = SuccFreq * VProb; 751 // If there is a post-dominating successor, here is the calculation: 752 // BB BB BB BB 753 // | \Qout | \ | \Qout | \ 754 // |P C | = |P C | = 755 // = C' |P C = C' |P C 756 // | /Qin | | | /Qin | | 757 // | / | C' (+Succ) | / | C' (+Succ) 758 // Succ Succ /| Succ Succ /| 759 // | \ V | \/ | | \ V | \/ | 760 // |U \ |U /\ | |U = |U /\ | 761 // = D = = =| | D | = =| 762 // | / |/ D | / |/ D 763 // | / | / | = | / 764 // |/ | / |/ | = 765 // Dom Dom Dom Dom 766 // '=' : Branch taken for that CFG edge 767 // The cost for taken branches in the first case is P + U 768 // The cost in the second case (assuming independence), given the layout: 769 // BB, Succ, (C+Succ), D, Dom 770 // is Qout + P * V + Qin * U 771 // compare P + U vs Qout + P + Qin * U. 772 // 773 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 774 // 775 // For the 3rd case, the cost is P + 2 * V 776 // For the 4th case, the cost is Qout + Qin * U + P * V + V 777 // We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V 778 if (UProb > AdjustedSuccSumProb / 2 779 && !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], 780 UProb, UProb, Chain, BlockFilter)) { 781 // Cases 3 & 4 782 return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb), 783 EntryFreq); 784 } 785 // Cases 1 & 2 786 return greaterWithBias( 787 (P + U), (Qout + Qin * UProb + P * AdjustedSuccSumProb), EntryFreq); 788 } 789 790 791 /// When the option TailDupPlacement is on, this method checks if the 792 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 793 /// into all of its unplaced, unfiltered predecessors, that are not BB. 794 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 795 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 796 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 797 if (!shouldTailDuplicate(Succ)) 798 return false; 799 800 for (MachineBasicBlock *Pred : Succ->predecessors()) { 801 // Make sure all unplaced and unfiltered predecessors can be 802 // tail-duplicated into. 803 // Skip any blocks that are already placed or not in this loop. 804 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 805 || BlockToChain[Pred] == &Chain) 806 continue; 807 if (!TailDup.canTailDuplicate(Succ, Pred)) 808 return false; 809 } 810 return true; 811 } 812 813 /// When the option OutlineOptionalBranches is on, this method 814 /// checks if the fallthrough candidate block \p Succ (of block 815 /// \p BB) also has other unscheduled predecessor blocks which 816 /// are also successors of \p BB (forming triangular shape CFG). 817 /// If none of such predecessors are small, it returns true. 818 /// The caller can choose to select \p Succ as the layout successors 819 /// so that \p Succ's predecessors (optional branches) can be 820 /// outlined. 821 /// FIXME: fold this with more general layout cost analysis. 822 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 823 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 824 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 825 BranchProbability SuccProb, BranchProbability HotProb) { 826 if (!OutlineOptionalBranches) 827 return false; 828 // If we outline optional branches, look whether Succ is unavoidable, i.e. 829 // dominates all terminators of the MachineFunction. If it does, other 830 // successors must be optional. Don't do this for cold branches. 831 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 832 for (MachineBasicBlock *Pred : Succ->predecessors()) { 833 // Check whether there is an unplaced optional branch. 834 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 835 BlockToChain[Pred] == &Chain) 836 continue; 837 // Check whether the optional branch has exactly one BB. 838 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 839 continue; 840 // Check whether the optional branch is small. 841 if (Pred->size() < OutlineOptionalThreshold) 842 return false; 843 } 844 return true; 845 } else 846 return false; 847 } 848 849 // When profile is not present, return the StaticLikelyProb. 850 // When profile is available, we need to handle the triangle-shape CFG. 851 static BranchProbability getLayoutSuccessorProbThreshold( 852 const MachineBasicBlock *BB) { 853 if (!BB->getParent()->getFunction()->getEntryCount()) 854 return BranchProbability(StaticLikelyProb, 100); 855 if (BB->succ_size() == 2) { 856 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 857 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 858 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 859 /* See case 1 below for the cost analysis. For BB->Succ to 860 * be taken with smaller cost, the following needs to hold: 861 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 862 * So the threshold T in the calculation below 863 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 864 * So T / (1 - T) = 2, Yielding T = 2/3 865 * Also adding user specified branch bias, we have 866 * T = (2/3)*(ProfileLikelyProb/50) 867 * = (2*ProfileLikelyProb)/150) 868 */ 869 return BranchProbability(2 * ProfileLikelyProb, 150); 870 } 871 } 872 return BranchProbability(ProfileLikelyProb, 100); 873 } 874 875 /// Checks to see if the layout candidate block \p Succ has a better layout 876 /// predecessor than \c BB. If yes, returns true. 877 /// \p SuccProb: The probability adjusted for only remaining blocks. 878 /// Only used for logging 879 /// \p RealSuccProb: The un-adjusted probability. 880 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 881 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 882 /// considered 883 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 884 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 885 const BlockChain &SuccChain, BranchProbability SuccProb, 886 BranchProbability RealSuccProb, const BlockChain &Chain, 887 const BlockFilterSet *BlockFilter) { 888 889 // There isn't a better layout when there are no unscheduled predecessors. 890 if (SuccChain.UnscheduledPredecessors == 0) 891 return false; 892 893 // There are two basic scenarios here: 894 // ------------------------------------- 895 // Case 1: triangular shape CFG (if-then): 896 // BB 897 // | \ 898 // | \ 899 // | Pred 900 // | / 901 // Succ 902 // In this case, we are evaluating whether to select edge -> Succ, e.g. 903 // set Succ as the layout successor of BB. Picking Succ as BB's 904 // successor breaks the CFG constraints (FIXME: define these constraints). 905 // With this layout, Pred BB 906 // is forced to be outlined, so the overall cost will be cost of the 907 // branch taken from BB to Pred, plus the cost of back taken branch 908 // from Pred to Succ, as well as the additional cost associated 909 // with the needed unconditional jump instruction from Pred To Succ. 910 911 // The cost of the topological order layout is the taken branch cost 912 // from BB to Succ, so to make BB->Succ a viable candidate, the following 913 // must hold: 914 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 915 // < freq(BB->Succ) * taken_branch_cost. 916 // Ignoring unconditional jump cost, we get 917 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 918 // prob(BB->Succ) > 2 * prob(BB->Pred) 919 // 920 // When real profile data is available, we can precisely compute the 921 // probability threshold that is needed for edge BB->Succ to be considered. 922 // Without profile data, the heuristic requires the branch bias to be 923 // a lot larger to make sure the signal is very strong (e.g. 80% default). 924 // ----------------------------------------------------------------- 925 // Case 2: diamond like CFG (if-then-else): 926 // S 927 // / \ 928 // | \ 929 // BB Pred 930 // \ / 931 // Succ 932 // .. 933 // 934 // The current block is BB and edge BB->Succ is now being evaluated. 935 // Note that edge S->BB was previously already selected because 936 // prob(S->BB) > prob(S->Pred). 937 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 938 // choose Pred, we will have a topological ordering as shown on the left 939 // in the picture below. If we choose Succ, we have the solution as shown 940 // on the right: 941 // 942 // topo-order: 943 // 944 // S----- ---S 945 // | | | | 946 // ---BB | | BB 947 // | | | | 948 // | pred-- | Succ-- 949 // | | | | 950 // ---succ ---pred-- 951 // 952 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 953 // = freq(S->Pred) + freq(S->BB) 954 // 955 // If we have profile data (i.e, branch probabilities can be trusted), the 956 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 957 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 958 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 959 // means the cost of topological order is greater. 960 // When profile data is not available, however, we need to be more 961 // conservative. If the branch prediction is wrong, breaking the topo-order 962 // will actually yield a layout with large cost. For this reason, we need 963 // strong biased branch at block S with Prob(S->BB) in order to select 964 // BB->Succ. This is equivalent to looking the CFG backward with backward 965 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 966 // profile data). 967 // -------------------------------------------------------------------------- 968 // Case 3: forked diamond 969 // S 970 // / \ 971 // / \ 972 // BB Pred 973 // | \ / | 974 // | \ / | 975 // | X | 976 // | / \ | 977 // | / \ | 978 // S1 S2 979 // 980 // The current block is BB and edge BB->S1 is now being evaluated. 981 // As above S->BB was already selected because 982 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 983 // 984 // topo-order: 985 // 986 // S-------| ---S 987 // | | | | 988 // ---BB | | BB 989 // | | | | 990 // | Pred----| | S1---- 991 // | | | | 992 // --(S1 or S2) ---Pred-- 993 // 994 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 995 // + min(freq(Pred->S1), freq(Pred->S2)) 996 // Non-topo-order cost: 997 // In the worst case, S2 will not get laid out after Pred. 998 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 999 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1000 // is 0. Then the non topo layout is better when 1001 // freq(S->Pred) < freq(BB->S1). 1002 // This is exactly what is checked below. 1003 // Note there are other shapes that apply (Pred may not be a single block, 1004 // but they all fit this general pattern.) 1005 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1006 1007 // Make sure that a hot successor doesn't have a globally more 1008 // important predecessor. 1009 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1010 bool BadCFGConflict = false; 1011 1012 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1013 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1014 (BlockFilter && !BlockFilter->count(Pred)) || 1015 BlockToChain[Pred] == &Chain || 1016 // This check is redundant except for look ahead. This function is 1017 // called for lookahead by isProfitableToTailDup when BB hasn't been 1018 // placed yet. 1019 (Pred == BB)) 1020 continue; 1021 // Do backward checking. 1022 // For all cases above, we need a backward checking to filter out edges that 1023 // are not 'strongly' biased. 1024 // BB Pred 1025 // \ / 1026 // Succ 1027 // We select edge BB->Succ if 1028 // freq(BB->Succ) > freq(Succ) * HotProb 1029 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1030 // HotProb 1031 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1032 // Case 1 is covered too, because the first equation reduces to: 1033 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1034 BlockFrequency PredEdgeFreq = 1035 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1036 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1037 BadCFGConflict = true; 1038 break; 1039 } 1040 } 1041 1042 if (BadCFGConflict) { 1043 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1044 << " (prob) (non-cold CFG conflict)\n"); 1045 return true; 1046 } 1047 1048 return false; 1049 } 1050 1051 /// \brief Select the best successor for a block. 1052 /// 1053 /// This looks across all successors of a particular block and attempts to 1054 /// select the "best" one to be the layout successor. It only considers direct 1055 /// successors which also pass the block filter. It will attempt to avoid 1056 /// breaking CFG structure, but cave and break such structures in the case of 1057 /// very hot successor edges. 1058 /// 1059 /// \returns The best successor block found, or null if none are viable, along 1060 /// with a boolean indicating if tail duplication is necessary. 1061 MachineBlockPlacement::BlockAndTailDupResult 1062 MachineBlockPlacement::selectBestSuccessor( 1063 const MachineBasicBlock *BB, const BlockChain &Chain, 1064 const BlockFilterSet *BlockFilter) { 1065 const BranchProbability HotProb(StaticLikelyProb, 100); 1066 1067 BlockAndTailDupResult BestSucc = { nullptr, false }; 1068 auto BestProb = BranchProbability::getZero(); 1069 1070 SmallVector<MachineBasicBlock *, 4> Successors; 1071 auto AdjustedSumProb = 1072 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1073 1074 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1075 1076 // For blocks with CFG violations, we may be able to lay them out anyway with 1077 // tail-duplication. We keep this vector so we can perform the probability 1078 // calculations the minimum number of times. 1079 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1080 DupCandidates; 1081 for (MachineBasicBlock *Succ : Successors) { 1082 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1083 BranchProbability SuccProb = 1084 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1085 1086 // This heuristic is off by default. 1087 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 1088 HotProb)) { 1089 BestSucc.BB = Succ; 1090 return BestSucc; 1091 } 1092 1093 BlockChain &SuccChain = *BlockToChain[Succ]; 1094 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1095 // predecessor that yields lower global cost. 1096 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1097 Chain, BlockFilter)) { 1098 // If tail duplication would make Succ profitable, place it. 1099 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1100 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1101 continue; 1102 } 1103 1104 DEBUG( 1105 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1106 << SuccProb 1107 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1108 << "\n"); 1109 1110 if (BestSucc.BB && BestProb >= SuccProb) { 1111 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1112 continue; 1113 } 1114 1115 DEBUG(dbgs() << " Setting it as best candidate\n"); 1116 BestSucc.BB = Succ; 1117 BestProb = SuccProb; 1118 } 1119 // Handle the tail duplication candidates in order of decreasing probability. 1120 // Stop at the first one that is profitable. Also stop if they are less 1121 // profitable than BestSucc. Position is important because we preserve it and 1122 // prefer first best match. Here we aren't comparing in order, so we capture 1123 // the position instead. 1124 if (DupCandidates.size() != 0) { 1125 auto cmp = 1126 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1127 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1128 return std::get<0>(a) > std::get<0>(b); 1129 }; 1130 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1131 } 1132 for(auto &Tup : DupCandidates) { 1133 BranchProbability DupProb; 1134 MachineBasicBlock *Succ; 1135 std::tie(DupProb, Succ) = Tup; 1136 if (DupProb < BestProb) 1137 break; 1138 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1139 // If tail duplication gives us fallthrough when we otherwise wouldn't 1140 // have it, that is a strict gain. 1141 && (BestSucc.BB == nullptr 1142 || isProfitableToTailDup(BB, Succ, BestProb, Chain, 1143 BlockFilter))) { 1144 DEBUG( 1145 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1146 << DupProb 1147 << " (Tail Duplicate)\n"); 1148 BestSucc.BB = Succ; 1149 BestSucc.ShouldTailDup = true; 1150 break; 1151 } 1152 } 1153 1154 if (BestSucc.BB) 1155 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1156 1157 return BestSucc; 1158 } 1159 1160 /// \brief Select the best block from a worklist. 1161 /// 1162 /// This looks through the provided worklist as a list of candidate basic 1163 /// blocks and select the most profitable one to place. The definition of 1164 /// profitable only really makes sense in the context of a loop. This returns 1165 /// the most frequently visited block in the worklist, which in the case of 1166 /// a loop, is the one most desirable to be physically close to the rest of the 1167 /// loop body in order to improve i-cache behavior. 1168 /// 1169 /// \returns The best block found, or null if none are viable. 1170 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1171 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1172 // Once we need to walk the worklist looking for a candidate, cleanup the 1173 // worklist of already placed entries. 1174 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1175 // some code complexity) into the loop below. 1176 WorkList.erase(remove_if(WorkList, 1177 [&](MachineBasicBlock *BB) { 1178 return BlockToChain.lookup(BB) == &Chain; 1179 }), 1180 WorkList.end()); 1181 1182 if (WorkList.empty()) 1183 return nullptr; 1184 1185 bool IsEHPad = WorkList[0]->isEHPad(); 1186 1187 MachineBasicBlock *BestBlock = nullptr; 1188 BlockFrequency BestFreq; 1189 for (MachineBasicBlock *MBB : WorkList) { 1190 assert(MBB->isEHPad() == IsEHPad); 1191 1192 BlockChain &SuccChain = *BlockToChain[MBB]; 1193 if (&SuccChain == &Chain) 1194 continue; 1195 1196 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 1197 1198 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1199 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1200 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1201 1202 // For ehpad, we layout the least probable first as to avoid jumping back 1203 // from least probable landingpads to more probable ones. 1204 // 1205 // FIXME: Using probability is probably (!) not the best way to achieve 1206 // this. We should probably have a more principled approach to layout 1207 // cleanup code. 1208 // 1209 // The goal is to get: 1210 // 1211 // +--------------------------+ 1212 // | V 1213 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1214 // 1215 // Rather than: 1216 // 1217 // +-------------------------------------+ 1218 // V | 1219 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1220 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1221 continue; 1222 1223 BestBlock = MBB; 1224 BestFreq = CandidateFreq; 1225 } 1226 1227 return BestBlock; 1228 } 1229 1230 /// \brief Retrieve the first unplaced basic block. 1231 /// 1232 /// This routine is called when we are unable to use the CFG to walk through 1233 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1234 /// We walk through the function's blocks in order, starting from the 1235 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1236 /// re-scanning the entire sequence on repeated calls to this routine. 1237 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1238 const BlockChain &PlacedChain, 1239 MachineFunction::iterator &PrevUnplacedBlockIt, 1240 const BlockFilterSet *BlockFilter) { 1241 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1242 ++I) { 1243 if (BlockFilter && !BlockFilter->count(&*I)) 1244 continue; 1245 if (BlockToChain[&*I] != &PlacedChain) { 1246 PrevUnplacedBlockIt = I; 1247 // Now select the head of the chain to which the unplaced block belongs 1248 // as the block to place. This will force the entire chain to be placed, 1249 // and satisfies the requirements of merging chains. 1250 return *BlockToChain[&*I]->begin(); 1251 } 1252 } 1253 return nullptr; 1254 } 1255 1256 void MachineBlockPlacement::fillWorkLists( 1257 const MachineBasicBlock *MBB, 1258 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1259 const BlockFilterSet *BlockFilter = nullptr) { 1260 BlockChain &Chain = *BlockToChain[MBB]; 1261 if (!UpdatedPreds.insert(&Chain).second) 1262 return; 1263 1264 assert(Chain.UnscheduledPredecessors == 0); 1265 for (MachineBasicBlock *ChainBB : Chain) { 1266 assert(BlockToChain[ChainBB] == &Chain); 1267 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1268 if (BlockFilter && !BlockFilter->count(Pred)) 1269 continue; 1270 if (BlockToChain[Pred] == &Chain) 1271 continue; 1272 ++Chain.UnscheduledPredecessors; 1273 } 1274 } 1275 1276 if (Chain.UnscheduledPredecessors != 0) 1277 return; 1278 1279 MachineBasicBlock *BB = *Chain.begin(); 1280 if (BB->isEHPad()) 1281 EHPadWorkList.push_back(BB); 1282 else 1283 BlockWorkList.push_back(BB); 1284 } 1285 1286 void MachineBlockPlacement::buildChain( 1287 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1288 BlockFilterSet *BlockFilter) { 1289 assert(HeadBB && "BB must not be null.\n"); 1290 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1291 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1292 1293 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1294 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1295 MachineBasicBlock *BB = *std::prev(Chain.end()); 1296 for (;;) { 1297 assert(BB && "null block found at end of chain in loop."); 1298 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1299 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1300 1301 1302 // Look for the best viable successor if there is one to place immediately 1303 // after this block. 1304 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1305 MachineBasicBlock* BestSucc = Result.BB; 1306 bool ShouldTailDup = Result.ShouldTailDup; 1307 if (TailDupPlacement) 1308 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1309 1310 // If an immediate successor isn't available, look for the best viable 1311 // block among those we've identified as not violating the loop's CFG at 1312 // this point. This won't be a fallthrough, but it will increase locality. 1313 if (!BestSucc) 1314 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1315 if (!BestSucc) 1316 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1317 1318 if (!BestSucc) { 1319 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1320 if (!BestSucc) 1321 break; 1322 1323 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1324 "layout successor until the CFG reduces\n"); 1325 } 1326 1327 // Placement may have changed tail duplication opportunities. 1328 // Check for that now. 1329 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1330 // If the chosen successor was duplicated into all its predecessors, 1331 // don't bother laying it out, just go round the loop again with BB as 1332 // the chain end. 1333 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1334 BlockFilter, PrevUnplacedBlockIt)) 1335 continue; 1336 } 1337 1338 // Place this block, updating the datastructures to reflect its placement. 1339 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1340 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1341 // we selected a successor that didn't fit naturally into the CFG. 1342 SuccChain.UnscheduledPredecessors = 0; 1343 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1344 << getBlockName(BestSucc) << "\n"); 1345 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1346 Chain.merge(BestSucc, &SuccChain); 1347 BB = *std::prev(Chain.end()); 1348 } 1349 1350 DEBUG(dbgs() << "Finished forming chain for header block " 1351 << getBlockName(*Chain.begin()) << "\n"); 1352 } 1353 1354 /// \brief Find the best loop top block for layout. 1355 /// 1356 /// Look for a block which is strictly better than the loop header for laying 1357 /// out at the top of the loop. This looks for one and only one pattern: 1358 /// a latch block with no conditional exit. This block will cause a conditional 1359 /// jump around it or will be the bottom of the loop if we lay it out in place, 1360 /// but if it it doesn't end up at the bottom of the loop for any reason, 1361 /// rotation alone won't fix it. Because such a block will always result in an 1362 /// unconditional jump (for the backedge) rotating it in front of the loop 1363 /// header is always profitable. 1364 MachineBasicBlock * 1365 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1366 const BlockFilterSet &LoopBlockSet) { 1367 // Placing the latch block before the header may introduce an extra branch 1368 // that skips this block the first time the loop is executed, which we want 1369 // to avoid when optimising for size. 1370 // FIXME: in theory there is a case that does not introduce a new branch, 1371 // i.e. when the layout predecessor does not fallthrough to the loop header. 1372 // In practice this never happens though: there always seems to be a preheader 1373 // that can fallthrough and that is also placed before the header. 1374 if (F->getFunction()->optForSize()) 1375 return L.getHeader(); 1376 1377 // Check that the header hasn't been fused with a preheader block due to 1378 // crazy branches. If it has, we need to start with the header at the top to 1379 // prevent pulling the preheader into the loop body. 1380 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1381 if (!LoopBlockSet.count(*HeaderChain.begin())) 1382 return L.getHeader(); 1383 1384 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1385 << "\n"); 1386 1387 BlockFrequency BestPredFreq; 1388 MachineBasicBlock *BestPred = nullptr; 1389 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1390 if (!LoopBlockSet.count(Pred)) 1391 continue; 1392 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1393 << Pred->succ_size() << " successors, "; 1394 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1395 if (Pred->succ_size() > 1) 1396 continue; 1397 1398 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1399 if (!BestPred || PredFreq > BestPredFreq || 1400 (!(PredFreq < BestPredFreq) && 1401 Pred->isLayoutSuccessor(L.getHeader()))) { 1402 BestPred = Pred; 1403 BestPredFreq = PredFreq; 1404 } 1405 } 1406 1407 // If no direct predecessor is fine, just use the loop header. 1408 if (!BestPred) { 1409 DEBUG(dbgs() << " final top unchanged\n"); 1410 return L.getHeader(); 1411 } 1412 1413 // Walk backwards through any straight line of predecessors. 1414 while (BestPred->pred_size() == 1 && 1415 (*BestPred->pred_begin())->succ_size() == 1 && 1416 *BestPred->pred_begin() != L.getHeader()) 1417 BestPred = *BestPred->pred_begin(); 1418 1419 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1420 return BestPred; 1421 } 1422 1423 /// \brief Find the best loop exiting block for layout. 1424 /// 1425 /// This routine implements the logic to analyze the loop looking for the best 1426 /// block to layout at the top of the loop. Typically this is done to maximize 1427 /// fallthrough opportunities. 1428 MachineBasicBlock * 1429 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1430 const BlockFilterSet &LoopBlockSet) { 1431 // We don't want to layout the loop linearly in all cases. If the loop header 1432 // is just a normal basic block in the loop, we want to look for what block 1433 // within the loop is the best one to layout at the top. However, if the loop 1434 // header has be pre-merged into a chain due to predecessors not having 1435 // analyzable branches, *and* the predecessor it is merged with is *not* part 1436 // of the loop, rotating the header into the middle of the loop will create 1437 // a non-contiguous range of blocks which is Very Bad. So start with the 1438 // header and only rotate if safe. 1439 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1440 if (!LoopBlockSet.count(*HeaderChain.begin())) 1441 return nullptr; 1442 1443 BlockFrequency BestExitEdgeFreq; 1444 unsigned BestExitLoopDepth = 0; 1445 MachineBasicBlock *ExitingBB = nullptr; 1446 // If there are exits to outer loops, loop rotation can severely limit 1447 // fallthrough opportunities unless it selects such an exit. Keep a set of 1448 // blocks where rotating to exit with that block will reach an outer loop. 1449 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1450 1451 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1452 << "\n"); 1453 for (MachineBasicBlock *MBB : L.getBlocks()) { 1454 BlockChain &Chain = *BlockToChain[MBB]; 1455 // Ensure that this block is at the end of a chain; otherwise it could be 1456 // mid-way through an inner loop or a successor of an unanalyzable branch. 1457 if (MBB != *std::prev(Chain.end())) 1458 continue; 1459 1460 // Now walk the successors. We need to establish whether this has a viable 1461 // exiting successor and whether it has a viable non-exiting successor. 1462 // We store the old exiting state and restore it if a viable looping 1463 // successor isn't found. 1464 MachineBasicBlock *OldExitingBB = ExitingBB; 1465 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1466 bool HasLoopingSucc = false; 1467 for (MachineBasicBlock *Succ : MBB->successors()) { 1468 if (Succ->isEHPad()) 1469 continue; 1470 if (Succ == MBB) 1471 continue; 1472 BlockChain &SuccChain = *BlockToChain[Succ]; 1473 // Don't split chains, either this chain or the successor's chain. 1474 if (&Chain == &SuccChain) { 1475 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1476 << getBlockName(Succ) << " (chain conflict)\n"); 1477 continue; 1478 } 1479 1480 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1481 if (LoopBlockSet.count(Succ)) { 1482 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1483 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1484 HasLoopingSucc = true; 1485 continue; 1486 } 1487 1488 unsigned SuccLoopDepth = 0; 1489 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1490 SuccLoopDepth = ExitLoop->getLoopDepth(); 1491 if (ExitLoop->contains(&L)) 1492 BlocksExitingToOuterLoop.insert(MBB); 1493 } 1494 1495 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1496 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1497 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1498 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1499 // Note that we bias this toward an existing layout successor to retain 1500 // incoming order in the absence of better information. The exit must have 1501 // a frequency higher than the current exit before we consider breaking 1502 // the layout. 1503 BranchProbability Bias(100 - ExitBlockBias, 100); 1504 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1505 ExitEdgeFreq > BestExitEdgeFreq || 1506 (MBB->isLayoutSuccessor(Succ) && 1507 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1508 BestExitEdgeFreq = ExitEdgeFreq; 1509 ExitingBB = MBB; 1510 } 1511 } 1512 1513 if (!HasLoopingSucc) { 1514 // Restore the old exiting state, no viable looping successor was found. 1515 ExitingBB = OldExitingBB; 1516 BestExitEdgeFreq = OldBestExitEdgeFreq; 1517 } 1518 } 1519 // Without a candidate exiting block or with only a single block in the 1520 // loop, just use the loop header to layout the loop. 1521 if (!ExitingBB) { 1522 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1523 return nullptr; 1524 } 1525 if (L.getNumBlocks() == 1) { 1526 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1527 return nullptr; 1528 } 1529 1530 // Also, if we have exit blocks which lead to outer loops but didn't select 1531 // one of them as the exiting block we are rotating toward, disable loop 1532 // rotation altogether. 1533 if (!BlocksExitingToOuterLoop.empty() && 1534 !BlocksExitingToOuterLoop.count(ExitingBB)) 1535 return nullptr; 1536 1537 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1538 return ExitingBB; 1539 } 1540 1541 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1542 /// 1543 /// Once we have built a chain, try to rotate it to line up the hot exit block 1544 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1545 /// branches. For example, if the loop has fallthrough into its header and out 1546 /// of its bottom already, don't rotate it. 1547 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1548 const MachineBasicBlock *ExitingBB, 1549 const BlockFilterSet &LoopBlockSet) { 1550 if (!ExitingBB) 1551 return; 1552 1553 MachineBasicBlock *Top = *LoopChain.begin(); 1554 bool ViableTopFallthrough = false; 1555 for (MachineBasicBlock *Pred : Top->predecessors()) { 1556 BlockChain *PredChain = BlockToChain[Pred]; 1557 if (!LoopBlockSet.count(Pred) && 1558 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1559 ViableTopFallthrough = true; 1560 break; 1561 } 1562 } 1563 1564 // If the header has viable fallthrough, check whether the current loop 1565 // bottom is a viable exiting block. If so, bail out as rotating will 1566 // introduce an unnecessary branch. 1567 if (ViableTopFallthrough) { 1568 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1569 for (MachineBasicBlock *Succ : Bottom->successors()) { 1570 BlockChain *SuccChain = BlockToChain[Succ]; 1571 if (!LoopBlockSet.count(Succ) && 1572 (!SuccChain || Succ == *SuccChain->begin())) 1573 return; 1574 } 1575 } 1576 1577 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1578 if (ExitIt == LoopChain.end()) 1579 return; 1580 1581 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1582 } 1583 1584 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1585 /// 1586 /// With profile data, we can determine the cost in terms of missed fall through 1587 /// opportunities when rotating a loop chain and select the best rotation. 1588 /// Basically, there are three kinds of cost to consider for each rotation: 1589 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1590 /// the loop to the loop header. 1591 /// 2. The possibly missed fall through edges (if they exist) from the loop 1592 /// exits to BB out of the loop. 1593 /// 3. The missed fall through edge (if it exists) from the last BB to the 1594 /// first BB in the loop chain. 1595 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1596 /// We select the best rotation with the smallest cost. 1597 void MachineBlockPlacement::rotateLoopWithProfile( 1598 BlockChain &LoopChain, const MachineLoop &L, 1599 const BlockFilterSet &LoopBlockSet) { 1600 auto HeaderBB = L.getHeader(); 1601 auto HeaderIter = find(LoopChain, HeaderBB); 1602 auto RotationPos = LoopChain.end(); 1603 1604 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1605 1606 // A utility lambda that scales up a block frequency by dividing it by a 1607 // branch probability which is the reciprocal of the scale. 1608 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1609 unsigned Scale) -> BlockFrequency { 1610 if (Scale == 0) 1611 return 0; 1612 // Use operator / between BlockFrequency and BranchProbability to implement 1613 // saturating multiplication. 1614 return Freq / BranchProbability(1, Scale); 1615 }; 1616 1617 // Compute the cost of the missed fall-through edge to the loop header if the 1618 // chain head is not the loop header. As we only consider natural loops with 1619 // single header, this computation can be done only once. 1620 BlockFrequency HeaderFallThroughCost(0); 1621 for (auto *Pred : HeaderBB->predecessors()) { 1622 BlockChain *PredChain = BlockToChain[Pred]; 1623 if (!LoopBlockSet.count(Pred) && 1624 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1625 auto EdgeFreq = 1626 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1627 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1628 // If the predecessor has only an unconditional jump to the header, we 1629 // need to consider the cost of this jump. 1630 if (Pred->succ_size() == 1) 1631 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1632 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1633 } 1634 } 1635 1636 // Here we collect all exit blocks in the loop, and for each exit we find out 1637 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1638 // as the sum of frequencies of exit edges we collect here, excluding the exit 1639 // edge from the tail of the loop chain. 1640 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1641 for (auto BB : LoopChain) { 1642 auto LargestExitEdgeProb = BranchProbability::getZero(); 1643 for (auto *Succ : BB->successors()) { 1644 BlockChain *SuccChain = BlockToChain[Succ]; 1645 if (!LoopBlockSet.count(Succ) && 1646 (!SuccChain || Succ == *SuccChain->begin())) { 1647 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1648 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1649 } 1650 } 1651 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1652 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1653 ExitsWithFreq.emplace_back(BB, ExitFreq); 1654 } 1655 } 1656 1657 // In this loop we iterate every block in the loop chain and calculate the 1658 // cost assuming the block is the head of the loop chain. When the loop ends, 1659 // we should have found the best candidate as the loop chain's head. 1660 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1661 EndIter = LoopChain.end(); 1662 Iter != EndIter; Iter++, TailIter++) { 1663 // TailIter is used to track the tail of the loop chain if the block we are 1664 // checking (pointed by Iter) is the head of the chain. 1665 if (TailIter == LoopChain.end()) 1666 TailIter = LoopChain.begin(); 1667 1668 auto TailBB = *TailIter; 1669 1670 // Calculate the cost by putting this BB to the top. 1671 BlockFrequency Cost = 0; 1672 1673 // If the current BB is the loop header, we need to take into account the 1674 // cost of the missed fall through edge from outside of the loop to the 1675 // header. 1676 if (Iter != HeaderIter) 1677 Cost += HeaderFallThroughCost; 1678 1679 // Collect the loop exit cost by summing up frequencies of all exit edges 1680 // except the one from the chain tail. 1681 for (auto &ExitWithFreq : ExitsWithFreq) 1682 if (TailBB != ExitWithFreq.first) 1683 Cost += ExitWithFreq.second; 1684 1685 // The cost of breaking the once fall-through edge from the tail to the top 1686 // of the loop chain. Here we need to consider three cases: 1687 // 1. If the tail node has only one successor, then we will get an 1688 // additional jmp instruction. So the cost here is (MisfetchCost + 1689 // JumpInstCost) * tail node frequency. 1690 // 2. If the tail node has two successors, then we may still get an 1691 // additional jmp instruction if the layout successor after the loop 1692 // chain is not its CFG successor. Note that the more frequently executed 1693 // jmp instruction will be put ahead of the other one. Assume the 1694 // frequency of those two branches are x and y, where x is the frequency 1695 // of the edge to the chain head, then the cost will be 1696 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1697 // 3. If the tail node has more than two successors (this rarely happens), 1698 // we won't consider any additional cost. 1699 if (TailBB->isSuccessor(*Iter)) { 1700 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1701 if (TailBB->succ_size() == 1) 1702 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1703 MisfetchCost + JumpInstCost); 1704 else if (TailBB->succ_size() == 2) { 1705 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1706 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1707 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1708 ? TailBBFreq * TailToHeadProb.getCompl() 1709 : TailToHeadFreq; 1710 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1711 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1712 } 1713 } 1714 1715 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1716 << " to the top: " << Cost.getFrequency() << "\n"); 1717 1718 if (Cost < SmallestRotationCost) { 1719 SmallestRotationCost = Cost; 1720 RotationPos = Iter; 1721 } 1722 } 1723 1724 if (RotationPos != LoopChain.end()) { 1725 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1726 << " to the top\n"); 1727 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1728 } 1729 } 1730 1731 /// \brief Collect blocks in the given loop that are to be placed. 1732 /// 1733 /// When profile data is available, exclude cold blocks from the returned set; 1734 /// otherwise, collect all blocks in the loop. 1735 MachineBlockPlacement::BlockFilterSet 1736 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 1737 BlockFilterSet LoopBlockSet; 1738 1739 // Filter cold blocks off from LoopBlockSet when profile data is available. 1740 // Collect the sum of frequencies of incoming edges to the loop header from 1741 // outside. If we treat the loop as a super block, this is the frequency of 1742 // the loop. Then for each block in the loop, we calculate the ratio between 1743 // its frequency and the frequency of the loop block. When it is too small, 1744 // don't add it to the loop chain. If there are outer loops, then this block 1745 // will be merged into the first outer loop chain for which this block is not 1746 // cold anymore. This needs precise profile data and we only do this when 1747 // profile data is available. 1748 if (F->getFunction()->getEntryCount()) { 1749 BlockFrequency LoopFreq(0); 1750 for (auto LoopPred : L.getHeader()->predecessors()) 1751 if (!L.contains(LoopPred)) 1752 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1753 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1754 1755 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1756 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1757 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1758 continue; 1759 LoopBlockSet.insert(LoopBB); 1760 } 1761 } else 1762 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1763 1764 return LoopBlockSet; 1765 } 1766 1767 /// \brief Forms basic block chains from the natural loop structures. 1768 /// 1769 /// These chains are designed to preserve the existing *structure* of the code 1770 /// as much as possible. We can then stitch the chains together in a way which 1771 /// both preserves the topological structure and minimizes taken conditional 1772 /// branches. 1773 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 1774 // First recurse through any nested loops, building chains for those inner 1775 // loops. 1776 for (const MachineLoop *InnerLoop : L) 1777 buildLoopChains(*InnerLoop); 1778 1779 assert(BlockWorkList.empty()); 1780 assert(EHPadWorkList.empty()); 1781 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1782 1783 // Check if we have profile data for this function. If yes, we will rotate 1784 // this loop by modeling costs more precisely which requires the profile data 1785 // for better layout. 1786 bool RotateLoopWithProfile = 1787 ForcePreciseRotationCost || 1788 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1789 1790 // First check to see if there is an obviously preferable top block for the 1791 // loop. This will default to the header, but may end up as one of the 1792 // predecessors to the header if there is one which will result in strictly 1793 // fewer branches in the loop body. 1794 // When we use profile data to rotate the loop, this is unnecessary. 1795 MachineBasicBlock *LoopTop = 1796 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1797 1798 // If we selected just the header for the loop top, look for a potentially 1799 // profitable exit block in the event that rotating the loop can eliminate 1800 // branches by placing an exit edge at the bottom. 1801 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1802 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 1803 1804 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1805 1806 // FIXME: This is a really lame way of walking the chains in the loop: we 1807 // walk the blocks, and use a set to prevent visiting a particular chain 1808 // twice. 1809 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1810 assert(LoopChain.UnscheduledPredecessors == 0); 1811 UpdatedPreds.insert(&LoopChain); 1812 1813 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 1814 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 1815 1816 buildChain(LoopTop, LoopChain, &LoopBlockSet); 1817 1818 if (RotateLoopWithProfile) 1819 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1820 else 1821 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 1822 1823 DEBUG({ 1824 // Crash at the end so we get all of the debugging output first. 1825 bool BadLoop = false; 1826 if (LoopChain.UnscheduledPredecessors) { 1827 BadLoop = true; 1828 dbgs() << "Loop chain contains a block without its preds placed!\n" 1829 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1830 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1831 } 1832 for (MachineBasicBlock *ChainBB : LoopChain) { 1833 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1834 if (!LoopBlockSet.remove(ChainBB)) { 1835 // We don't mark the loop as bad here because there are real situations 1836 // where this can occur. For example, with an unanalyzable fallthrough 1837 // from a loop block to a non-loop block or vice versa. 1838 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1839 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1840 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1841 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1842 } 1843 } 1844 1845 if (!LoopBlockSet.empty()) { 1846 BadLoop = true; 1847 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 1848 dbgs() << "Loop contains blocks never placed into a chain!\n" 1849 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1850 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1851 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1852 } 1853 assert(!BadLoop && "Detected problems with the placement of this loop."); 1854 }); 1855 1856 BlockWorkList.clear(); 1857 EHPadWorkList.clear(); 1858 } 1859 1860 /// When OutlineOpitonalBranches is on, this method collects BBs that 1861 /// dominates all terminator blocks of the function \p F. 1862 void MachineBlockPlacement::collectMustExecuteBBs() { 1863 if (OutlineOptionalBranches) { 1864 // Find the nearest common dominator of all of F's terminators. 1865 MachineBasicBlock *Terminator = nullptr; 1866 for (MachineBasicBlock &MBB : *F) { 1867 if (MBB.succ_size() == 0) { 1868 if (Terminator == nullptr) 1869 Terminator = &MBB; 1870 else 1871 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1872 } 1873 } 1874 1875 // MBBs dominating this common dominator are unavoidable. 1876 UnavoidableBlocks.clear(); 1877 for (MachineBasicBlock &MBB : *F) { 1878 if (MDT->dominates(&MBB, Terminator)) { 1879 UnavoidableBlocks.insert(&MBB); 1880 } 1881 } 1882 } 1883 } 1884 1885 void MachineBlockPlacement::buildCFGChains() { 1886 // Ensure that every BB in the function has an associated chain to simplify 1887 // the assumptions of the remaining algorithm. 1888 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1889 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1890 ++FI) { 1891 MachineBasicBlock *BB = &*FI; 1892 BlockChain *Chain = 1893 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1894 // Also, merge any blocks which we cannot reason about and must preserve 1895 // the exact fallthrough behavior for. 1896 for (;;) { 1897 Cond.clear(); 1898 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1899 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1900 break; 1901 1902 MachineFunction::iterator NextFI = std::next(FI); 1903 MachineBasicBlock *NextBB = &*NextFI; 1904 // Ensure that the layout successor is a viable block, as we know that 1905 // fallthrough is a possibility. 1906 assert(NextFI != FE && "Can't fallthrough past the last block."); 1907 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1908 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1909 << "\n"); 1910 Chain->merge(NextBB, nullptr); 1911 #ifndef NDEBUG 1912 BlocksWithUnanalyzableExits.insert(&*BB); 1913 #endif 1914 FI = NextFI; 1915 BB = NextBB; 1916 } 1917 } 1918 1919 // Turned on with OutlineOptionalBranches option 1920 collectMustExecuteBBs(); 1921 1922 // Build any loop-based chains. 1923 PreferredLoopExit = nullptr; 1924 for (MachineLoop *L : *MLI) 1925 buildLoopChains(*L); 1926 1927 assert(BlockWorkList.empty()); 1928 assert(EHPadWorkList.empty()); 1929 1930 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1931 for (MachineBasicBlock &MBB : *F) 1932 fillWorkLists(&MBB, UpdatedPreds); 1933 1934 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1935 buildChain(&F->front(), FunctionChain); 1936 1937 #ifndef NDEBUG 1938 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1939 #endif 1940 DEBUG({ 1941 // Crash at the end so we get all of the debugging output first. 1942 bool BadFunc = false; 1943 FunctionBlockSetType FunctionBlockSet; 1944 for (MachineBasicBlock &MBB : *F) 1945 FunctionBlockSet.insert(&MBB); 1946 1947 for (MachineBasicBlock *ChainBB : FunctionChain) 1948 if (!FunctionBlockSet.erase(ChainBB)) { 1949 BadFunc = true; 1950 dbgs() << "Function chain contains a block not in the function!\n" 1951 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1952 } 1953 1954 if (!FunctionBlockSet.empty()) { 1955 BadFunc = true; 1956 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1957 dbgs() << "Function contains blocks never placed into a chain!\n" 1958 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1959 } 1960 assert(!BadFunc && "Detected problems with the block placement."); 1961 }); 1962 1963 // Splice the blocks into place. 1964 MachineFunction::iterator InsertPos = F->begin(); 1965 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 1966 for (MachineBasicBlock *ChainBB : FunctionChain) { 1967 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1968 : " ... ") 1969 << getBlockName(ChainBB) << "\n"); 1970 if (InsertPos != MachineFunction::iterator(ChainBB)) 1971 F->splice(InsertPos, ChainBB); 1972 else 1973 ++InsertPos; 1974 1975 // Update the terminator of the previous block. 1976 if (ChainBB == *FunctionChain.begin()) 1977 continue; 1978 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1979 1980 // FIXME: It would be awesome of updateTerminator would just return rather 1981 // than assert when the branch cannot be analyzed in order to remove this 1982 // boiler plate. 1983 Cond.clear(); 1984 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1985 1986 #ifndef NDEBUG 1987 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 1988 // Given the exact block placement we chose, we may actually not _need_ to 1989 // be able to edit PrevBB's terminator sequence, but not being _able_ to 1990 // do that at this point is a bug. 1991 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 1992 !PrevBB->canFallThrough()) && 1993 "Unexpected block with un-analyzable fallthrough!"); 1994 Cond.clear(); 1995 TBB = FBB = nullptr; 1996 } 1997 #endif 1998 1999 // The "PrevBB" is not yet updated to reflect current code layout, so, 2000 // o. it may fall-through to a block without explicit "goto" instruction 2001 // before layout, and no longer fall-through it after layout; or 2002 // o. just opposite. 2003 // 2004 // analyzeBranch() may return erroneous value for FBB when these two 2005 // situations take place. For the first scenario FBB is mistakenly set NULL; 2006 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2007 // mistakenly pointing to "*BI". 2008 // Thus, if the future change needs to use FBB before the layout is set, it 2009 // has to correct FBB first by using the code similar to the following: 2010 // 2011 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2012 // PrevBB->updateTerminator(); 2013 // Cond.clear(); 2014 // TBB = FBB = nullptr; 2015 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2016 // // FIXME: This should never take place. 2017 // TBB = FBB = nullptr; 2018 // } 2019 // } 2020 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2021 PrevBB->updateTerminator(); 2022 } 2023 2024 // Fixup the last block. 2025 Cond.clear(); 2026 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2027 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2028 F->back().updateTerminator(); 2029 2030 BlockWorkList.clear(); 2031 EHPadWorkList.clear(); 2032 } 2033 2034 void MachineBlockPlacement::optimizeBranches() { 2035 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2036 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2037 2038 // Now that all the basic blocks in the chain have the proper layout, 2039 // make a final call to AnalyzeBranch with AllowModify set. 2040 // Indeed, the target may be able to optimize the branches in a way we 2041 // cannot because all branches may not be analyzable. 2042 // E.g., the target may be able to remove an unconditional branch to 2043 // a fallthrough when it occurs after predicated terminators. 2044 for (MachineBasicBlock *ChainBB : FunctionChain) { 2045 Cond.clear(); 2046 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2047 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2048 // If PrevBB has a two-way branch, try to re-order the branches 2049 // such that we branch to the successor with higher probability first. 2050 if (TBB && !Cond.empty() && FBB && 2051 MBPI->getEdgeProbability(ChainBB, FBB) > 2052 MBPI->getEdgeProbability(ChainBB, TBB) && 2053 !TII->reverseBranchCondition(Cond)) { 2054 DEBUG(dbgs() << "Reverse order of the two branches: " 2055 << getBlockName(ChainBB) << "\n"); 2056 DEBUG(dbgs() << " Edge probability: " 2057 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2058 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2059 DebugLoc dl; // FIXME: this is nowhere 2060 TII->removeBranch(*ChainBB); 2061 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2062 ChainBB->updateTerminator(); 2063 } 2064 } 2065 } 2066 } 2067 2068 void MachineBlockPlacement::alignBlocks() { 2069 // Walk through the backedges of the function now that we have fully laid out 2070 // the basic blocks and align the destination of each backedge. We don't rely 2071 // exclusively on the loop info here so that we can align backedges in 2072 // unnatural CFGs and backedges that were introduced purely because of the 2073 // loop rotations done during this layout pass. 2074 if (F->getFunction()->optForSize()) 2075 return; 2076 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2077 if (FunctionChain.begin() == FunctionChain.end()) 2078 return; // Empty chain. 2079 2080 const BranchProbability ColdProb(1, 5); // 20% 2081 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2082 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2083 for (MachineBasicBlock *ChainBB : FunctionChain) { 2084 if (ChainBB == *FunctionChain.begin()) 2085 continue; 2086 2087 // Don't align non-looping basic blocks. These are unlikely to execute 2088 // enough times to matter in practice. Note that we'll still handle 2089 // unnatural CFGs inside of a natural outer loop (the common case) and 2090 // rotated loops. 2091 MachineLoop *L = MLI->getLoopFor(ChainBB); 2092 if (!L) 2093 continue; 2094 2095 unsigned Align = TLI->getPrefLoopAlignment(L); 2096 if (!Align) 2097 continue; // Don't care about loop alignment. 2098 2099 // If the block is cold relative to the function entry don't waste space 2100 // aligning it. 2101 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2102 if (Freq < WeightedEntryFreq) 2103 continue; 2104 2105 // If the block is cold relative to its loop header, don't align it 2106 // regardless of what edges into the block exist. 2107 MachineBasicBlock *LoopHeader = L->getHeader(); 2108 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2109 if (Freq < (LoopHeaderFreq * ColdProb)) 2110 continue; 2111 2112 // Check for the existence of a non-layout predecessor which would benefit 2113 // from aligning this block. 2114 MachineBasicBlock *LayoutPred = 2115 &*std::prev(MachineFunction::iterator(ChainBB)); 2116 2117 // Force alignment if all the predecessors are jumps. We already checked 2118 // that the block isn't cold above. 2119 if (!LayoutPred->isSuccessor(ChainBB)) { 2120 ChainBB->setAlignment(Align); 2121 continue; 2122 } 2123 2124 // Align this block if the layout predecessor's edge into this block is 2125 // cold relative to the block. When this is true, other predecessors make up 2126 // all of the hot entries into the block and thus alignment is likely to be 2127 // important. 2128 BranchProbability LayoutProb = 2129 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2130 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2131 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2132 ChainBB->setAlignment(Align); 2133 } 2134 } 2135 2136 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2137 /// it was duplicated into its chain predecessor and removed. 2138 /// \p BB - Basic block that may be duplicated. 2139 /// 2140 /// \p LPred - Chosen layout predecessor of \p BB. 2141 /// Updated to be the chain end if LPred is removed. 2142 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2143 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2144 /// Used to identify which blocks to update predecessor 2145 /// counts. 2146 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2147 /// chosen in the given order due to unnatural CFG 2148 /// only needed if \p BB is removed and 2149 /// \p PrevUnplacedBlockIt pointed to \p BB. 2150 /// @return true if \p BB was removed. 2151 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2152 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2153 const MachineBasicBlock *LoopHeaderBB, 2154 BlockChain &Chain, BlockFilterSet *BlockFilter, 2155 MachineFunction::iterator &PrevUnplacedBlockIt) { 2156 bool Removed, DuplicatedToLPred; 2157 bool DuplicatedToOriginalLPred; 2158 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2159 PrevUnplacedBlockIt, 2160 DuplicatedToLPred); 2161 if (!Removed) 2162 return false; 2163 DuplicatedToOriginalLPred = DuplicatedToLPred; 2164 // Iteratively try to duplicate again. It can happen that a block that is 2165 // duplicated into is still small enough to be duplicated again. 2166 // No need to call markBlockSuccessors in this case, as the blocks being 2167 // duplicated from here on are already scheduled. 2168 // Note that DuplicatedToLPred always implies Removed. 2169 while (DuplicatedToLPred) { 2170 assert (Removed && "Block must have been removed to be duplicated into its " 2171 "layout predecessor."); 2172 MachineBasicBlock *DupBB, *DupPred; 2173 // The removal callback causes Chain.end() to be updated when a block is 2174 // removed. On the first pass through the loop, the chain end should be the 2175 // same as it was on function entry. On subsequent passes, because we are 2176 // duplicating the block at the end of the chain, if it is removed the 2177 // chain will have shrunk by one block. 2178 BlockChain::iterator ChainEnd = Chain.end(); 2179 DupBB = *(--ChainEnd); 2180 // Now try to duplicate again. 2181 if (ChainEnd == Chain.begin()) 2182 break; 2183 DupPred = *std::prev(ChainEnd); 2184 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2185 PrevUnplacedBlockIt, 2186 DuplicatedToLPred); 2187 } 2188 // If BB was duplicated into LPred, it is now scheduled. But because it was 2189 // removed, markChainSuccessors won't be called for its chain. Instead we 2190 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2191 // at the end because repeating the tail duplication can increase the number 2192 // of unscheduled predecessors. 2193 LPred = *std::prev(Chain.end()); 2194 if (DuplicatedToOriginalLPred) 2195 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2196 return true; 2197 } 2198 2199 /// Tail duplicate \p BB into (some) predecessors if profitable. 2200 /// \p BB - Basic block that may be duplicated 2201 /// \p LPred - Chosen layout predecessor of \p BB 2202 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2203 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2204 /// Used to identify which blocks to update predecessor 2205 /// counts. 2206 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2207 /// chosen in the given order due to unnatural CFG 2208 /// only needed if \p BB is removed and 2209 /// \p PrevUnplacedBlockIt pointed to \p BB. 2210 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2211 /// only be true if the block was removed. 2212 /// \return - True if the block was duplicated into all preds and removed. 2213 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2214 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2215 BlockChain &Chain, BlockFilterSet *BlockFilter, 2216 MachineFunction::iterator &PrevUnplacedBlockIt, 2217 bool &DuplicatedToLPred) { 2218 2219 DuplicatedToLPred = false; 2220 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2221 << BB->getNumber() << "\n"); 2222 2223 if (!shouldTailDuplicate(BB)) 2224 return false; 2225 // This has to be a callback because none of it can be done after 2226 // BB is deleted. 2227 bool Removed = false; 2228 auto RemovalCallback = 2229 [&](MachineBasicBlock *RemBB) { 2230 // Signal to outer function 2231 Removed = true; 2232 2233 // Conservative default. 2234 bool InWorkList = true; 2235 // Remove from the Chain and Chain Map 2236 if (BlockToChain.count(RemBB)) { 2237 BlockChain *Chain = BlockToChain[RemBB]; 2238 InWorkList = Chain->UnscheduledPredecessors == 0; 2239 Chain->remove(RemBB); 2240 BlockToChain.erase(RemBB); 2241 } 2242 2243 // Handle the unplaced block iterator 2244 if (&(*PrevUnplacedBlockIt) == RemBB) { 2245 PrevUnplacedBlockIt++; 2246 } 2247 2248 // Handle the Work Lists 2249 if (InWorkList) { 2250 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2251 if (RemBB->isEHPad()) 2252 RemoveList = EHPadWorkList; 2253 RemoveList.erase( 2254 remove_if(RemoveList, 2255 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2256 RemoveList.end()); 2257 } 2258 2259 // Handle the filter set 2260 if (BlockFilter) { 2261 BlockFilter->remove(RemBB); 2262 } 2263 2264 // Remove the block from loop info. 2265 MLI->removeBlock(RemBB); 2266 if (RemBB == PreferredLoopExit) 2267 PreferredLoopExit = nullptr; 2268 2269 DEBUG(dbgs() << "TailDuplicator deleted block: " 2270 << getBlockName(RemBB) << "\n"); 2271 }; 2272 auto RemovalCallbackRef = 2273 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2274 2275 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2276 bool IsSimple = TailDup.isSimpleBB(BB); 2277 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2278 &DuplicatedPreds, &RemovalCallbackRef); 2279 2280 // Update UnscheduledPredecessors to reflect tail-duplication. 2281 DuplicatedToLPred = false; 2282 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2283 // We're only looking for unscheduled predecessors that match the filter. 2284 BlockChain* PredChain = BlockToChain[Pred]; 2285 if (Pred == LPred) 2286 DuplicatedToLPred = true; 2287 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2288 || PredChain == &Chain) 2289 continue; 2290 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2291 if (BlockFilter && !BlockFilter->count(NewSucc)) 2292 continue; 2293 BlockChain *NewChain = BlockToChain[NewSucc]; 2294 if (NewChain != &Chain && NewChain != PredChain) 2295 NewChain->UnscheduledPredecessors++; 2296 } 2297 } 2298 return Removed; 2299 } 2300 2301 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2302 if (skipFunction(*MF.getFunction())) 2303 return false; 2304 2305 // Check for single-block functions and skip them. 2306 if (std::next(MF.begin()) == MF.end()) 2307 return false; 2308 2309 F = &MF; 2310 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2311 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2312 getAnalysis<MachineBlockFrequencyInfo>()); 2313 MLI = &getAnalysis<MachineLoopInfo>(); 2314 TII = MF.getSubtarget().getInstrInfo(); 2315 TLI = MF.getSubtarget().getTargetLowering(); 2316 MDT = &getAnalysis<MachineDominatorTree>(); 2317 MPDT = nullptr; 2318 2319 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2320 // there are no MachineLoops. 2321 PreferredLoopExit = nullptr; 2322 2323 if (TailDupPlacement) { 2324 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2325 unsigned TailDupSize = TailDupPlacementThreshold; 2326 if (MF.getFunction()->optForSize()) 2327 TailDupSize = 1; 2328 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2329 } 2330 2331 assert(BlockToChain.empty()); 2332 2333 buildCFGChains(); 2334 2335 // Changing the layout can create new tail merging opportunities. 2336 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2337 // TailMerge can create jump into if branches that make CFG irreducible for 2338 // HW that requires structured CFG. 2339 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2340 PassConfig->getEnableTailMerge() && 2341 BranchFoldPlacement; 2342 // No tail merging opportunities if the block number is less than four. 2343 if (MF.size() > 3 && EnableTailMerge) { 2344 unsigned TailMergeSize = TailDupPlacementThreshold + 1; 2345 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2346 *MBPI, TailMergeSize); 2347 2348 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2349 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2350 /*AfterBlockPlacement=*/true)) { 2351 // Redo the layout if tail merging creates/removes/moves blocks. 2352 BlockToChain.clear(); 2353 // Must redo the dominator tree if blocks were changed. 2354 MDT->runOnMachineFunction(MF); 2355 if (MPDT) 2356 MPDT->runOnMachineFunction(MF); 2357 ChainAllocator.DestroyAll(); 2358 buildCFGChains(); 2359 } 2360 } 2361 2362 optimizeBranches(); 2363 alignBlocks(); 2364 2365 BlockToChain.clear(); 2366 ChainAllocator.DestroyAll(); 2367 2368 if (AlignAllBlock) 2369 // Align all of the blocks in the function to a specific alignment. 2370 for (MachineBasicBlock &MBB : MF) 2371 MBB.setAlignment(AlignAllBlock); 2372 else if (AlignAllNonFallThruBlocks) { 2373 // Align all of the blocks that have no fall-through predecessors to a 2374 // specific alignment. 2375 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2376 auto LayoutPred = std::prev(MBI); 2377 if (!LayoutPred->isSuccessor(&*MBI)) 2378 MBI->setAlignment(AlignAllNonFallThruBlocks); 2379 } 2380 } 2381 if (ViewBlockLayoutWithBFI != GVDT_None && 2382 (ViewBlockFreqFuncName.empty() || 2383 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2384 MBFI->view(false); 2385 } 2386 2387 2388 // We always return true as we have no way to track whether the final order 2389 // differs from the original order. 2390 return true; 2391 } 2392 2393 namespace { 2394 /// \brief A pass to compute block placement statistics. 2395 /// 2396 /// A separate pass to compute interesting statistics for evaluating block 2397 /// placement. This is separate from the actual placement pass so that they can 2398 /// be computed in the absence of any placement transformations or when using 2399 /// alternative placement strategies. 2400 class MachineBlockPlacementStats : public MachineFunctionPass { 2401 /// \brief A handle to the branch probability pass. 2402 const MachineBranchProbabilityInfo *MBPI; 2403 2404 /// \brief A handle to the function-wide block frequency pass. 2405 const MachineBlockFrequencyInfo *MBFI; 2406 2407 public: 2408 static char ID; // Pass identification, replacement for typeid 2409 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2410 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2411 } 2412 2413 bool runOnMachineFunction(MachineFunction &F) override; 2414 2415 void getAnalysisUsage(AnalysisUsage &AU) const override { 2416 AU.addRequired<MachineBranchProbabilityInfo>(); 2417 AU.addRequired<MachineBlockFrequencyInfo>(); 2418 AU.setPreservesAll(); 2419 MachineFunctionPass::getAnalysisUsage(AU); 2420 } 2421 }; 2422 } 2423 2424 char MachineBlockPlacementStats::ID = 0; 2425 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2426 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2427 "Basic Block Placement Stats", false, false) 2428 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2429 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2430 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2431 "Basic Block Placement Stats", false, false) 2432 2433 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2434 // Check for single-block functions and skip them. 2435 if (std::next(F.begin()) == F.end()) 2436 return false; 2437 2438 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2439 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2440 2441 for (MachineBasicBlock &MBB : F) { 2442 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2443 Statistic &NumBranches = 2444 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2445 Statistic &BranchTakenFreq = 2446 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2447 for (MachineBasicBlock *Succ : MBB.successors()) { 2448 // Skip if this successor is a fallthrough. 2449 if (MBB.isLayoutSuccessor(Succ)) 2450 continue; 2451 2452 BlockFrequency EdgeFreq = 2453 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2454 ++NumBranches; 2455 BranchTakenFreq += EdgeFreq.getFrequency(); 2456 } 2457 } 2458 2459 return false; 2460 } 2461