xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision e9425c4ff878ddd68c62a76eb47273e64fe711ae)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineDominators.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/TailDuplicator.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetInstrInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetSubtargetInfo.h"
53 #include <algorithm>
54 #include <functional>
55 #include <utility>
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "block-placement"
59 
60 STATISTIC(NumCondBranches, "Number of conditional branches");
61 STATISTIC(NumUncondBranches, "Number of unconditional branches");
62 STATISTIC(CondBranchTakenFreq,
63           "Potential frequency of taking conditional branches");
64 STATISTIC(UncondBranchTakenFreq,
65           "Potential frequency of taking unconditional branches");
66 
67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
68                                        cl::desc("Force the alignment of all "
69                                                 "blocks in the function."),
70                                        cl::init(0), cl::Hidden);
71 
72 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
73     "align-all-nofallthru-blocks",
74     cl::desc("Force the alignment of all "
75              "blocks that have no fall-through predecessors (i.e. don't add "
76              "nops that are executed)."),
77     cl::init(0), cl::Hidden);
78 
79 // FIXME: Find a good default for this flag and remove the flag.
80 static cl::opt<unsigned> ExitBlockBias(
81     "block-placement-exit-block-bias",
82     cl::desc("Block frequency percentage a loop exit block needs "
83              "over the original exit to be considered the new exit."),
84     cl::init(0), cl::Hidden);
85 
86 // Definition:
87 // - Outlining: placement of a basic block outside the chain or hot path.
88 
89 static cl::opt<bool> OutlineOptionalBranches(
90     "outline-optional-branches",
91     cl::desc("Outlining optional branches will place blocks that are optional "
92               "branches, i.e. branches with a common post dominator, outside "
93               "the hot path or chain"),
94     cl::init(false), cl::Hidden);
95 
96 static cl::opt<unsigned> OutlineOptionalThreshold(
97     "outline-optional-threshold",
98     cl::desc("Don't outline optional branches that are a single block with an "
99              "instruction count below this threshold"),
100     cl::init(4), cl::Hidden);
101 
102 static cl::opt<unsigned> LoopToColdBlockRatio(
103     "loop-to-cold-block-ratio",
104     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
105              "(frequency of block) is greater than this ratio"),
106     cl::init(5), cl::Hidden);
107 
108 static cl::opt<bool>
109     PreciseRotationCost("precise-rotation-cost",
110                         cl::desc("Model the cost of loop rotation more "
111                                  "precisely by using profile data."),
112                         cl::init(false), cl::Hidden);
113 static cl::opt<bool>
114     ForcePreciseRotationCost("force-precise-rotation-cost",
115                              cl::desc("Force the use of precise cost "
116                                       "loop rotation strategy."),
117                              cl::init(false), cl::Hidden);
118 
119 static cl::opt<unsigned> MisfetchCost(
120     "misfetch-cost",
121     cl::desc("Cost that models the probabilistic risk of an instruction "
122              "misfetch due to a jump comparing to falling through, whose cost "
123              "is zero."),
124     cl::init(1), cl::Hidden);
125 
126 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
127                                       cl::desc("Cost of jump instructions."),
128                                       cl::init(1), cl::Hidden);
129 static cl::opt<bool>
130 TailDupPlacement("tail-dup-placement",
131               cl::desc("Perform tail duplication during placement. "
132                        "Creates more fallthrough opportunites in "
133                        "outline branches."),
134               cl::init(true), cl::Hidden);
135 
136 static cl::opt<bool>
137 BranchFoldPlacement("branch-fold-placement",
138               cl::desc("Perform branch folding during placement. "
139                        "Reduces code size."),
140               cl::init(true), cl::Hidden);
141 
142 // Heuristic for tail duplication.
143 static cl::opt<unsigned> TailDupPlacementThreshold(
144     "tail-dup-placement-threshold",
145     cl::desc("Instruction cutoff for tail duplication during layout. "
146              "Tail merging during layout is forced to have a threshold "
147              "that won't conflict."), cl::init(2),
148     cl::Hidden);
149 
150 // Heuristic for tail duplication.
151 static cl::opt<unsigned> TailDupPlacementPenalty(
152     "tail-dup-placement-penalty",
153     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
154              "Copying can increase fallthrough, but it also increases icache "
155              "pressure. This parameter controls the penalty to account for that. "
156              "Percent as integer."),
157     cl::init(2),
158     cl::Hidden);
159 
160 extern cl::opt<unsigned> StaticLikelyProb;
161 extern cl::opt<unsigned> ProfileLikelyProb;
162 
163 // Internal option used to control BFI display only after MBP pass.
164 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
165 // -view-block-layout-with-bfi=
166 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
167 
168 // Command line option to specify the name of the function for CFG dump
169 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
170 extern cl::opt<std::string> ViewBlockFreqFuncName;
171 
172 namespace {
173 class BlockChain;
174 /// \brief Type for our function-wide basic block -> block chain mapping.
175 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType;
176 }
177 
178 namespace {
179 /// \brief A chain of blocks which will be laid out contiguously.
180 ///
181 /// This is the datastructure representing a chain of consecutive blocks that
182 /// are profitable to layout together in order to maximize fallthrough
183 /// probabilities and code locality. We also can use a block chain to represent
184 /// a sequence of basic blocks which have some external (correctness)
185 /// requirement for sequential layout.
186 ///
187 /// Chains can be built around a single basic block and can be merged to grow
188 /// them. They participate in a block-to-chain mapping, which is updated
189 /// automatically as chains are merged together.
190 class BlockChain {
191   /// \brief The sequence of blocks belonging to this chain.
192   ///
193   /// This is the sequence of blocks for a particular chain. These will be laid
194   /// out in-order within the function.
195   SmallVector<MachineBasicBlock *, 4> Blocks;
196 
197   /// \brief A handle to the function-wide basic block to block chain mapping.
198   ///
199   /// This is retained in each block chain to simplify the computation of child
200   /// block chains for SCC-formation and iteration. We store the edges to child
201   /// basic blocks, and map them back to their associated chains using this
202   /// structure.
203   BlockToChainMapType &BlockToChain;
204 
205 public:
206   /// \brief Construct a new BlockChain.
207   ///
208   /// This builds a new block chain representing a single basic block in the
209   /// function. It also registers itself as the chain that block participates
210   /// in with the BlockToChain mapping.
211   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
212       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
213     assert(BB && "Cannot create a chain with a null basic block");
214     BlockToChain[BB] = this;
215   }
216 
217   /// \brief Iterator over blocks within the chain.
218   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
219   typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator;
220 
221   /// \brief Beginning of blocks within the chain.
222   iterator begin() { return Blocks.begin(); }
223   const_iterator begin() const { return Blocks.begin(); }
224 
225   /// \brief End of blocks within the chain.
226   iterator end() { return Blocks.end(); }
227   const_iterator end() const { return Blocks.end(); }
228 
229   bool remove(MachineBasicBlock* BB) {
230     for(iterator i = begin(); i != end(); ++i) {
231       if (*i == BB) {
232         Blocks.erase(i);
233         return true;
234       }
235     }
236     return false;
237   }
238 
239   /// \brief Merge a block chain into this one.
240   ///
241   /// This routine merges a block chain into this one. It takes care of forming
242   /// a contiguous sequence of basic blocks, updating the edge list, and
243   /// updating the block -> chain mapping. It does not free or tear down the
244   /// old chain, but the old chain's block list is no longer valid.
245   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
246     assert(BB);
247     assert(!Blocks.empty());
248 
249     // Fast path in case we don't have a chain already.
250     if (!Chain) {
251       assert(!BlockToChain[BB]);
252       Blocks.push_back(BB);
253       BlockToChain[BB] = this;
254       return;
255     }
256 
257     assert(BB == *Chain->begin());
258     assert(Chain->begin() != Chain->end());
259 
260     // Update the incoming blocks to point to this chain, and add them to the
261     // chain structure.
262     for (MachineBasicBlock *ChainBB : *Chain) {
263       Blocks.push_back(ChainBB);
264       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
265       BlockToChain[ChainBB] = this;
266     }
267   }
268 
269 #ifndef NDEBUG
270   /// \brief Dump the blocks in this chain.
271   LLVM_DUMP_METHOD void dump() {
272     for (MachineBasicBlock *MBB : *this)
273       MBB->dump();
274   }
275 #endif // NDEBUG
276 
277   /// \brief Count of predecessors of any block within the chain which have not
278   /// yet been scheduled.  In general, we will delay scheduling this chain
279   /// until those predecessors are scheduled (or we find a sufficiently good
280   /// reason to override this heuristic.)  Note that when forming loop chains,
281   /// blocks outside the loop are ignored and treated as if they were already
282   /// scheduled.
283   ///
284   /// Note: This field is reinitialized multiple times - once for each loop,
285   /// and then once for the function as a whole.
286   unsigned UnscheduledPredecessors;
287 };
288 }
289 
290 namespace {
291 class MachineBlockPlacement : public MachineFunctionPass {
292   /// \brief A typedef for a block filter set.
293   typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet;
294 
295   /// Pair struct containing basic block and taildup profitiability
296   struct BlockAndTailDupResult {
297     MachineBasicBlock * BB;
298     bool ShouldTailDup;
299   };
300 
301   /// \brief work lists of blocks that are ready to be laid out
302   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
303   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
304 
305   /// \brief Machine Function
306   MachineFunction *F;
307 
308   /// \brief A handle to the branch probability pass.
309   const MachineBranchProbabilityInfo *MBPI;
310 
311   /// \brief A handle to the function-wide block frequency pass.
312   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
313 
314   /// \brief A handle to the loop info.
315   MachineLoopInfo *MLI;
316 
317   /// \brief Preferred loop exit.
318   /// Member variable for convenience. It may be removed by duplication deep
319   /// in the call stack.
320   MachineBasicBlock *PreferredLoopExit;
321 
322   /// \brief A handle to the target's instruction info.
323   const TargetInstrInfo *TII;
324 
325   /// \brief A handle to the target's lowering info.
326   const TargetLoweringBase *TLI;
327 
328   /// \brief A handle to the dominator tree.
329   MachineDominatorTree *MDT;
330 
331   /// \brief A handle to the post dominator tree.
332   MachinePostDominatorTree *MPDT;
333 
334   /// \brief Duplicator used to duplicate tails during placement.
335   ///
336   /// Placement decisions can open up new tail duplication opportunities, but
337   /// since tail duplication affects placement decisions of later blocks, it
338   /// must be done inline.
339   TailDuplicator TailDup;
340 
341   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
342   /// all terminators of the MachineFunction.
343   SmallPtrSet<const MachineBasicBlock *, 4> UnavoidableBlocks;
344 
345   /// \brief Allocator and owner of BlockChain structures.
346   ///
347   /// We build BlockChains lazily while processing the loop structure of
348   /// a function. To reduce malloc traffic, we allocate them using this
349   /// slab-like allocator, and destroy them after the pass completes. An
350   /// important guarantee is that this allocator produces stable pointers to
351   /// the chains.
352   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
353 
354   /// \brief Function wide BasicBlock to BlockChain mapping.
355   ///
356   /// This mapping allows efficiently moving from any given basic block to the
357   /// BlockChain it participates in, if any. We use it to, among other things,
358   /// allow implicitly defining edges between chains as the existing edges
359   /// between basic blocks.
360   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
361 
362 #ifndef NDEBUG
363   /// The set of basic blocks that have terminators that cannot be fully
364   /// analyzed.  These basic blocks cannot be re-ordered safely by
365   /// MachineBlockPlacement, and we must preserve physical layout of these
366   /// blocks and their successors through the pass.
367   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
368 #endif
369 
370   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
371   /// if the count goes to 0, add them to the appropriate work list.
372   void markChainSuccessors(
373       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
374       const BlockFilterSet *BlockFilter = nullptr);
375 
376   /// Decrease the UnscheduledPredecessors count for a single block, and
377   /// if the count goes to 0, add them to the appropriate work list.
378   void markBlockSuccessors(
379       const BlockChain &Chain, const MachineBasicBlock *BB,
380       const MachineBasicBlock *LoopHeaderBB,
381       const BlockFilterSet *BlockFilter = nullptr);
382 
383   BranchProbability
384   collectViableSuccessors(
385       const MachineBasicBlock *BB, const BlockChain &Chain,
386       const BlockFilterSet *BlockFilter,
387       SmallVector<MachineBasicBlock *, 4> &Successors);
388   bool shouldPredBlockBeOutlined(
389       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
390       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
391       BranchProbability SuccProb, BranchProbability HotProb);
392   bool repeatedlyTailDuplicateBlock(
393       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
394       const MachineBasicBlock *LoopHeaderBB,
395       BlockChain &Chain, BlockFilterSet *BlockFilter,
396       MachineFunction::iterator &PrevUnplacedBlockIt);
397   bool maybeTailDuplicateBlock(
398       MachineBasicBlock *BB, MachineBasicBlock *LPred,
399       BlockChain &Chain, BlockFilterSet *BlockFilter,
400       MachineFunction::iterator &PrevUnplacedBlockIt,
401       bool &DuplicatedToPred);
402   bool hasBetterLayoutPredecessor(
403       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
404       const BlockChain &SuccChain, BranchProbability SuccProb,
405       BranchProbability RealSuccProb, const BlockChain &Chain,
406       const BlockFilterSet *BlockFilter);
407   BlockAndTailDupResult selectBestSuccessor(
408       const MachineBasicBlock *BB, const BlockChain &Chain,
409       const BlockFilterSet *BlockFilter);
410   MachineBasicBlock *selectBestCandidateBlock(
411       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
412   MachineBasicBlock *getFirstUnplacedBlock(
413       const BlockChain &PlacedChain,
414       MachineFunction::iterator &PrevUnplacedBlockIt,
415       const BlockFilterSet *BlockFilter);
416 
417   /// \brief Add a basic block to the work list if it is appropriate.
418   ///
419   /// If the optional parameter BlockFilter is provided, only MBB
420   /// present in the set will be added to the worklist. If nullptr
421   /// is provided, no filtering occurs.
422   void fillWorkLists(const MachineBasicBlock *MBB,
423                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
424                      const BlockFilterSet *BlockFilter);
425   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
426                   BlockFilterSet *BlockFilter = nullptr);
427   MachineBasicBlock *findBestLoopTop(
428       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
429   MachineBasicBlock *findBestLoopExit(
430       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
431   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
432   void buildLoopChains(const MachineLoop &L);
433   void rotateLoop(
434       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
435       const BlockFilterSet &LoopBlockSet);
436   void rotateLoopWithProfile(
437       BlockChain &LoopChain, const MachineLoop &L,
438       const BlockFilterSet &LoopBlockSet);
439   void collectMustExecuteBBs();
440   void buildCFGChains();
441   void optimizeBranches();
442   void alignBlocks();
443   bool shouldTailDuplicate(MachineBasicBlock *BB);
444   /// Check the edge frequencies to see if tail duplication will increase
445   /// fallthroughs.
446   bool isProfitableToTailDup(
447     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
448     BranchProbability AdjustedSumProb,
449     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
450   /// Returns true if a block can tail duplicate into all unplaced
451   /// predecessors. Filters based on loop.
452   bool canTailDuplicateUnplacedPreds(
453       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
454       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
455 
456 public:
457   static char ID; // Pass identification, replacement for typeid
458   MachineBlockPlacement() : MachineFunctionPass(ID) {
459     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
460   }
461 
462   bool runOnMachineFunction(MachineFunction &F) override;
463 
464   void getAnalysisUsage(AnalysisUsage &AU) const override {
465     AU.addRequired<MachineBranchProbabilityInfo>();
466     AU.addRequired<MachineBlockFrequencyInfo>();
467     AU.addRequired<MachineDominatorTree>();
468     if (TailDupPlacement)
469       AU.addRequired<MachinePostDominatorTree>();
470     AU.addRequired<MachineLoopInfo>();
471     AU.addRequired<TargetPassConfig>();
472     MachineFunctionPass::getAnalysisUsage(AU);
473   }
474 };
475 }
476 
477 char MachineBlockPlacement::ID = 0;
478 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
479 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
480                       "Branch Probability Basic Block Placement", false, false)
481 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
482 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
483 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
484 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
485 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
486 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
487                     "Branch Probability Basic Block Placement", false, false)
488 
489 #ifndef NDEBUG
490 /// \brief Helper to print the name of a MBB.
491 ///
492 /// Only used by debug logging.
493 static std::string getBlockName(const MachineBasicBlock *BB) {
494   std::string Result;
495   raw_string_ostream OS(Result);
496   OS << "BB#" << BB->getNumber();
497   OS << " ('" << BB->getName() << "')";
498   OS.flush();
499   return Result;
500 }
501 #endif
502 
503 /// \brief Mark a chain's successors as having one fewer preds.
504 ///
505 /// When a chain is being merged into the "placed" chain, this routine will
506 /// quickly walk the successors of each block in the chain and mark them as
507 /// having one fewer active predecessor. It also adds any successors of this
508 /// chain which reach the zero-predecessor state to the appropriate worklist.
509 void MachineBlockPlacement::markChainSuccessors(
510     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
511     const BlockFilterSet *BlockFilter) {
512   // Walk all the blocks in this chain, marking their successors as having
513   // a predecessor placed.
514   for (MachineBasicBlock *MBB : Chain) {
515     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
516   }
517 }
518 
519 /// \brief Mark a single block's successors as having one fewer preds.
520 ///
521 /// Under normal circumstances, this is only called by markChainSuccessors,
522 /// but if a block that was to be placed is completely tail-duplicated away,
523 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
524 /// for just that block.
525 void MachineBlockPlacement::markBlockSuccessors(
526     const BlockChain &Chain, const MachineBasicBlock *MBB,
527     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
528   // Add any successors for which this is the only un-placed in-loop
529   // predecessor to the worklist as a viable candidate for CFG-neutral
530   // placement. No subsequent placement of this block will violate the CFG
531   // shape, so we get to use heuristics to choose a favorable placement.
532   for (MachineBasicBlock *Succ : MBB->successors()) {
533     if (BlockFilter && !BlockFilter->count(Succ))
534       continue;
535     BlockChain &SuccChain = *BlockToChain[Succ];
536     // Disregard edges within a fixed chain, or edges to the loop header.
537     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
538       continue;
539 
540     // This is a cross-chain edge that is within the loop, so decrement the
541     // loop predecessor count of the destination chain.
542     if (SuccChain.UnscheduledPredecessors == 0 ||
543         --SuccChain.UnscheduledPredecessors > 0)
544       continue;
545 
546     auto *NewBB = *SuccChain.begin();
547     if (NewBB->isEHPad())
548       EHPadWorkList.push_back(NewBB);
549     else
550       BlockWorkList.push_back(NewBB);
551   }
552 }
553 
554 /// This helper function collects the set of successors of block
555 /// \p BB that are allowed to be its layout successors, and return
556 /// the total branch probability of edges from \p BB to those
557 /// blocks.
558 BranchProbability MachineBlockPlacement::collectViableSuccessors(
559     const MachineBasicBlock *BB, const BlockChain &Chain,
560     const BlockFilterSet *BlockFilter,
561     SmallVector<MachineBasicBlock *, 4> &Successors) {
562   // Adjust edge probabilities by excluding edges pointing to blocks that is
563   // either not in BlockFilter or is already in the current chain. Consider the
564   // following CFG:
565   //
566   //     --->A
567   //     |  / \
568   //     | B   C
569   //     |  \ / \
570   //     ----D   E
571   //
572   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
573   // A->C is chosen as a fall-through, D won't be selected as a successor of C
574   // due to CFG constraint (the probability of C->D is not greater than
575   // HotProb to break top-order). If we exclude E that is not in BlockFilter
576   // when calculating the  probability of C->D, D will be selected and we
577   // will get A C D B as the layout of this loop.
578   auto AdjustedSumProb = BranchProbability::getOne();
579   for (MachineBasicBlock *Succ : BB->successors()) {
580     bool SkipSucc = false;
581     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
582       SkipSucc = true;
583     } else {
584       BlockChain *SuccChain = BlockToChain[Succ];
585       if (SuccChain == &Chain) {
586         SkipSucc = true;
587       } else if (Succ != *SuccChain->begin()) {
588         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
589         continue;
590       }
591     }
592     if (SkipSucc)
593       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
594     else
595       Successors.push_back(Succ);
596   }
597 
598   return AdjustedSumProb;
599 }
600 
601 /// The helper function returns the branch probability that is adjusted
602 /// or normalized over the new total \p AdjustedSumProb.
603 static BranchProbability
604 getAdjustedProbability(BranchProbability OrigProb,
605                        BranchProbability AdjustedSumProb) {
606   BranchProbability SuccProb;
607   uint32_t SuccProbN = OrigProb.getNumerator();
608   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
609   if (SuccProbN >= SuccProbD)
610     SuccProb = BranchProbability::getOne();
611   else
612     SuccProb = BranchProbability(SuccProbN, SuccProbD);
613 
614   return SuccProb;
615 }
616 
617 /// Check if a block should be tail duplicated.
618 /// \p BB Block to check.
619 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
620   // Blocks with single successors don't create additional fallthrough
621   // opportunities. Don't duplicate them. TODO: When conditional exits are
622   // analyzable, allow them to be duplicated.
623   bool IsSimple = TailDup.isSimpleBB(BB);
624 
625   if (BB->succ_size() == 1)
626     return false;
627   return TailDup.shouldTailDuplicate(IsSimple, *BB);
628 }
629 
630 /// Compare 2 BlockFrequency's with a small penalty for \p A.
631 /// In order to be conservative, we apply a X% penalty to account for
632 /// increased icache pressure and static heuristics. For small frequencies
633 /// we use only the numerators to improve accuracy. For simplicity, we assume the
634 /// penalty is less than 100%
635 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
636 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
637                             uint64_t EntryFreq) {
638   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
639   BlockFrequency Gain = A - B;
640   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
641 }
642 
643 /// Check the edge frequencies to see if tail duplication will increase
644 /// fallthroughs. It only makes sense to call this function when
645 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
646 /// always locally profitable if we would have picked \p Succ without
647 /// considering duplication.
648 bool MachineBlockPlacement::isProfitableToTailDup(
649     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
650     BranchProbability QProb,
651     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
652   // We need to do a probability calculation to make sure this is profitable.
653   // First: does succ have a successor that post-dominates? This affects the
654   // calculation. The 2 relevant cases are:
655   //    BB         BB
656   //    | \Qout    | \Qout
657   //   P|  C       |P C
658   //    =   C'     =   C'
659   //    |  /Qin    |  /Qin
660   //    | /        | /
661   //    Succ       Succ
662   //    / \        | \  V
663   //  U/   =V      |U \
664   //  /     \      =   D
665   //  D      E     |  /
666   //               | /
667   //               |/
668   //               PDom
669   //  '=' : Branch taken for that CFG edge
670   // In the second case, Placing Succ while duplicating it into C prevents the
671   // fallthrough of Succ into either D or PDom, because they now have C as an
672   // unplaced predecessor
673 
674   // Start by figuring out which case we fall into
675   MachineBasicBlock *PDom = nullptr;
676   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
677   // Only scan the relevant successors
678   auto AdjustedSuccSumProb =
679       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
680   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
681   auto BBFreq = MBFI->getBlockFreq(BB);
682   auto SuccFreq = MBFI->getBlockFreq(Succ);
683   BlockFrequency P = BBFreq * PProb;
684   BlockFrequency Qout = BBFreq * QProb;
685   uint64_t EntryFreq = MBFI->getEntryFreq();
686   // If there are no more successors, it is profitable to copy, as it strictly
687   // increases fallthrough.
688   if (SuccSuccs.size() == 0)
689     return greaterWithBias(P, Qout, EntryFreq);
690 
691   auto BestSuccSucc = BranchProbability::getZero();
692   // Find the PDom or the best Succ if no PDom exists.
693   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
694     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
695     if (Prob > BestSuccSucc)
696       BestSuccSucc = Prob;
697     if (PDom == nullptr)
698       if (MPDT->dominates(SuccSucc, Succ)) {
699         PDom = SuccSucc;
700         break;
701       }
702   }
703   // For the comparisons, we need to know Succ's best incoming edge that isn't
704   // from BB.
705   auto SuccBestPred = BlockFrequency(0);
706   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
707     if (SuccPred == Succ || SuccPred == BB
708         || BlockToChain[SuccPred] == &Chain
709         || (BlockFilter && !BlockFilter->count(SuccPred)))
710       continue;
711     auto Freq = MBFI->getBlockFreq(SuccPred)
712         * MBPI->getEdgeProbability(SuccPred, Succ);
713     if (Freq > SuccBestPred)
714       SuccBestPred = Freq;
715   }
716   // Qin is Succ's best unplaced incoming edge that isn't BB
717   BlockFrequency Qin = SuccBestPred;
718   // If it doesn't have a post-dominating successor, here is the calculation:
719   //    BB        BB
720   //    | \Qout   |  \
721   //   P|  C      |   =
722   //    =   C'    |    C
723   //    |  /Qin   |     |
724   //    | /       |     C' (+Succ)
725   //    Succ      Succ /|
726   //    / \       |  \/ |
727   //  U/   =V     =  /= =
728   //  /     \     | /  \|
729   //  D      E    D     E
730   //  '=' : Branch taken for that CFG edge
731   //  Cost in the first case is: P + V
732   //  For this calculation, we always assume P > Qout. If Qout > P
733   //  The result of this function will be ignored at the caller.
734   //  Cost in the second case is: Qout + Qin * V + P * U + P * V
735   //  TODO(iteratee): If we lay out D after Succ, the P * U term
736   //  goes away. This logic is coming in D28522.
737 
738   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
739     BranchProbability UProb = BestSuccSucc;
740     BranchProbability VProb = AdjustedSuccSumProb - UProb;
741     BlockFrequency V = SuccFreq * VProb;
742     BlockFrequency QinV = Qin * VProb;
743     BlockFrequency BaseCost = P + V;
744     BlockFrequency DupCost = Qout + QinV + P * AdjustedSuccSumProb;
745     return greaterWithBias(BaseCost, DupCost, EntryFreq);
746   }
747   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
748   BranchProbability VProb = AdjustedSuccSumProb - UProb;
749   BlockFrequency U = SuccFreq * UProb;
750   BlockFrequency V = SuccFreq * VProb;
751   // If there is a post-dominating successor, here is the calculation:
752   // BB         BB                 BB          BB
753   // | \Qout    |  \               | \Qout     |  \
754   // |P C       |   =              |P C        |   =
755   // =   C'     |P   C             =   C'      |P   C
756   // |  /Qin    |     |            |  /Qin     |     |
757   // | /        |     C' (+Succ)   | /         |     C' (+Succ)
758   // Succ       Succ /|            Succ        Succ /|
759   // | \  V     |  \/ |            | \  V      |  \/ |
760   // |U \       |U /\ |            |U =        |U /\ |
761   // =   D      = =  =|            |   D       | =  =|
762   // |  /       |/    D            |  /        |/    D
763   // | /        |    /             | =         |    /
764   // |/         |   /              |/          |   =
765   // Dom        Dom                Dom         Dom
766   //  '=' : Branch taken for that CFG edge
767   // The cost for taken branches in the first case is P + U
768   // The cost in the second case (assuming independence), given the layout:
769   // BB, Succ, (C+Succ), D, Dom
770   // is Qout + P * V + Qin * U
771   // compare P + U vs Qout + P + Qin * U.
772   //
773   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
774   //
775   // For the 3rd case, the cost is P + 2 * V
776   // For the 4th case, the cost is Qout + Qin * U + P * V + V
777   // We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V
778   if (UProb > AdjustedSuccSumProb / 2
779       && !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom],
780                                      UProb, UProb, Chain, BlockFilter)) {
781     // Cases 3 & 4
782     return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb),
783                            EntryFreq);
784   }
785   // Cases 1 & 2
786   return greaterWithBias(
787       (P + U), (Qout + Qin * UProb + P * AdjustedSuccSumProb), EntryFreq);
788 }
789 
790 
791 /// When the option TailDupPlacement is on, this method checks if the
792 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
793 /// into all of its unplaced, unfiltered predecessors, that are not BB.
794 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
795     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
796     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
797   if (!shouldTailDuplicate(Succ))
798     return false;
799 
800   for (MachineBasicBlock *Pred : Succ->predecessors()) {
801     // Make sure all unplaced and unfiltered predecessors can be
802     // tail-duplicated into.
803     // Skip any blocks that are already placed or not in this loop.
804     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
805         || BlockToChain[Pred] == &Chain)
806       continue;
807     if (!TailDup.canTailDuplicate(Succ, Pred))
808       return false;
809   }
810   return true;
811 }
812 
813 /// When the option OutlineOptionalBranches is on, this method
814 /// checks if the fallthrough candidate block \p Succ (of block
815 /// \p BB) also has other unscheduled predecessor blocks which
816 /// are also successors of \p BB (forming triangular shape CFG).
817 /// If none of such predecessors are small, it returns true.
818 /// The caller can choose to select \p Succ as the layout successors
819 /// so that \p Succ's predecessors (optional branches) can be
820 /// outlined.
821 /// FIXME: fold this with more general layout cost analysis.
822 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
823     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
824     const BlockChain &Chain, const BlockFilterSet *BlockFilter,
825     BranchProbability SuccProb, BranchProbability HotProb) {
826   if (!OutlineOptionalBranches)
827     return false;
828   // If we outline optional branches, look whether Succ is unavoidable, i.e.
829   // dominates all terminators of the MachineFunction. If it does, other
830   // successors must be optional. Don't do this for cold branches.
831   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
832     for (MachineBasicBlock *Pred : Succ->predecessors()) {
833       // Check whether there is an unplaced optional branch.
834       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
835           BlockToChain[Pred] == &Chain)
836         continue;
837       // Check whether the optional branch has exactly one BB.
838       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
839         continue;
840       // Check whether the optional branch is small.
841       if (Pred->size() < OutlineOptionalThreshold)
842         return false;
843     }
844     return true;
845   } else
846     return false;
847 }
848 
849 // When profile is not present, return the StaticLikelyProb.
850 // When profile is available, we need to handle the triangle-shape CFG.
851 static BranchProbability getLayoutSuccessorProbThreshold(
852       const MachineBasicBlock *BB) {
853   if (!BB->getParent()->getFunction()->getEntryCount())
854     return BranchProbability(StaticLikelyProb, 100);
855   if (BB->succ_size() == 2) {
856     const MachineBasicBlock *Succ1 = *BB->succ_begin();
857     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
858     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
859       /* See case 1 below for the cost analysis. For BB->Succ to
860        * be taken with smaller cost, the following needs to hold:
861        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
862        *   So the threshold T in the calculation below
863        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
864        *   So T / (1 - T) = 2, Yielding T = 2/3
865        * Also adding user specified branch bias, we have
866        *   T = (2/3)*(ProfileLikelyProb/50)
867        *     = (2*ProfileLikelyProb)/150)
868        */
869       return BranchProbability(2 * ProfileLikelyProb, 150);
870     }
871   }
872   return BranchProbability(ProfileLikelyProb, 100);
873 }
874 
875 /// Checks to see if the layout candidate block \p Succ has a better layout
876 /// predecessor than \c BB. If yes, returns true.
877 /// \p SuccProb: The probability adjusted for only remaining blocks.
878 ///   Only used for logging
879 /// \p RealSuccProb: The un-adjusted probability.
880 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
881 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
882 ///    considered
883 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
884     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
885     const BlockChain &SuccChain, BranchProbability SuccProb,
886     BranchProbability RealSuccProb, const BlockChain &Chain,
887     const BlockFilterSet *BlockFilter) {
888 
889   // There isn't a better layout when there are no unscheduled predecessors.
890   if (SuccChain.UnscheduledPredecessors == 0)
891     return false;
892 
893   // There are two basic scenarios here:
894   // -------------------------------------
895   // Case 1: triangular shape CFG (if-then):
896   //     BB
897   //     | \
898   //     |  \
899   //     |   Pred
900   //     |   /
901   //     Succ
902   // In this case, we are evaluating whether to select edge -> Succ, e.g.
903   // set Succ as the layout successor of BB. Picking Succ as BB's
904   // successor breaks the CFG constraints (FIXME: define these constraints).
905   // With this layout, Pred BB
906   // is forced to be outlined, so the overall cost will be cost of the
907   // branch taken from BB to Pred, plus the cost of back taken branch
908   // from Pred to Succ, as well as the additional cost associated
909   // with the needed unconditional jump instruction from Pred To Succ.
910 
911   // The cost of the topological order layout is the taken branch cost
912   // from BB to Succ, so to make BB->Succ a viable candidate, the following
913   // must hold:
914   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
915   //      < freq(BB->Succ) *  taken_branch_cost.
916   // Ignoring unconditional jump cost, we get
917   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
918   //    prob(BB->Succ) > 2 * prob(BB->Pred)
919   //
920   // When real profile data is available, we can precisely compute the
921   // probability threshold that is needed for edge BB->Succ to be considered.
922   // Without profile data, the heuristic requires the branch bias to be
923   // a lot larger to make sure the signal is very strong (e.g. 80% default).
924   // -----------------------------------------------------------------
925   // Case 2: diamond like CFG (if-then-else):
926   //     S
927   //    / \
928   //   |   \
929   //  BB    Pred
930   //   \    /
931   //    Succ
932   //    ..
933   //
934   // The current block is BB and edge BB->Succ is now being evaluated.
935   // Note that edge S->BB was previously already selected because
936   // prob(S->BB) > prob(S->Pred).
937   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
938   // choose Pred, we will have a topological ordering as shown on the left
939   // in the picture below. If we choose Succ, we have the solution as shown
940   // on the right:
941   //
942   //   topo-order:
943   //
944   //       S-----                             ---S
945   //       |    |                             |  |
946   //    ---BB   |                             |  BB
947   //    |       |                             |  |
948   //    |  pred--                             |  Succ--
949   //    |  |                                  |       |
950   //    ---succ                               ---pred--
951   //
952   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
953   //      = freq(S->Pred) + freq(S->BB)
954   //
955   // If we have profile data (i.e, branch probabilities can be trusted), the
956   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
957   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
958   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
959   // means the cost of topological order is greater.
960   // When profile data is not available, however, we need to be more
961   // conservative. If the branch prediction is wrong, breaking the topo-order
962   // will actually yield a layout with large cost. For this reason, we need
963   // strong biased branch at block S with Prob(S->BB) in order to select
964   // BB->Succ. This is equivalent to looking the CFG backward with backward
965   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
966   // profile data).
967   // --------------------------------------------------------------------------
968   // Case 3: forked diamond
969   //       S
970   //      / \
971   //     /   \
972   //   BB    Pred
973   //   | \   / |
974   //   |  \ /  |
975   //   |   X   |
976   //   |  / \  |
977   //   | /   \ |
978   //   S1     S2
979   //
980   // The current block is BB and edge BB->S1 is now being evaluated.
981   // As above S->BB was already selected because
982   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
983   //
984   // topo-order:
985   //
986   //     S-------|                     ---S
987   //     |       |                     |  |
988   //  ---BB      |                     |  BB
989   //  |          |                     |  |
990   //  |  Pred----|                     |  S1----
991   //  |  |                             |       |
992   //  --(S1 or S2)                     ---Pred--
993   //
994   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
995   //    + min(freq(Pred->S1), freq(Pred->S2))
996   // Non-topo-order cost:
997   // In the worst case, S2 will not get laid out after Pred.
998   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
999   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1000   // is 0. Then the non topo layout is better when
1001   // freq(S->Pred) < freq(BB->S1).
1002   // This is exactly what is checked below.
1003   // Note there are other shapes that apply (Pred may not be a single block,
1004   // but they all fit this general pattern.)
1005   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1006 
1007   // Make sure that a hot successor doesn't have a globally more
1008   // important predecessor.
1009   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1010   bool BadCFGConflict = false;
1011 
1012   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1013     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1014         (BlockFilter && !BlockFilter->count(Pred)) ||
1015         BlockToChain[Pred] == &Chain ||
1016         // This check is redundant except for look ahead. This function is
1017         // called for lookahead by isProfitableToTailDup when BB hasn't been
1018         // placed yet.
1019         (Pred == BB))
1020       continue;
1021     // Do backward checking.
1022     // For all cases above, we need a backward checking to filter out edges that
1023     // are not 'strongly' biased.
1024     // BB  Pred
1025     //  \ /
1026     //  Succ
1027     // We select edge BB->Succ if
1028     //      freq(BB->Succ) > freq(Succ) * HotProb
1029     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1030     //      HotProb
1031     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1032     // Case 1 is covered too, because the first equation reduces to:
1033     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1034     BlockFrequency PredEdgeFreq =
1035         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1036     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1037       BadCFGConflict = true;
1038       break;
1039     }
1040   }
1041 
1042   if (BadCFGConflict) {
1043     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
1044                  << " (prob) (non-cold CFG conflict)\n");
1045     return true;
1046   }
1047 
1048   return false;
1049 }
1050 
1051 /// \brief Select the best successor for a block.
1052 ///
1053 /// This looks across all successors of a particular block and attempts to
1054 /// select the "best" one to be the layout successor. It only considers direct
1055 /// successors which also pass the block filter. It will attempt to avoid
1056 /// breaking CFG structure, but cave and break such structures in the case of
1057 /// very hot successor edges.
1058 ///
1059 /// \returns The best successor block found, or null if none are viable, along
1060 /// with a boolean indicating if tail duplication is necessary.
1061 MachineBlockPlacement::BlockAndTailDupResult
1062 MachineBlockPlacement::selectBestSuccessor(
1063     const MachineBasicBlock *BB, const BlockChain &Chain,
1064     const BlockFilterSet *BlockFilter) {
1065   const BranchProbability HotProb(StaticLikelyProb, 100);
1066 
1067   BlockAndTailDupResult BestSucc = { nullptr, false };
1068   auto BestProb = BranchProbability::getZero();
1069 
1070   SmallVector<MachineBasicBlock *, 4> Successors;
1071   auto AdjustedSumProb =
1072       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1073 
1074   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
1075 
1076   // For blocks with CFG violations, we may be able to lay them out anyway with
1077   // tail-duplication. We keep this vector so we can perform the probability
1078   // calculations the minimum number of times.
1079   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1080       DupCandidates;
1081   for (MachineBasicBlock *Succ : Successors) {
1082     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1083     BranchProbability SuccProb =
1084         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1085 
1086     // This heuristic is off by default.
1087     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
1088                                   HotProb)) {
1089       BestSucc.BB = Succ;
1090       return BestSucc;
1091     }
1092 
1093     BlockChain &SuccChain = *BlockToChain[Succ];
1094     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1095     // predecessor that yields lower global cost.
1096     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1097                                    Chain, BlockFilter)) {
1098       // If tail duplication would make Succ profitable, place it.
1099       if (TailDupPlacement && shouldTailDuplicate(Succ))
1100         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1101       continue;
1102     }
1103 
1104     DEBUG(
1105         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1106                << SuccProb
1107                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1108                << "\n");
1109 
1110     if (BestSucc.BB && BestProb >= SuccProb) {
1111       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1112       continue;
1113     }
1114 
1115     DEBUG(dbgs() << "    Setting it as best candidate\n");
1116     BestSucc.BB = Succ;
1117     BestProb = SuccProb;
1118   }
1119   // Handle the tail duplication candidates in order of decreasing probability.
1120   // Stop at the first one that is profitable. Also stop if they are less
1121   // profitable than BestSucc. Position is important because we preserve it and
1122   // prefer first best match. Here we aren't comparing in order, so we capture
1123   // the position instead.
1124   if (DupCandidates.size() != 0) {
1125     auto cmp =
1126         [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
1127            const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
1128           return std::get<0>(a) > std::get<0>(b);
1129         };
1130     std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
1131   }
1132   for(auto &Tup : DupCandidates) {
1133     BranchProbability DupProb;
1134     MachineBasicBlock *Succ;
1135     std::tie(DupProb, Succ) = Tup;
1136     if (DupProb < BestProb)
1137       break;
1138     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1139         // If tail duplication gives us fallthrough when we otherwise wouldn't
1140         // have it, that is a strict gain.
1141         && (BestSucc.BB == nullptr
1142             || isProfitableToTailDup(BB, Succ, BestProb, Chain,
1143                                      BlockFilter))) {
1144       DEBUG(
1145           dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1146                  << DupProb
1147                  << " (Tail Duplicate)\n");
1148       BestSucc.BB = Succ;
1149       BestSucc.ShouldTailDup = true;
1150       break;
1151     }
1152   }
1153 
1154   if (BestSucc.BB)
1155     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1156 
1157   return BestSucc;
1158 }
1159 
1160 /// \brief Select the best block from a worklist.
1161 ///
1162 /// This looks through the provided worklist as a list of candidate basic
1163 /// blocks and select the most profitable one to place. The definition of
1164 /// profitable only really makes sense in the context of a loop. This returns
1165 /// the most frequently visited block in the worklist, which in the case of
1166 /// a loop, is the one most desirable to be physically close to the rest of the
1167 /// loop body in order to improve i-cache behavior.
1168 ///
1169 /// \returns The best block found, or null if none are viable.
1170 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1171     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1172   // Once we need to walk the worklist looking for a candidate, cleanup the
1173   // worklist of already placed entries.
1174   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1175   // some code complexity) into the loop below.
1176   WorkList.erase(remove_if(WorkList,
1177                            [&](MachineBasicBlock *BB) {
1178                              return BlockToChain.lookup(BB) == &Chain;
1179                            }),
1180                  WorkList.end());
1181 
1182   if (WorkList.empty())
1183     return nullptr;
1184 
1185   bool IsEHPad = WorkList[0]->isEHPad();
1186 
1187   MachineBasicBlock *BestBlock = nullptr;
1188   BlockFrequency BestFreq;
1189   for (MachineBasicBlock *MBB : WorkList) {
1190     assert(MBB->isEHPad() == IsEHPad);
1191 
1192     BlockChain &SuccChain = *BlockToChain[MBB];
1193     if (&SuccChain == &Chain)
1194       continue;
1195 
1196     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
1197 
1198     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1199     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1200           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1201 
1202     // For ehpad, we layout the least probable first as to avoid jumping back
1203     // from least probable landingpads to more probable ones.
1204     //
1205     // FIXME: Using probability is probably (!) not the best way to achieve
1206     // this. We should probably have a more principled approach to layout
1207     // cleanup code.
1208     //
1209     // The goal is to get:
1210     //
1211     //                 +--------------------------+
1212     //                 |                          V
1213     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1214     //
1215     // Rather than:
1216     //
1217     //                 +-------------------------------------+
1218     //                 V                                     |
1219     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1220     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1221       continue;
1222 
1223     BestBlock = MBB;
1224     BestFreq = CandidateFreq;
1225   }
1226 
1227   return BestBlock;
1228 }
1229 
1230 /// \brief Retrieve the first unplaced basic block.
1231 ///
1232 /// This routine is called when we are unable to use the CFG to walk through
1233 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1234 /// We walk through the function's blocks in order, starting from the
1235 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1236 /// re-scanning the entire sequence on repeated calls to this routine.
1237 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1238     const BlockChain &PlacedChain,
1239     MachineFunction::iterator &PrevUnplacedBlockIt,
1240     const BlockFilterSet *BlockFilter) {
1241   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1242        ++I) {
1243     if (BlockFilter && !BlockFilter->count(&*I))
1244       continue;
1245     if (BlockToChain[&*I] != &PlacedChain) {
1246       PrevUnplacedBlockIt = I;
1247       // Now select the head of the chain to which the unplaced block belongs
1248       // as the block to place. This will force the entire chain to be placed,
1249       // and satisfies the requirements of merging chains.
1250       return *BlockToChain[&*I]->begin();
1251     }
1252   }
1253   return nullptr;
1254 }
1255 
1256 void MachineBlockPlacement::fillWorkLists(
1257     const MachineBasicBlock *MBB,
1258     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1259     const BlockFilterSet *BlockFilter = nullptr) {
1260   BlockChain &Chain = *BlockToChain[MBB];
1261   if (!UpdatedPreds.insert(&Chain).second)
1262     return;
1263 
1264   assert(Chain.UnscheduledPredecessors == 0);
1265   for (MachineBasicBlock *ChainBB : Chain) {
1266     assert(BlockToChain[ChainBB] == &Chain);
1267     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1268       if (BlockFilter && !BlockFilter->count(Pred))
1269         continue;
1270       if (BlockToChain[Pred] == &Chain)
1271         continue;
1272       ++Chain.UnscheduledPredecessors;
1273     }
1274   }
1275 
1276   if (Chain.UnscheduledPredecessors != 0)
1277     return;
1278 
1279   MachineBasicBlock *BB = *Chain.begin();
1280   if (BB->isEHPad())
1281     EHPadWorkList.push_back(BB);
1282   else
1283     BlockWorkList.push_back(BB);
1284 }
1285 
1286 void MachineBlockPlacement::buildChain(
1287     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1288     BlockFilterSet *BlockFilter) {
1289   assert(HeadBB && "BB must not be null.\n");
1290   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1291   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1292 
1293   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1294   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1295   MachineBasicBlock *BB = *std::prev(Chain.end());
1296   for (;;) {
1297     assert(BB && "null block found at end of chain in loop.");
1298     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1299     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1300 
1301 
1302     // Look for the best viable successor if there is one to place immediately
1303     // after this block.
1304     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1305     MachineBasicBlock* BestSucc = Result.BB;
1306     bool ShouldTailDup = Result.ShouldTailDup;
1307     if (TailDupPlacement)
1308       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1309 
1310     // If an immediate successor isn't available, look for the best viable
1311     // block among those we've identified as not violating the loop's CFG at
1312     // this point. This won't be a fallthrough, but it will increase locality.
1313     if (!BestSucc)
1314       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1315     if (!BestSucc)
1316       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1317 
1318     if (!BestSucc) {
1319       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1320       if (!BestSucc)
1321         break;
1322 
1323       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1324                       "layout successor until the CFG reduces\n");
1325     }
1326 
1327     // Placement may have changed tail duplication opportunities.
1328     // Check for that now.
1329     if (TailDupPlacement && BestSucc && ShouldTailDup) {
1330       // If the chosen successor was duplicated into all its predecessors,
1331       // don't bother laying it out, just go round the loop again with BB as
1332       // the chain end.
1333       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1334                                        BlockFilter, PrevUnplacedBlockIt))
1335         continue;
1336     }
1337 
1338     // Place this block, updating the datastructures to reflect its placement.
1339     BlockChain &SuccChain = *BlockToChain[BestSucc];
1340     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1341     // we selected a successor that didn't fit naturally into the CFG.
1342     SuccChain.UnscheduledPredecessors = 0;
1343     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1344                  << getBlockName(BestSucc) << "\n");
1345     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1346     Chain.merge(BestSucc, &SuccChain);
1347     BB = *std::prev(Chain.end());
1348   }
1349 
1350   DEBUG(dbgs() << "Finished forming chain for header block "
1351                << getBlockName(*Chain.begin()) << "\n");
1352 }
1353 
1354 /// \brief Find the best loop top block for layout.
1355 ///
1356 /// Look for a block which is strictly better than the loop header for laying
1357 /// out at the top of the loop. This looks for one and only one pattern:
1358 /// a latch block with no conditional exit. This block will cause a conditional
1359 /// jump around it or will be the bottom of the loop if we lay it out in place,
1360 /// but if it it doesn't end up at the bottom of the loop for any reason,
1361 /// rotation alone won't fix it. Because such a block will always result in an
1362 /// unconditional jump (for the backedge) rotating it in front of the loop
1363 /// header is always profitable.
1364 MachineBasicBlock *
1365 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
1366                                        const BlockFilterSet &LoopBlockSet) {
1367   // Placing the latch block before the header may introduce an extra branch
1368   // that skips this block the first time the loop is executed, which we want
1369   // to avoid when optimising for size.
1370   // FIXME: in theory there is a case that does not introduce a new branch,
1371   // i.e. when the layout predecessor does not fallthrough to the loop header.
1372   // In practice this never happens though: there always seems to be a preheader
1373   // that can fallthrough and that is also placed before the header.
1374   if (F->getFunction()->optForSize())
1375     return L.getHeader();
1376 
1377   // Check that the header hasn't been fused with a preheader block due to
1378   // crazy branches. If it has, we need to start with the header at the top to
1379   // prevent pulling the preheader into the loop body.
1380   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1381   if (!LoopBlockSet.count(*HeaderChain.begin()))
1382     return L.getHeader();
1383 
1384   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1385                << "\n");
1386 
1387   BlockFrequency BestPredFreq;
1388   MachineBasicBlock *BestPred = nullptr;
1389   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1390     if (!LoopBlockSet.count(Pred))
1391       continue;
1392     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1393                  << Pred->succ_size() << " successors, ";
1394           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1395     if (Pred->succ_size() > 1)
1396       continue;
1397 
1398     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1399     if (!BestPred || PredFreq > BestPredFreq ||
1400         (!(PredFreq < BestPredFreq) &&
1401          Pred->isLayoutSuccessor(L.getHeader()))) {
1402       BestPred = Pred;
1403       BestPredFreq = PredFreq;
1404     }
1405   }
1406 
1407   // If no direct predecessor is fine, just use the loop header.
1408   if (!BestPred) {
1409     DEBUG(dbgs() << "    final top unchanged\n");
1410     return L.getHeader();
1411   }
1412 
1413   // Walk backwards through any straight line of predecessors.
1414   while (BestPred->pred_size() == 1 &&
1415          (*BestPred->pred_begin())->succ_size() == 1 &&
1416          *BestPred->pred_begin() != L.getHeader())
1417     BestPred = *BestPred->pred_begin();
1418 
1419   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1420   return BestPred;
1421 }
1422 
1423 /// \brief Find the best loop exiting block for layout.
1424 ///
1425 /// This routine implements the logic to analyze the loop looking for the best
1426 /// block to layout at the top of the loop. Typically this is done to maximize
1427 /// fallthrough opportunities.
1428 MachineBasicBlock *
1429 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
1430                                         const BlockFilterSet &LoopBlockSet) {
1431   // We don't want to layout the loop linearly in all cases. If the loop header
1432   // is just a normal basic block in the loop, we want to look for what block
1433   // within the loop is the best one to layout at the top. However, if the loop
1434   // header has be pre-merged into a chain due to predecessors not having
1435   // analyzable branches, *and* the predecessor it is merged with is *not* part
1436   // of the loop, rotating the header into the middle of the loop will create
1437   // a non-contiguous range of blocks which is Very Bad. So start with the
1438   // header and only rotate if safe.
1439   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1440   if (!LoopBlockSet.count(*HeaderChain.begin()))
1441     return nullptr;
1442 
1443   BlockFrequency BestExitEdgeFreq;
1444   unsigned BestExitLoopDepth = 0;
1445   MachineBasicBlock *ExitingBB = nullptr;
1446   // If there are exits to outer loops, loop rotation can severely limit
1447   // fallthrough opportunities unless it selects such an exit. Keep a set of
1448   // blocks where rotating to exit with that block will reach an outer loop.
1449   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1450 
1451   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1452                << "\n");
1453   for (MachineBasicBlock *MBB : L.getBlocks()) {
1454     BlockChain &Chain = *BlockToChain[MBB];
1455     // Ensure that this block is at the end of a chain; otherwise it could be
1456     // mid-way through an inner loop or a successor of an unanalyzable branch.
1457     if (MBB != *std::prev(Chain.end()))
1458       continue;
1459 
1460     // Now walk the successors. We need to establish whether this has a viable
1461     // exiting successor and whether it has a viable non-exiting successor.
1462     // We store the old exiting state and restore it if a viable looping
1463     // successor isn't found.
1464     MachineBasicBlock *OldExitingBB = ExitingBB;
1465     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1466     bool HasLoopingSucc = false;
1467     for (MachineBasicBlock *Succ : MBB->successors()) {
1468       if (Succ->isEHPad())
1469         continue;
1470       if (Succ == MBB)
1471         continue;
1472       BlockChain &SuccChain = *BlockToChain[Succ];
1473       // Don't split chains, either this chain or the successor's chain.
1474       if (&Chain == &SuccChain) {
1475         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1476                      << getBlockName(Succ) << " (chain conflict)\n");
1477         continue;
1478       }
1479 
1480       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1481       if (LoopBlockSet.count(Succ)) {
1482         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1483                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1484         HasLoopingSucc = true;
1485         continue;
1486       }
1487 
1488       unsigned SuccLoopDepth = 0;
1489       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1490         SuccLoopDepth = ExitLoop->getLoopDepth();
1491         if (ExitLoop->contains(&L))
1492           BlocksExitingToOuterLoop.insert(MBB);
1493       }
1494 
1495       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1496       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1497                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1498             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1499       // Note that we bias this toward an existing layout successor to retain
1500       // incoming order in the absence of better information. The exit must have
1501       // a frequency higher than the current exit before we consider breaking
1502       // the layout.
1503       BranchProbability Bias(100 - ExitBlockBias, 100);
1504       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1505           ExitEdgeFreq > BestExitEdgeFreq ||
1506           (MBB->isLayoutSuccessor(Succ) &&
1507            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1508         BestExitEdgeFreq = ExitEdgeFreq;
1509         ExitingBB = MBB;
1510       }
1511     }
1512 
1513     if (!HasLoopingSucc) {
1514       // Restore the old exiting state, no viable looping successor was found.
1515       ExitingBB = OldExitingBB;
1516       BestExitEdgeFreq = OldBestExitEdgeFreq;
1517     }
1518   }
1519   // Without a candidate exiting block or with only a single block in the
1520   // loop, just use the loop header to layout the loop.
1521   if (!ExitingBB) {
1522     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1523     return nullptr;
1524   }
1525   if (L.getNumBlocks() == 1) {
1526     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1527     return nullptr;
1528   }
1529 
1530   // Also, if we have exit blocks which lead to outer loops but didn't select
1531   // one of them as the exiting block we are rotating toward, disable loop
1532   // rotation altogether.
1533   if (!BlocksExitingToOuterLoop.empty() &&
1534       !BlocksExitingToOuterLoop.count(ExitingBB))
1535     return nullptr;
1536 
1537   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1538   return ExitingBB;
1539 }
1540 
1541 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1542 ///
1543 /// Once we have built a chain, try to rotate it to line up the hot exit block
1544 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1545 /// branches. For example, if the loop has fallthrough into its header and out
1546 /// of its bottom already, don't rotate it.
1547 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1548                                        const MachineBasicBlock *ExitingBB,
1549                                        const BlockFilterSet &LoopBlockSet) {
1550   if (!ExitingBB)
1551     return;
1552 
1553   MachineBasicBlock *Top = *LoopChain.begin();
1554   bool ViableTopFallthrough = false;
1555   for (MachineBasicBlock *Pred : Top->predecessors()) {
1556     BlockChain *PredChain = BlockToChain[Pred];
1557     if (!LoopBlockSet.count(Pred) &&
1558         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1559       ViableTopFallthrough = true;
1560       break;
1561     }
1562   }
1563 
1564   // If the header has viable fallthrough, check whether the current loop
1565   // bottom is a viable exiting block. If so, bail out as rotating will
1566   // introduce an unnecessary branch.
1567   if (ViableTopFallthrough) {
1568     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1569     for (MachineBasicBlock *Succ : Bottom->successors()) {
1570       BlockChain *SuccChain = BlockToChain[Succ];
1571       if (!LoopBlockSet.count(Succ) &&
1572           (!SuccChain || Succ == *SuccChain->begin()))
1573         return;
1574     }
1575   }
1576 
1577   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1578   if (ExitIt == LoopChain.end())
1579     return;
1580 
1581   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1582 }
1583 
1584 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1585 ///
1586 /// With profile data, we can determine the cost in terms of missed fall through
1587 /// opportunities when rotating a loop chain and select the best rotation.
1588 /// Basically, there are three kinds of cost to consider for each rotation:
1589 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1590 ///    the loop to the loop header.
1591 ///    2. The possibly missed fall through edges (if they exist) from the loop
1592 ///    exits to BB out of the loop.
1593 ///    3. The missed fall through edge (if it exists) from the last BB to the
1594 ///    first BB in the loop chain.
1595 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1596 ///  We select the best rotation with the smallest cost.
1597 void MachineBlockPlacement::rotateLoopWithProfile(
1598     BlockChain &LoopChain, const MachineLoop &L,
1599     const BlockFilterSet &LoopBlockSet) {
1600   auto HeaderBB = L.getHeader();
1601   auto HeaderIter = find(LoopChain, HeaderBB);
1602   auto RotationPos = LoopChain.end();
1603 
1604   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1605 
1606   // A utility lambda that scales up a block frequency by dividing it by a
1607   // branch probability which is the reciprocal of the scale.
1608   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1609                                 unsigned Scale) -> BlockFrequency {
1610     if (Scale == 0)
1611       return 0;
1612     // Use operator / between BlockFrequency and BranchProbability to implement
1613     // saturating multiplication.
1614     return Freq / BranchProbability(1, Scale);
1615   };
1616 
1617   // Compute the cost of the missed fall-through edge to the loop header if the
1618   // chain head is not the loop header. As we only consider natural loops with
1619   // single header, this computation can be done only once.
1620   BlockFrequency HeaderFallThroughCost(0);
1621   for (auto *Pred : HeaderBB->predecessors()) {
1622     BlockChain *PredChain = BlockToChain[Pred];
1623     if (!LoopBlockSet.count(Pred) &&
1624         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1625       auto EdgeFreq =
1626           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1627       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1628       // If the predecessor has only an unconditional jump to the header, we
1629       // need to consider the cost of this jump.
1630       if (Pred->succ_size() == 1)
1631         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1632       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1633     }
1634   }
1635 
1636   // Here we collect all exit blocks in the loop, and for each exit we find out
1637   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1638   // as the sum of frequencies of exit edges we collect here, excluding the exit
1639   // edge from the tail of the loop chain.
1640   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1641   for (auto BB : LoopChain) {
1642     auto LargestExitEdgeProb = BranchProbability::getZero();
1643     for (auto *Succ : BB->successors()) {
1644       BlockChain *SuccChain = BlockToChain[Succ];
1645       if (!LoopBlockSet.count(Succ) &&
1646           (!SuccChain || Succ == *SuccChain->begin())) {
1647         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1648         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1649       }
1650     }
1651     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1652       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1653       ExitsWithFreq.emplace_back(BB, ExitFreq);
1654     }
1655   }
1656 
1657   // In this loop we iterate every block in the loop chain and calculate the
1658   // cost assuming the block is the head of the loop chain. When the loop ends,
1659   // we should have found the best candidate as the loop chain's head.
1660   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1661             EndIter = LoopChain.end();
1662        Iter != EndIter; Iter++, TailIter++) {
1663     // TailIter is used to track the tail of the loop chain if the block we are
1664     // checking (pointed by Iter) is the head of the chain.
1665     if (TailIter == LoopChain.end())
1666       TailIter = LoopChain.begin();
1667 
1668     auto TailBB = *TailIter;
1669 
1670     // Calculate the cost by putting this BB to the top.
1671     BlockFrequency Cost = 0;
1672 
1673     // If the current BB is the loop header, we need to take into account the
1674     // cost of the missed fall through edge from outside of the loop to the
1675     // header.
1676     if (Iter != HeaderIter)
1677       Cost += HeaderFallThroughCost;
1678 
1679     // Collect the loop exit cost by summing up frequencies of all exit edges
1680     // except the one from the chain tail.
1681     for (auto &ExitWithFreq : ExitsWithFreq)
1682       if (TailBB != ExitWithFreq.first)
1683         Cost += ExitWithFreq.second;
1684 
1685     // The cost of breaking the once fall-through edge from the tail to the top
1686     // of the loop chain. Here we need to consider three cases:
1687     // 1. If the tail node has only one successor, then we will get an
1688     //    additional jmp instruction. So the cost here is (MisfetchCost +
1689     //    JumpInstCost) * tail node frequency.
1690     // 2. If the tail node has two successors, then we may still get an
1691     //    additional jmp instruction if the layout successor after the loop
1692     //    chain is not its CFG successor. Note that the more frequently executed
1693     //    jmp instruction will be put ahead of the other one. Assume the
1694     //    frequency of those two branches are x and y, where x is the frequency
1695     //    of the edge to the chain head, then the cost will be
1696     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1697     // 3. If the tail node has more than two successors (this rarely happens),
1698     //    we won't consider any additional cost.
1699     if (TailBB->isSuccessor(*Iter)) {
1700       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1701       if (TailBB->succ_size() == 1)
1702         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1703                                     MisfetchCost + JumpInstCost);
1704       else if (TailBB->succ_size() == 2) {
1705         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1706         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1707         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1708                                   ? TailBBFreq * TailToHeadProb.getCompl()
1709                                   : TailToHeadFreq;
1710         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1711                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1712       }
1713     }
1714 
1715     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1716                  << " to the top: " << Cost.getFrequency() << "\n");
1717 
1718     if (Cost < SmallestRotationCost) {
1719       SmallestRotationCost = Cost;
1720       RotationPos = Iter;
1721     }
1722   }
1723 
1724   if (RotationPos != LoopChain.end()) {
1725     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1726                  << " to the top\n");
1727     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1728   }
1729 }
1730 
1731 /// \brief Collect blocks in the given loop that are to be placed.
1732 ///
1733 /// When profile data is available, exclude cold blocks from the returned set;
1734 /// otherwise, collect all blocks in the loop.
1735 MachineBlockPlacement::BlockFilterSet
1736 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
1737   BlockFilterSet LoopBlockSet;
1738 
1739   // Filter cold blocks off from LoopBlockSet when profile data is available.
1740   // Collect the sum of frequencies of incoming edges to the loop header from
1741   // outside. If we treat the loop as a super block, this is the frequency of
1742   // the loop. Then for each block in the loop, we calculate the ratio between
1743   // its frequency and the frequency of the loop block. When it is too small,
1744   // don't add it to the loop chain. If there are outer loops, then this block
1745   // will be merged into the first outer loop chain for which this block is not
1746   // cold anymore. This needs precise profile data and we only do this when
1747   // profile data is available.
1748   if (F->getFunction()->getEntryCount()) {
1749     BlockFrequency LoopFreq(0);
1750     for (auto LoopPred : L.getHeader()->predecessors())
1751       if (!L.contains(LoopPred))
1752         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1753                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1754 
1755     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1756       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1757       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1758         continue;
1759       LoopBlockSet.insert(LoopBB);
1760     }
1761   } else
1762     LoopBlockSet.insert(L.block_begin(), L.block_end());
1763 
1764   return LoopBlockSet;
1765 }
1766 
1767 /// \brief Forms basic block chains from the natural loop structures.
1768 ///
1769 /// These chains are designed to preserve the existing *structure* of the code
1770 /// as much as possible. We can then stitch the chains together in a way which
1771 /// both preserves the topological structure and minimizes taken conditional
1772 /// branches.
1773 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
1774   // First recurse through any nested loops, building chains for those inner
1775   // loops.
1776   for (const MachineLoop *InnerLoop : L)
1777     buildLoopChains(*InnerLoop);
1778 
1779   assert(BlockWorkList.empty());
1780   assert(EHPadWorkList.empty());
1781   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1782 
1783   // Check if we have profile data for this function. If yes, we will rotate
1784   // this loop by modeling costs more precisely which requires the profile data
1785   // for better layout.
1786   bool RotateLoopWithProfile =
1787       ForcePreciseRotationCost ||
1788       (PreciseRotationCost && F->getFunction()->getEntryCount());
1789 
1790   // First check to see if there is an obviously preferable top block for the
1791   // loop. This will default to the header, but may end up as one of the
1792   // predecessors to the header if there is one which will result in strictly
1793   // fewer branches in the loop body.
1794   // When we use profile data to rotate the loop, this is unnecessary.
1795   MachineBasicBlock *LoopTop =
1796       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1797 
1798   // If we selected just the header for the loop top, look for a potentially
1799   // profitable exit block in the event that rotating the loop can eliminate
1800   // branches by placing an exit edge at the bottom.
1801   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1802     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
1803 
1804   BlockChain &LoopChain = *BlockToChain[LoopTop];
1805 
1806   // FIXME: This is a really lame way of walking the chains in the loop: we
1807   // walk the blocks, and use a set to prevent visiting a particular chain
1808   // twice.
1809   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1810   assert(LoopChain.UnscheduledPredecessors == 0);
1811   UpdatedPreds.insert(&LoopChain);
1812 
1813   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
1814     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
1815 
1816   buildChain(LoopTop, LoopChain, &LoopBlockSet);
1817 
1818   if (RotateLoopWithProfile)
1819     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1820   else
1821     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
1822 
1823   DEBUG({
1824     // Crash at the end so we get all of the debugging output first.
1825     bool BadLoop = false;
1826     if (LoopChain.UnscheduledPredecessors) {
1827       BadLoop = true;
1828       dbgs() << "Loop chain contains a block without its preds placed!\n"
1829              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1830              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1831     }
1832     for (MachineBasicBlock *ChainBB : LoopChain) {
1833       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1834       if (!LoopBlockSet.remove(ChainBB)) {
1835         // We don't mark the loop as bad here because there are real situations
1836         // where this can occur. For example, with an unanalyzable fallthrough
1837         // from a loop block to a non-loop block or vice versa.
1838         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1839                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1840                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1841                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1842       }
1843     }
1844 
1845     if (!LoopBlockSet.empty()) {
1846       BadLoop = true;
1847       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
1848         dbgs() << "Loop contains blocks never placed into a chain!\n"
1849                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1850                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1851                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1852     }
1853     assert(!BadLoop && "Detected problems with the placement of this loop.");
1854   });
1855 
1856   BlockWorkList.clear();
1857   EHPadWorkList.clear();
1858 }
1859 
1860 /// When OutlineOpitonalBranches is on, this method collects BBs that
1861 /// dominates all terminator blocks of the function \p F.
1862 void MachineBlockPlacement::collectMustExecuteBBs() {
1863   if (OutlineOptionalBranches) {
1864     // Find the nearest common dominator of all of F's terminators.
1865     MachineBasicBlock *Terminator = nullptr;
1866     for (MachineBasicBlock &MBB : *F) {
1867       if (MBB.succ_size() == 0) {
1868         if (Terminator == nullptr)
1869           Terminator = &MBB;
1870         else
1871           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1872       }
1873     }
1874 
1875     // MBBs dominating this common dominator are unavoidable.
1876     UnavoidableBlocks.clear();
1877     for (MachineBasicBlock &MBB : *F) {
1878       if (MDT->dominates(&MBB, Terminator)) {
1879         UnavoidableBlocks.insert(&MBB);
1880       }
1881     }
1882   }
1883 }
1884 
1885 void MachineBlockPlacement::buildCFGChains() {
1886   // Ensure that every BB in the function has an associated chain to simplify
1887   // the assumptions of the remaining algorithm.
1888   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1889   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1890        ++FI) {
1891     MachineBasicBlock *BB = &*FI;
1892     BlockChain *Chain =
1893         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1894     // Also, merge any blocks which we cannot reason about and must preserve
1895     // the exact fallthrough behavior for.
1896     for (;;) {
1897       Cond.clear();
1898       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1899       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1900         break;
1901 
1902       MachineFunction::iterator NextFI = std::next(FI);
1903       MachineBasicBlock *NextBB = &*NextFI;
1904       // Ensure that the layout successor is a viable block, as we know that
1905       // fallthrough is a possibility.
1906       assert(NextFI != FE && "Can't fallthrough past the last block.");
1907       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1908                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1909                    << "\n");
1910       Chain->merge(NextBB, nullptr);
1911 #ifndef NDEBUG
1912       BlocksWithUnanalyzableExits.insert(&*BB);
1913 #endif
1914       FI = NextFI;
1915       BB = NextBB;
1916     }
1917   }
1918 
1919   // Turned on with OutlineOptionalBranches option
1920   collectMustExecuteBBs();
1921 
1922   // Build any loop-based chains.
1923   PreferredLoopExit = nullptr;
1924   for (MachineLoop *L : *MLI)
1925     buildLoopChains(*L);
1926 
1927   assert(BlockWorkList.empty());
1928   assert(EHPadWorkList.empty());
1929 
1930   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1931   for (MachineBasicBlock &MBB : *F)
1932     fillWorkLists(&MBB, UpdatedPreds);
1933 
1934   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1935   buildChain(&F->front(), FunctionChain);
1936 
1937 #ifndef NDEBUG
1938   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1939 #endif
1940   DEBUG({
1941     // Crash at the end so we get all of the debugging output first.
1942     bool BadFunc = false;
1943     FunctionBlockSetType FunctionBlockSet;
1944     for (MachineBasicBlock &MBB : *F)
1945       FunctionBlockSet.insert(&MBB);
1946 
1947     for (MachineBasicBlock *ChainBB : FunctionChain)
1948       if (!FunctionBlockSet.erase(ChainBB)) {
1949         BadFunc = true;
1950         dbgs() << "Function chain contains a block not in the function!\n"
1951                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1952       }
1953 
1954     if (!FunctionBlockSet.empty()) {
1955       BadFunc = true;
1956       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1957         dbgs() << "Function contains blocks never placed into a chain!\n"
1958                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1959     }
1960     assert(!BadFunc && "Detected problems with the block placement.");
1961   });
1962 
1963   // Splice the blocks into place.
1964   MachineFunction::iterator InsertPos = F->begin();
1965   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1966   for (MachineBasicBlock *ChainBB : FunctionChain) {
1967     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1968                                                        : "          ... ")
1969                  << getBlockName(ChainBB) << "\n");
1970     if (InsertPos != MachineFunction::iterator(ChainBB))
1971       F->splice(InsertPos, ChainBB);
1972     else
1973       ++InsertPos;
1974 
1975     // Update the terminator of the previous block.
1976     if (ChainBB == *FunctionChain.begin())
1977       continue;
1978     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1979 
1980     // FIXME: It would be awesome of updateTerminator would just return rather
1981     // than assert when the branch cannot be analyzed in order to remove this
1982     // boiler plate.
1983     Cond.clear();
1984     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1985 
1986 #ifndef NDEBUG
1987     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
1988       // Given the exact block placement we chose, we may actually not _need_ to
1989       // be able to edit PrevBB's terminator sequence, but not being _able_ to
1990       // do that at this point is a bug.
1991       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
1992               !PrevBB->canFallThrough()) &&
1993              "Unexpected block with un-analyzable fallthrough!");
1994       Cond.clear();
1995       TBB = FBB = nullptr;
1996     }
1997 #endif
1998 
1999     // The "PrevBB" is not yet updated to reflect current code layout, so,
2000     //   o. it may fall-through to a block without explicit "goto" instruction
2001     //      before layout, and no longer fall-through it after layout; or
2002     //   o. just opposite.
2003     //
2004     // analyzeBranch() may return erroneous value for FBB when these two
2005     // situations take place. For the first scenario FBB is mistakenly set NULL;
2006     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2007     // mistakenly pointing to "*BI".
2008     // Thus, if the future change needs to use FBB before the layout is set, it
2009     // has to correct FBB first by using the code similar to the following:
2010     //
2011     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2012     //   PrevBB->updateTerminator();
2013     //   Cond.clear();
2014     //   TBB = FBB = nullptr;
2015     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2016     //     // FIXME: This should never take place.
2017     //     TBB = FBB = nullptr;
2018     //   }
2019     // }
2020     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2021       PrevBB->updateTerminator();
2022   }
2023 
2024   // Fixup the last block.
2025   Cond.clear();
2026   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2027   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2028     F->back().updateTerminator();
2029 
2030   BlockWorkList.clear();
2031   EHPadWorkList.clear();
2032 }
2033 
2034 void MachineBlockPlacement::optimizeBranches() {
2035   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2036   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2037 
2038   // Now that all the basic blocks in the chain have the proper layout,
2039   // make a final call to AnalyzeBranch with AllowModify set.
2040   // Indeed, the target may be able to optimize the branches in a way we
2041   // cannot because all branches may not be analyzable.
2042   // E.g., the target may be able to remove an unconditional branch to
2043   // a fallthrough when it occurs after predicated terminators.
2044   for (MachineBasicBlock *ChainBB : FunctionChain) {
2045     Cond.clear();
2046     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2047     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2048       // If PrevBB has a two-way branch, try to re-order the branches
2049       // such that we branch to the successor with higher probability first.
2050       if (TBB && !Cond.empty() && FBB &&
2051           MBPI->getEdgeProbability(ChainBB, FBB) >
2052               MBPI->getEdgeProbability(ChainBB, TBB) &&
2053           !TII->reverseBranchCondition(Cond)) {
2054         DEBUG(dbgs() << "Reverse order of the two branches: "
2055                      << getBlockName(ChainBB) << "\n");
2056         DEBUG(dbgs() << "    Edge probability: "
2057                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2058                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2059         DebugLoc dl; // FIXME: this is nowhere
2060         TII->removeBranch(*ChainBB);
2061         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2062         ChainBB->updateTerminator();
2063       }
2064     }
2065   }
2066 }
2067 
2068 void MachineBlockPlacement::alignBlocks() {
2069   // Walk through the backedges of the function now that we have fully laid out
2070   // the basic blocks and align the destination of each backedge. We don't rely
2071   // exclusively on the loop info here so that we can align backedges in
2072   // unnatural CFGs and backedges that were introduced purely because of the
2073   // loop rotations done during this layout pass.
2074   if (F->getFunction()->optForSize())
2075     return;
2076   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2077   if (FunctionChain.begin() == FunctionChain.end())
2078     return; // Empty chain.
2079 
2080   const BranchProbability ColdProb(1, 5); // 20%
2081   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2082   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2083   for (MachineBasicBlock *ChainBB : FunctionChain) {
2084     if (ChainBB == *FunctionChain.begin())
2085       continue;
2086 
2087     // Don't align non-looping basic blocks. These are unlikely to execute
2088     // enough times to matter in practice. Note that we'll still handle
2089     // unnatural CFGs inside of a natural outer loop (the common case) and
2090     // rotated loops.
2091     MachineLoop *L = MLI->getLoopFor(ChainBB);
2092     if (!L)
2093       continue;
2094 
2095     unsigned Align = TLI->getPrefLoopAlignment(L);
2096     if (!Align)
2097       continue; // Don't care about loop alignment.
2098 
2099     // If the block is cold relative to the function entry don't waste space
2100     // aligning it.
2101     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2102     if (Freq < WeightedEntryFreq)
2103       continue;
2104 
2105     // If the block is cold relative to its loop header, don't align it
2106     // regardless of what edges into the block exist.
2107     MachineBasicBlock *LoopHeader = L->getHeader();
2108     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2109     if (Freq < (LoopHeaderFreq * ColdProb))
2110       continue;
2111 
2112     // Check for the existence of a non-layout predecessor which would benefit
2113     // from aligning this block.
2114     MachineBasicBlock *LayoutPred =
2115         &*std::prev(MachineFunction::iterator(ChainBB));
2116 
2117     // Force alignment if all the predecessors are jumps. We already checked
2118     // that the block isn't cold above.
2119     if (!LayoutPred->isSuccessor(ChainBB)) {
2120       ChainBB->setAlignment(Align);
2121       continue;
2122     }
2123 
2124     // Align this block if the layout predecessor's edge into this block is
2125     // cold relative to the block. When this is true, other predecessors make up
2126     // all of the hot entries into the block and thus alignment is likely to be
2127     // important.
2128     BranchProbability LayoutProb =
2129         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2130     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2131     if (LayoutEdgeFreq <= (Freq * ColdProb))
2132       ChainBB->setAlignment(Align);
2133   }
2134 }
2135 
2136 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2137 /// it was duplicated into its chain predecessor and removed.
2138 /// \p BB    - Basic block that may be duplicated.
2139 ///
2140 /// \p LPred - Chosen layout predecessor of \p BB.
2141 ///            Updated to be the chain end if LPred is removed.
2142 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2143 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2144 ///                  Used to identify which blocks to update predecessor
2145 ///                  counts.
2146 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2147 ///                          chosen in the given order due to unnatural CFG
2148 ///                          only needed if \p BB is removed and
2149 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2150 /// @return true if \p BB was removed.
2151 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2152     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2153     const MachineBasicBlock *LoopHeaderBB,
2154     BlockChain &Chain, BlockFilterSet *BlockFilter,
2155     MachineFunction::iterator &PrevUnplacedBlockIt) {
2156   bool Removed, DuplicatedToLPred;
2157   bool DuplicatedToOriginalLPred;
2158   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2159                                     PrevUnplacedBlockIt,
2160                                     DuplicatedToLPred);
2161   if (!Removed)
2162     return false;
2163   DuplicatedToOriginalLPred = DuplicatedToLPred;
2164   // Iteratively try to duplicate again. It can happen that a block that is
2165   // duplicated into is still small enough to be duplicated again.
2166   // No need to call markBlockSuccessors in this case, as the blocks being
2167   // duplicated from here on are already scheduled.
2168   // Note that DuplicatedToLPred always implies Removed.
2169   while (DuplicatedToLPred) {
2170     assert (Removed && "Block must have been removed to be duplicated into its "
2171             "layout predecessor.");
2172     MachineBasicBlock *DupBB, *DupPred;
2173     // The removal callback causes Chain.end() to be updated when a block is
2174     // removed. On the first pass through the loop, the chain end should be the
2175     // same as it was on function entry. On subsequent passes, because we are
2176     // duplicating the block at the end of the chain, if it is removed the
2177     // chain will have shrunk by one block.
2178     BlockChain::iterator ChainEnd = Chain.end();
2179     DupBB = *(--ChainEnd);
2180     // Now try to duplicate again.
2181     if (ChainEnd == Chain.begin())
2182       break;
2183     DupPred = *std::prev(ChainEnd);
2184     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2185                                       PrevUnplacedBlockIt,
2186                                       DuplicatedToLPred);
2187   }
2188   // If BB was duplicated into LPred, it is now scheduled. But because it was
2189   // removed, markChainSuccessors won't be called for its chain. Instead we
2190   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2191   // at the end because repeating the tail duplication can increase the number
2192   // of unscheduled predecessors.
2193   LPred = *std::prev(Chain.end());
2194   if (DuplicatedToOriginalLPred)
2195     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2196   return true;
2197 }
2198 
2199 /// Tail duplicate \p BB into (some) predecessors if profitable.
2200 /// \p BB    - Basic block that may be duplicated
2201 /// \p LPred - Chosen layout predecessor of \p BB
2202 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2203 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2204 ///                  Used to identify which blocks to update predecessor
2205 ///                  counts.
2206 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2207 ///                          chosen in the given order due to unnatural CFG
2208 ///                          only needed if \p BB is removed and
2209 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2210 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2211 ///                        only be true if the block was removed.
2212 /// \return  - True if the block was duplicated into all preds and removed.
2213 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2214     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2215     BlockChain &Chain, BlockFilterSet *BlockFilter,
2216     MachineFunction::iterator &PrevUnplacedBlockIt,
2217     bool &DuplicatedToLPred) {
2218 
2219   DuplicatedToLPred = false;
2220   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
2221         << BB->getNumber() << "\n");
2222 
2223   if (!shouldTailDuplicate(BB))
2224     return false;
2225   // This has to be a callback because none of it can be done after
2226   // BB is deleted.
2227   bool Removed = false;
2228   auto RemovalCallback =
2229       [&](MachineBasicBlock *RemBB) {
2230         // Signal to outer function
2231         Removed = true;
2232 
2233         // Conservative default.
2234         bool InWorkList = true;
2235         // Remove from the Chain and Chain Map
2236         if (BlockToChain.count(RemBB)) {
2237           BlockChain *Chain = BlockToChain[RemBB];
2238           InWorkList = Chain->UnscheduledPredecessors == 0;
2239           Chain->remove(RemBB);
2240           BlockToChain.erase(RemBB);
2241         }
2242 
2243         // Handle the unplaced block iterator
2244         if (&(*PrevUnplacedBlockIt) == RemBB) {
2245           PrevUnplacedBlockIt++;
2246         }
2247 
2248         // Handle the Work Lists
2249         if (InWorkList) {
2250           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2251           if (RemBB->isEHPad())
2252             RemoveList = EHPadWorkList;
2253           RemoveList.erase(
2254               remove_if(RemoveList,
2255                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
2256               RemoveList.end());
2257         }
2258 
2259         // Handle the filter set
2260         if (BlockFilter) {
2261           BlockFilter->remove(RemBB);
2262         }
2263 
2264         // Remove the block from loop info.
2265         MLI->removeBlock(RemBB);
2266         if (RemBB == PreferredLoopExit)
2267           PreferredLoopExit = nullptr;
2268 
2269         DEBUG(dbgs() << "TailDuplicator deleted block: "
2270               << getBlockName(RemBB) << "\n");
2271       };
2272   auto RemovalCallbackRef =
2273       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2274 
2275   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2276   bool IsSimple = TailDup.isSimpleBB(BB);
2277   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2278                                  &DuplicatedPreds, &RemovalCallbackRef);
2279 
2280   // Update UnscheduledPredecessors to reflect tail-duplication.
2281   DuplicatedToLPred = false;
2282   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2283     // We're only looking for unscheduled predecessors that match the filter.
2284     BlockChain* PredChain = BlockToChain[Pred];
2285     if (Pred == LPred)
2286       DuplicatedToLPred = true;
2287     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2288         || PredChain == &Chain)
2289       continue;
2290     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2291       if (BlockFilter && !BlockFilter->count(NewSucc))
2292         continue;
2293       BlockChain *NewChain = BlockToChain[NewSucc];
2294       if (NewChain != &Chain && NewChain != PredChain)
2295         NewChain->UnscheduledPredecessors++;
2296     }
2297   }
2298   return Removed;
2299 }
2300 
2301 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2302   if (skipFunction(*MF.getFunction()))
2303     return false;
2304 
2305   // Check for single-block functions and skip them.
2306   if (std::next(MF.begin()) == MF.end())
2307     return false;
2308 
2309   F = &MF;
2310   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2311   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2312       getAnalysis<MachineBlockFrequencyInfo>());
2313   MLI = &getAnalysis<MachineLoopInfo>();
2314   TII = MF.getSubtarget().getInstrInfo();
2315   TLI = MF.getSubtarget().getTargetLowering();
2316   MDT = &getAnalysis<MachineDominatorTree>();
2317   MPDT = nullptr;
2318 
2319   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2320   // there are no MachineLoops.
2321   PreferredLoopExit = nullptr;
2322 
2323   if (TailDupPlacement) {
2324     MPDT = &getAnalysis<MachinePostDominatorTree>();
2325     unsigned TailDupSize = TailDupPlacementThreshold;
2326     if (MF.getFunction()->optForSize())
2327       TailDupSize = 1;
2328     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
2329   }
2330 
2331   assert(BlockToChain.empty());
2332 
2333   buildCFGChains();
2334 
2335   // Changing the layout can create new tail merging opportunities.
2336   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2337   // TailMerge can create jump into if branches that make CFG irreducible for
2338   // HW that requires structured CFG.
2339   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2340                          PassConfig->getEnableTailMerge() &&
2341                          BranchFoldPlacement;
2342   // No tail merging opportunities if the block number is less than four.
2343   if (MF.size() > 3 && EnableTailMerge) {
2344     unsigned TailMergeSize = TailDupPlacementThreshold + 1;
2345     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2346                     *MBPI, TailMergeSize);
2347 
2348     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2349                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2350                             /*AfterBlockPlacement=*/true)) {
2351       // Redo the layout if tail merging creates/removes/moves blocks.
2352       BlockToChain.clear();
2353       // Must redo the dominator tree if blocks were changed.
2354       MDT->runOnMachineFunction(MF);
2355       if (MPDT)
2356         MPDT->runOnMachineFunction(MF);
2357       ChainAllocator.DestroyAll();
2358       buildCFGChains();
2359     }
2360   }
2361 
2362   optimizeBranches();
2363   alignBlocks();
2364 
2365   BlockToChain.clear();
2366   ChainAllocator.DestroyAll();
2367 
2368   if (AlignAllBlock)
2369     // Align all of the blocks in the function to a specific alignment.
2370     for (MachineBasicBlock &MBB : MF)
2371       MBB.setAlignment(AlignAllBlock);
2372   else if (AlignAllNonFallThruBlocks) {
2373     // Align all of the blocks that have no fall-through predecessors to a
2374     // specific alignment.
2375     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2376       auto LayoutPred = std::prev(MBI);
2377       if (!LayoutPred->isSuccessor(&*MBI))
2378         MBI->setAlignment(AlignAllNonFallThruBlocks);
2379     }
2380   }
2381   if (ViewBlockLayoutWithBFI != GVDT_None &&
2382       (ViewBlockFreqFuncName.empty() ||
2383        F->getFunction()->getName().equals(ViewBlockFreqFuncName))) {
2384     MBFI->view(false);
2385   }
2386 
2387 
2388   // We always return true as we have no way to track whether the final order
2389   // differs from the original order.
2390   return true;
2391 }
2392 
2393 namespace {
2394 /// \brief A pass to compute block placement statistics.
2395 ///
2396 /// A separate pass to compute interesting statistics for evaluating block
2397 /// placement. This is separate from the actual placement pass so that they can
2398 /// be computed in the absence of any placement transformations or when using
2399 /// alternative placement strategies.
2400 class MachineBlockPlacementStats : public MachineFunctionPass {
2401   /// \brief A handle to the branch probability pass.
2402   const MachineBranchProbabilityInfo *MBPI;
2403 
2404   /// \brief A handle to the function-wide block frequency pass.
2405   const MachineBlockFrequencyInfo *MBFI;
2406 
2407 public:
2408   static char ID; // Pass identification, replacement for typeid
2409   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2410     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2411   }
2412 
2413   bool runOnMachineFunction(MachineFunction &F) override;
2414 
2415   void getAnalysisUsage(AnalysisUsage &AU) const override {
2416     AU.addRequired<MachineBranchProbabilityInfo>();
2417     AU.addRequired<MachineBlockFrequencyInfo>();
2418     AU.setPreservesAll();
2419     MachineFunctionPass::getAnalysisUsage(AU);
2420   }
2421 };
2422 }
2423 
2424 char MachineBlockPlacementStats::ID = 0;
2425 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2426 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2427                       "Basic Block Placement Stats", false, false)
2428 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2429 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2430 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2431                     "Basic Block Placement Stats", false, false)
2432 
2433 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2434   // Check for single-block functions and skip them.
2435   if (std::next(F.begin()) == F.end())
2436     return false;
2437 
2438   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2439   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2440 
2441   for (MachineBasicBlock &MBB : F) {
2442     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2443     Statistic &NumBranches =
2444         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2445     Statistic &BranchTakenFreq =
2446         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2447     for (MachineBasicBlock *Succ : MBB.successors()) {
2448       // Skip if this successor is a fallthrough.
2449       if (MBB.isLayoutSuccessor(Succ))
2450         continue;
2451 
2452       BlockFrequency EdgeFreq =
2453           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2454       ++NumBranches;
2455       BranchTakenFreq += EdgeFreq.getFrequency();
2456     }
2457   }
2458 
2459   return false;
2460 }
2461