1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absense of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #define DEBUG_TYPE "block-placement2" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Allocator.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/PostOrderIterator.h" 42 #include "llvm/ADT/SCCIterator.h" 43 #include "llvm/ADT/SmallPtrSet.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 STATISTIC(NumCondBranches, "Number of conditional branches"); 52 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 53 STATISTIC(CondBranchTakenFreq, 54 "Potential frequency of taking conditional branches"); 55 STATISTIC(UncondBranchTakenFreq, 56 "Potential frequency of taking unconditional branches"); 57 58 namespace { 59 /// \brief A structure for storing a weighted edge. 60 /// 61 /// This stores an edge and its weight, computed as the product of the 62 /// frequency that the starting block is entered with the probability of 63 /// a particular exit block. 64 struct WeightedEdge { 65 BlockFrequency EdgeFrequency; 66 MachineBasicBlock *From, *To; 67 68 bool operator<(const WeightedEdge &RHS) const { 69 return EdgeFrequency < RHS.EdgeFrequency; 70 } 71 }; 72 } 73 74 namespace { 75 class BlockChain; 76 /// \brief Type for our function-wide basic block -> block chain mapping. 77 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 78 } 79 80 namespace { 81 /// \brief A chain of blocks which will be laid out contiguously. 82 /// 83 /// This is the datastructure representing a chain of consecutive blocks that 84 /// are profitable to layout together in order to maximize fallthrough 85 /// probabilities. We also can use a block chain to represent a sequence of 86 /// basic blocks which have some external (correctness) requirement for 87 /// sequential layout. 88 /// 89 /// Eventually, the block chains will form a directed graph over the function. 90 /// We provide an SCC-supporting-iterator in order to quicky build and walk the 91 /// SCCs of block chains within a function. 92 /// 93 /// The block chains also have support for calculating and caching probability 94 /// information related to the chain itself versus other chains. This is used 95 /// for ranking during the final layout of block chains. 96 class BlockChain { 97 /// \brief The sequence of blocks belonging to this chain. 98 /// 99 /// This is the sequence of blocks for a particular chain. These will be laid 100 /// out in-order within the function. 101 SmallVector<MachineBasicBlock *, 4> Blocks; 102 103 /// \brief A handle to the function-wide basic block to block chain mapping. 104 /// 105 /// This is retained in each block chain to simplify the computation of child 106 /// block chains for SCC-formation and iteration. We store the edges to child 107 /// basic blocks, and map them back to their associated chains using this 108 /// structure. 109 BlockToChainMapType &BlockToChain; 110 111 public: 112 /// \brief Construct a new BlockChain. 113 /// 114 /// This builds a new block chain representing a single basic block in the 115 /// function. It also registers itself as the chain that block participates 116 /// in with the BlockToChain mapping. 117 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 118 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 119 assert(BB && "Cannot create a chain with a null basic block"); 120 BlockToChain[BB] = this; 121 } 122 123 /// \brief Iterator over blocks within the chain. 124 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 125 typedef SmallVectorImpl<MachineBasicBlock *>::reverse_iterator 126 reverse_iterator; 127 128 /// \brief Beginning of blocks within the chain. 129 iterator begin() { return Blocks.begin(); } 130 reverse_iterator rbegin() { return Blocks.rbegin(); } 131 132 /// \brief End of blocks within the chain. 133 iterator end() { return Blocks.end(); } 134 reverse_iterator rend() { return Blocks.rend(); } 135 136 /// \brief Merge a block chain into this one. 137 /// 138 /// This routine merges a block chain into this one. It takes care of forming 139 /// a contiguous sequence of basic blocks, updating the edge list, and 140 /// updating the block -> chain mapping. It does not free or tear down the 141 /// old chain, but the old chain's block list is no longer valid. 142 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 143 assert(BB); 144 assert(!Blocks.empty()); 145 146 // Fast path in case we don't have a chain already. 147 if (!Chain) { 148 assert(!BlockToChain[BB]); 149 Blocks.push_back(BB); 150 BlockToChain[BB] = this; 151 return; 152 } 153 154 assert(BB == *Chain->begin()); 155 assert(Chain->begin() != Chain->end()); 156 157 // Update the incoming blocks to point to this chain, and add them to the 158 // chain structure. 159 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 160 BI != BE; ++BI) { 161 Blocks.push_back(*BI); 162 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 163 BlockToChain[*BI] = this; 164 } 165 } 166 167 /// \brief Count of predecessors within the loop currently being processed. 168 /// 169 /// This count is updated at each loop we process to represent the number of 170 /// in-loop predecessors of this chain. 171 unsigned LoopPredecessors; 172 }; 173 } 174 175 namespace { 176 class MachineBlockPlacement : public MachineFunctionPass { 177 /// \brief A typedef for a block filter set. 178 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 179 180 /// \brief A handle to the branch probability pass. 181 const MachineBranchProbabilityInfo *MBPI; 182 183 /// \brief A handle to the function-wide block frequency pass. 184 const MachineBlockFrequencyInfo *MBFI; 185 186 /// \brief A handle to the loop info. 187 const MachineLoopInfo *MLI; 188 189 /// \brief A handle to the target's instruction info. 190 const TargetInstrInfo *TII; 191 192 /// \brief A handle to the target's lowering info. 193 const TargetLowering *TLI; 194 195 /// \brief Allocator and owner of BlockChain structures. 196 /// 197 /// We build BlockChains lazily by merging together high probability BB 198 /// sequences acording to the "Algo2" in the paper mentioned at the top of 199 /// the file. To reduce malloc traffic, we allocate them using this slab-like 200 /// allocator, and destroy them after the pass completes. 201 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 202 203 /// \brief Function wide BasicBlock to BlockChain mapping. 204 /// 205 /// This mapping allows efficiently moving from any given basic block to the 206 /// BlockChain it participates in, if any. We use it to, among other things, 207 /// allow implicitly defining edges between chains as the existing edges 208 /// between basic blocks. 209 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 210 211 void markChainSuccessors(BlockChain &Chain, 212 MachineBasicBlock *LoopHeaderBB, 213 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 214 const BlockFilterSet *BlockFilter = 0); 215 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 216 BlockChain &Chain, 217 const BlockFilterSet *BlockFilter); 218 MachineBasicBlock *selectBestCandidateBlock( 219 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 220 const BlockFilterSet *BlockFilter); 221 MachineBasicBlock *getFirstUnplacedBlock( 222 MachineFunction &F, 223 const BlockChain &PlacedChain, 224 MachineFunction::iterator &PrevUnplacedBlockIt, 225 const BlockFilterSet *BlockFilter); 226 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 227 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 228 const BlockFilterSet *BlockFilter = 0); 229 MachineBasicBlock *findBestLoopTop(MachineFunction &F, 230 MachineLoop &L, 231 const BlockFilterSet &LoopBlockSet); 232 void buildLoopChains(MachineFunction &F, MachineLoop &L); 233 void buildCFGChains(MachineFunction &F); 234 void AlignLoops(MachineFunction &F); 235 236 public: 237 static char ID; // Pass identification, replacement for typeid 238 MachineBlockPlacement() : MachineFunctionPass(ID) { 239 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 240 } 241 242 bool runOnMachineFunction(MachineFunction &F); 243 244 void getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.addRequired<MachineBranchProbabilityInfo>(); 246 AU.addRequired<MachineBlockFrequencyInfo>(); 247 AU.addRequired<MachineLoopInfo>(); 248 MachineFunctionPass::getAnalysisUsage(AU); 249 } 250 251 const char *getPassName() const { return "Block Placement"; } 252 }; 253 } 254 255 char MachineBlockPlacement::ID = 0; 256 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 257 "Branch Probability Basic Block Placement", false, false) 258 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 259 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 260 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 261 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 262 "Branch Probability Basic Block Placement", false, false) 263 264 FunctionPass *llvm::createMachineBlockPlacementPass() { 265 return new MachineBlockPlacement(); 266 } 267 268 #ifndef NDEBUG 269 /// \brief Helper to print the name of a MBB. 270 /// 271 /// Only used by debug logging. 272 static std::string getBlockName(MachineBasicBlock *BB) { 273 std::string Result; 274 raw_string_ostream OS(Result); 275 OS << "BB#" << BB->getNumber() 276 << " (derived from LLVM BB '" << BB->getName() << "')"; 277 OS.flush(); 278 return Result; 279 } 280 281 /// \brief Helper to print the number of a MBB. 282 /// 283 /// Only used by debug logging. 284 static std::string getBlockNum(MachineBasicBlock *BB) { 285 std::string Result; 286 raw_string_ostream OS(Result); 287 OS << "BB#" << BB->getNumber(); 288 OS.flush(); 289 return Result; 290 } 291 #endif 292 293 /// \brief Mark a chain's successors as having one fewer preds. 294 /// 295 /// When a chain is being merged into the "placed" chain, this routine will 296 /// quickly walk the successors of each block in the chain and mark them as 297 /// having one fewer active predecessor. It also adds any successors of this 298 /// chain which reach the zero-predecessor state to the worklist passed in. 299 void MachineBlockPlacement::markChainSuccessors( 300 BlockChain &Chain, 301 MachineBasicBlock *LoopHeaderBB, 302 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 303 const BlockFilterSet *BlockFilter) { 304 // Walk all the blocks in this chain, marking their successors as having 305 // a predecessor placed. 306 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 307 CBI != CBE; ++CBI) { 308 // Add any successors for which this is the only un-placed in-loop 309 // predecessor to the worklist as a viable candidate for CFG-neutral 310 // placement. No subsequent placement of this block will violate the CFG 311 // shape, so we get to use heuristics to choose a favorable placement. 312 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 313 SE = (*CBI)->succ_end(); 314 SI != SE; ++SI) { 315 if (BlockFilter && !BlockFilter->count(*SI)) 316 continue; 317 BlockChain &SuccChain = *BlockToChain[*SI]; 318 // Disregard edges within a fixed chain, or edges to the loop header. 319 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 320 continue; 321 322 // This is a cross-chain edge that is within the loop, so decrement the 323 // loop predecessor count of the destination chain. 324 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 325 BlockWorkList.push_back(*SuccChain.begin()); 326 } 327 } 328 } 329 330 /// \brief Select the best successor for a block. 331 /// 332 /// This looks across all successors of a particular block and attempts to 333 /// select the "best" one to be the layout successor. It only considers direct 334 /// successors which also pass the block filter. It will attempt to avoid 335 /// breaking CFG structure, but cave and break such structures in the case of 336 /// very hot successor edges. 337 /// 338 /// \returns The best successor block found, or null if none are viable. 339 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 340 MachineBasicBlock *BB, BlockChain &Chain, 341 const BlockFilterSet *BlockFilter) { 342 const BranchProbability HotProb(4, 5); // 80% 343 344 MachineBasicBlock *BestSucc = 0; 345 // FIXME: Due to the performance of the probability and weight routines in 346 // the MBPI analysis, we manually compute probabilities using the edge 347 // weights. This is suboptimal as it means that the somewhat subtle 348 // definition of edge weight semantics is encoded here as well. We should 349 // improve the MBPI interface to effeciently support query patterns such as 350 // this. 351 uint32_t BestWeight = 0; 352 uint32_t WeightScale = 0; 353 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 354 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 355 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 356 SE = BB->succ_end(); 357 SI != SE; ++SI) { 358 if (BlockFilter && !BlockFilter->count(*SI)) 359 continue; 360 BlockChain &SuccChain = *BlockToChain[*SI]; 361 if (&SuccChain == &Chain) { 362 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 363 continue; 364 } 365 if (*SI != *SuccChain.begin()) { 366 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 367 continue; 368 } 369 370 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 371 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 372 373 // Only consider successors which are either "hot", or wouldn't violate 374 // any CFG constraints. 375 if (SuccChain.LoopPredecessors != 0) { 376 if (SuccProb < HotProb) { 377 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n"); 378 continue; 379 } 380 381 // Make sure that a hot successor doesn't have a globally more important 382 // predecessor. 383 BlockFrequency CandidateEdgeFreq 384 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 385 bool BadCFGConflict = false; 386 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 387 PE = (*SI)->pred_end(); 388 PI != PE; ++PI) { 389 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 390 BlockToChain[*PI] == &Chain) 391 continue; 392 BlockFrequency PredEdgeFreq 393 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 394 if (PredEdgeFreq >= CandidateEdgeFreq) { 395 BadCFGConflict = true; 396 break; 397 } 398 } 399 if (BadCFGConflict) { 400 DEBUG(dbgs() << " " << getBlockName(*SI) 401 << " -> non-cold CFG conflict\n"); 402 continue; 403 } 404 } 405 406 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 407 << " (prob)" 408 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 409 << "\n"); 410 if (BestSucc && BestWeight >= SuccWeight) 411 continue; 412 BestSucc = *SI; 413 BestWeight = SuccWeight; 414 } 415 return BestSucc; 416 } 417 418 namespace { 419 /// \brief Predicate struct to detect blocks already placed. 420 class IsBlockPlaced { 421 const BlockChain &PlacedChain; 422 const BlockToChainMapType &BlockToChain; 423 424 public: 425 IsBlockPlaced(const BlockChain &PlacedChain, 426 const BlockToChainMapType &BlockToChain) 427 : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {} 428 429 bool operator()(MachineBasicBlock *BB) const { 430 return BlockToChain.lookup(BB) == &PlacedChain; 431 } 432 }; 433 } 434 435 /// \brief Select the best block from a worklist. 436 /// 437 /// This looks through the provided worklist as a list of candidate basic 438 /// blocks and select the most profitable one to place. The definition of 439 /// profitable only really makes sense in the context of a loop. This returns 440 /// the most frequently visited block in the worklist, which in the case of 441 /// a loop, is the one most desirable to be physically close to the rest of the 442 /// loop body in order to improve icache behavior. 443 /// 444 /// \returns The best block found, or null if none are viable. 445 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 446 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 447 const BlockFilterSet *BlockFilter) { 448 // Once we need to walk the worklist looking for a candidate, cleanup the 449 // worklist of already placed entries. 450 // FIXME: If this shows up on profiles, it could be folded (at the cost of 451 // some code complexity) into the loop below. 452 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 453 IsBlockPlaced(Chain, BlockToChain)), 454 WorkList.end()); 455 456 MachineBasicBlock *BestBlock = 0; 457 BlockFrequency BestFreq; 458 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 459 WBE = WorkList.end(); 460 WBI != WBE; ++WBI) { 461 assert(!BlockFilter || BlockFilter->count(*WBI)); 462 BlockChain &SuccChain = *BlockToChain[*WBI]; 463 if (&SuccChain == &Chain) { 464 DEBUG(dbgs() << " " << getBlockName(*WBI) 465 << " -> Already merged!\n"); 466 continue; 467 } 468 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 469 470 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 471 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq 472 << " (freq)\n"); 473 if (BestBlock && BestFreq >= CandidateFreq) 474 continue; 475 BestBlock = *WBI; 476 BestFreq = CandidateFreq; 477 } 478 return BestBlock; 479 } 480 481 /// \brief Retrieve the first unplaced basic block. 482 /// 483 /// This routine is called when we are unable to use the CFG to walk through 484 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 485 /// We walk through the function's blocks in order, starting from the 486 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 487 /// re-scanning the entire sequence on repeated calls to this routine. 488 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 489 MachineFunction &F, const BlockChain &PlacedChain, 490 MachineFunction::iterator &PrevUnplacedBlockIt, 491 const BlockFilterSet *BlockFilter) { 492 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 493 ++I) { 494 if (BlockFilter && !BlockFilter->count(I)) 495 continue; 496 if (BlockToChain[I] != &PlacedChain) { 497 PrevUnplacedBlockIt = I; 498 // Now select the head of the chain to which the unplaced block belongs 499 // as the block to place. This will force the entire chain to be placed, 500 // and satisfies the requirements of merging chains. 501 return *BlockToChain[I]->begin(); 502 } 503 } 504 return 0; 505 } 506 507 void MachineBlockPlacement::buildChain( 508 MachineBasicBlock *BB, 509 BlockChain &Chain, 510 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 511 const BlockFilterSet *BlockFilter) { 512 assert(BB); 513 assert(BlockToChain[BB] == &Chain); 514 MachineFunction &F = *BB->getParent(); 515 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 516 517 MachineBasicBlock *LoopHeaderBB = BB; 518 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 519 BB = *llvm::prior(Chain.end()); 520 for (;;) { 521 assert(BB); 522 assert(BlockToChain[BB] == &Chain); 523 assert(*llvm::prior(Chain.end()) == BB); 524 MachineBasicBlock *BestSucc = 0; 525 526 // Look for the best viable successor if there is one to place immediately 527 // after this block. 528 BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 529 530 // If an immediate successor isn't available, look for the best viable 531 // block among those we've identified as not violating the loop's CFG at 532 // this point. This won't be a fallthrough, but it will increase locality. 533 if (!BestSucc) 534 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 535 536 if (!BestSucc) { 537 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 538 BlockFilter); 539 if (!BestSucc) 540 break; 541 542 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 543 "layout successor until the CFG reduces\n"); 544 } 545 546 // Place this block, updating the datastructures to reflect its placement. 547 BlockChain &SuccChain = *BlockToChain[BestSucc]; 548 // Zero out LoopPredecessors for the successor we're about to merge in case 549 // we selected a successor that didn't fit naturally into the CFG. 550 SuccChain.LoopPredecessors = 0; 551 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 552 << " to " << getBlockNum(BestSucc) << "\n"); 553 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 554 Chain.merge(BestSucc, &SuccChain); 555 BB = *llvm::prior(Chain.end()); 556 }; 557 558 DEBUG(dbgs() << "Finished forming chain for header block " 559 << getBlockNum(*Chain.begin()) << "\n"); 560 } 561 562 /// \brief Find the best loop top block for layout. 563 /// 564 /// This routine implements the logic to analyze the loop looking for the best 565 /// block to layout at the top of the loop. Typically this is done to maximize 566 /// fallthrough opportunities. 567 MachineBasicBlock * 568 MachineBlockPlacement::findBestLoopTop(MachineFunction &F, 569 MachineLoop &L, 570 const BlockFilterSet &LoopBlockSet) { 571 BlockFrequency BestExitEdgeFreq; 572 MachineBasicBlock *ExitingBB = 0; 573 MachineBasicBlock *LoopingBB = 0; 574 // If there are exits to outer loops, loop rotation can severely limit 575 // fallthrough opportunites unless it selects such an exit. Keep a set of 576 // blocks where rotating to exit with that block will reach an outer loop. 577 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 578 579 DEBUG(dbgs() << "Finding best loop exit for: " 580 << getBlockName(L.getHeader()) << "\n"); 581 for (MachineLoop::block_iterator I = L.block_begin(), 582 E = L.block_end(); 583 I != E; ++I) { 584 BlockChain &Chain = *BlockToChain[*I]; 585 // Ensure that this block is at the end of a chain; otherwise it could be 586 // mid-way through an inner loop or a successor of an analyzable branch. 587 if (*I != *llvm::prior(Chain.end())) 588 continue; 589 590 // Now walk the successors. We need to establish whether this has a viable 591 // exiting successor and whether it has a viable non-exiting successor. 592 // We store the old exiting state and restore it if a viable looping 593 // successor isn't found. 594 MachineBasicBlock *OldExitingBB = ExitingBB; 595 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 596 // We also compute and store the best looping successor for use in layout. 597 MachineBasicBlock *BestLoopSucc = 0; 598 // FIXME: Due to the performance of the probability and weight routines in 599 // the MBPI analysis, we use the internal weights. This is only valid 600 // because it is purely a ranking function, we don't care about anything 601 // but the relative values. 602 uint32_t BestLoopSuccWeight = 0; 603 // FIXME: We also manually compute the probabilities to avoid quadratic 604 // behavior. 605 uint32_t WeightScale = 0; 606 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 607 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 608 SE = (*I)->succ_end(); 609 SI != SE; ++SI) { 610 if ((*SI)->isLandingPad()) 611 continue; 612 if (*SI == *I) 613 continue; 614 BlockChain &SuccChain = *BlockToChain[*SI]; 615 // Don't split chains, either this chain or the successor's chain. 616 if (&Chain == &SuccChain || *SI != *SuccChain.begin()) { 617 DEBUG(dbgs() << " " << (LoopBlockSet.count(*SI) ? "looping: " 618 : "exiting: ") 619 << getBlockName(*I) << " -> " 620 << getBlockName(*SI) << " (chain conflict)\n"); 621 continue; 622 } 623 624 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 625 if (LoopBlockSet.count(*SI)) { 626 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 627 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 628 if (BestLoopSucc && BestLoopSuccWeight >= SuccWeight) 629 continue; 630 631 BestLoopSucc = *SI; 632 BestLoopSuccWeight = SuccWeight; 633 continue; 634 } 635 636 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 637 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 638 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 639 << getBlockName(*SI) << " (" << ExitEdgeFreq << ")\n"); 640 // Note that we slightly bias this toward an existing layout successor to 641 // retain incoming order in the absence of better information. 642 // FIXME: Should we bias this more strongly? It's pretty weak. 643 if (!ExitingBB || ExitEdgeFreq > BestExitEdgeFreq || 644 ((*I)->isLayoutSuccessor(*SI) && 645 !(ExitEdgeFreq < BestExitEdgeFreq))) { 646 BestExitEdgeFreq = ExitEdgeFreq; 647 ExitingBB = *I; 648 } 649 650 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) 651 if (ExitLoop->contains(&L)) 652 BlocksExitingToOuterLoop.insert(*I); 653 } 654 655 // Restore the old exiting state, no viable looping successor was found. 656 if (!BestLoopSucc) { 657 ExitingBB = OldExitingBB; 658 BestExitEdgeFreq = OldBestExitEdgeFreq; 659 continue; 660 } 661 662 // If this was best exiting block thus far, also record the looping block. 663 if (ExitingBB == *I) 664 LoopingBB = BestLoopSucc; 665 } 666 // Without a candidate exitting block or with only a single block in the 667 // loop, just use the loop header to layout the loop. 668 if (!ExitingBB || L.getNumBlocks() == 1) 669 return L.getHeader(); 670 671 // Also, if we have exit blocks which lead to outer loops but didn't select 672 // one of them as the exiting block we are rotating toward, disable loop 673 // rotation altogether. 674 if (!BlocksExitingToOuterLoop.empty() && 675 !BlocksExitingToOuterLoop.count(ExitingBB)) 676 return L.getHeader(); 677 678 assert(LoopingBB && "All successors of a loop block are exit blocks!"); 679 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 680 DEBUG(dbgs() << " Best top block: " << getBlockName(LoopingBB) << "\n"); 681 return LoopingBB; 682 } 683 684 /// \brief Forms basic block chains from the natural loop structures. 685 /// 686 /// These chains are designed to preserve the existing *structure* of the code 687 /// as much as possible. We can then stitch the chains together in a way which 688 /// both preserves the topological structure and minimizes taken conditional 689 /// branches. 690 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 691 MachineLoop &L) { 692 // First recurse through any nested loops, building chains for those inner 693 // loops. 694 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 695 buildLoopChains(F, **LI); 696 697 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 698 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 699 700 MachineBasicBlock *LayoutTop = findBestLoopTop(F, L, LoopBlockSet); 701 BlockChain &LoopChain = *BlockToChain[LayoutTop]; 702 703 // FIXME: This is a really lame way of walking the chains in the loop: we 704 // walk the blocks, and use a set to prevent visiting a particular chain 705 // twice. 706 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 707 assert(BlockToChain[LayoutTop]->LoopPredecessors == 0); 708 UpdatedPreds.insert(BlockToChain[LayoutTop]); 709 for (MachineLoop::block_iterator BI = L.block_begin(), 710 BE = L.block_end(); 711 BI != BE; ++BI) { 712 BlockChain &Chain = *BlockToChain[*BI]; 713 if (!UpdatedPreds.insert(&Chain)) 714 continue; 715 716 assert(Chain.LoopPredecessors == 0); 717 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 718 BCI != BCE; ++BCI) { 719 assert(BlockToChain[*BCI] == &Chain); 720 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 721 PE = (*BCI)->pred_end(); 722 PI != PE; ++PI) { 723 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 724 continue; 725 ++Chain.LoopPredecessors; 726 } 727 } 728 729 if (Chain.LoopPredecessors == 0) 730 BlockWorkList.push_back(*Chain.begin()); 731 } 732 733 buildChain(LayoutTop, LoopChain, BlockWorkList, &LoopBlockSet); 734 735 DEBUG({ 736 // Crash at the end so we get all of the debugging output first. 737 bool BadLoop = false; 738 if (LoopChain.LoopPredecessors) { 739 BadLoop = true; 740 dbgs() << "Loop chain contains a block without its preds placed!\n" 741 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 742 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 743 } 744 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 745 BCI != BCE; ++BCI) 746 if (!LoopBlockSet.erase(*BCI)) { 747 // We don't mark the loop as bad here because there are real situations 748 // where this can occur. For example, with an unanalyzable fallthrough 749 // from a loop block to a non-loop block or vice versa. 750 dbgs() << "Loop chain contains a block not contained by the loop!\n" 751 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 752 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 753 << " Bad block: " << getBlockName(*BCI) << "\n"; 754 } 755 756 if (!LoopBlockSet.empty()) { 757 BadLoop = true; 758 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 759 LBE = LoopBlockSet.end(); 760 LBI != LBE; ++LBI) 761 dbgs() << "Loop contains blocks never placed into a chain!\n" 762 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 763 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 764 << " Bad block: " << getBlockName(*LBI) << "\n"; 765 } 766 assert(!BadLoop && "Detected problems with the placement of this loop."); 767 }); 768 } 769 770 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 771 // Ensure that every BB in the function has an associated chain to simplify 772 // the assumptions of the remaining algorithm. 773 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 774 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 775 MachineBasicBlock *BB = FI; 776 BlockChain *Chain 777 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 778 // Also, merge any blocks which we cannot reason about and must preserve 779 // the exact fallthrough behavior for. 780 for (;;) { 781 Cond.clear(); 782 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 783 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 784 break; 785 786 MachineFunction::iterator NextFI(llvm::next(FI)); 787 MachineBasicBlock *NextBB = NextFI; 788 // Ensure that the layout successor is a viable block, as we know that 789 // fallthrough is a possibility. 790 assert(NextFI != FE && "Can't fallthrough past the last block."); 791 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 792 << getBlockName(BB) << " -> " << getBlockName(NextBB) 793 << "\n"); 794 Chain->merge(NextBB, 0); 795 FI = NextFI; 796 BB = NextBB; 797 } 798 } 799 800 // Build any loop-based chains. 801 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 802 ++LI) 803 buildLoopChains(F, **LI); 804 805 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 806 807 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 808 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 809 MachineBasicBlock *BB = &*FI; 810 BlockChain &Chain = *BlockToChain[BB]; 811 if (!UpdatedPreds.insert(&Chain)) 812 continue; 813 814 assert(Chain.LoopPredecessors == 0); 815 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 816 BCI != BCE; ++BCI) { 817 assert(BlockToChain[*BCI] == &Chain); 818 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 819 PE = (*BCI)->pred_end(); 820 PI != PE; ++PI) { 821 if (BlockToChain[*PI] == &Chain) 822 continue; 823 ++Chain.LoopPredecessors; 824 } 825 } 826 827 if (Chain.LoopPredecessors == 0) 828 BlockWorkList.push_back(*Chain.begin()); 829 } 830 831 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 832 buildChain(&F.front(), FunctionChain, BlockWorkList); 833 834 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 835 DEBUG({ 836 // Crash at the end so we get all of the debugging output first. 837 bool BadFunc = false; 838 FunctionBlockSetType FunctionBlockSet; 839 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 840 FunctionBlockSet.insert(FI); 841 842 for (BlockChain::iterator BCI = FunctionChain.begin(), 843 BCE = FunctionChain.end(); 844 BCI != BCE; ++BCI) 845 if (!FunctionBlockSet.erase(*BCI)) { 846 BadFunc = true; 847 dbgs() << "Function chain contains a block not in the function!\n" 848 << " Bad block: " << getBlockName(*BCI) << "\n"; 849 } 850 851 if (!FunctionBlockSet.empty()) { 852 BadFunc = true; 853 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 854 FBE = FunctionBlockSet.end(); 855 FBI != FBE; ++FBI) 856 dbgs() << "Function contains blocks never placed into a chain!\n" 857 << " Bad block: " << getBlockName(*FBI) << "\n"; 858 } 859 assert(!BadFunc && "Detected problems with the block placement."); 860 }); 861 862 // Splice the blocks into place. 863 MachineFunction::iterator InsertPos = F.begin(); 864 for (BlockChain::iterator BI = FunctionChain.begin(), 865 BE = FunctionChain.end(); 866 BI != BE; ++BI) { 867 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 868 : " ... ") 869 << getBlockName(*BI) << "\n"); 870 if (InsertPos != MachineFunction::iterator(*BI)) 871 F.splice(InsertPos, *BI); 872 else 873 ++InsertPos; 874 875 // Update the terminator of the previous block. 876 if (BI == FunctionChain.begin()) 877 continue; 878 MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI)); 879 880 // FIXME: It would be awesome of updateTerminator would just return rather 881 // than assert when the branch cannot be analyzed in order to remove this 882 // boiler plate. 883 Cond.clear(); 884 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 885 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 886 PrevBB->updateTerminator(); 887 } 888 889 // Fixup the last block. 890 Cond.clear(); 891 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 892 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 893 F.back().updateTerminator(); 894 } 895 896 /// \brief Recursive helper to align a loop and any nested loops. 897 static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) { 898 // Recurse through nested loops. 899 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 900 AlignLoop(F, *I, Align); 901 902 L->getTopBlock()->setAlignment(Align); 903 } 904 905 /// \brief Align loop headers to target preferred alignments. 906 void MachineBlockPlacement::AlignLoops(MachineFunction &F) { 907 if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) 908 return; 909 910 unsigned Align = TLI->getPrefLoopAlignment(); 911 if (!Align) 912 return; // Don't care about loop alignment. 913 914 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) 915 AlignLoop(F, *I, Align); 916 } 917 918 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 919 // Check for single-block functions and skip them. 920 if (llvm::next(F.begin()) == F.end()) 921 return false; 922 923 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 924 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 925 MLI = &getAnalysis<MachineLoopInfo>(); 926 TII = F.getTarget().getInstrInfo(); 927 TLI = F.getTarget().getTargetLowering(); 928 assert(BlockToChain.empty()); 929 930 buildCFGChains(F); 931 AlignLoops(F); 932 933 BlockToChain.clear(); 934 ChainAllocator.DestroyAll(); 935 936 // We always return true as we have no way to track whether the final order 937 // differs from the original order. 938 return true; 939 } 940 941 namespace { 942 /// \brief A pass to compute block placement statistics. 943 /// 944 /// A separate pass to compute interesting statistics for evaluating block 945 /// placement. This is separate from the actual placement pass so that they can 946 /// be computed in the absense of any placement transformations or when using 947 /// alternative placement strategies. 948 class MachineBlockPlacementStats : public MachineFunctionPass { 949 /// \brief A handle to the branch probability pass. 950 const MachineBranchProbabilityInfo *MBPI; 951 952 /// \brief A handle to the function-wide block frequency pass. 953 const MachineBlockFrequencyInfo *MBFI; 954 955 public: 956 static char ID; // Pass identification, replacement for typeid 957 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 958 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 959 } 960 961 bool runOnMachineFunction(MachineFunction &F); 962 963 void getAnalysisUsage(AnalysisUsage &AU) const { 964 AU.addRequired<MachineBranchProbabilityInfo>(); 965 AU.addRequired<MachineBlockFrequencyInfo>(); 966 AU.setPreservesAll(); 967 MachineFunctionPass::getAnalysisUsage(AU); 968 } 969 970 const char *getPassName() const { return "Block Placement Stats"; } 971 }; 972 } 973 974 char MachineBlockPlacementStats::ID = 0; 975 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 976 "Basic Block Placement Stats", false, false) 977 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 978 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 979 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 980 "Basic Block Placement Stats", false, false) 981 982 FunctionPass *llvm::createMachineBlockPlacementStatsPass() { 983 return new MachineBlockPlacementStats(); 984 } 985 986 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 987 // Check for single-block functions and skip them. 988 if (llvm::next(F.begin()) == F.end()) 989 return false; 990 991 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 992 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 993 994 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 995 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 996 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 997 : NumUncondBranches; 998 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 999 : UncondBranchTakenFreq; 1000 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1001 SE = I->succ_end(); 1002 SI != SE; ++SI) { 1003 // Skip if this successor is a fallthrough. 1004 if (I->isLayoutSuccessor(*SI)) 1005 continue; 1006 1007 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1008 ++NumBranches; 1009 BranchTakenFreq += EdgeFreq.getFrequency(); 1010 } 1011 } 1012 1013 return false; 1014 } 1015 1016