1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/TailDuplicator.h" 44 #include "llvm/Support/Allocator.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 #include <algorithm> 52 using namespace llvm; 53 54 #define DEBUG_TYPE "block-placement" 55 56 STATISTIC(NumCondBranches, "Number of conditional branches"); 57 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 58 STATISTIC(CondBranchTakenFreq, 59 "Potential frequency of taking conditional branches"); 60 STATISTIC(UncondBranchTakenFreq, 61 "Potential frequency of taking unconditional branches"); 62 63 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 64 cl::desc("Force the alignment of all " 65 "blocks in the function."), 66 cl::init(0), cl::Hidden); 67 68 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 69 "align-all-nofallthru-blocks", 70 cl::desc("Force the alignment of all " 71 "blocks that have no fall-through predecessors (i.e. don't add " 72 "nops that are executed)."), 73 cl::init(0), cl::Hidden); 74 75 // FIXME: Find a good default for this flag and remove the flag. 76 static cl::opt<unsigned> ExitBlockBias( 77 "block-placement-exit-block-bias", 78 cl::desc("Block frequency percentage a loop exit block needs " 79 "over the original exit to be considered the new exit."), 80 cl::init(0), cl::Hidden); 81 82 // Definition: 83 // - Outlining: placement of a basic block outside the chain or hot path. 84 85 static cl::opt<bool> OutlineOptionalBranches( 86 "outline-optional-branches", 87 cl::desc("Outlining optional branches will place blocks that are optional " 88 "branches, i.e. branches with a common post dominator, outside " 89 "the hot path or chain"), 90 cl::init(false), cl::Hidden); 91 92 static cl::opt<unsigned> OutlineOptionalThreshold( 93 "outline-optional-threshold", 94 cl::desc("Don't outline optional branches that are a single block with an " 95 "instruction count below this threshold"), 96 cl::init(4), cl::Hidden); 97 98 static cl::opt<unsigned> LoopToColdBlockRatio( 99 "loop-to-cold-block-ratio", 100 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 101 "(frequency of block) is greater than this ratio"), 102 cl::init(5), cl::Hidden); 103 104 static cl::opt<bool> 105 PreciseRotationCost("precise-rotation-cost", 106 cl::desc("Model the cost of loop rotation more " 107 "precisely by using profile data."), 108 cl::init(false), cl::Hidden); 109 static cl::opt<bool> 110 ForcePreciseRotationCost("force-precise-rotation-cost", 111 cl::desc("Force the use of precise cost " 112 "loop rotation strategy."), 113 cl::init(false), cl::Hidden); 114 115 static cl::opt<unsigned> MisfetchCost( 116 "misfetch-cost", 117 cl::desc("Cost that models the probabilistic risk of an instruction " 118 "misfetch due to a jump comparing to falling through, whose cost " 119 "is zero."), 120 cl::init(1), cl::Hidden); 121 122 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 123 cl::desc("Cost of jump instructions."), 124 cl::init(1), cl::Hidden); 125 static cl::opt<bool> 126 TailDupPlacement("tail-dup-placement", 127 cl::desc("Perform tail duplication during placement. " 128 "Creates more fallthrough opportunites in " 129 "outline branches."), 130 cl::init(true), cl::Hidden); 131 132 static cl::opt<bool> 133 BranchFoldPlacement("branch-fold-placement", 134 cl::desc("Perform branch folding during placement. " 135 "Reduces code size."), 136 cl::init(true), cl::Hidden); 137 138 // Heuristic for tail duplication. 139 static cl::opt<unsigned> TailDuplicatePlacementThreshold( 140 "tail-dup-placement-threshold", 141 cl::desc("Instruction cutoff for tail duplication during layout. " 142 "Tail merging during layout is forced to have a threshold " 143 "that won't conflict."), cl::init(2), 144 cl::Hidden); 145 146 extern cl::opt<unsigned> StaticLikelyProb; 147 extern cl::opt<unsigned> ProfileLikelyProb; 148 149 namespace { 150 class BlockChain; 151 /// \brief Type for our function-wide basic block -> block chain mapping. 152 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 153 } 154 155 namespace { 156 /// \brief A chain of blocks which will be laid out contiguously. 157 /// 158 /// This is the datastructure representing a chain of consecutive blocks that 159 /// are profitable to layout together in order to maximize fallthrough 160 /// probabilities and code locality. We also can use a block chain to represent 161 /// a sequence of basic blocks which have some external (correctness) 162 /// requirement for sequential layout. 163 /// 164 /// Chains can be built around a single basic block and can be merged to grow 165 /// them. They participate in a block-to-chain mapping, which is updated 166 /// automatically as chains are merged together. 167 class BlockChain { 168 /// \brief The sequence of blocks belonging to this chain. 169 /// 170 /// This is the sequence of blocks for a particular chain. These will be laid 171 /// out in-order within the function. 172 SmallVector<MachineBasicBlock *, 4> Blocks; 173 174 /// \brief A handle to the function-wide basic block to block chain mapping. 175 /// 176 /// This is retained in each block chain to simplify the computation of child 177 /// block chains for SCC-formation and iteration. We store the edges to child 178 /// basic blocks, and map them back to their associated chains using this 179 /// structure. 180 BlockToChainMapType &BlockToChain; 181 182 public: 183 /// \brief Construct a new BlockChain. 184 /// 185 /// This builds a new block chain representing a single basic block in the 186 /// function. It also registers itself as the chain that block participates 187 /// in with the BlockToChain mapping. 188 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 189 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 190 assert(BB && "Cannot create a chain with a null basic block"); 191 BlockToChain[BB] = this; 192 } 193 194 /// \brief Iterator over blocks within the chain. 195 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 196 197 /// \brief Beginning of blocks within the chain. 198 iterator begin() { return Blocks.begin(); } 199 200 /// \brief End of blocks within the chain. 201 iterator end() { return Blocks.end(); } 202 203 bool remove(MachineBasicBlock* BB) { 204 for(iterator i = begin(); i != end(); ++i) { 205 if (*i == BB) { 206 Blocks.erase(i); 207 return true; 208 } 209 } 210 return false; 211 } 212 213 /// \brief Merge a block chain into this one. 214 /// 215 /// This routine merges a block chain into this one. It takes care of forming 216 /// a contiguous sequence of basic blocks, updating the edge list, and 217 /// updating the block -> chain mapping. It does not free or tear down the 218 /// old chain, but the old chain's block list is no longer valid. 219 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 220 assert(BB); 221 assert(!Blocks.empty()); 222 223 // Fast path in case we don't have a chain already. 224 if (!Chain) { 225 assert(!BlockToChain[BB]); 226 Blocks.push_back(BB); 227 BlockToChain[BB] = this; 228 return; 229 } 230 231 assert(BB == *Chain->begin()); 232 assert(Chain->begin() != Chain->end()); 233 234 // Update the incoming blocks to point to this chain, and add them to the 235 // chain structure. 236 for (MachineBasicBlock *ChainBB : *Chain) { 237 Blocks.push_back(ChainBB); 238 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 239 BlockToChain[ChainBB] = this; 240 } 241 } 242 243 #ifndef NDEBUG 244 /// \brief Dump the blocks in this chain. 245 LLVM_DUMP_METHOD void dump() { 246 for (MachineBasicBlock *MBB : *this) 247 MBB->dump(); 248 } 249 #endif // NDEBUG 250 251 /// \brief Count of predecessors of any block within the chain which have not 252 /// yet been scheduled. In general, we will delay scheduling this chain 253 /// until those predecessors are scheduled (or we find a sufficiently good 254 /// reason to override this heuristic.) Note that when forming loop chains, 255 /// blocks outside the loop are ignored and treated as if they were already 256 /// scheduled. 257 /// 258 /// Note: This field is reinitialized multiple times - once for each loop, 259 /// and then once for the function as a whole. 260 unsigned UnscheduledPredecessors; 261 }; 262 } 263 264 namespace { 265 class MachineBlockPlacement : public MachineFunctionPass { 266 /// \brief A typedef for a block filter set. 267 typedef SmallSetVector<MachineBasicBlock *, 16> BlockFilterSet; 268 269 /// \brief work lists of blocks that are ready to be laid out 270 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 271 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 272 273 /// \brief Machine Function 274 MachineFunction *F; 275 276 /// \brief A handle to the branch probability pass. 277 const MachineBranchProbabilityInfo *MBPI; 278 279 /// \brief A handle to the function-wide block frequency pass. 280 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 281 282 /// \brief A handle to the loop info. 283 MachineLoopInfo *MLI; 284 285 /// \brief Preferred loop exit. 286 /// Member variable for convenience. It may be removed by duplication deep 287 /// in the call stack. 288 MachineBasicBlock *PreferredLoopExit; 289 290 /// \brief A handle to the target's instruction info. 291 const TargetInstrInfo *TII; 292 293 /// \brief A handle to the target's lowering info. 294 const TargetLoweringBase *TLI; 295 296 /// \brief A handle to the post dominator tree. 297 MachineDominatorTree *MDT; 298 299 /// \brief Duplicator used to duplicate tails during placement. 300 /// 301 /// Placement decisions can open up new tail duplication opportunities, but 302 /// since tail duplication affects placement decisions of later blocks, it 303 /// must be done inline. 304 TailDuplicator TailDup; 305 306 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 307 /// all terminators of the MachineFunction. 308 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 309 310 /// \brief Allocator and owner of BlockChain structures. 311 /// 312 /// We build BlockChains lazily while processing the loop structure of 313 /// a function. To reduce malloc traffic, we allocate them using this 314 /// slab-like allocator, and destroy them after the pass completes. An 315 /// important guarantee is that this allocator produces stable pointers to 316 /// the chains. 317 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 318 319 /// \brief Function wide BasicBlock to BlockChain mapping. 320 /// 321 /// This mapping allows efficiently moving from any given basic block to the 322 /// BlockChain it participates in, if any. We use it to, among other things, 323 /// allow implicitly defining edges between chains as the existing edges 324 /// between basic blocks. 325 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 326 327 #ifndef NDEBUG 328 /// The set of basic blocks that have terminators that cannot be fully 329 /// analyzed. These basic blocks cannot be re-ordered safely by 330 /// MachineBlockPlacement, and we must preserve physical layout of these 331 /// blocks and their successors through the pass. 332 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 333 #endif 334 335 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 336 /// if the count goes to 0, add them to the appropriate work list. 337 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 338 const BlockFilterSet *BlockFilter = nullptr); 339 340 /// Decrease the UnscheduledPredecessors count for a single block, and 341 /// if the count goes to 0, add them to the appropriate work list. 342 void markBlockSuccessors( 343 BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB, 344 const BlockFilterSet *BlockFilter = nullptr); 345 346 347 BranchProbability 348 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 349 const BlockFilterSet *BlockFilter, 350 SmallVector<MachineBasicBlock *, 4> &Successors); 351 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 352 BlockChain &Chain, 353 const BlockFilterSet *BlockFilter, 354 BranchProbability SuccProb, 355 BranchProbability HotProb); 356 bool repeatedlyTailDuplicateBlock( 357 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 358 MachineBasicBlock *LoopHeaderBB, 359 BlockChain &Chain, BlockFilterSet *BlockFilter, 360 MachineFunction::iterator &PrevUnplacedBlockIt); 361 bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, 362 const BlockChain &Chain, 363 BlockFilterSet *BlockFilter, 364 MachineFunction::iterator &PrevUnplacedBlockIt, 365 bool &DuplicatedToPred); 366 bool 367 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 368 BlockChain &SuccChain, BranchProbability SuccProb, 369 BranchProbability RealSuccProb, BlockChain &Chain, 370 const BlockFilterSet *BlockFilter); 371 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 372 BlockChain &Chain, 373 const BlockFilterSet *BlockFilter); 374 MachineBasicBlock * 375 selectBestCandidateBlock(BlockChain &Chain, 376 SmallVectorImpl<MachineBasicBlock *> &WorkList); 377 MachineBasicBlock * 378 getFirstUnplacedBlock(const BlockChain &PlacedChain, 379 MachineFunction::iterator &PrevUnplacedBlockIt, 380 const BlockFilterSet *BlockFilter); 381 382 /// \brief Add a basic block to the work list if it is appropriate. 383 /// 384 /// If the optional parameter BlockFilter is provided, only MBB 385 /// present in the set will be added to the worklist. If nullptr 386 /// is provided, no filtering occurs. 387 void fillWorkLists(MachineBasicBlock *MBB, 388 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 389 const BlockFilterSet *BlockFilter); 390 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 391 BlockFilterSet *BlockFilter = nullptr); 392 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 393 const BlockFilterSet &LoopBlockSet); 394 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 395 const BlockFilterSet &LoopBlockSet); 396 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 397 void buildLoopChains(MachineLoop &L); 398 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 399 const BlockFilterSet &LoopBlockSet); 400 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 401 const BlockFilterSet &LoopBlockSet); 402 void collectMustExecuteBBs(); 403 void buildCFGChains(); 404 void optimizeBranches(); 405 void alignBlocks(); 406 407 public: 408 static char ID; // Pass identification, replacement for typeid 409 MachineBlockPlacement() : MachineFunctionPass(ID) { 410 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 411 } 412 413 bool runOnMachineFunction(MachineFunction &F) override; 414 415 void getAnalysisUsage(AnalysisUsage &AU) const override { 416 AU.addRequired<MachineBranchProbabilityInfo>(); 417 AU.addRequired<MachineBlockFrequencyInfo>(); 418 AU.addRequired<MachineDominatorTree>(); 419 AU.addRequired<MachineLoopInfo>(); 420 AU.addRequired<TargetPassConfig>(); 421 MachineFunctionPass::getAnalysisUsage(AU); 422 } 423 }; 424 } 425 426 char MachineBlockPlacement::ID = 0; 427 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 428 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 429 "Branch Probability Basic Block Placement", false, false) 430 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 431 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 432 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 433 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 434 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 435 "Branch Probability Basic Block Placement", false, false) 436 437 #ifndef NDEBUG 438 /// \brief Helper to print the name of a MBB. 439 /// 440 /// Only used by debug logging. 441 static std::string getBlockName(MachineBasicBlock *BB) { 442 std::string Result; 443 raw_string_ostream OS(Result); 444 OS << "BB#" << BB->getNumber(); 445 OS << " ('" << BB->getName() << "')"; 446 OS.flush(); 447 return Result; 448 } 449 #endif 450 451 /// \brief Mark a chain's successors as having one fewer preds. 452 /// 453 /// When a chain is being merged into the "placed" chain, this routine will 454 /// quickly walk the successors of each block in the chain and mark them as 455 /// having one fewer active predecessor. It also adds any successors of this 456 /// chain which reach the zero-predecessor state to the appropriate worklist. 457 void MachineBlockPlacement::markChainSuccessors( 458 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 459 const BlockFilterSet *BlockFilter) { 460 // Walk all the blocks in this chain, marking their successors as having 461 // a predecessor placed. 462 for (MachineBasicBlock *MBB : Chain) { 463 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 464 } 465 } 466 467 /// \brief Mark a single block's successors as having one fewer preds. 468 /// 469 /// Under normal circumstances, this is only called by markChainSuccessors, 470 /// but if a block that was to be placed is completely tail-duplicated away, 471 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 472 /// for just that block. 473 void MachineBlockPlacement::markBlockSuccessors( 474 BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB, 475 const BlockFilterSet *BlockFilter) { 476 // Add any successors for which this is the only un-placed in-loop 477 // predecessor to the worklist as a viable candidate for CFG-neutral 478 // placement. No subsequent placement of this block will violate the CFG 479 // shape, so we get to use heuristics to choose a favorable placement. 480 for (MachineBasicBlock *Succ : MBB->successors()) { 481 if (BlockFilter && !BlockFilter->count(Succ)) 482 continue; 483 BlockChain &SuccChain = *BlockToChain[Succ]; 484 // Disregard edges within a fixed chain, or edges to the loop header. 485 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 486 continue; 487 488 // This is a cross-chain edge that is within the loop, so decrement the 489 // loop predecessor count of the destination chain. 490 if (SuccChain.UnscheduledPredecessors == 0 || 491 --SuccChain.UnscheduledPredecessors > 0) 492 continue; 493 494 auto *NewBB = *SuccChain.begin(); 495 if (NewBB->isEHPad()) 496 EHPadWorkList.push_back(NewBB); 497 else 498 BlockWorkList.push_back(NewBB); 499 } 500 } 501 502 /// This helper function collects the set of successors of block 503 /// \p BB that are allowed to be its layout successors, and return 504 /// the total branch probability of edges from \p BB to those 505 /// blocks. 506 BranchProbability MachineBlockPlacement::collectViableSuccessors( 507 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 508 SmallVector<MachineBasicBlock *, 4> &Successors) { 509 // Adjust edge probabilities by excluding edges pointing to blocks that is 510 // either not in BlockFilter or is already in the current chain. Consider the 511 // following CFG: 512 // 513 // --->A 514 // | / \ 515 // | B C 516 // | \ / \ 517 // ----D E 518 // 519 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 520 // A->C is chosen as a fall-through, D won't be selected as a successor of C 521 // due to CFG constraint (the probability of C->D is not greater than 522 // HotProb to break top-order). If we exclude E that is not in BlockFilter 523 // when calculating the probability of C->D, D will be selected and we 524 // will get A C D B as the layout of this loop. 525 auto AdjustedSumProb = BranchProbability::getOne(); 526 for (MachineBasicBlock *Succ : BB->successors()) { 527 bool SkipSucc = false; 528 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 529 SkipSucc = true; 530 } else { 531 BlockChain *SuccChain = BlockToChain[Succ]; 532 if (SuccChain == &Chain) { 533 SkipSucc = true; 534 } else if (Succ != *SuccChain->begin()) { 535 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 536 continue; 537 } 538 } 539 if (SkipSucc) 540 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 541 else 542 Successors.push_back(Succ); 543 } 544 545 return AdjustedSumProb; 546 } 547 548 /// The helper function returns the branch probability that is adjusted 549 /// or normalized over the new total \p AdjustedSumProb. 550 static BranchProbability 551 getAdjustedProbability(BranchProbability OrigProb, 552 BranchProbability AdjustedSumProb) { 553 BranchProbability SuccProb; 554 uint32_t SuccProbN = OrigProb.getNumerator(); 555 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 556 if (SuccProbN >= SuccProbD) 557 SuccProb = BranchProbability::getOne(); 558 else 559 SuccProb = BranchProbability(SuccProbN, SuccProbD); 560 561 return SuccProb; 562 } 563 564 /// When the option OutlineOptionalBranches is on, this method 565 /// checks if the fallthrough candidate block \p Succ (of block 566 /// \p BB) also has other unscheduled predecessor blocks which 567 /// are also successors of \p BB (forming triangular shape CFG). 568 /// If none of such predecessors are small, it returns true. 569 /// The caller can choose to select \p Succ as the layout successors 570 /// so that \p Succ's predecessors (optional branches) can be 571 /// outlined. 572 /// FIXME: fold this with more general layout cost analysis. 573 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 574 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 575 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 576 BranchProbability HotProb) { 577 if (!OutlineOptionalBranches) 578 return false; 579 // If we outline optional branches, look whether Succ is unavoidable, i.e. 580 // dominates all terminators of the MachineFunction. If it does, other 581 // successors must be optional. Don't do this for cold branches. 582 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 583 for (MachineBasicBlock *Pred : Succ->predecessors()) { 584 // Check whether there is an unplaced optional branch. 585 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 586 BlockToChain[Pred] == &Chain) 587 continue; 588 // Check whether the optional branch has exactly one BB. 589 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 590 continue; 591 // Check whether the optional branch is small. 592 if (Pred->size() < OutlineOptionalThreshold) 593 return false; 594 } 595 return true; 596 } else 597 return false; 598 } 599 600 // When profile is not present, return the StaticLikelyProb. 601 // When profile is available, we need to handle the triangle-shape CFG. 602 static BranchProbability getLayoutSuccessorProbThreshold( 603 MachineBasicBlock *BB) { 604 if (!BB->getParent()->getFunction()->getEntryCount()) 605 return BranchProbability(StaticLikelyProb, 100); 606 if (BB->succ_size() == 2) { 607 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 608 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 609 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 610 /* See case 1 below for the cost analysis. For BB->Succ to 611 * be taken with smaller cost, the following needs to hold: 612 * Prob(BB->Succ) > 2* Prob(BB->Pred) 613 * So the threshold T 614 * T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1, 615 * We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified 616 * branch bias, we have 617 * T = (2/3)*(ProfileLikelyProb/50) 618 * = (2*ProfileLikelyProb)/150) 619 */ 620 return BranchProbability(2 * ProfileLikelyProb, 150); 621 } 622 } 623 return BranchProbability(ProfileLikelyProb, 100); 624 } 625 626 /// Checks to see if the layout candidate block \p Succ has a better layout 627 /// predecessor than \c BB. If yes, returns true. 628 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 629 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 630 BranchProbability SuccProb, BranchProbability RealSuccProb, 631 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 632 633 // There isn't a better layout when there are no unscheduled predecessors. 634 if (SuccChain.UnscheduledPredecessors == 0) 635 return false; 636 637 // There are two basic scenarios here: 638 // ------------------------------------- 639 // Case 1: triangular shape CFG (if-then): 640 // BB 641 // | \ 642 // | \ 643 // | Pred 644 // | / 645 // Succ 646 // In this case, we are evaluating whether to select edge -> Succ, e.g. 647 // set Succ as the layout successor of BB. Picking Succ as BB's 648 // successor breaks the CFG constraints (FIXME: define these constraints). 649 // With this layout, Pred BB 650 // is forced to be outlined, so the overall cost will be cost of the 651 // branch taken from BB to Pred, plus the cost of back taken branch 652 // from Pred to Succ, as well as the additional cost associated 653 // with the needed unconditional jump instruction from Pred To Succ. 654 655 // The cost of the topological order layout is the taken branch cost 656 // from BB to Succ, so to make BB->Succ a viable candidate, the following 657 // must hold: 658 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 659 // < freq(BB->Succ) * taken_branch_cost. 660 // Ignoring unconditional jump cost, we get 661 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 662 // prob(BB->Succ) > 2 * prob(BB->Pred) 663 // 664 // When real profile data is available, we can precisely compute the 665 // probability threshold that is needed for edge BB->Succ to be considered. 666 // Without profile data, the heuristic requires the branch bias to be 667 // a lot larger to make sure the signal is very strong (e.g. 80% default). 668 // ----------------------------------------------------------------- 669 // Case 2: diamond like CFG (if-then-else): 670 // S 671 // / \ 672 // | \ 673 // BB Pred 674 // \ / 675 // Succ 676 // .. 677 // 678 // The current block is BB and edge BB->Succ is now being evaluated. 679 // Note that edge S->BB was previously already selected because 680 // prob(S->BB) > prob(S->Pred). 681 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 682 // choose Pred, we will have a topological ordering as shown on the left 683 // in the picture below. If we choose Succ, we have the solution as shown 684 // on the right: 685 // 686 // topo-order: 687 // 688 // S----- ---S 689 // | | | | 690 // ---BB | | BB 691 // | | | | 692 // | pred-- | Succ-- 693 // | | | | 694 // ---succ ---pred-- 695 // 696 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 697 // = freq(S->Pred) + freq(S->BB) 698 // 699 // If we have profile data (i.e, branch probabilities can be trusted), the 700 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 701 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 702 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 703 // means the cost of topological order is greater. 704 // When profile data is not available, however, we need to be more 705 // conservative. If the branch prediction is wrong, breaking the topo-order 706 // will actually yield a layout with large cost. For this reason, we need 707 // strong biased branch at block S with Prob(S->BB) in order to select 708 // BB->Succ. This is equivalent to looking the CFG backward with backward 709 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 710 // profile data). 711 // -------------------------------------------------------------------------- 712 // Case 3: forked diamond 713 // S 714 // / \ 715 // / \ 716 // BB Pred 717 // | \ / | 718 // | \ / | 719 // | X | 720 // | / \ | 721 // | / \ | 722 // S1 S2 723 // 724 // The current block is BB and edge BB->S1 is now being evaluated. 725 // As above S->BB was already selected because 726 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 727 // 728 // topo-order: 729 // 730 // S-------| ---S 731 // | | | | 732 // ---BB | | BB 733 // | | | | 734 // | Pred----| | S1---- 735 // | | | | 736 // --(S1 or S2) ---Pred-- 737 // 738 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 739 // + min(freq(Pred->S1), freq(Pred->S2)) 740 // Non-topo-order cost: 741 // In the worst case, S2 will not get laid out after Pred. 742 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 743 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 744 // is 0. Then the non topo layout is better when 745 // freq(S->Pred) < freq(BB->S1). 746 // This is exactly what is checked below. 747 // Note there are other shapes that apply (Pred may not be a single block, 748 // but they all fit this general pattern.) 749 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 750 751 // Make sure that a hot successor doesn't have a globally more 752 // important predecessor. 753 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 754 bool BadCFGConflict = false; 755 756 for (MachineBasicBlock *Pred : Succ->predecessors()) { 757 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 758 (BlockFilter && !BlockFilter->count(Pred)) || 759 BlockToChain[Pred] == &Chain) 760 continue; 761 // Do backward checking. 762 // For all cases above, we need a backward checking to filter out edges that 763 // are not 'strongly' biased. With profile data available, the check is 764 // mostly redundant for case 2 (when threshold prob is set at 50%) unless S 765 // has more than two successors. 766 // BB Pred 767 // \ / 768 // Succ 769 // We select edge BB->Succ if 770 // freq(BB->Succ) > freq(Succ) * HotProb 771 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 772 // HotProb 773 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 774 // Case 1 is covered too, because the first equation reduces to: 775 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 776 BlockFrequency PredEdgeFreq = 777 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 778 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 779 BadCFGConflict = true; 780 break; 781 } 782 } 783 784 if (BadCFGConflict) { 785 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 786 << " (prob) (non-cold CFG conflict)\n"); 787 return true; 788 } 789 790 return false; 791 } 792 793 /// \brief Select the best successor for a block. 794 /// 795 /// This looks across all successors of a particular block and attempts to 796 /// select the "best" one to be the layout successor. It only considers direct 797 /// successors which also pass the block filter. It will attempt to avoid 798 /// breaking CFG structure, but cave and break such structures in the case of 799 /// very hot successor edges. 800 /// 801 /// \returns The best successor block found, or null if none are viable. 802 MachineBasicBlock * 803 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 804 BlockChain &Chain, 805 const BlockFilterSet *BlockFilter) { 806 const BranchProbability HotProb(StaticLikelyProb, 100); 807 808 MachineBasicBlock *BestSucc = nullptr; 809 auto BestProb = BranchProbability::getZero(); 810 811 SmallVector<MachineBasicBlock *, 4> Successors; 812 auto AdjustedSumProb = 813 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 814 815 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 816 for (MachineBasicBlock *Succ : Successors) { 817 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 818 BranchProbability SuccProb = 819 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 820 821 // This heuristic is off by default. 822 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 823 HotProb)) 824 return Succ; 825 826 BlockChain &SuccChain = *BlockToChain[Succ]; 827 // Skip the edge \c BB->Succ if block \c Succ has a better layout 828 // predecessor that yields lower global cost. 829 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 830 Chain, BlockFilter)) 831 continue; 832 833 DEBUG( 834 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 835 << SuccProb 836 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 837 << "\n"); 838 839 if (BestSucc && BestProb >= SuccProb) { 840 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 841 continue; 842 } 843 844 DEBUG(dbgs() << " Setting it as best candidate\n"); 845 BestSucc = Succ; 846 BestProb = SuccProb; 847 } 848 if (BestSucc) 849 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc) << "\n"); 850 851 return BestSucc; 852 } 853 854 /// \brief Select the best block from a worklist. 855 /// 856 /// This looks through the provided worklist as a list of candidate basic 857 /// blocks and select the most profitable one to place. The definition of 858 /// profitable only really makes sense in the context of a loop. This returns 859 /// the most frequently visited block in the worklist, which in the case of 860 /// a loop, is the one most desirable to be physically close to the rest of the 861 /// loop body in order to improve i-cache behavior. 862 /// 863 /// \returns The best block found, or null if none are viable. 864 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 865 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 866 // Once we need to walk the worklist looking for a candidate, cleanup the 867 // worklist of already placed entries. 868 // FIXME: If this shows up on profiles, it could be folded (at the cost of 869 // some code complexity) into the loop below. 870 WorkList.erase(remove_if(WorkList, 871 [&](MachineBasicBlock *BB) { 872 return BlockToChain.lookup(BB) == &Chain; 873 }), 874 WorkList.end()); 875 876 if (WorkList.empty()) 877 return nullptr; 878 879 bool IsEHPad = WorkList[0]->isEHPad(); 880 881 MachineBasicBlock *BestBlock = nullptr; 882 BlockFrequency BestFreq; 883 for (MachineBasicBlock *MBB : WorkList) { 884 assert(MBB->isEHPad() == IsEHPad); 885 886 BlockChain &SuccChain = *BlockToChain[MBB]; 887 if (&SuccChain == &Chain) 888 continue; 889 890 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 891 892 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 893 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 894 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 895 896 // For ehpad, we layout the least probable first as to avoid jumping back 897 // from least probable landingpads to more probable ones. 898 // 899 // FIXME: Using probability is probably (!) not the best way to achieve 900 // this. We should probably have a more principled approach to layout 901 // cleanup code. 902 // 903 // The goal is to get: 904 // 905 // +--------------------------+ 906 // | V 907 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 908 // 909 // Rather than: 910 // 911 // +-------------------------------------+ 912 // V | 913 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 914 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 915 continue; 916 917 BestBlock = MBB; 918 BestFreq = CandidateFreq; 919 } 920 921 return BestBlock; 922 } 923 924 /// \brief Retrieve the first unplaced basic block. 925 /// 926 /// This routine is called when we are unable to use the CFG to walk through 927 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 928 /// We walk through the function's blocks in order, starting from the 929 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 930 /// re-scanning the entire sequence on repeated calls to this routine. 931 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 932 const BlockChain &PlacedChain, 933 MachineFunction::iterator &PrevUnplacedBlockIt, 934 const BlockFilterSet *BlockFilter) { 935 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 936 ++I) { 937 if (BlockFilter && !BlockFilter->count(&*I)) 938 continue; 939 if (BlockToChain[&*I] != &PlacedChain) { 940 PrevUnplacedBlockIt = I; 941 // Now select the head of the chain to which the unplaced block belongs 942 // as the block to place. This will force the entire chain to be placed, 943 // and satisfies the requirements of merging chains. 944 return *BlockToChain[&*I]->begin(); 945 } 946 } 947 return nullptr; 948 } 949 950 void MachineBlockPlacement::fillWorkLists( 951 MachineBasicBlock *MBB, 952 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 953 const BlockFilterSet *BlockFilter = nullptr) { 954 BlockChain &Chain = *BlockToChain[MBB]; 955 if (!UpdatedPreds.insert(&Chain).second) 956 return; 957 958 assert(Chain.UnscheduledPredecessors == 0); 959 for (MachineBasicBlock *ChainBB : Chain) { 960 assert(BlockToChain[ChainBB] == &Chain); 961 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 962 if (BlockFilter && !BlockFilter->count(Pred)) 963 continue; 964 if (BlockToChain[Pred] == &Chain) 965 continue; 966 ++Chain.UnscheduledPredecessors; 967 } 968 } 969 970 if (Chain.UnscheduledPredecessors != 0) 971 return; 972 973 MBB = *Chain.begin(); 974 if (MBB->isEHPad()) 975 EHPadWorkList.push_back(MBB); 976 else 977 BlockWorkList.push_back(MBB); 978 } 979 980 void MachineBlockPlacement::buildChain( 981 MachineBasicBlock *BB, BlockChain &Chain, 982 BlockFilterSet *BlockFilter) { 983 assert(BB && "BB must not be null.\n"); 984 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); 985 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 986 987 MachineBasicBlock *LoopHeaderBB = BB; 988 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 989 BB = *std::prev(Chain.end()); 990 for (;;) { 991 assert(BB && "null block found at end of chain in loop."); 992 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 993 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 994 995 996 // Look for the best viable successor if there is one to place immediately 997 // after this block. 998 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 999 1000 // If an immediate successor isn't available, look for the best viable 1001 // block among those we've identified as not violating the loop's CFG at 1002 // this point. This won't be a fallthrough, but it will increase locality. 1003 if (!BestSucc) 1004 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1005 if (!BestSucc) 1006 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1007 1008 if (!BestSucc) { 1009 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1010 if (!BestSucc) 1011 break; 1012 1013 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1014 "layout successor until the CFG reduces\n"); 1015 } 1016 1017 // Placement may have changed tail duplication opportunities. 1018 // Check for that now. 1019 if (TailDupPlacement && BestSucc) { 1020 // If the chosen successor was duplicated into all its predecessors, 1021 // don't bother laying it out, just go round the loop again with BB as 1022 // the chain end. 1023 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1024 BlockFilter, PrevUnplacedBlockIt)) 1025 continue; 1026 } 1027 1028 // Place this block, updating the datastructures to reflect its placement. 1029 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1030 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1031 // we selected a successor that didn't fit naturally into the CFG. 1032 SuccChain.UnscheduledPredecessors = 0; 1033 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1034 << getBlockName(BestSucc) << "\n"); 1035 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1036 Chain.merge(BestSucc, &SuccChain); 1037 BB = *std::prev(Chain.end()); 1038 } 1039 1040 DEBUG(dbgs() << "Finished forming chain for header block " 1041 << getBlockName(*Chain.begin()) << "\n"); 1042 } 1043 1044 /// \brief Find the best loop top block for layout. 1045 /// 1046 /// Look for a block which is strictly better than the loop header for laying 1047 /// out at the top of the loop. This looks for one and only one pattern: 1048 /// a latch block with no conditional exit. This block will cause a conditional 1049 /// jump around it or will be the bottom of the loop if we lay it out in place, 1050 /// but if it it doesn't end up at the bottom of the loop for any reason, 1051 /// rotation alone won't fix it. Because such a block will always result in an 1052 /// unconditional jump (for the backedge) rotating it in front of the loop 1053 /// header is always profitable. 1054 MachineBasicBlock * 1055 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 1056 const BlockFilterSet &LoopBlockSet) { 1057 // Placing the latch block before the header may introduce an extra branch 1058 // that skips this block the first time the loop is executed, which we want 1059 // to avoid when optimising for size. 1060 // FIXME: in theory there is a case that does not introduce a new branch, 1061 // i.e. when the layout predecessor does not fallthrough to the loop header. 1062 // In practice this never happens though: there always seems to be a preheader 1063 // that can fallthrough and that is also placed before the header. 1064 if (F->getFunction()->optForSize()) 1065 return L.getHeader(); 1066 1067 // Check that the header hasn't been fused with a preheader block due to 1068 // crazy branches. If it has, we need to start with the header at the top to 1069 // prevent pulling the preheader into the loop body. 1070 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1071 if (!LoopBlockSet.count(*HeaderChain.begin())) 1072 return L.getHeader(); 1073 1074 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1075 << "\n"); 1076 1077 BlockFrequency BestPredFreq; 1078 MachineBasicBlock *BestPred = nullptr; 1079 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1080 if (!LoopBlockSet.count(Pred)) 1081 continue; 1082 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1083 << Pred->succ_size() << " successors, "; 1084 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1085 if (Pred->succ_size() > 1) 1086 continue; 1087 1088 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1089 if (!BestPred || PredFreq > BestPredFreq || 1090 (!(PredFreq < BestPredFreq) && 1091 Pred->isLayoutSuccessor(L.getHeader()))) { 1092 BestPred = Pred; 1093 BestPredFreq = PredFreq; 1094 } 1095 } 1096 1097 // If no direct predecessor is fine, just use the loop header. 1098 if (!BestPred) { 1099 DEBUG(dbgs() << " final top unchanged\n"); 1100 return L.getHeader(); 1101 } 1102 1103 // Walk backwards through any straight line of predecessors. 1104 while (BestPred->pred_size() == 1 && 1105 (*BestPred->pred_begin())->succ_size() == 1 && 1106 *BestPred->pred_begin() != L.getHeader()) 1107 BestPred = *BestPred->pred_begin(); 1108 1109 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1110 return BestPred; 1111 } 1112 1113 /// \brief Find the best loop exiting block for layout. 1114 /// 1115 /// This routine implements the logic to analyze the loop looking for the best 1116 /// block to layout at the top of the loop. Typically this is done to maximize 1117 /// fallthrough opportunities. 1118 MachineBasicBlock * 1119 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 1120 const BlockFilterSet &LoopBlockSet) { 1121 // We don't want to layout the loop linearly in all cases. If the loop header 1122 // is just a normal basic block in the loop, we want to look for what block 1123 // within the loop is the best one to layout at the top. However, if the loop 1124 // header has be pre-merged into a chain due to predecessors not having 1125 // analyzable branches, *and* the predecessor it is merged with is *not* part 1126 // of the loop, rotating the header into the middle of the loop will create 1127 // a non-contiguous range of blocks which is Very Bad. So start with the 1128 // header and only rotate if safe. 1129 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1130 if (!LoopBlockSet.count(*HeaderChain.begin())) 1131 return nullptr; 1132 1133 BlockFrequency BestExitEdgeFreq; 1134 unsigned BestExitLoopDepth = 0; 1135 MachineBasicBlock *ExitingBB = nullptr; 1136 // If there are exits to outer loops, loop rotation can severely limit 1137 // fallthrough opportunities unless it selects such an exit. Keep a set of 1138 // blocks where rotating to exit with that block will reach an outer loop. 1139 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1140 1141 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1142 << "\n"); 1143 for (MachineBasicBlock *MBB : L.getBlocks()) { 1144 BlockChain &Chain = *BlockToChain[MBB]; 1145 // Ensure that this block is at the end of a chain; otherwise it could be 1146 // mid-way through an inner loop or a successor of an unanalyzable branch. 1147 if (MBB != *std::prev(Chain.end())) 1148 continue; 1149 1150 // Now walk the successors. We need to establish whether this has a viable 1151 // exiting successor and whether it has a viable non-exiting successor. 1152 // We store the old exiting state and restore it if a viable looping 1153 // successor isn't found. 1154 MachineBasicBlock *OldExitingBB = ExitingBB; 1155 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1156 bool HasLoopingSucc = false; 1157 for (MachineBasicBlock *Succ : MBB->successors()) { 1158 if (Succ->isEHPad()) 1159 continue; 1160 if (Succ == MBB) 1161 continue; 1162 BlockChain &SuccChain = *BlockToChain[Succ]; 1163 // Don't split chains, either this chain or the successor's chain. 1164 if (&Chain == &SuccChain) { 1165 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1166 << getBlockName(Succ) << " (chain conflict)\n"); 1167 continue; 1168 } 1169 1170 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1171 if (LoopBlockSet.count(Succ)) { 1172 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1173 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1174 HasLoopingSucc = true; 1175 continue; 1176 } 1177 1178 unsigned SuccLoopDepth = 0; 1179 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1180 SuccLoopDepth = ExitLoop->getLoopDepth(); 1181 if (ExitLoop->contains(&L)) 1182 BlocksExitingToOuterLoop.insert(MBB); 1183 } 1184 1185 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1186 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1187 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1188 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1189 // Note that we bias this toward an existing layout successor to retain 1190 // incoming order in the absence of better information. The exit must have 1191 // a frequency higher than the current exit before we consider breaking 1192 // the layout. 1193 BranchProbability Bias(100 - ExitBlockBias, 100); 1194 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1195 ExitEdgeFreq > BestExitEdgeFreq || 1196 (MBB->isLayoutSuccessor(Succ) && 1197 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1198 BestExitEdgeFreq = ExitEdgeFreq; 1199 ExitingBB = MBB; 1200 } 1201 } 1202 1203 if (!HasLoopingSucc) { 1204 // Restore the old exiting state, no viable looping successor was found. 1205 ExitingBB = OldExitingBB; 1206 BestExitEdgeFreq = OldBestExitEdgeFreq; 1207 } 1208 } 1209 // Without a candidate exiting block or with only a single block in the 1210 // loop, just use the loop header to layout the loop. 1211 if (!ExitingBB) { 1212 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1213 return nullptr; 1214 } 1215 if (L.getNumBlocks() == 1) { 1216 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1217 return nullptr; 1218 } 1219 1220 // Also, if we have exit blocks which lead to outer loops but didn't select 1221 // one of them as the exiting block we are rotating toward, disable loop 1222 // rotation altogether. 1223 if (!BlocksExitingToOuterLoop.empty() && 1224 !BlocksExitingToOuterLoop.count(ExitingBB)) 1225 return nullptr; 1226 1227 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1228 return ExitingBB; 1229 } 1230 1231 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1232 /// 1233 /// Once we have built a chain, try to rotate it to line up the hot exit block 1234 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1235 /// branches. For example, if the loop has fallthrough into its header and out 1236 /// of its bottom already, don't rotate it. 1237 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1238 MachineBasicBlock *ExitingBB, 1239 const BlockFilterSet &LoopBlockSet) { 1240 if (!ExitingBB) 1241 return; 1242 1243 MachineBasicBlock *Top = *LoopChain.begin(); 1244 bool ViableTopFallthrough = false; 1245 for (MachineBasicBlock *Pred : Top->predecessors()) { 1246 BlockChain *PredChain = BlockToChain[Pred]; 1247 if (!LoopBlockSet.count(Pred) && 1248 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1249 ViableTopFallthrough = true; 1250 break; 1251 } 1252 } 1253 1254 // If the header has viable fallthrough, check whether the current loop 1255 // bottom is a viable exiting block. If so, bail out as rotating will 1256 // introduce an unnecessary branch. 1257 if (ViableTopFallthrough) { 1258 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1259 for (MachineBasicBlock *Succ : Bottom->successors()) { 1260 BlockChain *SuccChain = BlockToChain[Succ]; 1261 if (!LoopBlockSet.count(Succ) && 1262 (!SuccChain || Succ == *SuccChain->begin())) 1263 return; 1264 } 1265 } 1266 1267 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1268 if (ExitIt == LoopChain.end()) 1269 return; 1270 1271 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1272 } 1273 1274 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1275 /// 1276 /// With profile data, we can determine the cost in terms of missed fall through 1277 /// opportunities when rotating a loop chain and select the best rotation. 1278 /// Basically, there are three kinds of cost to consider for each rotation: 1279 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1280 /// the loop to the loop header. 1281 /// 2. The possibly missed fall through edges (if they exist) from the loop 1282 /// exits to BB out of the loop. 1283 /// 3. The missed fall through edge (if it exists) from the last BB to the 1284 /// first BB in the loop chain. 1285 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1286 /// We select the best rotation with the smallest cost. 1287 void MachineBlockPlacement::rotateLoopWithProfile( 1288 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1289 auto HeaderBB = L.getHeader(); 1290 auto HeaderIter = find(LoopChain, HeaderBB); 1291 auto RotationPos = LoopChain.end(); 1292 1293 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1294 1295 // A utility lambda that scales up a block frequency by dividing it by a 1296 // branch probability which is the reciprocal of the scale. 1297 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1298 unsigned Scale) -> BlockFrequency { 1299 if (Scale == 0) 1300 return 0; 1301 // Use operator / between BlockFrequency and BranchProbability to implement 1302 // saturating multiplication. 1303 return Freq / BranchProbability(1, Scale); 1304 }; 1305 1306 // Compute the cost of the missed fall-through edge to the loop header if the 1307 // chain head is not the loop header. As we only consider natural loops with 1308 // single header, this computation can be done only once. 1309 BlockFrequency HeaderFallThroughCost(0); 1310 for (auto *Pred : HeaderBB->predecessors()) { 1311 BlockChain *PredChain = BlockToChain[Pred]; 1312 if (!LoopBlockSet.count(Pred) && 1313 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1314 auto EdgeFreq = 1315 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1316 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1317 // If the predecessor has only an unconditional jump to the header, we 1318 // need to consider the cost of this jump. 1319 if (Pred->succ_size() == 1) 1320 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1321 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1322 } 1323 } 1324 1325 // Here we collect all exit blocks in the loop, and for each exit we find out 1326 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1327 // as the sum of frequencies of exit edges we collect here, excluding the exit 1328 // edge from the tail of the loop chain. 1329 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1330 for (auto BB : LoopChain) { 1331 auto LargestExitEdgeProb = BranchProbability::getZero(); 1332 for (auto *Succ : BB->successors()) { 1333 BlockChain *SuccChain = BlockToChain[Succ]; 1334 if (!LoopBlockSet.count(Succ) && 1335 (!SuccChain || Succ == *SuccChain->begin())) { 1336 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1337 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1338 } 1339 } 1340 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1341 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1342 ExitsWithFreq.emplace_back(BB, ExitFreq); 1343 } 1344 } 1345 1346 // In this loop we iterate every block in the loop chain and calculate the 1347 // cost assuming the block is the head of the loop chain. When the loop ends, 1348 // we should have found the best candidate as the loop chain's head. 1349 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1350 EndIter = LoopChain.end(); 1351 Iter != EndIter; Iter++, TailIter++) { 1352 // TailIter is used to track the tail of the loop chain if the block we are 1353 // checking (pointed by Iter) is the head of the chain. 1354 if (TailIter == LoopChain.end()) 1355 TailIter = LoopChain.begin(); 1356 1357 auto TailBB = *TailIter; 1358 1359 // Calculate the cost by putting this BB to the top. 1360 BlockFrequency Cost = 0; 1361 1362 // If the current BB is the loop header, we need to take into account the 1363 // cost of the missed fall through edge from outside of the loop to the 1364 // header. 1365 if (Iter != HeaderIter) 1366 Cost += HeaderFallThroughCost; 1367 1368 // Collect the loop exit cost by summing up frequencies of all exit edges 1369 // except the one from the chain tail. 1370 for (auto &ExitWithFreq : ExitsWithFreq) 1371 if (TailBB != ExitWithFreq.first) 1372 Cost += ExitWithFreq.second; 1373 1374 // The cost of breaking the once fall-through edge from the tail to the top 1375 // of the loop chain. Here we need to consider three cases: 1376 // 1. If the tail node has only one successor, then we will get an 1377 // additional jmp instruction. So the cost here is (MisfetchCost + 1378 // JumpInstCost) * tail node frequency. 1379 // 2. If the tail node has two successors, then we may still get an 1380 // additional jmp instruction if the layout successor after the loop 1381 // chain is not its CFG successor. Note that the more frequently executed 1382 // jmp instruction will be put ahead of the other one. Assume the 1383 // frequency of those two branches are x and y, where x is the frequency 1384 // of the edge to the chain head, then the cost will be 1385 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1386 // 3. If the tail node has more than two successors (this rarely happens), 1387 // we won't consider any additional cost. 1388 if (TailBB->isSuccessor(*Iter)) { 1389 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1390 if (TailBB->succ_size() == 1) 1391 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1392 MisfetchCost + JumpInstCost); 1393 else if (TailBB->succ_size() == 2) { 1394 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1395 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1396 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1397 ? TailBBFreq * TailToHeadProb.getCompl() 1398 : TailToHeadFreq; 1399 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1400 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1401 } 1402 } 1403 1404 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1405 << " to the top: " << Cost.getFrequency() << "\n"); 1406 1407 if (Cost < SmallestRotationCost) { 1408 SmallestRotationCost = Cost; 1409 RotationPos = Iter; 1410 } 1411 } 1412 1413 if (RotationPos != LoopChain.end()) { 1414 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1415 << " to the top\n"); 1416 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1417 } 1418 } 1419 1420 /// \brief Collect blocks in the given loop that are to be placed. 1421 /// 1422 /// When profile data is available, exclude cold blocks from the returned set; 1423 /// otherwise, collect all blocks in the loop. 1424 MachineBlockPlacement::BlockFilterSet 1425 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1426 BlockFilterSet LoopBlockSet; 1427 1428 // Filter cold blocks off from LoopBlockSet when profile data is available. 1429 // Collect the sum of frequencies of incoming edges to the loop header from 1430 // outside. If we treat the loop as a super block, this is the frequency of 1431 // the loop. Then for each block in the loop, we calculate the ratio between 1432 // its frequency and the frequency of the loop block. When it is too small, 1433 // don't add it to the loop chain. If there are outer loops, then this block 1434 // will be merged into the first outer loop chain for which this block is not 1435 // cold anymore. This needs precise profile data and we only do this when 1436 // profile data is available. 1437 if (F->getFunction()->getEntryCount()) { 1438 BlockFrequency LoopFreq(0); 1439 for (auto LoopPred : L.getHeader()->predecessors()) 1440 if (!L.contains(LoopPred)) 1441 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1442 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1443 1444 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1445 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1446 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1447 continue; 1448 LoopBlockSet.insert(LoopBB); 1449 } 1450 } else 1451 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1452 1453 return LoopBlockSet; 1454 } 1455 1456 /// \brief Forms basic block chains from the natural loop structures. 1457 /// 1458 /// These chains are designed to preserve the existing *structure* of the code 1459 /// as much as possible. We can then stitch the chains together in a way which 1460 /// both preserves the topological structure and minimizes taken conditional 1461 /// branches. 1462 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1463 // First recurse through any nested loops, building chains for those inner 1464 // loops. 1465 for (MachineLoop *InnerLoop : L) 1466 buildLoopChains(*InnerLoop); 1467 1468 assert(BlockWorkList.empty()); 1469 assert(EHPadWorkList.empty()); 1470 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1471 1472 // Check if we have profile data for this function. If yes, we will rotate 1473 // this loop by modeling costs more precisely which requires the profile data 1474 // for better layout. 1475 bool RotateLoopWithProfile = 1476 ForcePreciseRotationCost || 1477 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1478 1479 // First check to see if there is an obviously preferable top block for the 1480 // loop. This will default to the header, but may end up as one of the 1481 // predecessors to the header if there is one which will result in strictly 1482 // fewer branches in the loop body. 1483 // When we use profile data to rotate the loop, this is unnecessary. 1484 MachineBasicBlock *LoopTop = 1485 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1486 1487 // If we selected just the header for the loop top, look for a potentially 1488 // profitable exit block in the event that rotating the loop can eliminate 1489 // branches by placing an exit edge at the bottom. 1490 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1491 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 1492 1493 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1494 1495 // FIXME: This is a really lame way of walking the chains in the loop: we 1496 // walk the blocks, and use a set to prevent visiting a particular chain 1497 // twice. 1498 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1499 assert(LoopChain.UnscheduledPredecessors == 0); 1500 UpdatedPreds.insert(&LoopChain); 1501 1502 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1503 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 1504 1505 buildChain(LoopTop, LoopChain, &LoopBlockSet); 1506 1507 if (RotateLoopWithProfile) 1508 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1509 else 1510 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 1511 1512 DEBUG({ 1513 // Crash at the end so we get all of the debugging output first. 1514 bool BadLoop = false; 1515 if (LoopChain.UnscheduledPredecessors) { 1516 BadLoop = true; 1517 dbgs() << "Loop chain contains a block without its preds placed!\n" 1518 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1519 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1520 } 1521 for (MachineBasicBlock *ChainBB : LoopChain) { 1522 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1523 if (!LoopBlockSet.remove(ChainBB)) { 1524 // We don't mark the loop as bad here because there are real situations 1525 // where this can occur. For example, with an unanalyzable fallthrough 1526 // from a loop block to a non-loop block or vice versa. 1527 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1528 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1529 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1530 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1531 } 1532 } 1533 1534 if (!LoopBlockSet.empty()) { 1535 BadLoop = true; 1536 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1537 dbgs() << "Loop contains blocks never placed into a chain!\n" 1538 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1539 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1540 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1541 } 1542 assert(!BadLoop && "Detected problems with the placement of this loop."); 1543 }); 1544 1545 BlockWorkList.clear(); 1546 EHPadWorkList.clear(); 1547 } 1548 1549 /// When OutlineOpitonalBranches is on, this method collects BBs that 1550 /// dominates all terminator blocks of the function \p F. 1551 void MachineBlockPlacement::collectMustExecuteBBs() { 1552 if (OutlineOptionalBranches) { 1553 // Find the nearest common dominator of all of F's terminators. 1554 MachineBasicBlock *Terminator = nullptr; 1555 for (MachineBasicBlock &MBB : *F) { 1556 if (MBB.succ_size() == 0) { 1557 if (Terminator == nullptr) 1558 Terminator = &MBB; 1559 else 1560 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1561 } 1562 } 1563 1564 // MBBs dominating this common dominator are unavoidable. 1565 UnavoidableBlocks.clear(); 1566 for (MachineBasicBlock &MBB : *F) { 1567 if (MDT->dominates(&MBB, Terminator)) { 1568 UnavoidableBlocks.insert(&MBB); 1569 } 1570 } 1571 } 1572 } 1573 1574 void MachineBlockPlacement::buildCFGChains() { 1575 // Ensure that every BB in the function has an associated chain to simplify 1576 // the assumptions of the remaining algorithm. 1577 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1578 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1579 ++FI) { 1580 MachineBasicBlock *BB = &*FI; 1581 BlockChain *Chain = 1582 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1583 // Also, merge any blocks which we cannot reason about and must preserve 1584 // the exact fallthrough behavior for. 1585 for (;;) { 1586 Cond.clear(); 1587 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1588 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1589 break; 1590 1591 MachineFunction::iterator NextFI = std::next(FI); 1592 MachineBasicBlock *NextBB = &*NextFI; 1593 // Ensure that the layout successor is a viable block, as we know that 1594 // fallthrough is a possibility. 1595 assert(NextFI != FE && "Can't fallthrough past the last block."); 1596 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1597 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1598 << "\n"); 1599 Chain->merge(NextBB, nullptr); 1600 #ifndef NDEBUG 1601 BlocksWithUnanalyzableExits.insert(&*BB); 1602 #endif 1603 FI = NextFI; 1604 BB = NextBB; 1605 } 1606 } 1607 1608 // Turned on with OutlineOptionalBranches option 1609 collectMustExecuteBBs(); 1610 1611 // Build any loop-based chains. 1612 PreferredLoopExit = nullptr; 1613 for (MachineLoop *L : *MLI) 1614 buildLoopChains(*L); 1615 1616 assert(BlockWorkList.empty()); 1617 assert(EHPadWorkList.empty()); 1618 1619 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1620 for (MachineBasicBlock &MBB : *F) 1621 fillWorkLists(&MBB, UpdatedPreds); 1622 1623 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1624 buildChain(&F->front(), FunctionChain); 1625 1626 #ifndef NDEBUG 1627 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1628 #endif 1629 DEBUG({ 1630 // Crash at the end so we get all of the debugging output first. 1631 bool BadFunc = false; 1632 FunctionBlockSetType FunctionBlockSet; 1633 for (MachineBasicBlock &MBB : *F) 1634 FunctionBlockSet.insert(&MBB); 1635 1636 for (MachineBasicBlock *ChainBB : FunctionChain) 1637 if (!FunctionBlockSet.erase(ChainBB)) { 1638 BadFunc = true; 1639 dbgs() << "Function chain contains a block not in the function!\n" 1640 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1641 } 1642 1643 if (!FunctionBlockSet.empty()) { 1644 BadFunc = true; 1645 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1646 dbgs() << "Function contains blocks never placed into a chain!\n" 1647 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1648 } 1649 assert(!BadFunc && "Detected problems with the block placement."); 1650 }); 1651 1652 // Splice the blocks into place. 1653 MachineFunction::iterator InsertPos = F->begin(); 1654 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 1655 for (MachineBasicBlock *ChainBB : FunctionChain) { 1656 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1657 : " ... ") 1658 << getBlockName(ChainBB) << "\n"); 1659 if (InsertPos != MachineFunction::iterator(ChainBB)) 1660 F->splice(InsertPos, ChainBB); 1661 else 1662 ++InsertPos; 1663 1664 // Update the terminator of the previous block. 1665 if (ChainBB == *FunctionChain.begin()) 1666 continue; 1667 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1668 1669 // FIXME: It would be awesome of updateTerminator would just return rather 1670 // than assert when the branch cannot be analyzed in order to remove this 1671 // boiler plate. 1672 Cond.clear(); 1673 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1674 1675 #ifndef NDEBUG 1676 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 1677 // Given the exact block placement we chose, we may actually not _need_ to 1678 // be able to edit PrevBB's terminator sequence, but not being _able_ to 1679 // do that at this point is a bug. 1680 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 1681 !PrevBB->canFallThrough()) && 1682 "Unexpected block with un-analyzable fallthrough!"); 1683 Cond.clear(); 1684 TBB = FBB = nullptr; 1685 } 1686 #endif 1687 1688 // The "PrevBB" is not yet updated to reflect current code layout, so, 1689 // o. it may fall-through to a block without explicit "goto" instruction 1690 // before layout, and no longer fall-through it after layout; or 1691 // o. just opposite. 1692 // 1693 // analyzeBranch() may return erroneous value for FBB when these two 1694 // situations take place. For the first scenario FBB is mistakenly set NULL; 1695 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1696 // mistakenly pointing to "*BI". 1697 // Thus, if the future change needs to use FBB before the layout is set, it 1698 // has to correct FBB first by using the code similar to the following: 1699 // 1700 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1701 // PrevBB->updateTerminator(); 1702 // Cond.clear(); 1703 // TBB = FBB = nullptr; 1704 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1705 // // FIXME: This should never take place. 1706 // TBB = FBB = nullptr; 1707 // } 1708 // } 1709 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 1710 PrevBB->updateTerminator(); 1711 } 1712 1713 // Fixup the last block. 1714 Cond.clear(); 1715 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1716 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 1717 F->back().updateTerminator(); 1718 1719 BlockWorkList.clear(); 1720 EHPadWorkList.clear(); 1721 } 1722 1723 void MachineBlockPlacement::optimizeBranches() { 1724 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1725 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1726 1727 // Now that all the basic blocks in the chain have the proper layout, 1728 // make a final call to AnalyzeBranch with AllowModify set. 1729 // Indeed, the target may be able to optimize the branches in a way we 1730 // cannot because all branches may not be analyzable. 1731 // E.g., the target may be able to remove an unconditional branch to 1732 // a fallthrough when it occurs after predicated terminators. 1733 for (MachineBasicBlock *ChainBB : FunctionChain) { 1734 Cond.clear(); 1735 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1736 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1737 // If PrevBB has a two-way branch, try to re-order the branches 1738 // such that we branch to the successor with higher probability first. 1739 if (TBB && !Cond.empty() && FBB && 1740 MBPI->getEdgeProbability(ChainBB, FBB) > 1741 MBPI->getEdgeProbability(ChainBB, TBB) && 1742 !TII->reverseBranchCondition(Cond)) { 1743 DEBUG(dbgs() << "Reverse order of the two branches: " 1744 << getBlockName(ChainBB) << "\n"); 1745 DEBUG(dbgs() << " Edge probability: " 1746 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1747 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1748 DebugLoc dl; // FIXME: this is nowhere 1749 TII->removeBranch(*ChainBB); 1750 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 1751 ChainBB->updateTerminator(); 1752 } 1753 } 1754 } 1755 } 1756 1757 void MachineBlockPlacement::alignBlocks() { 1758 // Walk through the backedges of the function now that we have fully laid out 1759 // the basic blocks and align the destination of each backedge. We don't rely 1760 // exclusively on the loop info here so that we can align backedges in 1761 // unnatural CFGs and backedges that were introduced purely because of the 1762 // loop rotations done during this layout pass. 1763 if (F->getFunction()->optForSize()) 1764 return; 1765 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1766 if (FunctionChain.begin() == FunctionChain.end()) 1767 return; // Empty chain. 1768 1769 const BranchProbability ColdProb(1, 5); // 20% 1770 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 1771 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1772 for (MachineBasicBlock *ChainBB : FunctionChain) { 1773 if (ChainBB == *FunctionChain.begin()) 1774 continue; 1775 1776 // Don't align non-looping basic blocks. These are unlikely to execute 1777 // enough times to matter in practice. Note that we'll still handle 1778 // unnatural CFGs inside of a natural outer loop (the common case) and 1779 // rotated loops. 1780 MachineLoop *L = MLI->getLoopFor(ChainBB); 1781 if (!L) 1782 continue; 1783 1784 unsigned Align = TLI->getPrefLoopAlignment(L); 1785 if (!Align) 1786 continue; // Don't care about loop alignment. 1787 1788 // If the block is cold relative to the function entry don't waste space 1789 // aligning it. 1790 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1791 if (Freq < WeightedEntryFreq) 1792 continue; 1793 1794 // If the block is cold relative to its loop header, don't align it 1795 // regardless of what edges into the block exist. 1796 MachineBasicBlock *LoopHeader = L->getHeader(); 1797 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1798 if (Freq < (LoopHeaderFreq * ColdProb)) 1799 continue; 1800 1801 // Check for the existence of a non-layout predecessor which would benefit 1802 // from aligning this block. 1803 MachineBasicBlock *LayoutPred = 1804 &*std::prev(MachineFunction::iterator(ChainBB)); 1805 1806 // Force alignment if all the predecessors are jumps. We already checked 1807 // that the block isn't cold above. 1808 if (!LayoutPred->isSuccessor(ChainBB)) { 1809 ChainBB->setAlignment(Align); 1810 continue; 1811 } 1812 1813 // Align this block if the layout predecessor's edge into this block is 1814 // cold relative to the block. When this is true, other predecessors make up 1815 // all of the hot entries into the block and thus alignment is likely to be 1816 // important. 1817 BranchProbability LayoutProb = 1818 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1819 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1820 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1821 ChainBB->setAlignment(Align); 1822 } 1823 } 1824 1825 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 1826 /// it was duplicated into its chain predecessor and removed. 1827 /// \p BB - Basic block that may be duplicated. 1828 /// 1829 /// \p LPred - Chosen layout predecessor of \p BB. 1830 /// Updated to be the chain end if LPred is removed. 1831 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 1832 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 1833 /// Used to identify which blocks to update predecessor 1834 /// counts. 1835 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 1836 /// chosen in the given order due to unnatural CFG 1837 /// only needed if \p BB is removed and 1838 /// \p PrevUnplacedBlockIt pointed to \p BB. 1839 /// @return true if \p BB was removed. 1840 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 1841 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 1842 MachineBasicBlock *LoopHeaderBB, 1843 BlockChain &Chain, BlockFilterSet *BlockFilter, 1844 MachineFunction::iterator &PrevUnplacedBlockIt) { 1845 bool Removed, DuplicatedToLPred; 1846 bool DuplicatedToOriginalLPred; 1847 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 1848 PrevUnplacedBlockIt, 1849 DuplicatedToLPred); 1850 if (!Removed) 1851 return false; 1852 DuplicatedToOriginalLPred = DuplicatedToLPred; 1853 // Iteratively try to duplicate again. It can happen that a block that is 1854 // duplicated into is still small enough to be duplicated again. 1855 // No need to call markBlockSuccessors in this case, as the blocks being 1856 // duplicated from here on are already scheduled. 1857 // Note that DuplicatedToLPred always implies Removed. 1858 while (DuplicatedToLPred) { 1859 assert (Removed && "Block must have been removed to be duplicated into its " 1860 "layout predecessor."); 1861 MachineBasicBlock *DupBB, *DupPred; 1862 // The removal callback causes Chain.end() to be updated when a block is 1863 // removed. On the first pass through the loop, the chain end should be the 1864 // same as it was on function entry. On subsequent passes, because we are 1865 // duplicating the block at the end of the chain, if it is removed the 1866 // chain will have shrunk by one block. 1867 BlockChain::iterator ChainEnd = Chain.end(); 1868 DupBB = *(--ChainEnd); 1869 // Now try to duplicate again. 1870 if (ChainEnd == Chain.begin()) 1871 break; 1872 DupPred = *std::prev(ChainEnd); 1873 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 1874 PrevUnplacedBlockIt, 1875 DuplicatedToLPred); 1876 } 1877 // If BB was duplicated into LPred, it is now scheduled. But because it was 1878 // removed, markChainSuccessors won't be called for its chain. Instead we 1879 // call markBlockSuccessors for LPred to achieve the same effect. This must go 1880 // at the end because repeating the tail duplication can increase the number 1881 // of unscheduled predecessors. 1882 LPred = *std::prev(Chain.end()); 1883 if (DuplicatedToOriginalLPred) 1884 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 1885 return true; 1886 } 1887 1888 /// Tail duplicate \p BB into (some) predecessors if profitable. 1889 /// \p BB - Basic block that may be duplicated 1890 /// \p LPred - Chosen layout predecessor of \p BB 1891 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 1892 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 1893 /// Used to identify which blocks to update predecessor 1894 /// counts. 1895 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 1896 /// chosen in the given order due to unnatural CFG 1897 /// only needed if \p BB is removed and 1898 /// \p PrevUnplacedBlockIt pointed to \p BB. 1899 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 1900 /// only be true if the block was removed. 1901 /// \return - True if the block was duplicated into all preds and removed. 1902 bool MachineBlockPlacement::maybeTailDuplicateBlock( 1903 MachineBasicBlock *BB, MachineBasicBlock *LPred, 1904 const BlockChain &Chain, BlockFilterSet *BlockFilter, 1905 MachineFunction::iterator &PrevUnplacedBlockIt, 1906 bool &DuplicatedToLPred) { 1907 1908 DuplicatedToLPred = false; 1909 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 1910 << BB->getNumber() << "\n"); 1911 bool IsSimple = TailDup.isSimpleBB(BB); 1912 // Blocks with single successors don't create additional fallthrough 1913 // opportunities. Don't duplicate them. TODO: When conditional exits are 1914 // analyzable, allow them to be duplicated. 1915 if (!IsSimple && BB->succ_size() == 1) 1916 return false; 1917 if (!TailDup.shouldTailDuplicate(IsSimple, *BB)) 1918 return false; 1919 // This has to be a callback because none of it can be done after 1920 // BB is deleted. 1921 bool Removed = false; 1922 auto RemovalCallback = 1923 [&](MachineBasicBlock *RemBB) { 1924 // Signal to outer function 1925 Removed = true; 1926 1927 // Conservative default. 1928 bool InWorkList = true; 1929 // Remove from the Chain and Chain Map 1930 if (BlockToChain.count(RemBB)) { 1931 BlockChain *Chain = BlockToChain[RemBB]; 1932 InWorkList = Chain->UnscheduledPredecessors == 0; 1933 Chain->remove(RemBB); 1934 BlockToChain.erase(RemBB); 1935 } 1936 1937 // Handle the unplaced block iterator 1938 if (&(*PrevUnplacedBlockIt) == RemBB) { 1939 PrevUnplacedBlockIt++; 1940 } 1941 1942 // Handle the Work Lists 1943 if (InWorkList) { 1944 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 1945 if (RemBB->isEHPad()) 1946 RemoveList = EHPadWorkList; 1947 RemoveList.erase( 1948 remove_if(RemoveList, 1949 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 1950 RemoveList.end()); 1951 } 1952 1953 // Handle the filter set 1954 if (BlockFilter) { 1955 BlockFilter->remove(RemBB); 1956 } 1957 1958 // Remove the block from loop info. 1959 MLI->removeBlock(RemBB); 1960 if (RemBB == PreferredLoopExit) 1961 PreferredLoopExit = nullptr; 1962 1963 DEBUG(dbgs() << "TailDuplicator deleted block: " 1964 << getBlockName(RemBB) << "\n"); 1965 }; 1966 auto RemovalCallbackRef = 1967 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 1968 1969 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 1970 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 1971 &DuplicatedPreds, &RemovalCallbackRef); 1972 1973 // Update UnscheduledPredecessors to reflect tail-duplication. 1974 DuplicatedToLPred = false; 1975 for (MachineBasicBlock *Pred : DuplicatedPreds) { 1976 // We're only looking for unscheduled predecessors that match the filter. 1977 BlockChain* PredChain = BlockToChain[Pred]; 1978 if (Pred == LPred) 1979 DuplicatedToLPred = true; 1980 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 1981 || PredChain == &Chain) 1982 continue; 1983 for (MachineBasicBlock *NewSucc : Pred->successors()) { 1984 if (BlockFilter && !BlockFilter->count(NewSucc)) 1985 continue; 1986 BlockChain *NewChain = BlockToChain[NewSucc]; 1987 if (NewChain != &Chain && NewChain != PredChain) 1988 NewChain->UnscheduledPredecessors++; 1989 } 1990 } 1991 return Removed; 1992 } 1993 1994 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 1995 if (skipFunction(*MF.getFunction())) 1996 return false; 1997 1998 // Check for single-block functions and skip them. 1999 if (std::next(MF.begin()) == MF.end()) 2000 return false; 2001 2002 F = &MF; 2003 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2004 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2005 getAnalysis<MachineBlockFrequencyInfo>()); 2006 MLI = &getAnalysis<MachineLoopInfo>(); 2007 TII = MF.getSubtarget().getInstrInfo(); 2008 TLI = MF.getSubtarget().getTargetLowering(); 2009 MDT = &getAnalysis<MachineDominatorTree>(); 2010 2011 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2012 // there are no MachineLoops. 2013 PreferredLoopExit = nullptr; 2014 2015 if (TailDupPlacement) { 2016 unsigned TailDupSize = TailDuplicatePlacementThreshold; 2017 if (MF.getFunction()->optForSize()) 2018 TailDupSize = 1; 2019 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2020 } 2021 2022 assert(BlockToChain.empty()); 2023 2024 buildCFGChains(); 2025 2026 // Changing the layout can create new tail merging opportunities. 2027 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2028 // TailMerge can create jump into if branches that make CFG irreducible for 2029 // HW that requires structured CFG. 2030 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2031 PassConfig->getEnableTailMerge() && 2032 BranchFoldPlacement; 2033 // No tail merging opportunities if the block number is less than four. 2034 if (MF.size() > 3 && EnableTailMerge) { 2035 unsigned TailMergeSize = TailDuplicatePlacementThreshold + 1; 2036 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2037 *MBPI, TailMergeSize); 2038 2039 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2040 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2041 /*AfterBlockPlacement=*/true)) { 2042 // Redo the layout if tail merging creates/removes/moves blocks. 2043 BlockToChain.clear(); 2044 // Must redo the dominator tree if blocks were changed. 2045 MDT->runOnMachineFunction(MF); 2046 ChainAllocator.DestroyAll(); 2047 buildCFGChains(); 2048 } 2049 } 2050 2051 optimizeBranches(); 2052 alignBlocks(); 2053 2054 BlockToChain.clear(); 2055 ChainAllocator.DestroyAll(); 2056 2057 if (AlignAllBlock) 2058 // Align all of the blocks in the function to a specific alignment. 2059 for (MachineBasicBlock &MBB : MF) 2060 MBB.setAlignment(AlignAllBlock); 2061 else if (AlignAllNonFallThruBlocks) { 2062 // Align all of the blocks that have no fall-through predecessors to a 2063 // specific alignment. 2064 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2065 auto LayoutPred = std::prev(MBI); 2066 if (!LayoutPred->isSuccessor(&*MBI)) 2067 MBI->setAlignment(AlignAllNonFallThruBlocks); 2068 } 2069 } 2070 2071 // We always return true as we have no way to track whether the final order 2072 // differs from the original order. 2073 return true; 2074 } 2075 2076 namespace { 2077 /// \brief A pass to compute block placement statistics. 2078 /// 2079 /// A separate pass to compute interesting statistics for evaluating block 2080 /// placement. This is separate from the actual placement pass so that they can 2081 /// be computed in the absence of any placement transformations or when using 2082 /// alternative placement strategies. 2083 class MachineBlockPlacementStats : public MachineFunctionPass { 2084 /// \brief A handle to the branch probability pass. 2085 const MachineBranchProbabilityInfo *MBPI; 2086 2087 /// \brief A handle to the function-wide block frequency pass. 2088 const MachineBlockFrequencyInfo *MBFI; 2089 2090 public: 2091 static char ID; // Pass identification, replacement for typeid 2092 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2093 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2094 } 2095 2096 bool runOnMachineFunction(MachineFunction &F) override; 2097 2098 void getAnalysisUsage(AnalysisUsage &AU) const override { 2099 AU.addRequired<MachineBranchProbabilityInfo>(); 2100 AU.addRequired<MachineBlockFrequencyInfo>(); 2101 AU.setPreservesAll(); 2102 MachineFunctionPass::getAnalysisUsage(AU); 2103 } 2104 }; 2105 } 2106 2107 char MachineBlockPlacementStats::ID = 0; 2108 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2109 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2110 "Basic Block Placement Stats", false, false) 2111 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2112 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2113 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2114 "Basic Block Placement Stats", false, false) 2115 2116 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2117 // Check for single-block functions and skip them. 2118 if (std::next(F.begin()) == F.end()) 2119 return false; 2120 2121 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2122 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2123 2124 for (MachineBasicBlock &MBB : F) { 2125 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2126 Statistic &NumBranches = 2127 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2128 Statistic &BranchTakenFreq = 2129 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2130 for (MachineBasicBlock *Succ : MBB.successors()) { 2131 // Skip if this successor is a fallthrough. 2132 if (MBB.isLayoutSuccessor(Succ)) 2133 continue; 2134 2135 BlockFrequency EdgeFreq = 2136 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2137 ++NumBranches; 2138 BranchTakenFreq += EdgeFreq.getFrequency(); 2139 } 2140 } 2141 2142 return false; 2143 } 2144