1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/Support/Allocator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "block-placement" 54 55 STATISTIC(NumCondBranches, "Number of conditional branches"); 56 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 57 STATISTIC(CondBranchTakenFreq, 58 "Potential frequency of taking conditional branches"); 59 STATISTIC(UncondBranchTakenFreq, 60 "Potential frequency of taking unconditional branches"); 61 62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 63 cl::desc("Force the alignment of all " 64 "blocks in the function."), 65 cl::init(0), cl::Hidden); 66 67 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 68 "align-all-nofallthru-blocks", 69 cl::desc("Force the alignment of all " 70 "blocks that have no fall-through predecessors (i.e. don't add " 71 "nops that are executed)."), 72 cl::init(0), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> ExitBlockBias( 76 "block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 // Definition: 82 // - Outlining: placement of a basic block outside the chain or hot path. 83 84 static cl::opt<bool> OutlineOptionalBranches( 85 "outline-optional-branches", 86 cl::desc("Outlining optional branches will place blocks that are optional " 87 "branches, i.e. branches with a common post dominator, outside " 88 "the hot path or chain"), 89 cl::init(false), cl::Hidden); 90 91 static cl::opt<unsigned> OutlineOptionalThreshold( 92 "outline-optional-threshold", 93 cl::desc("Don't outline optional branches that are a single block with an " 94 "instruction count below this threshold"), 95 cl::init(4), cl::Hidden); 96 97 static cl::opt<unsigned> LoopToColdBlockRatio( 98 "loop-to-cold-block-ratio", 99 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 100 "(frequency of block) is greater than this ratio"), 101 cl::init(5), cl::Hidden); 102 103 static cl::opt<bool> 104 PreciseRotationCost("precise-rotation-cost", 105 cl::desc("Model the cost of loop rotation more " 106 "precisely by using profile data."), 107 cl::init(false), cl::Hidden); 108 static cl::opt<bool> 109 ForcePreciseRotationCost("force-precise-rotation-cost", 110 cl::desc("Force the use of precise cost " 111 "loop rotation strategy."), 112 cl::init(false), cl::Hidden); 113 114 static cl::opt<unsigned> MisfetchCost( 115 "misfetch-cost", 116 cl::desc("Cost that models the probabilistic risk of an instruction " 117 "misfetch due to a jump comparing to falling through, whose cost " 118 "is zero."), 119 cl::init(1), cl::Hidden); 120 121 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 122 cl::desc("Cost of jump instructions."), 123 cl::init(1), cl::Hidden); 124 125 static cl::opt<bool> 126 BranchFoldPlacement("branch-fold-placement", 127 cl::desc("Perform branch folding during placement. " 128 "Reduces code size."), 129 cl::init(true), cl::Hidden); 130 131 extern cl::opt<unsigned> StaticLikelyProb; 132 extern cl::opt<unsigned> ProfileLikelyProb; 133 134 namespace { 135 class BlockChain; 136 /// \brief Type for our function-wide basic block -> block chain mapping. 137 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 138 } 139 140 namespace { 141 /// \brief A chain of blocks which will be laid out contiguously. 142 /// 143 /// This is the datastructure representing a chain of consecutive blocks that 144 /// are profitable to layout together in order to maximize fallthrough 145 /// probabilities and code locality. We also can use a block chain to represent 146 /// a sequence of basic blocks which have some external (correctness) 147 /// requirement for sequential layout. 148 /// 149 /// Chains can be built around a single basic block and can be merged to grow 150 /// them. They participate in a block-to-chain mapping, which is updated 151 /// automatically as chains are merged together. 152 class BlockChain { 153 /// \brief The sequence of blocks belonging to this chain. 154 /// 155 /// This is the sequence of blocks for a particular chain. These will be laid 156 /// out in-order within the function. 157 SmallVector<MachineBasicBlock *, 4> Blocks; 158 159 /// \brief A handle to the function-wide basic block to block chain mapping. 160 /// 161 /// This is retained in each block chain to simplify the computation of child 162 /// block chains for SCC-formation and iteration. We store the edges to child 163 /// basic blocks, and map them back to their associated chains using this 164 /// structure. 165 BlockToChainMapType &BlockToChain; 166 167 public: 168 /// \brief Construct a new BlockChain. 169 /// 170 /// This builds a new block chain representing a single basic block in the 171 /// function. It also registers itself as the chain that block participates 172 /// in with the BlockToChain mapping. 173 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 174 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 175 assert(BB && "Cannot create a chain with a null basic block"); 176 BlockToChain[BB] = this; 177 } 178 179 /// \brief Iterator over blocks within the chain. 180 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 181 182 /// \brief Beginning of blocks within the chain. 183 iterator begin() { return Blocks.begin(); } 184 185 /// \brief End of blocks within the chain. 186 iterator end() { return Blocks.end(); } 187 188 /// \brief Merge a block chain into this one. 189 /// 190 /// This routine merges a block chain into this one. It takes care of forming 191 /// a contiguous sequence of basic blocks, updating the edge list, and 192 /// updating the block -> chain mapping. It does not free or tear down the 193 /// old chain, but the old chain's block list is no longer valid. 194 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 195 assert(BB); 196 assert(!Blocks.empty()); 197 198 // Fast path in case we don't have a chain already. 199 if (!Chain) { 200 assert(!BlockToChain[BB]); 201 Blocks.push_back(BB); 202 BlockToChain[BB] = this; 203 return; 204 } 205 206 assert(BB == *Chain->begin()); 207 assert(Chain->begin() != Chain->end()); 208 209 // Update the incoming blocks to point to this chain, and add them to the 210 // chain structure. 211 for (MachineBasicBlock *ChainBB : *Chain) { 212 Blocks.push_back(ChainBB); 213 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 214 BlockToChain[ChainBB] = this; 215 } 216 } 217 218 #ifndef NDEBUG 219 /// \brief Dump the blocks in this chain. 220 LLVM_DUMP_METHOD void dump() { 221 for (MachineBasicBlock *MBB : *this) 222 MBB->dump(); 223 } 224 #endif // NDEBUG 225 226 /// \brief Count of predecessors of any block within the chain which have not 227 /// yet been scheduled. In general, we will delay scheduling this chain 228 /// until those predecessors are scheduled (or we find a sufficiently good 229 /// reason to override this heuristic.) Note that when forming loop chains, 230 /// blocks outside the loop are ignored and treated as if they were already 231 /// scheduled. 232 /// 233 /// Note: This field is reinitialized multiple times - once for each loop, 234 /// and then once for the function as a whole. 235 unsigned UnscheduledPredecessors; 236 }; 237 } 238 239 namespace { 240 class MachineBlockPlacement : public MachineFunctionPass { 241 /// \brief A typedef for a block filter set. 242 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 243 244 /// \brief work lists of blocks that are ready to be laid out 245 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 246 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 247 248 /// \brief Machine Function 249 MachineFunction *F; 250 251 /// \brief A handle to the branch probability pass. 252 const MachineBranchProbabilityInfo *MBPI; 253 254 /// \brief A handle to the function-wide block frequency pass. 255 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 256 257 /// \brief A handle to the loop info. 258 MachineLoopInfo *MLI; 259 260 /// \brief A handle to the target's instruction info. 261 const TargetInstrInfo *TII; 262 263 /// \brief A handle to the target's lowering info. 264 const TargetLoweringBase *TLI; 265 266 /// \brief A handle to the post dominator tree. 267 MachineDominatorTree *MDT; 268 269 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 270 /// all terminators of the MachineFunction. 271 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 272 273 /// \brief Allocator and owner of BlockChain structures. 274 /// 275 /// We build BlockChains lazily while processing the loop structure of 276 /// a function. To reduce malloc traffic, we allocate them using this 277 /// slab-like allocator, and destroy them after the pass completes. An 278 /// important guarantee is that this allocator produces stable pointers to 279 /// the chains. 280 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 281 282 /// \brief Function wide BasicBlock to BlockChain mapping. 283 /// 284 /// This mapping allows efficiently moving from any given basic block to the 285 /// BlockChain it participates in, if any. We use it to, among other things, 286 /// allow implicitly defining edges between chains as the existing edges 287 /// between basic blocks. 288 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 289 290 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 291 const BlockFilterSet *BlockFilter = nullptr); 292 BranchProbability 293 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 294 const BlockFilterSet *BlockFilter, 295 SmallVector<MachineBasicBlock *, 4> &Successors); 296 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 297 BlockChain &Chain, 298 const BlockFilterSet *BlockFilter, 299 BranchProbability SuccProb, 300 BranchProbability HotProb); 301 bool 302 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 303 BlockChain &SuccChain, BranchProbability SuccProb, 304 BranchProbability RealSuccProb, BlockChain &Chain, 305 const BlockFilterSet *BlockFilter); 306 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 307 BlockChain &Chain, 308 const BlockFilterSet *BlockFilter); 309 MachineBasicBlock * 310 selectBestCandidateBlock(BlockChain &Chain, 311 SmallVectorImpl<MachineBasicBlock *> &WorkList); 312 MachineBasicBlock * 313 getFirstUnplacedBlock(const BlockChain &PlacedChain, 314 MachineFunction::iterator &PrevUnplacedBlockIt, 315 const BlockFilterSet *BlockFilter); 316 317 /// \brief Add a basic block to the work list if it is appropriate. 318 /// 319 /// If the optional parameter BlockFilter is provided, only MBB 320 /// present in the set will be added to the worklist. If nullptr 321 /// is provided, no filtering occurs. 322 void fillWorkLists(MachineBasicBlock *MBB, 323 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 324 const BlockFilterSet *BlockFilter); 325 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 326 const BlockFilterSet *BlockFilter = nullptr); 327 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 328 const BlockFilterSet &LoopBlockSet); 329 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 330 const BlockFilterSet &LoopBlockSet); 331 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 332 void buildLoopChains(MachineLoop &L); 333 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 334 const BlockFilterSet &LoopBlockSet); 335 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 336 const BlockFilterSet &LoopBlockSet); 337 void collectMustExecuteBBs(); 338 void buildCFGChains(); 339 void optimizeBranches(); 340 void alignBlocks(); 341 342 public: 343 static char ID; // Pass identification, replacement for typeid 344 MachineBlockPlacement() : MachineFunctionPass(ID) { 345 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 346 } 347 348 bool runOnMachineFunction(MachineFunction &F) override; 349 350 void getAnalysisUsage(AnalysisUsage &AU) const override { 351 AU.addRequired<MachineBranchProbabilityInfo>(); 352 AU.addRequired<MachineBlockFrequencyInfo>(); 353 AU.addRequired<MachineDominatorTree>(); 354 AU.addRequired<MachineLoopInfo>(); 355 AU.addRequired<TargetPassConfig>(); 356 MachineFunctionPass::getAnalysisUsage(AU); 357 } 358 }; 359 } 360 361 char MachineBlockPlacement::ID = 0; 362 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 363 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 364 "Branch Probability Basic Block Placement", false, false) 365 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 366 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 367 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 368 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 369 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 370 "Branch Probability Basic Block Placement", false, false) 371 372 #ifndef NDEBUG 373 /// \brief Helper to print the name of a MBB. 374 /// 375 /// Only used by debug logging. 376 static std::string getBlockName(MachineBasicBlock *BB) { 377 std::string Result; 378 raw_string_ostream OS(Result); 379 OS << "BB#" << BB->getNumber(); 380 OS << " ('" << BB->getName() << "')"; 381 OS.flush(); 382 return Result; 383 } 384 #endif 385 386 /// \brief Mark a chain's successors as having one fewer preds. 387 /// 388 /// When a chain is being merged into the "placed" chain, this routine will 389 /// quickly walk the successors of each block in the chain and mark them as 390 /// having one fewer active predecessor. It also adds any successors of this 391 /// chain which reach the zero-predecessor state to the worklist passed in. 392 void MachineBlockPlacement::markChainSuccessors( 393 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 394 const BlockFilterSet *BlockFilter) { 395 // Walk all the blocks in this chain, marking their successors as having 396 // a predecessor placed. 397 for (MachineBasicBlock *MBB : Chain) { 398 // Add any successors for which this is the only un-placed in-loop 399 // predecessor to the worklist as a viable candidate for CFG-neutral 400 // placement. No subsequent placement of this block will violate the CFG 401 // shape, so we get to use heuristics to choose a favorable placement. 402 for (MachineBasicBlock *Succ : MBB->successors()) { 403 if (BlockFilter && !BlockFilter->count(Succ)) 404 continue; 405 BlockChain &SuccChain = *BlockToChain[Succ]; 406 // Disregard edges within a fixed chain, or edges to the loop header. 407 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 408 continue; 409 410 // This is a cross-chain edge that is within the loop, so decrement the 411 // loop predecessor count of the destination chain. 412 if (SuccChain.UnscheduledPredecessors == 0 || 413 --SuccChain.UnscheduledPredecessors > 0) 414 continue; 415 416 auto *MBB = *SuccChain.begin(); 417 if (MBB->isEHPad()) 418 EHPadWorkList.push_back(MBB); 419 else 420 BlockWorkList.push_back(MBB); 421 } 422 } 423 } 424 425 /// This helper function collects the set of successors of block 426 /// \p BB that are allowed to be its layout successors, and return 427 /// the total branch probability of edges from \p BB to those 428 /// blocks. 429 BranchProbability MachineBlockPlacement::collectViableSuccessors( 430 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 431 SmallVector<MachineBasicBlock *, 4> &Successors) { 432 // Adjust edge probabilities by excluding edges pointing to blocks that is 433 // either not in BlockFilter or is already in the current chain. Consider the 434 // following CFG: 435 // 436 // --->A 437 // | / \ 438 // | B C 439 // | \ / \ 440 // ----D E 441 // 442 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 443 // A->C is chosen as a fall-through, D won't be selected as a successor of C 444 // due to CFG constraint (the probability of C->D is not greater than 445 // HotProb to break top-order). If we exclude E that is not in BlockFilter 446 // when calculating the probability of C->D, D will be selected and we 447 // will get A C D B as the layout of this loop. 448 auto AdjustedSumProb = BranchProbability::getOne(); 449 for (MachineBasicBlock *Succ : BB->successors()) { 450 bool SkipSucc = false; 451 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 452 SkipSucc = true; 453 } else { 454 BlockChain *SuccChain = BlockToChain[Succ]; 455 if (SuccChain == &Chain) { 456 SkipSucc = true; 457 } else if (Succ != *SuccChain->begin()) { 458 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 459 continue; 460 } 461 } 462 if (SkipSucc) 463 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 464 else 465 Successors.push_back(Succ); 466 } 467 468 return AdjustedSumProb; 469 } 470 471 /// The helper function returns the branch probability that is adjusted 472 /// or normalized over the new total \p AdjustedSumProb. 473 static BranchProbability 474 getAdjustedProbability(BranchProbability OrigProb, 475 BranchProbability AdjustedSumProb) { 476 BranchProbability SuccProb; 477 uint32_t SuccProbN = OrigProb.getNumerator(); 478 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 479 if (SuccProbN >= SuccProbD) 480 SuccProb = BranchProbability::getOne(); 481 else 482 SuccProb = BranchProbability(SuccProbN, SuccProbD); 483 484 return SuccProb; 485 } 486 487 /// When the option OutlineOptionalBranches is on, this method 488 /// checks if the fallthrough candidate block \p Succ (of block 489 /// \p BB) also has other unscheduled predecessor blocks which 490 /// are also successors of \p BB (forming triangular shape CFG). 491 /// If none of such predecessors are small, it returns true. 492 /// The caller can choose to select \p Succ as the layout successors 493 /// so that \p Succ's predecessors (optional branches) can be 494 /// outlined. 495 /// FIXME: fold this with more general layout cost analysis. 496 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 497 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 498 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 499 BranchProbability HotProb) { 500 if (!OutlineOptionalBranches) 501 return false; 502 // If we outline optional branches, look whether Succ is unavoidable, i.e. 503 // dominates all terminators of the MachineFunction. If it does, other 504 // successors must be optional. Don't do this for cold branches. 505 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 506 for (MachineBasicBlock *Pred : Succ->predecessors()) { 507 // Check whether there is an unplaced optional branch. 508 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 509 BlockToChain[Pred] == &Chain) 510 continue; 511 // Check whether the optional branch has exactly one BB. 512 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 513 continue; 514 // Check whether the optional branch is small. 515 if (Pred->size() < OutlineOptionalThreshold) 516 return false; 517 } 518 return true; 519 } else 520 return false; 521 } 522 523 // When profile is not present, return the StaticLikelyProb. 524 // When profile is available, we need to handle the triangle-shape CFG. 525 static BranchProbability getLayoutSuccessorProbThreshold( 526 MachineBasicBlock *BB) { 527 if (!BB->getParent()->getFunction()->getEntryCount()) 528 return BranchProbability(StaticLikelyProb, 100); 529 if (BB->succ_size() == 2) { 530 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 531 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 532 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 533 /* See case 1 below for the cost analysis. For BB->Succ to 534 * be taken with smaller cost, the following needs to hold: 535 * Prob(BB->Succ) > 2* Prob(BB->Pred) 536 * So the threshold T 537 * T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1, 538 * We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified 539 * branch bias, we have 540 * T = (2/3)*(ProfileLikelyProb/50) 541 * = (2*ProfileLikelyProb)/150) 542 */ 543 return BranchProbability(2 * ProfileLikelyProb, 150); 544 } 545 } 546 return BranchProbability(ProfileLikelyProb, 100); 547 } 548 549 /// Checks to see if the layout candidate block \p Succ has a better layout 550 /// predecessor than \c BB. If yes, returns true. 551 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 552 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 553 BranchProbability SuccProb, BranchProbability RealSuccProb, 554 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 555 556 // There isn't a better layout when there are no unscheduled predecessors. 557 if (SuccChain.UnscheduledPredecessors == 0) 558 return false; 559 560 // There are two basic scenarios here: 561 // ------------------------------------- 562 // Case 1: triangular shape CFG (if-then): 563 // BB 564 // | \ 565 // | \ 566 // | Pred 567 // | / 568 // Succ 569 // In this case, we are evaluating whether to select edge -> Succ, e.g. 570 // set Succ as the layout successor of BB. Picking Succ as BB's 571 // successor breaks the CFG constraints (FIXME: define these constraints). 572 // With this layout, Pred BB 573 // is forced to be outlined, so the overall cost will be cost of the 574 // branch taken from BB to Pred, plus the cost of back taken branch 575 // from Pred to Succ, as well as the additional cost associated 576 // with the needed unconditional jump instruction from Pred To Succ. 577 578 // The cost of the topological order layout is the taken branch cost 579 // from BB to Succ, so to make BB->Succ a viable candidate, the following 580 // must hold: 581 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 582 // < freq(BB->Succ) * taken_branch_cost. 583 // Ignoring unconditional jump cost, we get 584 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 585 // prob(BB->Succ) > 2 * prob(BB->Pred) 586 // 587 // When real profile data is available, we can precisely compute the 588 // probability threshold that is needed for edge BB->Succ to be considered. 589 // Without profile data, the heuristic requires the branch bias to be 590 // a lot larger to make sure the signal is very strong (e.g. 80% default). 591 // ----------------------------------------------------------------- 592 // Case 2: diamond like CFG (if-then-else): 593 // S 594 // / \ 595 // | \ 596 // BB Pred 597 // \ / 598 // Succ 599 // .. 600 // 601 // The current block is BB and edge BB->Succ is now being evaluated. 602 // Note that edge S->BB was previously already selected because 603 // prob(S->BB) > prob(S->Pred). 604 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 605 // choose Pred, we will have a topological ordering as shown on the left 606 // in the picture below. If we choose Succ, we have the solution as shown 607 // on the right: 608 // 609 // topo-order: 610 // 611 // S----- ---S 612 // | | | | 613 // ---BB | | BB 614 // | | | | 615 // | pred-- | Succ-- 616 // | | | | 617 // ---succ ---pred-- 618 // 619 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 620 // = freq(S->Pred) + freq(S->BB) 621 // 622 // If we have profile data (i.e, branch probabilities can be trusted), the 623 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 624 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 625 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 626 // means the cost of topological order is greater. 627 // When profile data is not available, however, we need to be more 628 // conservative. If the branch prediction is wrong, breaking the topo-order 629 // will actually yield a layout with large cost. For this reason, we need 630 // strong biased branch at block S with Prob(S->BB) in order to select 631 // BB->Succ. This is equivalent to looking the CFG backward with backward 632 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 633 // profile data). 634 // -------------------------------------------------------------------------- 635 // Case 3: forked diamond 636 // S 637 // / \ 638 // / \ 639 // BB Pred 640 // | \ / | 641 // | \ / | 642 // | X | 643 // | / \ | 644 // | / \ | 645 // S1 S2 646 // 647 // The current block is BB and edge BB->S1 is now being evaluated. 648 // As above S->BB was already selected because 649 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 650 // 651 // topo-order: 652 // 653 // S-------| ---S 654 // | | | | 655 // ---BB | | BB 656 // | | | | 657 // | Pred----| | S1---- 658 // | | | | 659 // --(S1 or S2) ---Pred-- 660 // 661 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 662 // + min(freq(Pred->S1), freq(Pred->S2)) 663 // Non-topo-order cost: 664 // In the worst case, S2 will not get laid out after Pred. 665 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 666 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 667 // is 0. Then the non topo layout is better when 668 // freq(S->Pred) < freq(BB->S1). 669 // This is exactly what is checked below. 670 // Note there are other shapes that apply (Pred may not be a single block, 671 // but they all fit this general pattern.) 672 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 673 674 // Make sure that a hot successor doesn't have a globally more 675 // important predecessor. 676 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 677 bool BadCFGConflict = false; 678 679 for (MachineBasicBlock *Pred : Succ->predecessors()) { 680 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 681 (BlockFilter && !BlockFilter->count(Pred)) || 682 BlockToChain[Pred] == &Chain) 683 continue; 684 // Do backward checking. 685 // For all cases above, we need a backward checking to filter out edges that 686 // are not 'strongly' biased. With profile data available, the check is 687 // mostly redundant for case 2 (when threshold prob is set at 50%) unless S 688 // has more than two successors. 689 // BB Pred 690 // \ / 691 // Succ 692 // We select edge BB->Succ if 693 // freq(BB->Succ) > freq(Succ) * HotProb 694 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 695 // HotProb 696 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 697 // Case 1 is covered too, because the first equation reduces to: 698 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 699 BlockFrequency PredEdgeFreq = 700 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 701 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 702 BadCFGConflict = true; 703 break; 704 } 705 } 706 707 if (BadCFGConflict) { 708 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 709 << " (prob) (non-cold CFG conflict)\n"); 710 return true; 711 } 712 713 return false; 714 } 715 716 /// \brief Select the best successor for a block. 717 /// 718 /// This looks across all successors of a particular block and attempts to 719 /// select the "best" one to be the layout successor. It only considers direct 720 /// successors which also pass the block filter. It will attempt to avoid 721 /// breaking CFG structure, but cave and break such structures in the case of 722 /// very hot successor edges. 723 /// 724 /// \returns The best successor block found, or null if none are viable. 725 MachineBasicBlock * 726 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 727 BlockChain &Chain, 728 const BlockFilterSet *BlockFilter) { 729 const BranchProbability HotProb(StaticLikelyProb, 100); 730 731 MachineBasicBlock *BestSucc = nullptr; 732 auto BestProb = BranchProbability::getZero(); 733 734 SmallVector<MachineBasicBlock *, 4> Successors; 735 auto AdjustedSumProb = 736 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 737 738 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 739 for (MachineBasicBlock *Succ : Successors) { 740 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 741 BranchProbability SuccProb = 742 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 743 744 // This heuristic is off by default. 745 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 746 HotProb)) 747 return Succ; 748 749 BlockChain &SuccChain = *BlockToChain[Succ]; 750 // Skip the edge \c BB->Succ if block \c Succ has a better layout 751 // predecessor that yields lower global cost. 752 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 753 Chain, BlockFilter)) 754 continue; 755 756 DEBUG( 757 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 758 << SuccProb 759 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 760 << "\n"); 761 762 if (BestSucc && BestProb >= SuccProb) { 763 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 764 continue; 765 } 766 767 DEBUG(dbgs() << " Setting it as best candidate\n"); 768 BestSucc = Succ; 769 BestProb = SuccProb; 770 } 771 if (BestSucc) 772 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc) << "\n"); 773 774 return BestSucc; 775 } 776 777 /// \brief Select the best block from a worklist. 778 /// 779 /// This looks through the provided worklist as a list of candidate basic 780 /// blocks and select the most profitable one to place. The definition of 781 /// profitable only really makes sense in the context of a loop. This returns 782 /// the most frequently visited block in the worklist, which in the case of 783 /// a loop, is the one most desirable to be physically close to the rest of the 784 /// loop body in order to improve i-cache behavior. 785 /// 786 /// \returns The best block found, or null if none are viable. 787 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 788 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 789 // Once we need to walk the worklist looking for a candidate, cleanup the 790 // worklist of already placed entries. 791 // FIXME: If this shows up on profiles, it could be folded (at the cost of 792 // some code complexity) into the loop below. 793 WorkList.erase(remove_if(WorkList, 794 [&](MachineBasicBlock *BB) { 795 return BlockToChain.lookup(BB) == &Chain; 796 }), 797 WorkList.end()); 798 799 if (WorkList.empty()) 800 return nullptr; 801 802 bool IsEHPad = WorkList[0]->isEHPad(); 803 804 MachineBasicBlock *BestBlock = nullptr; 805 BlockFrequency BestFreq; 806 for (MachineBasicBlock *MBB : WorkList) { 807 assert(MBB->isEHPad() == IsEHPad); 808 809 BlockChain &SuccChain = *BlockToChain[MBB]; 810 if (&SuccChain == &Chain) 811 continue; 812 813 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 814 815 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 816 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 817 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 818 819 // For ehpad, we layout the least probable first as to avoid jumping back 820 // from least probable landingpads to more probable ones. 821 // 822 // FIXME: Using probability is probably (!) not the best way to achieve 823 // this. We should probably have a more principled approach to layout 824 // cleanup code. 825 // 826 // The goal is to get: 827 // 828 // +--------------------------+ 829 // | V 830 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 831 // 832 // Rather than: 833 // 834 // +-------------------------------------+ 835 // V | 836 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 837 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 838 continue; 839 840 BestBlock = MBB; 841 BestFreq = CandidateFreq; 842 } 843 844 return BestBlock; 845 } 846 847 /// \brief Retrieve the first unplaced basic block. 848 /// 849 /// This routine is called when we are unable to use the CFG to walk through 850 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 851 /// We walk through the function's blocks in order, starting from the 852 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 853 /// re-scanning the entire sequence on repeated calls to this routine. 854 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 855 const BlockChain &PlacedChain, 856 MachineFunction::iterator &PrevUnplacedBlockIt, 857 const BlockFilterSet *BlockFilter) { 858 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 859 ++I) { 860 if (BlockFilter && !BlockFilter->count(&*I)) 861 continue; 862 if (BlockToChain[&*I] != &PlacedChain) { 863 PrevUnplacedBlockIt = I; 864 // Now select the head of the chain to which the unplaced block belongs 865 // as the block to place. This will force the entire chain to be placed, 866 // and satisfies the requirements of merging chains. 867 return *BlockToChain[&*I]->begin(); 868 } 869 } 870 return nullptr; 871 } 872 873 void MachineBlockPlacement::fillWorkLists( 874 MachineBasicBlock *MBB, 875 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 876 const BlockFilterSet *BlockFilter = nullptr) { 877 BlockChain &Chain = *BlockToChain[MBB]; 878 if (!UpdatedPreds.insert(&Chain).second) 879 return; 880 881 assert(Chain.UnscheduledPredecessors == 0); 882 for (MachineBasicBlock *ChainBB : Chain) { 883 assert(BlockToChain[ChainBB] == &Chain); 884 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 885 if (BlockFilter && !BlockFilter->count(Pred)) 886 continue; 887 if (BlockToChain[Pred] == &Chain) 888 continue; 889 ++Chain.UnscheduledPredecessors; 890 } 891 } 892 893 if (Chain.UnscheduledPredecessors != 0) 894 return; 895 896 MBB = *Chain.begin(); 897 if (MBB->isEHPad()) 898 EHPadWorkList.push_back(MBB); 899 else 900 BlockWorkList.push_back(MBB); 901 } 902 903 void MachineBlockPlacement::buildChain( 904 MachineBasicBlock *BB, BlockChain &Chain, 905 const BlockFilterSet *BlockFilter) { 906 assert(BB && "BB must not be null.\n"); 907 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); 908 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 909 910 MachineBasicBlock *LoopHeaderBB = BB; 911 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 912 BB = *std::prev(Chain.end()); 913 for (;;) { 914 assert(BB && "null block found at end of chain in loop."); 915 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 916 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 917 918 919 // Look for the best viable successor if there is one to place immediately 920 // after this block. 921 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 922 923 // If an immediate successor isn't available, look for the best viable 924 // block among those we've identified as not violating the loop's CFG at 925 // this point. This won't be a fallthrough, but it will increase locality. 926 if (!BestSucc) 927 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 928 if (!BestSucc) 929 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 930 931 if (!BestSucc) { 932 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 933 if (!BestSucc) 934 break; 935 936 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 937 "layout successor until the CFG reduces\n"); 938 } 939 940 // Place this block, updating the datastructures to reflect its placement. 941 BlockChain &SuccChain = *BlockToChain[BestSucc]; 942 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 943 // we selected a successor that didn't fit naturally into the CFG. 944 SuccChain.UnscheduledPredecessors = 0; 945 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 946 << getBlockName(BestSucc) << "\n"); 947 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 948 Chain.merge(BestSucc, &SuccChain); 949 BB = *std::prev(Chain.end()); 950 } 951 952 DEBUG(dbgs() << "Finished forming chain for header block " 953 << getBlockName(*Chain.begin()) << "\n"); 954 } 955 956 /// \brief Find the best loop top block for layout. 957 /// 958 /// Look for a block which is strictly better than the loop header for laying 959 /// out at the top of the loop. This looks for one and only one pattern: 960 /// a latch block with no conditional exit. This block will cause a conditional 961 /// jump around it or will be the bottom of the loop if we lay it out in place, 962 /// but if it it doesn't end up at the bottom of the loop for any reason, 963 /// rotation alone won't fix it. Because such a block will always result in an 964 /// unconditional jump (for the backedge) rotating it in front of the loop 965 /// header is always profitable. 966 MachineBasicBlock * 967 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 968 const BlockFilterSet &LoopBlockSet) { 969 // Placing the latch block before the header may introduce an extra branch 970 // that skips this block the first time the loop is executed, which we want 971 // to avoid when optimising for size. 972 // FIXME: in theory there is a case that does not introduce a new branch, 973 // i.e. when the layout predecessor does not fallthrough to the loop header. 974 // In practice this never happens though: there always seems to be a preheader 975 // that can fallthrough and that is also placed before the header. 976 if (F->getFunction()->optForSize()) 977 return L.getHeader(); 978 979 // Check that the header hasn't been fused with a preheader block due to 980 // crazy branches. If it has, we need to start with the header at the top to 981 // prevent pulling the preheader into the loop body. 982 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 983 if (!LoopBlockSet.count(*HeaderChain.begin())) 984 return L.getHeader(); 985 986 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 987 << "\n"); 988 989 BlockFrequency BestPredFreq; 990 MachineBasicBlock *BestPred = nullptr; 991 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 992 if (!LoopBlockSet.count(Pred)) 993 continue; 994 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 995 << Pred->succ_size() << " successors, "; 996 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 997 if (Pred->succ_size() > 1) 998 continue; 999 1000 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1001 if (!BestPred || PredFreq > BestPredFreq || 1002 (!(PredFreq < BestPredFreq) && 1003 Pred->isLayoutSuccessor(L.getHeader()))) { 1004 BestPred = Pred; 1005 BestPredFreq = PredFreq; 1006 } 1007 } 1008 1009 // If no direct predecessor is fine, just use the loop header. 1010 if (!BestPred) { 1011 DEBUG(dbgs() << " final top unchanged\n"); 1012 return L.getHeader(); 1013 } 1014 1015 // Walk backwards through any straight line of predecessors. 1016 while (BestPred->pred_size() == 1 && 1017 (*BestPred->pred_begin())->succ_size() == 1 && 1018 *BestPred->pred_begin() != L.getHeader()) 1019 BestPred = *BestPred->pred_begin(); 1020 1021 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1022 return BestPred; 1023 } 1024 1025 /// \brief Find the best loop exiting block for layout. 1026 /// 1027 /// This routine implements the logic to analyze the loop looking for the best 1028 /// block to layout at the top of the loop. Typically this is done to maximize 1029 /// fallthrough opportunities. 1030 MachineBasicBlock * 1031 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 1032 const BlockFilterSet &LoopBlockSet) { 1033 // We don't want to layout the loop linearly in all cases. If the loop header 1034 // is just a normal basic block in the loop, we want to look for what block 1035 // within the loop is the best one to layout at the top. However, if the loop 1036 // header has be pre-merged into a chain due to predecessors not having 1037 // analyzable branches, *and* the predecessor it is merged with is *not* part 1038 // of the loop, rotating the header into the middle of the loop will create 1039 // a non-contiguous range of blocks which is Very Bad. So start with the 1040 // header and only rotate if safe. 1041 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1042 if (!LoopBlockSet.count(*HeaderChain.begin())) 1043 return nullptr; 1044 1045 BlockFrequency BestExitEdgeFreq; 1046 unsigned BestExitLoopDepth = 0; 1047 MachineBasicBlock *ExitingBB = nullptr; 1048 // If there are exits to outer loops, loop rotation can severely limit 1049 // fallthrough opportunities unless it selects such an exit. Keep a set of 1050 // blocks where rotating to exit with that block will reach an outer loop. 1051 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1052 1053 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1054 << "\n"); 1055 for (MachineBasicBlock *MBB : L.getBlocks()) { 1056 BlockChain &Chain = *BlockToChain[MBB]; 1057 // Ensure that this block is at the end of a chain; otherwise it could be 1058 // mid-way through an inner loop or a successor of an unanalyzable branch. 1059 if (MBB != *std::prev(Chain.end())) 1060 continue; 1061 1062 // Now walk the successors. We need to establish whether this has a viable 1063 // exiting successor and whether it has a viable non-exiting successor. 1064 // We store the old exiting state and restore it if a viable looping 1065 // successor isn't found. 1066 MachineBasicBlock *OldExitingBB = ExitingBB; 1067 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1068 bool HasLoopingSucc = false; 1069 for (MachineBasicBlock *Succ : MBB->successors()) { 1070 if (Succ->isEHPad()) 1071 continue; 1072 if (Succ == MBB) 1073 continue; 1074 BlockChain &SuccChain = *BlockToChain[Succ]; 1075 // Don't split chains, either this chain or the successor's chain. 1076 if (&Chain == &SuccChain) { 1077 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1078 << getBlockName(Succ) << " (chain conflict)\n"); 1079 continue; 1080 } 1081 1082 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1083 if (LoopBlockSet.count(Succ)) { 1084 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1085 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1086 HasLoopingSucc = true; 1087 continue; 1088 } 1089 1090 unsigned SuccLoopDepth = 0; 1091 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1092 SuccLoopDepth = ExitLoop->getLoopDepth(); 1093 if (ExitLoop->contains(&L)) 1094 BlocksExitingToOuterLoop.insert(MBB); 1095 } 1096 1097 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1098 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1099 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1100 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1101 // Note that we bias this toward an existing layout successor to retain 1102 // incoming order in the absence of better information. The exit must have 1103 // a frequency higher than the current exit before we consider breaking 1104 // the layout. 1105 BranchProbability Bias(100 - ExitBlockBias, 100); 1106 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1107 ExitEdgeFreq > BestExitEdgeFreq || 1108 (MBB->isLayoutSuccessor(Succ) && 1109 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1110 BestExitEdgeFreq = ExitEdgeFreq; 1111 ExitingBB = MBB; 1112 } 1113 } 1114 1115 if (!HasLoopingSucc) { 1116 // Restore the old exiting state, no viable looping successor was found. 1117 ExitingBB = OldExitingBB; 1118 BestExitEdgeFreq = OldBestExitEdgeFreq; 1119 } 1120 } 1121 // Without a candidate exiting block or with only a single block in the 1122 // loop, just use the loop header to layout the loop. 1123 if (!ExitingBB) { 1124 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1125 return nullptr; 1126 } 1127 if (L.getNumBlocks() == 1) { 1128 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1129 return nullptr; 1130 } 1131 1132 // Also, if we have exit blocks which lead to outer loops but didn't select 1133 // one of them as the exiting block we are rotating toward, disable loop 1134 // rotation altogether. 1135 if (!BlocksExitingToOuterLoop.empty() && 1136 !BlocksExitingToOuterLoop.count(ExitingBB)) 1137 return nullptr; 1138 1139 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1140 return ExitingBB; 1141 } 1142 1143 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1144 /// 1145 /// Once we have built a chain, try to rotate it to line up the hot exit block 1146 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1147 /// branches. For example, if the loop has fallthrough into its header and out 1148 /// of its bottom already, don't rotate it. 1149 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1150 MachineBasicBlock *ExitingBB, 1151 const BlockFilterSet &LoopBlockSet) { 1152 if (!ExitingBB) 1153 return; 1154 1155 MachineBasicBlock *Top = *LoopChain.begin(); 1156 bool ViableTopFallthrough = false; 1157 for (MachineBasicBlock *Pred : Top->predecessors()) { 1158 BlockChain *PredChain = BlockToChain[Pred]; 1159 if (!LoopBlockSet.count(Pred) && 1160 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1161 ViableTopFallthrough = true; 1162 break; 1163 } 1164 } 1165 1166 // If the header has viable fallthrough, check whether the current loop 1167 // bottom is a viable exiting block. If so, bail out as rotating will 1168 // introduce an unnecessary branch. 1169 if (ViableTopFallthrough) { 1170 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1171 for (MachineBasicBlock *Succ : Bottom->successors()) { 1172 BlockChain *SuccChain = BlockToChain[Succ]; 1173 if (!LoopBlockSet.count(Succ) && 1174 (!SuccChain || Succ == *SuccChain->begin())) 1175 return; 1176 } 1177 } 1178 1179 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1180 if (ExitIt == LoopChain.end()) 1181 return; 1182 1183 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1184 } 1185 1186 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1187 /// 1188 /// With profile data, we can determine the cost in terms of missed fall through 1189 /// opportunities when rotating a loop chain and select the best rotation. 1190 /// Basically, there are three kinds of cost to consider for each rotation: 1191 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1192 /// the loop to the loop header. 1193 /// 2. The possibly missed fall through edges (if they exist) from the loop 1194 /// exits to BB out of the loop. 1195 /// 3. The missed fall through edge (if it exists) from the last BB to the 1196 /// first BB in the loop chain. 1197 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1198 /// We select the best rotation with the smallest cost. 1199 void MachineBlockPlacement::rotateLoopWithProfile( 1200 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1201 auto HeaderBB = L.getHeader(); 1202 auto HeaderIter = find(LoopChain, HeaderBB); 1203 auto RotationPos = LoopChain.end(); 1204 1205 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1206 1207 // A utility lambda that scales up a block frequency by dividing it by a 1208 // branch probability which is the reciprocal of the scale. 1209 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1210 unsigned Scale) -> BlockFrequency { 1211 if (Scale == 0) 1212 return 0; 1213 // Use operator / between BlockFrequency and BranchProbability to implement 1214 // saturating multiplication. 1215 return Freq / BranchProbability(1, Scale); 1216 }; 1217 1218 // Compute the cost of the missed fall-through edge to the loop header if the 1219 // chain head is not the loop header. As we only consider natural loops with 1220 // single header, this computation can be done only once. 1221 BlockFrequency HeaderFallThroughCost(0); 1222 for (auto *Pred : HeaderBB->predecessors()) { 1223 BlockChain *PredChain = BlockToChain[Pred]; 1224 if (!LoopBlockSet.count(Pred) && 1225 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1226 auto EdgeFreq = 1227 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1228 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1229 // If the predecessor has only an unconditional jump to the header, we 1230 // need to consider the cost of this jump. 1231 if (Pred->succ_size() == 1) 1232 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1233 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1234 } 1235 } 1236 1237 // Here we collect all exit blocks in the loop, and for each exit we find out 1238 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1239 // as the sum of frequencies of exit edges we collect here, excluding the exit 1240 // edge from the tail of the loop chain. 1241 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1242 for (auto BB : LoopChain) { 1243 auto LargestExitEdgeProb = BranchProbability::getZero(); 1244 for (auto *Succ : BB->successors()) { 1245 BlockChain *SuccChain = BlockToChain[Succ]; 1246 if (!LoopBlockSet.count(Succ) && 1247 (!SuccChain || Succ == *SuccChain->begin())) { 1248 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1249 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1250 } 1251 } 1252 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1253 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1254 ExitsWithFreq.emplace_back(BB, ExitFreq); 1255 } 1256 } 1257 1258 // In this loop we iterate every block in the loop chain and calculate the 1259 // cost assuming the block is the head of the loop chain. When the loop ends, 1260 // we should have found the best candidate as the loop chain's head. 1261 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1262 EndIter = LoopChain.end(); 1263 Iter != EndIter; Iter++, TailIter++) { 1264 // TailIter is used to track the tail of the loop chain if the block we are 1265 // checking (pointed by Iter) is the head of the chain. 1266 if (TailIter == LoopChain.end()) 1267 TailIter = LoopChain.begin(); 1268 1269 auto TailBB = *TailIter; 1270 1271 // Calculate the cost by putting this BB to the top. 1272 BlockFrequency Cost = 0; 1273 1274 // If the current BB is the loop header, we need to take into account the 1275 // cost of the missed fall through edge from outside of the loop to the 1276 // header. 1277 if (Iter != HeaderIter) 1278 Cost += HeaderFallThroughCost; 1279 1280 // Collect the loop exit cost by summing up frequencies of all exit edges 1281 // except the one from the chain tail. 1282 for (auto &ExitWithFreq : ExitsWithFreq) 1283 if (TailBB != ExitWithFreq.first) 1284 Cost += ExitWithFreq.second; 1285 1286 // The cost of breaking the once fall-through edge from the tail to the top 1287 // of the loop chain. Here we need to consider three cases: 1288 // 1. If the tail node has only one successor, then we will get an 1289 // additional jmp instruction. So the cost here is (MisfetchCost + 1290 // JumpInstCost) * tail node frequency. 1291 // 2. If the tail node has two successors, then we may still get an 1292 // additional jmp instruction if the layout successor after the loop 1293 // chain is not its CFG successor. Note that the more frequently executed 1294 // jmp instruction will be put ahead of the other one. Assume the 1295 // frequency of those two branches are x and y, where x is the frequency 1296 // of the edge to the chain head, then the cost will be 1297 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1298 // 3. If the tail node has more than two successors (this rarely happens), 1299 // we won't consider any additional cost. 1300 if (TailBB->isSuccessor(*Iter)) { 1301 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1302 if (TailBB->succ_size() == 1) 1303 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1304 MisfetchCost + JumpInstCost); 1305 else if (TailBB->succ_size() == 2) { 1306 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1307 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1308 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1309 ? TailBBFreq * TailToHeadProb.getCompl() 1310 : TailToHeadFreq; 1311 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1312 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1313 } 1314 } 1315 1316 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1317 << " to the top: " << Cost.getFrequency() << "\n"); 1318 1319 if (Cost < SmallestRotationCost) { 1320 SmallestRotationCost = Cost; 1321 RotationPos = Iter; 1322 } 1323 } 1324 1325 if (RotationPos != LoopChain.end()) { 1326 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1327 << " to the top\n"); 1328 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1329 } 1330 } 1331 1332 /// \brief Collect blocks in the given loop that are to be placed. 1333 /// 1334 /// When profile data is available, exclude cold blocks from the returned set; 1335 /// otherwise, collect all blocks in the loop. 1336 MachineBlockPlacement::BlockFilterSet 1337 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1338 BlockFilterSet LoopBlockSet; 1339 1340 // Filter cold blocks off from LoopBlockSet when profile data is available. 1341 // Collect the sum of frequencies of incoming edges to the loop header from 1342 // outside. If we treat the loop as a super block, this is the frequency of 1343 // the loop. Then for each block in the loop, we calculate the ratio between 1344 // its frequency and the frequency of the loop block. When it is too small, 1345 // don't add it to the loop chain. If there are outer loops, then this block 1346 // will be merged into the first outer loop chain for which this block is not 1347 // cold anymore. This needs precise profile data and we only do this when 1348 // profile data is available. 1349 if (F->getFunction()->getEntryCount()) { 1350 BlockFrequency LoopFreq(0); 1351 for (auto LoopPred : L.getHeader()->predecessors()) 1352 if (!L.contains(LoopPred)) 1353 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1354 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1355 1356 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1357 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1358 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1359 continue; 1360 LoopBlockSet.insert(LoopBB); 1361 } 1362 } else 1363 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1364 1365 return LoopBlockSet; 1366 } 1367 1368 /// \brief Forms basic block chains from the natural loop structures. 1369 /// 1370 /// These chains are designed to preserve the existing *structure* of the code 1371 /// as much as possible. We can then stitch the chains together in a way which 1372 /// both preserves the topological structure and minimizes taken conditional 1373 /// branches. 1374 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1375 // First recurse through any nested loops, building chains for those inner 1376 // loops. 1377 for (MachineLoop *InnerLoop : L) 1378 buildLoopChains(*InnerLoop); 1379 1380 assert(BlockWorkList.empty()); 1381 assert(EHPadWorkList.empty()); 1382 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1383 1384 // Check if we have profile data for this function. If yes, we will rotate 1385 // this loop by modeling costs more precisely which requires the profile data 1386 // for better layout. 1387 bool RotateLoopWithProfile = 1388 ForcePreciseRotationCost || 1389 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1390 1391 // First check to see if there is an obviously preferable top block for the 1392 // loop. This will default to the header, but may end up as one of the 1393 // predecessors to the header if there is one which will result in strictly 1394 // fewer branches in the loop body. 1395 // When we use profile data to rotate the loop, this is unnecessary. 1396 MachineBasicBlock *LoopTop = 1397 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1398 1399 // If we selected just the header for the loop top, look for a potentially 1400 // profitable exit block in the event that rotating the loop can eliminate 1401 // branches by placing an exit edge at the bottom. 1402 MachineBasicBlock *ExitingBB = nullptr; 1403 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1404 ExitingBB = findBestLoopExit(L, LoopBlockSet); 1405 1406 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1407 1408 // FIXME: This is a really lame way of walking the chains in the loop: we 1409 // walk the blocks, and use a set to prevent visiting a particular chain 1410 // twice. 1411 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1412 assert(LoopChain.UnscheduledPredecessors == 0); 1413 UpdatedPreds.insert(&LoopChain); 1414 1415 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1416 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 1417 1418 buildChain(LoopTop, LoopChain, &LoopBlockSet); 1419 1420 if (RotateLoopWithProfile) 1421 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1422 else 1423 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1424 1425 DEBUG({ 1426 // Crash at the end so we get all of the debugging output first. 1427 bool BadLoop = false; 1428 if (LoopChain.UnscheduledPredecessors) { 1429 BadLoop = true; 1430 dbgs() << "Loop chain contains a block without its preds placed!\n" 1431 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1432 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1433 } 1434 for (MachineBasicBlock *ChainBB : LoopChain) { 1435 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1436 if (!LoopBlockSet.erase(ChainBB)) { 1437 // We don't mark the loop as bad here because there are real situations 1438 // where this can occur. For example, with an unanalyzable fallthrough 1439 // from a loop block to a non-loop block or vice versa. 1440 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1441 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1442 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1443 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1444 } 1445 } 1446 1447 if (!LoopBlockSet.empty()) { 1448 BadLoop = true; 1449 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1450 dbgs() << "Loop contains blocks never placed into a chain!\n" 1451 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1452 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1453 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1454 } 1455 assert(!BadLoop && "Detected problems with the placement of this loop."); 1456 }); 1457 1458 BlockWorkList.clear(); 1459 EHPadWorkList.clear(); 1460 } 1461 1462 /// When OutlineOpitonalBranches is on, this method collects BBs that 1463 /// dominates all terminator blocks of the function \p F. 1464 void MachineBlockPlacement::collectMustExecuteBBs() { 1465 if (OutlineOptionalBranches) { 1466 // Find the nearest common dominator of all of F's terminators. 1467 MachineBasicBlock *Terminator = nullptr; 1468 for (MachineBasicBlock &MBB : *F) { 1469 if (MBB.succ_size() == 0) { 1470 if (Terminator == nullptr) 1471 Terminator = &MBB; 1472 else 1473 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1474 } 1475 } 1476 1477 // MBBs dominating this common dominator are unavoidable. 1478 UnavoidableBlocks.clear(); 1479 for (MachineBasicBlock &MBB : *F) { 1480 if (MDT->dominates(&MBB, Terminator)) { 1481 UnavoidableBlocks.insert(&MBB); 1482 } 1483 } 1484 } 1485 } 1486 1487 void MachineBlockPlacement::buildCFGChains() { 1488 // Ensure that every BB in the function has an associated chain to simplify 1489 // the assumptions of the remaining algorithm. 1490 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1491 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1492 ++FI) { 1493 MachineBasicBlock *BB = &*FI; 1494 BlockChain *Chain = 1495 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1496 // Also, merge any blocks which we cannot reason about and must preserve 1497 // the exact fallthrough behavior for. 1498 for (;;) { 1499 Cond.clear(); 1500 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1501 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1502 break; 1503 1504 MachineFunction::iterator NextFI = std::next(FI); 1505 MachineBasicBlock *NextBB = &*NextFI; 1506 // Ensure that the layout successor is a viable block, as we know that 1507 // fallthrough is a possibility. 1508 assert(NextFI != FE && "Can't fallthrough past the last block."); 1509 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1510 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1511 << "\n"); 1512 Chain->merge(NextBB, nullptr); 1513 FI = NextFI; 1514 BB = NextBB; 1515 } 1516 } 1517 1518 // Turned on with OutlineOptionalBranches option 1519 collectMustExecuteBBs(); 1520 1521 // Build any loop-based chains. 1522 for (MachineLoop *L : *MLI) 1523 buildLoopChains(*L); 1524 1525 assert(BlockWorkList.empty()); 1526 assert(EHPadWorkList.empty()); 1527 1528 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1529 for (MachineBasicBlock &MBB : *F) 1530 fillWorkLists(&MBB, UpdatedPreds); 1531 1532 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1533 buildChain(&F->front(), FunctionChain); 1534 1535 #ifndef NDEBUG 1536 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1537 #endif 1538 DEBUG({ 1539 // Crash at the end so we get all of the debugging output first. 1540 bool BadFunc = false; 1541 FunctionBlockSetType FunctionBlockSet; 1542 for (MachineBasicBlock &MBB : *F) 1543 FunctionBlockSet.insert(&MBB); 1544 1545 for (MachineBasicBlock *ChainBB : FunctionChain) 1546 if (!FunctionBlockSet.erase(ChainBB)) { 1547 BadFunc = true; 1548 dbgs() << "Function chain contains a block not in the function!\n" 1549 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1550 } 1551 1552 if (!FunctionBlockSet.empty()) { 1553 BadFunc = true; 1554 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1555 dbgs() << "Function contains blocks never placed into a chain!\n" 1556 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1557 } 1558 assert(!BadFunc && "Detected problems with the block placement."); 1559 }); 1560 1561 // Splice the blocks into place. 1562 MachineFunction::iterator InsertPos = F->begin(); 1563 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 1564 for (MachineBasicBlock *ChainBB : FunctionChain) { 1565 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1566 : " ... ") 1567 << getBlockName(ChainBB) << "\n"); 1568 if (InsertPos != MachineFunction::iterator(ChainBB)) 1569 F->splice(InsertPos, ChainBB); 1570 else 1571 ++InsertPos; 1572 1573 // Update the terminator of the previous block. 1574 if (ChainBB == *FunctionChain.begin()) 1575 continue; 1576 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1577 1578 // FIXME: It would be awesome of updateTerminator would just return rather 1579 // than assert when the branch cannot be analyzed in order to remove this 1580 // boiler plate. 1581 Cond.clear(); 1582 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1583 1584 // The "PrevBB" is not yet updated to reflect current code layout, so, 1585 // o. it may fall-through to a block without explicit "goto" instruction 1586 // before layout, and no longer fall-through it after layout; or 1587 // o. just opposite. 1588 // 1589 // analyzeBranch() may return erroneous value for FBB when these two 1590 // situations take place. For the first scenario FBB is mistakenly set NULL; 1591 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1592 // mistakenly pointing to "*BI". 1593 // Thus, if the future change needs to use FBB before the layout is set, it 1594 // has to correct FBB first by using the code similar to the following: 1595 // 1596 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1597 // PrevBB->updateTerminator(); 1598 // Cond.clear(); 1599 // TBB = FBB = nullptr; 1600 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1601 // // FIXME: This should never take place. 1602 // TBB = FBB = nullptr; 1603 // } 1604 // } 1605 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 1606 PrevBB->updateTerminator(); 1607 } 1608 1609 // Fixup the last block. 1610 Cond.clear(); 1611 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1612 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 1613 F->back().updateTerminator(); 1614 1615 BlockWorkList.clear(); 1616 EHPadWorkList.clear(); 1617 } 1618 1619 void MachineBlockPlacement::optimizeBranches() { 1620 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1621 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1622 1623 // Now that all the basic blocks in the chain have the proper layout, 1624 // make a final call to AnalyzeBranch with AllowModify set. 1625 // Indeed, the target may be able to optimize the branches in a way we 1626 // cannot because all branches may not be analyzable. 1627 // E.g., the target may be able to remove an unconditional branch to 1628 // a fallthrough when it occurs after predicated terminators. 1629 for (MachineBasicBlock *ChainBB : FunctionChain) { 1630 Cond.clear(); 1631 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1632 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1633 // If PrevBB has a two-way branch, try to re-order the branches 1634 // such that we branch to the successor with higher probability first. 1635 if (TBB && !Cond.empty() && FBB && 1636 MBPI->getEdgeProbability(ChainBB, FBB) > 1637 MBPI->getEdgeProbability(ChainBB, TBB) && 1638 !TII->reverseBranchCondition(Cond)) { 1639 DEBUG(dbgs() << "Reverse order of the two branches: " 1640 << getBlockName(ChainBB) << "\n"); 1641 DEBUG(dbgs() << " Edge probability: " 1642 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1643 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1644 DebugLoc dl; // FIXME: this is nowhere 1645 TII->removeBranch(*ChainBB); 1646 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 1647 ChainBB->updateTerminator(); 1648 } 1649 } 1650 } 1651 } 1652 1653 void MachineBlockPlacement::alignBlocks() { 1654 // Walk through the backedges of the function now that we have fully laid out 1655 // the basic blocks and align the destination of each backedge. We don't rely 1656 // exclusively on the loop info here so that we can align backedges in 1657 // unnatural CFGs and backedges that were introduced purely because of the 1658 // loop rotations done during this layout pass. 1659 if (F->getFunction()->optForSize()) 1660 return; 1661 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1662 if (FunctionChain.begin() == FunctionChain.end()) 1663 return; // Empty chain. 1664 1665 const BranchProbability ColdProb(1, 5); // 20% 1666 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 1667 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1668 for (MachineBasicBlock *ChainBB : FunctionChain) { 1669 if (ChainBB == *FunctionChain.begin()) 1670 continue; 1671 1672 // Don't align non-looping basic blocks. These are unlikely to execute 1673 // enough times to matter in practice. Note that we'll still handle 1674 // unnatural CFGs inside of a natural outer loop (the common case) and 1675 // rotated loops. 1676 MachineLoop *L = MLI->getLoopFor(ChainBB); 1677 if (!L) 1678 continue; 1679 1680 unsigned Align = TLI->getPrefLoopAlignment(L); 1681 if (!Align) 1682 continue; // Don't care about loop alignment. 1683 1684 // If the block is cold relative to the function entry don't waste space 1685 // aligning it. 1686 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1687 if (Freq < WeightedEntryFreq) 1688 continue; 1689 1690 // If the block is cold relative to its loop header, don't align it 1691 // regardless of what edges into the block exist. 1692 MachineBasicBlock *LoopHeader = L->getHeader(); 1693 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1694 if (Freq < (LoopHeaderFreq * ColdProb)) 1695 continue; 1696 1697 // Check for the existence of a non-layout predecessor which would benefit 1698 // from aligning this block. 1699 MachineBasicBlock *LayoutPred = 1700 &*std::prev(MachineFunction::iterator(ChainBB)); 1701 1702 // Force alignment if all the predecessors are jumps. We already checked 1703 // that the block isn't cold above. 1704 if (!LayoutPred->isSuccessor(ChainBB)) { 1705 ChainBB->setAlignment(Align); 1706 continue; 1707 } 1708 1709 // Align this block if the layout predecessor's edge into this block is 1710 // cold relative to the block. When this is true, other predecessors make up 1711 // all of the hot entries into the block and thus alignment is likely to be 1712 // important. 1713 BranchProbability LayoutProb = 1714 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1715 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1716 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1717 ChainBB->setAlignment(Align); 1718 } 1719 } 1720 1721 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 1722 if (skipFunction(*MF.getFunction())) 1723 return false; 1724 1725 // Check for single-block functions and skip them. 1726 if (std::next(MF.begin()) == MF.end()) 1727 return false; 1728 1729 F = &MF; 1730 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1731 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 1732 getAnalysis<MachineBlockFrequencyInfo>()); 1733 MLI = &getAnalysis<MachineLoopInfo>(); 1734 TII = MF.getSubtarget().getInstrInfo(); 1735 TLI = MF.getSubtarget().getTargetLowering(); 1736 MDT = &getAnalysis<MachineDominatorTree>(); 1737 assert(BlockToChain.empty()); 1738 1739 buildCFGChains(); 1740 1741 // Changing the layout can create new tail merging opportunities. 1742 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 1743 // TailMerge can create jump into if branches that make CFG irreducible for 1744 // HW that requires structured CFG. 1745 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 1746 PassConfig->getEnableTailMerge() && 1747 BranchFoldPlacement; 1748 // No tail merging opportunities if the block number is less than four. 1749 if (MF.size() > 3 && EnableTailMerge) { 1750 // Default to the standard tail-merge-size option. 1751 unsigned TailMergeSize = 0; 1752 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 1753 *MBPI, TailMergeSize); 1754 1755 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 1756 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 1757 /*AfterBlockPlacement=*/true)) { 1758 // Redo the layout if tail merging creates/removes/moves blocks. 1759 BlockToChain.clear(); 1760 ChainAllocator.DestroyAll(); 1761 buildCFGChains(); 1762 } 1763 } 1764 1765 optimizeBranches(); 1766 alignBlocks(); 1767 1768 BlockToChain.clear(); 1769 ChainAllocator.DestroyAll(); 1770 1771 if (AlignAllBlock) 1772 // Align all of the blocks in the function to a specific alignment. 1773 for (MachineBasicBlock &MBB : MF) 1774 MBB.setAlignment(AlignAllBlock); 1775 else if (AlignAllNonFallThruBlocks) { 1776 // Align all of the blocks that have no fall-through predecessors to a 1777 // specific alignment. 1778 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 1779 auto LayoutPred = std::prev(MBI); 1780 if (!LayoutPred->isSuccessor(&*MBI)) 1781 MBI->setAlignment(AlignAllNonFallThruBlocks); 1782 } 1783 } 1784 1785 // We always return true as we have no way to track whether the final order 1786 // differs from the original order. 1787 return true; 1788 } 1789 1790 namespace { 1791 /// \brief A pass to compute block placement statistics. 1792 /// 1793 /// A separate pass to compute interesting statistics for evaluating block 1794 /// placement. This is separate from the actual placement pass so that they can 1795 /// be computed in the absence of any placement transformations or when using 1796 /// alternative placement strategies. 1797 class MachineBlockPlacementStats : public MachineFunctionPass { 1798 /// \brief A handle to the branch probability pass. 1799 const MachineBranchProbabilityInfo *MBPI; 1800 1801 /// \brief A handle to the function-wide block frequency pass. 1802 const MachineBlockFrequencyInfo *MBFI; 1803 1804 public: 1805 static char ID; // Pass identification, replacement for typeid 1806 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1807 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1808 } 1809 1810 bool runOnMachineFunction(MachineFunction &F) override; 1811 1812 void getAnalysisUsage(AnalysisUsage &AU) const override { 1813 AU.addRequired<MachineBranchProbabilityInfo>(); 1814 AU.addRequired<MachineBlockFrequencyInfo>(); 1815 AU.setPreservesAll(); 1816 MachineFunctionPass::getAnalysisUsage(AU); 1817 } 1818 }; 1819 } 1820 1821 char MachineBlockPlacementStats::ID = 0; 1822 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1823 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1824 "Basic Block Placement Stats", false, false) 1825 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1826 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1827 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1828 "Basic Block Placement Stats", false, false) 1829 1830 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1831 // Check for single-block functions and skip them. 1832 if (std::next(F.begin()) == F.end()) 1833 return false; 1834 1835 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1836 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1837 1838 for (MachineBasicBlock &MBB : F) { 1839 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1840 Statistic &NumBranches = 1841 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1842 Statistic &BranchTakenFreq = 1843 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1844 for (MachineBasicBlock *Succ : MBB.successors()) { 1845 // Skip if this successor is a fallthrough. 1846 if (MBB.isLayoutSuccessor(Succ)) 1847 continue; 1848 1849 BlockFrequency EdgeFreq = 1850 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1851 ++NumBranches; 1852 BranchTakenFreq += EdgeFreq.getFrequency(); 1853 } 1854 } 1855 1856 return false; 1857 } 1858