1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineDominators.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/TailDuplicator.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include <algorithm> 54 #include <functional> 55 #include <utility> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "block-placement" 59 60 STATISTIC(NumCondBranches, "Number of conditional branches"); 61 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 62 STATISTIC(CondBranchTakenFreq, 63 "Potential frequency of taking conditional branches"); 64 STATISTIC(UncondBranchTakenFreq, 65 "Potential frequency of taking unconditional branches"); 66 67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 68 cl::desc("Force the alignment of all " 69 "blocks in the function."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 73 "align-all-nofallthru-blocks", 74 cl::desc("Force the alignment of all " 75 "blocks that have no fall-through predecessors (i.e. don't add " 76 "nops that are executed)."), 77 cl::init(0), cl::Hidden); 78 79 // FIXME: Find a good default for this flag and remove the flag. 80 static cl::opt<unsigned> ExitBlockBias( 81 "block-placement-exit-block-bias", 82 cl::desc("Block frequency percentage a loop exit block needs " 83 "over the original exit to be considered the new exit."), 84 cl::init(0), cl::Hidden); 85 86 // Definition: 87 // - Outlining: placement of a basic block outside the chain or hot path. 88 89 static cl::opt<bool> OutlineOptionalBranches( 90 "outline-optional-branches", 91 cl::desc("Outlining optional branches will place blocks that are optional " 92 "branches, i.e. branches with a common post dominator, outside " 93 "the hot path or chain"), 94 cl::init(false), cl::Hidden); 95 96 static cl::opt<unsigned> OutlineOptionalThreshold( 97 "outline-optional-threshold", 98 cl::desc("Don't outline optional branches that are a single block with an " 99 "instruction count below this threshold"), 100 cl::init(4), cl::Hidden); 101 102 static cl::opt<unsigned> LoopToColdBlockRatio( 103 "loop-to-cold-block-ratio", 104 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 105 "(frequency of block) is greater than this ratio"), 106 cl::init(5), cl::Hidden); 107 108 static cl::opt<bool> 109 PreciseRotationCost("precise-rotation-cost", 110 cl::desc("Model the cost of loop rotation more " 111 "precisely by using profile data."), 112 cl::init(false), cl::Hidden); 113 static cl::opt<bool> 114 ForcePreciseRotationCost("force-precise-rotation-cost", 115 cl::desc("Force the use of precise cost " 116 "loop rotation strategy."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<unsigned> MisfetchCost( 120 "misfetch-cost", 121 cl::desc("Cost that models the probabilistic risk of an instruction " 122 "misfetch due to a jump comparing to falling through, whose cost " 123 "is zero."), 124 cl::init(1), cl::Hidden); 125 126 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 127 cl::desc("Cost of jump instructions."), 128 cl::init(1), cl::Hidden); 129 static cl::opt<bool> 130 TailDupPlacement("tail-dup-placement", 131 cl::desc("Perform tail duplication during placement. " 132 "Creates more fallthrough opportunites in " 133 "outline branches."), 134 cl::init(true), cl::Hidden); 135 136 static cl::opt<bool> 137 BranchFoldPlacement("branch-fold-placement", 138 cl::desc("Perform branch folding during placement. " 139 "Reduces code size."), 140 cl::init(true), cl::Hidden); 141 142 // Heuristic for tail duplication. 143 static cl::opt<unsigned> TailDupPlacementThreshold( 144 "tail-dup-placement-threshold", 145 cl::desc("Instruction cutoff for tail duplication during layout. " 146 "Tail merging during layout is forced to have a threshold " 147 "that won't conflict."), cl::init(2), 148 cl::Hidden); 149 150 // Heuristic for tail duplication. 151 static cl::opt<unsigned> TailDupPlacementPenalty( 152 "tail-dup-placement-penalty", 153 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 154 "Copying can increase fallthrough, but it also increases icache " 155 "pressure. This parameter controls the penalty to account for that. " 156 "Percent as integer."), 157 cl::init(2), 158 cl::Hidden); 159 160 extern cl::opt<unsigned> StaticLikelyProb; 161 extern cl::opt<unsigned> ProfileLikelyProb; 162 163 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 164 extern cl::opt<std::string> ViewBlockFreqFuncName; 165 166 namespace { 167 class BlockChain; 168 /// \brief Type for our function-wide basic block -> block chain mapping. 169 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 170 } 171 172 namespace { 173 /// \brief A chain of blocks which will be laid out contiguously. 174 /// 175 /// This is the datastructure representing a chain of consecutive blocks that 176 /// are profitable to layout together in order to maximize fallthrough 177 /// probabilities and code locality. We also can use a block chain to represent 178 /// a sequence of basic blocks which have some external (correctness) 179 /// requirement for sequential layout. 180 /// 181 /// Chains can be built around a single basic block and can be merged to grow 182 /// them. They participate in a block-to-chain mapping, which is updated 183 /// automatically as chains are merged together. 184 class BlockChain { 185 /// \brief The sequence of blocks belonging to this chain. 186 /// 187 /// This is the sequence of blocks for a particular chain. These will be laid 188 /// out in-order within the function. 189 SmallVector<MachineBasicBlock *, 4> Blocks; 190 191 /// \brief A handle to the function-wide basic block to block chain mapping. 192 /// 193 /// This is retained in each block chain to simplify the computation of child 194 /// block chains for SCC-formation and iteration. We store the edges to child 195 /// basic blocks, and map them back to their associated chains using this 196 /// structure. 197 BlockToChainMapType &BlockToChain; 198 199 public: 200 /// \brief Construct a new BlockChain. 201 /// 202 /// This builds a new block chain representing a single basic block in the 203 /// function. It also registers itself as the chain that block participates 204 /// in with the BlockToChain mapping. 205 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 206 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 207 assert(BB && "Cannot create a chain with a null basic block"); 208 BlockToChain[BB] = this; 209 } 210 211 /// \brief Iterator over blocks within the chain. 212 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 213 214 /// \brief Beginning of blocks within the chain. 215 iterator begin() { return Blocks.begin(); } 216 217 /// \brief End of blocks within the chain. 218 iterator end() { return Blocks.end(); } 219 220 bool remove(MachineBasicBlock* BB) { 221 for(iterator i = begin(); i != end(); ++i) { 222 if (*i == BB) { 223 Blocks.erase(i); 224 return true; 225 } 226 } 227 return false; 228 } 229 230 /// \brief Merge a block chain into this one. 231 /// 232 /// This routine merges a block chain into this one. It takes care of forming 233 /// a contiguous sequence of basic blocks, updating the edge list, and 234 /// updating the block -> chain mapping. It does not free or tear down the 235 /// old chain, but the old chain's block list is no longer valid. 236 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 237 assert(BB); 238 assert(!Blocks.empty()); 239 240 // Fast path in case we don't have a chain already. 241 if (!Chain) { 242 assert(!BlockToChain[BB]); 243 Blocks.push_back(BB); 244 BlockToChain[BB] = this; 245 return; 246 } 247 248 assert(BB == *Chain->begin()); 249 assert(Chain->begin() != Chain->end()); 250 251 // Update the incoming blocks to point to this chain, and add them to the 252 // chain structure. 253 for (MachineBasicBlock *ChainBB : *Chain) { 254 Blocks.push_back(ChainBB); 255 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 256 BlockToChain[ChainBB] = this; 257 } 258 } 259 260 #ifndef NDEBUG 261 /// \brief Dump the blocks in this chain. 262 LLVM_DUMP_METHOD void dump() { 263 for (MachineBasicBlock *MBB : *this) 264 MBB->dump(); 265 } 266 #endif // NDEBUG 267 268 /// \brief Count of predecessors of any block within the chain which have not 269 /// yet been scheduled. In general, we will delay scheduling this chain 270 /// until those predecessors are scheduled (or we find a sufficiently good 271 /// reason to override this heuristic.) Note that when forming loop chains, 272 /// blocks outside the loop are ignored and treated as if they were already 273 /// scheduled. 274 /// 275 /// Note: This field is reinitialized multiple times - once for each loop, 276 /// and then once for the function as a whole. 277 unsigned UnscheduledPredecessors; 278 }; 279 } 280 281 namespace { 282 class MachineBlockPlacement : public MachineFunctionPass { 283 /// \brief A typedef for a block filter set. 284 typedef SmallSetVector<MachineBasicBlock *, 16> BlockFilterSet; 285 286 /// Pair struct containing basic block and taildup profitiability 287 struct BlockAndTailDupResult { 288 MachineBasicBlock * BB; 289 bool ShouldTailDup; 290 }; 291 292 /// \brief work lists of blocks that are ready to be laid out 293 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 294 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 295 296 /// \brief Machine Function 297 MachineFunction *F; 298 299 /// \brief A handle to the branch probability pass. 300 const MachineBranchProbabilityInfo *MBPI; 301 302 /// \brief A handle to the function-wide block frequency pass. 303 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 304 305 /// \brief A handle to the loop info. 306 MachineLoopInfo *MLI; 307 308 /// \brief Preferred loop exit. 309 /// Member variable for convenience. It may be removed by duplication deep 310 /// in the call stack. 311 MachineBasicBlock *PreferredLoopExit; 312 313 /// \brief A handle to the target's instruction info. 314 const TargetInstrInfo *TII; 315 316 /// \brief A handle to the target's lowering info. 317 const TargetLoweringBase *TLI; 318 319 /// \brief A handle to the dominator tree. 320 MachineDominatorTree *MDT; 321 322 /// \brief A handle to the post dominator tree. 323 MachinePostDominatorTree *MPDT; 324 325 /// \brief Duplicator used to duplicate tails during placement. 326 /// 327 /// Placement decisions can open up new tail duplication opportunities, but 328 /// since tail duplication affects placement decisions of later blocks, it 329 /// must be done inline. 330 TailDuplicator TailDup; 331 332 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 333 /// all terminators of the MachineFunction. 334 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 335 336 /// \brief Allocator and owner of BlockChain structures. 337 /// 338 /// We build BlockChains lazily while processing the loop structure of 339 /// a function. To reduce malloc traffic, we allocate them using this 340 /// slab-like allocator, and destroy them after the pass completes. An 341 /// important guarantee is that this allocator produces stable pointers to 342 /// the chains. 343 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 344 345 /// \brief Function wide BasicBlock to BlockChain mapping. 346 /// 347 /// This mapping allows efficiently moving from any given basic block to the 348 /// BlockChain it participates in, if any. We use it to, among other things, 349 /// allow implicitly defining edges between chains as the existing edges 350 /// between basic blocks. 351 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 352 353 #ifndef NDEBUG 354 /// The set of basic blocks that have terminators that cannot be fully 355 /// analyzed. These basic blocks cannot be re-ordered safely by 356 /// MachineBlockPlacement, and we must preserve physical layout of these 357 /// blocks and their successors through the pass. 358 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 359 #endif 360 361 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 362 /// if the count goes to 0, add them to the appropriate work list. 363 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 364 const BlockFilterSet *BlockFilter = nullptr); 365 366 /// Decrease the UnscheduledPredecessors count for a single block, and 367 /// if the count goes to 0, add them to the appropriate work list. 368 void markBlockSuccessors( 369 BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB, 370 const BlockFilterSet *BlockFilter = nullptr); 371 372 373 BranchProbability 374 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 375 const BlockFilterSet *BlockFilter, 376 SmallVector<MachineBasicBlock *, 4> &Successors); 377 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 378 BlockChain &Chain, 379 const BlockFilterSet *BlockFilter, 380 BranchProbability SuccProb, 381 BranchProbability HotProb); 382 bool repeatedlyTailDuplicateBlock( 383 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 384 MachineBasicBlock *LoopHeaderBB, 385 BlockChain &Chain, BlockFilterSet *BlockFilter, 386 MachineFunction::iterator &PrevUnplacedBlockIt); 387 bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, 388 const BlockChain &Chain, 389 BlockFilterSet *BlockFilter, 390 MachineFunction::iterator &PrevUnplacedBlockIt, 391 bool &DuplicatedToPred); 392 bool 393 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 394 BlockChain &SuccChain, BranchProbability SuccProb, 395 BranchProbability RealSuccProb, BlockChain &Chain, 396 const BlockFilterSet *BlockFilter); 397 BlockAndTailDupResult selectBestSuccessor(MachineBasicBlock *BB, 398 BlockChain &Chain, 399 const BlockFilterSet *BlockFilter); 400 MachineBasicBlock * 401 selectBestCandidateBlock(BlockChain &Chain, 402 SmallVectorImpl<MachineBasicBlock *> &WorkList); 403 MachineBasicBlock * 404 getFirstUnplacedBlock(const BlockChain &PlacedChain, 405 MachineFunction::iterator &PrevUnplacedBlockIt, 406 const BlockFilterSet *BlockFilter); 407 408 /// \brief Add a basic block to the work list if it is appropriate. 409 /// 410 /// If the optional parameter BlockFilter is provided, only MBB 411 /// present in the set will be added to the worklist. If nullptr 412 /// is provided, no filtering occurs. 413 void fillWorkLists(MachineBasicBlock *MBB, 414 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 415 const BlockFilterSet *BlockFilter); 416 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 417 BlockFilterSet *BlockFilter = nullptr); 418 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 419 const BlockFilterSet &LoopBlockSet); 420 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 421 const BlockFilterSet &LoopBlockSet); 422 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 423 void buildLoopChains(MachineLoop &L); 424 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 425 const BlockFilterSet &LoopBlockSet); 426 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 427 const BlockFilterSet &LoopBlockSet); 428 void collectMustExecuteBBs(); 429 void buildCFGChains(); 430 void optimizeBranches(); 431 void alignBlocks(); 432 bool shouldTailDuplicate(MachineBasicBlock *BB); 433 /// Check the edge frequencies to see if tail duplication will increase 434 /// fallthroughs. 435 bool isProfitableToTailDup( 436 MachineBasicBlock *BB, MachineBasicBlock *Succ, 437 BranchProbability AdjustedSumProb, 438 BlockChain &Chain, const BlockFilterSet *BlockFilter); 439 /// Returns true if a block can tail duplicate into all unplaced 440 /// predecessors. Filters based on loop. 441 bool canTailDuplicateUnplacedPreds( 442 MachineBasicBlock *BB, MachineBasicBlock *Succ, 443 BlockChain &Chain, const BlockFilterSet *BlockFilter); 444 445 public: 446 static char ID; // Pass identification, replacement for typeid 447 MachineBlockPlacement() : MachineFunctionPass(ID) { 448 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 449 } 450 451 bool runOnMachineFunction(MachineFunction &F) override; 452 453 void getAnalysisUsage(AnalysisUsage &AU) const override { 454 AU.addRequired<MachineBranchProbabilityInfo>(); 455 AU.addRequired<MachineBlockFrequencyInfo>(); 456 AU.addRequired<MachineDominatorTree>(); 457 if (TailDupPlacement) 458 AU.addRequired<MachinePostDominatorTree>(); 459 AU.addRequired<MachineLoopInfo>(); 460 AU.addRequired<TargetPassConfig>(); 461 MachineFunctionPass::getAnalysisUsage(AU); 462 } 463 }; 464 } 465 466 char MachineBlockPlacement::ID = 0; 467 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 468 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 469 "Branch Probability Basic Block Placement", false, false) 470 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 471 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 472 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 473 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 474 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 475 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 476 "Branch Probability Basic Block Placement", false, false) 477 478 #ifndef NDEBUG 479 /// \brief Helper to print the name of a MBB. 480 /// 481 /// Only used by debug logging. 482 static std::string getBlockName(MachineBasicBlock *BB) { 483 std::string Result; 484 raw_string_ostream OS(Result); 485 OS << "BB#" << BB->getNumber(); 486 OS << " ('" << BB->getName() << "')"; 487 OS.flush(); 488 return Result; 489 } 490 #endif 491 492 /// \brief Mark a chain's successors as having one fewer preds. 493 /// 494 /// When a chain is being merged into the "placed" chain, this routine will 495 /// quickly walk the successors of each block in the chain and mark them as 496 /// having one fewer active predecessor. It also adds any successors of this 497 /// chain which reach the zero-predecessor state to the appropriate worklist. 498 void MachineBlockPlacement::markChainSuccessors( 499 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 500 const BlockFilterSet *BlockFilter) { 501 // Walk all the blocks in this chain, marking their successors as having 502 // a predecessor placed. 503 for (MachineBasicBlock *MBB : Chain) { 504 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 505 } 506 } 507 508 /// \brief Mark a single block's successors as having one fewer preds. 509 /// 510 /// Under normal circumstances, this is only called by markChainSuccessors, 511 /// but if a block that was to be placed is completely tail-duplicated away, 512 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 513 /// for just that block. 514 void MachineBlockPlacement::markBlockSuccessors( 515 BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB, 516 const BlockFilterSet *BlockFilter) { 517 // Add any successors for which this is the only un-placed in-loop 518 // predecessor to the worklist as a viable candidate for CFG-neutral 519 // placement. No subsequent placement of this block will violate the CFG 520 // shape, so we get to use heuristics to choose a favorable placement. 521 for (MachineBasicBlock *Succ : MBB->successors()) { 522 if (BlockFilter && !BlockFilter->count(Succ)) 523 continue; 524 BlockChain &SuccChain = *BlockToChain[Succ]; 525 // Disregard edges within a fixed chain, or edges to the loop header. 526 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 527 continue; 528 529 // This is a cross-chain edge that is within the loop, so decrement the 530 // loop predecessor count of the destination chain. 531 if (SuccChain.UnscheduledPredecessors == 0 || 532 --SuccChain.UnscheduledPredecessors > 0) 533 continue; 534 535 auto *NewBB = *SuccChain.begin(); 536 if (NewBB->isEHPad()) 537 EHPadWorkList.push_back(NewBB); 538 else 539 BlockWorkList.push_back(NewBB); 540 } 541 } 542 543 /// This helper function collects the set of successors of block 544 /// \p BB that are allowed to be its layout successors, and return 545 /// the total branch probability of edges from \p BB to those 546 /// blocks. 547 BranchProbability MachineBlockPlacement::collectViableSuccessors( 548 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 549 SmallVector<MachineBasicBlock *, 4> &Successors) { 550 // Adjust edge probabilities by excluding edges pointing to blocks that is 551 // either not in BlockFilter or is already in the current chain. Consider the 552 // following CFG: 553 // 554 // --->A 555 // | / \ 556 // | B C 557 // | \ / \ 558 // ----D E 559 // 560 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 561 // A->C is chosen as a fall-through, D won't be selected as a successor of C 562 // due to CFG constraint (the probability of C->D is not greater than 563 // HotProb to break top-order). If we exclude E that is not in BlockFilter 564 // when calculating the probability of C->D, D will be selected and we 565 // will get A C D B as the layout of this loop. 566 auto AdjustedSumProb = BranchProbability::getOne(); 567 for (MachineBasicBlock *Succ : BB->successors()) { 568 bool SkipSucc = false; 569 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 570 SkipSucc = true; 571 } else { 572 BlockChain *SuccChain = BlockToChain[Succ]; 573 if (SuccChain == &Chain) { 574 SkipSucc = true; 575 } else if (Succ != *SuccChain->begin()) { 576 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 577 continue; 578 } 579 } 580 if (SkipSucc) 581 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 582 else 583 Successors.push_back(Succ); 584 } 585 586 return AdjustedSumProb; 587 } 588 589 /// The helper function returns the branch probability that is adjusted 590 /// or normalized over the new total \p AdjustedSumProb. 591 static BranchProbability 592 getAdjustedProbability(BranchProbability OrigProb, 593 BranchProbability AdjustedSumProb) { 594 BranchProbability SuccProb; 595 uint32_t SuccProbN = OrigProb.getNumerator(); 596 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 597 if (SuccProbN >= SuccProbD) 598 SuccProb = BranchProbability::getOne(); 599 else 600 SuccProb = BranchProbability(SuccProbN, SuccProbD); 601 602 return SuccProb; 603 } 604 605 /// Check if a block should be tail duplicated. 606 /// \p BB Block to check. 607 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 608 // Blocks with single successors don't create additional fallthrough 609 // opportunities. Don't duplicate them. TODO: When conditional exits are 610 // analyzable, allow them to be duplicated. 611 bool IsSimple = TailDup.isSimpleBB(BB); 612 613 if (BB->succ_size() == 1) 614 return false; 615 return TailDup.shouldTailDuplicate(IsSimple, *BB); 616 } 617 618 /// Compare 2 BlockFrequency's with a small penalty for \p A. 619 /// In order to be conservative, we apply a X% penalty to account for 620 /// increased icache pressure and static heuristics. For small frequencies 621 /// we use only the numerators to improve accuracy. For simplicity, we assume the 622 /// penalty is less than 100% 623 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 624 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 625 uint64_t EntryFreq) { 626 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 627 BlockFrequency Gain = A - B; 628 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 629 } 630 631 /// Check the edge frequencies to see if tail duplication will increase 632 /// fallthroughs. It only makes sense to call this function when 633 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 634 /// always locally profitable if we would have picked \p Succ without 635 /// considering duplication. 636 bool MachineBlockPlacement::isProfitableToTailDup( 637 MachineBasicBlock *BB, MachineBasicBlock *Succ, 638 BranchProbability QProb, 639 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 640 // We need to do a probability calculation to make sure this is profitable. 641 // First: does succ have a successor that post-dominates? This affects the 642 // calculation. The 2 relevant cases are: 643 // BB BB 644 // | \Qout | \Qout 645 // P| C |P C 646 // = C' = C' 647 // | /Qin | /Qin 648 // | / | / 649 // Succ Succ 650 // / \ | \ V 651 // U/ =V |U \ 652 // / \ = D 653 // D E | / 654 // | / 655 // |/ 656 // PDom 657 // '=' : Branch taken for that CFG edge 658 // In the second case, Placing Succ while duplicating it into C prevents the 659 // fallthrough of Succ into either D or PDom, because they now have C as an 660 // unplaced predecessor 661 662 // Start by figuring out which case we fall into 663 MachineBasicBlock *PDom = nullptr; 664 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 665 // Only scan the relevant successors 666 auto AdjustedSuccSumProb = 667 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 668 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 669 auto BBFreq = MBFI->getBlockFreq(BB); 670 auto SuccFreq = MBFI->getBlockFreq(Succ); 671 BlockFrequency P = BBFreq * PProb; 672 BlockFrequency Qout = BBFreq * QProb; 673 uint64_t EntryFreq = MBFI->getEntryFreq(); 674 // If there are no more successors, it is profitable to copy, as it strictly 675 // increases fallthrough. 676 if (SuccSuccs.size() == 0) 677 return greaterWithBias(P, Qout, EntryFreq); 678 679 auto BestSuccSucc = BranchProbability::getZero(); 680 // Find the PDom or the best Succ if no PDom exists. 681 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 682 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 683 if (Prob > BestSuccSucc) 684 BestSuccSucc = Prob; 685 if (PDom == nullptr) 686 if (MPDT->dominates(SuccSucc, Succ)) { 687 PDom = SuccSucc; 688 break; 689 } 690 } 691 // For the comparisons, we need to know Succ's best incoming edge that isn't 692 // from BB. 693 auto SuccBestPred = BlockFrequency(0); 694 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 695 if (SuccPred == Succ || SuccPred == BB 696 || BlockToChain[SuccPred] == &Chain 697 || (BlockFilter && !BlockFilter->count(SuccPred))) 698 continue; 699 auto Freq = MBFI->getBlockFreq(SuccPred) 700 * MBPI->getEdgeProbability(SuccPred, Succ); 701 if (Freq > SuccBestPred) 702 SuccBestPred = Freq; 703 } 704 // Qin is Succ's best unplaced incoming edge that isn't BB 705 BlockFrequency Qin = SuccBestPred; 706 // If it doesn't have a post-dominating successor, here is the calculation: 707 // BB BB 708 // | \Qout | \ 709 // P| C | = 710 // = C' | C 711 // | /Qin | | 712 // | / | C' (+Succ) 713 // Succ Succ /| 714 // / \ | \/ | 715 // U/ =V = /= = 716 // / \ | / \| 717 // D E D E 718 // '=' : Branch taken for that CFG edge 719 // Cost in the first case is: P + V 720 // For this calculation, we always assume P > Qout. If Qout > P 721 // The result of this function will be ignored at the caller. 722 // Cost in the second case is: Qout + Qin * V + P * U + P * V 723 // TODO(iteratee): If we lay out D after Succ, the P * U term 724 // goes away. This logic is coming in D28522. 725 726 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 727 BranchProbability UProb = BestSuccSucc; 728 BranchProbability VProb = AdjustedSuccSumProb - UProb; 729 BlockFrequency V = SuccFreq * VProb; 730 BlockFrequency QinV = Qin * VProb; 731 BlockFrequency BaseCost = P + V; 732 BlockFrequency DupCost = Qout + QinV + P * AdjustedSuccSumProb; 733 return greaterWithBias(BaseCost, DupCost, EntryFreq); 734 } 735 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 736 BranchProbability VProb = AdjustedSuccSumProb - UProb; 737 BlockFrequency U = SuccFreq * UProb; 738 BlockFrequency V = SuccFreq * VProb; 739 // If there is a post-dominating successor, here is the calculation: 740 // BB BB BB BB 741 // | \Qout | \ | \Qout | \ 742 // |P C | = |P C | = 743 // = C' |P C = C' |P C 744 // | /Qin | | | /Qin | | 745 // | / | C' (+Succ) | / | C' (+Succ) 746 // Succ Succ /| Succ Succ /| 747 // | \ V | \/ | | \ V | \/ | 748 // |U \ |U /\ | |U = |U /\ | 749 // = D = = =| | D | = =| 750 // | / |/ D | / |/ D 751 // | / | / | = | / 752 // |/ | / |/ | = 753 // Dom Dom Dom Dom 754 // '=' : Branch taken for that CFG edge 755 // The cost for taken branches in the first case is P + U 756 // The cost in the second case (assuming independence), given the layout: 757 // BB, Succ, (C+Succ), D, Dom 758 // is Qout + P * V + Qin * U 759 // compare P + U vs Qout + P + Qin * U. 760 // 761 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 762 // 763 // For the 3rd case, the cost is P + 2 * V 764 // For the 4th case, the cost is Qout + Qin * U + P * V + V 765 // We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V 766 if (UProb > AdjustedSuccSumProb / 2 767 && !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], 768 UProb, UProb, Chain, BlockFilter)) { 769 // Cases 3 & 4 770 return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb), 771 EntryFreq); 772 } 773 // Cases 1 & 2 774 return greaterWithBias( 775 (P + U), (Qout + Qin * UProb + P * AdjustedSuccSumProb), EntryFreq); 776 } 777 778 779 /// When the option TailDupPlacement is on, this method checks if the 780 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 781 /// into all of its unplaced, unfiltered predecessors, that are not BB. 782 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 783 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 784 const BlockFilterSet *BlockFilter) { 785 if (!shouldTailDuplicate(Succ)) 786 return false; 787 788 for (MachineBasicBlock *Pred : Succ->predecessors()) { 789 // Make sure all unplaced and unfiltered predecessors can be 790 // tail-duplicated into. 791 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 792 || BlockToChain[Pred] == &Chain) 793 continue; 794 if (!TailDup.canTailDuplicate(Succ, Pred)) 795 return false; 796 } 797 return true; 798 } 799 800 /// When the option OutlineOptionalBranches is on, this method 801 /// checks if the fallthrough candidate block \p Succ (of block 802 /// \p BB) also has other unscheduled predecessor blocks which 803 /// are also successors of \p BB (forming triangular shape CFG). 804 /// If none of such predecessors are small, it returns true. 805 /// The caller can choose to select \p Succ as the layout successors 806 /// so that \p Succ's predecessors (optional branches) can be 807 /// outlined. 808 /// FIXME: fold this with more general layout cost analysis. 809 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 810 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 811 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 812 BranchProbability HotProb) { 813 if (!OutlineOptionalBranches) 814 return false; 815 // If we outline optional branches, look whether Succ is unavoidable, i.e. 816 // dominates all terminators of the MachineFunction. If it does, other 817 // successors must be optional. Don't do this for cold branches. 818 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 819 for (MachineBasicBlock *Pred : Succ->predecessors()) { 820 // Check whether there is an unplaced optional branch. 821 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 822 BlockToChain[Pred] == &Chain) 823 continue; 824 // Check whether the optional branch has exactly one BB. 825 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 826 continue; 827 // Check whether the optional branch is small. 828 if (Pred->size() < OutlineOptionalThreshold) 829 return false; 830 } 831 return true; 832 } else 833 return false; 834 } 835 836 // When profile is not present, return the StaticLikelyProb. 837 // When profile is available, we need to handle the triangle-shape CFG. 838 static BranchProbability getLayoutSuccessorProbThreshold( 839 MachineBasicBlock *BB) { 840 if (!BB->getParent()->getFunction()->getEntryCount()) 841 return BranchProbability(StaticLikelyProb, 100); 842 if (BB->succ_size() == 2) { 843 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 844 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 845 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 846 /* See case 1 below for the cost analysis. For BB->Succ to 847 * be taken with smaller cost, the following needs to hold: 848 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 849 * So the threshold T in the calculation below 850 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 851 * So T / (1 - T) = 2, Yielding T = 2/3 852 * Also adding user specified branch bias, we have 853 * T = (2/3)*(ProfileLikelyProb/50) 854 * = (2*ProfileLikelyProb)/150) 855 */ 856 return BranchProbability(2 * ProfileLikelyProb, 150); 857 } 858 } 859 return BranchProbability(ProfileLikelyProb, 100); 860 } 861 862 /// Checks to see if the layout candidate block \p Succ has a better layout 863 /// predecessor than \c BB. If yes, returns true. 864 /// \p SuccProb: The probability adjusted for only remaining blocks. 865 /// Only used for logging 866 /// \p RealSuccProb: The un-adjusted probability. 867 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 868 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 869 /// considered 870 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 871 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 872 BranchProbability SuccProb, BranchProbability RealSuccProb, 873 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 874 875 // There isn't a better layout when there are no unscheduled predecessors. 876 if (SuccChain.UnscheduledPredecessors == 0) 877 return false; 878 879 // There are two basic scenarios here: 880 // ------------------------------------- 881 // Case 1: triangular shape CFG (if-then): 882 // BB 883 // | \ 884 // | \ 885 // | Pred 886 // | / 887 // Succ 888 // In this case, we are evaluating whether to select edge -> Succ, e.g. 889 // set Succ as the layout successor of BB. Picking Succ as BB's 890 // successor breaks the CFG constraints (FIXME: define these constraints). 891 // With this layout, Pred BB 892 // is forced to be outlined, so the overall cost will be cost of the 893 // branch taken from BB to Pred, plus the cost of back taken branch 894 // from Pred to Succ, as well as the additional cost associated 895 // with the needed unconditional jump instruction from Pred To Succ. 896 897 // The cost of the topological order layout is the taken branch cost 898 // from BB to Succ, so to make BB->Succ a viable candidate, the following 899 // must hold: 900 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 901 // < freq(BB->Succ) * taken_branch_cost. 902 // Ignoring unconditional jump cost, we get 903 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 904 // prob(BB->Succ) > 2 * prob(BB->Pred) 905 // 906 // When real profile data is available, we can precisely compute the 907 // probability threshold that is needed for edge BB->Succ to be considered. 908 // Without profile data, the heuristic requires the branch bias to be 909 // a lot larger to make sure the signal is very strong (e.g. 80% default). 910 // ----------------------------------------------------------------- 911 // Case 2: diamond like CFG (if-then-else): 912 // S 913 // / \ 914 // | \ 915 // BB Pred 916 // \ / 917 // Succ 918 // .. 919 // 920 // The current block is BB and edge BB->Succ is now being evaluated. 921 // Note that edge S->BB was previously already selected because 922 // prob(S->BB) > prob(S->Pred). 923 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 924 // choose Pred, we will have a topological ordering as shown on the left 925 // in the picture below. If we choose Succ, we have the solution as shown 926 // on the right: 927 // 928 // topo-order: 929 // 930 // S----- ---S 931 // | | | | 932 // ---BB | | BB 933 // | | | | 934 // | pred-- | Succ-- 935 // | | | | 936 // ---succ ---pred-- 937 // 938 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 939 // = freq(S->Pred) + freq(S->BB) 940 // 941 // If we have profile data (i.e, branch probabilities can be trusted), the 942 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 943 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 944 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 945 // means the cost of topological order is greater. 946 // When profile data is not available, however, we need to be more 947 // conservative. If the branch prediction is wrong, breaking the topo-order 948 // will actually yield a layout with large cost. For this reason, we need 949 // strong biased branch at block S with Prob(S->BB) in order to select 950 // BB->Succ. This is equivalent to looking the CFG backward with backward 951 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 952 // profile data). 953 // -------------------------------------------------------------------------- 954 // Case 3: forked diamond 955 // S 956 // / \ 957 // / \ 958 // BB Pred 959 // | \ / | 960 // | \ / | 961 // | X | 962 // | / \ | 963 // | / \ | 964 // S1 S2 965 // 966 // The current block is BB and edge BB->S1 is now being evaluated. 967 // As above S->BB was already selected because 968 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 969 // 970 // topo-order: 971 // 972 // S-------| ---S 973 // | | | | 974 // ---BB | | BB 975 // | | | | 976 // | Pred----| | S1---- 977 // | | | | 978 // --(S1 or S2) ---Pred-- 979 // 980 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 981 // + min(freq(Pred->S1), freq(Pred->S2)) 982 // Non-topo-order cost: 983 // In the worst case, S2 will not get laid out after Pred. 984 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 985 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 986 // is 0. Then the non topo layout is better when 987 // freq(S->Pred) < freq(BB->S1). 988 // This is exactly what is checked below. 989 // Note there are other shapes that apply (Pred may not be a single block, 990 // but they all fit this general pattern.) 991 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 992 993 // Make sure that a hot successor doesn't have a globally more 994 // important predecessor. 995 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 996 bool BadCFGConflict = false; 997 998 for (MachineBasicBlock *Pred : Succ->predecessors()) { 999 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1000 (BlockFilter && !BlockFilter->count(Pred)) || 1001 BlockToChain[Pred] == &Chain || 1002 // This check is redundant except for look ahead. This function is 1003 // called for lookahead by isProfitableToTailDup when BB hasn't been 1004 // placed yet. 1005 (Pred == BB)) 1006 continue; 1007 // Do backward checking. 1008 // For all cases above, we need a backward checking to filter out edges that 1009 // are not 'strongly' biased. 1010 // BB Pred 1011 // \ / 1012 // Succ 1013 // We select edge BB->Succ if 1014 // freq(BB->Succ) > freq(Succ) * HotProb 1015 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1016 // HotProb 1017 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1018 // Case 1 is covered too, because the first equation reduces to: 1019 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1020 BlockFrequency PredEdgeFreq = 1021 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1022 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1023 BadCFGConflict = true; 1024 break; 1025 } 1026 } 1027 1028 if (BadCFGConflict) { 1029 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1030 << " (prob) (non-cold CFG conflict)\n"); 1031 return true; 1032 } 1033 1034 return false; 1035 } 1036 1037 /// \brief Select the best successor for a block. 1038 /// 1039 /// This looks across all successors of a particular block and attempts to 1040 /// select the "best" one to be the layout successor. It only considers direct 1041 /// successors which also pass the block filter. It will attempt to avoid 1042 /// breaking CFG structure, but cave and break such structures in the case of 1043 /// very hot successor edges. 1044 /// 1045 /// \returns The best successor block found, or null if none are viable, along 1046 /// with a boolean indicating if tail duplication is necessary. 1047 MachineBlockPlacement::BlockAndTailDupResult 1048 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 1049 BlockChain &Chain, 1050 const BlockFilterSet *BlockFilter) { 1051 const BranchProbability HotProb(StaticLikelyProb, 100); 1052 1053 BlockAndTailDupResult BestSucc = { nullptr, false }; 1054 auto BestProb = BranchProbability::getZero(); 1055 1056 SmallVector<MachineBasicBlock *, 4> Successors; 1057 auto AdjustedSumProb = 1058 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1059 1060 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1061 1062 // For blocks with CFG violations, we may be able to lay them out anyway with 1063 // tail-duplication. We keep this vector so we can perform the probability 1064 // calculations the minimum number of times. 1065 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1066 DupCandidates; 1067 for (MachineBasicBlock *Succ : Successors) { 1068 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1069 BranchProbability SuccProb = 1070 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1071 1072 // This heuristic is off by default. 1073 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 1074 HotProb)) { 1075 BestSucc.BB = Succ; 1076 return BestSucc; 1077 } 1078 1079 BlockChain &SuccChain = *BlockToChain[Succ]; 1080 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1081 // predecessor that yields lower global cost. 1082 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1083 Chain, BlockFilter)) { 1084 // If tail duplication would make Succ profitable, place it. 1085 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1086 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1087 continue; 1088 } 1089 1090 DEBUG( 1091 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1092 << SuccProb 1093 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1094 << "\n"); 1095 1096 if (BestSucc.BB && BestProb >= SuccProb) { 1097 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1098 continue; 1099 } 1100 1101 DEBUG(dbgs() << " Setting it as best candidate\n"); 1102 BestSucc.BB = Succ; 1103 BestProb = SuccProb; 1104 } 1105 // Handle the tail duplication candidates in order of decreasing probability. 1106 // Stop at the first one that is profitable. Also stop if they are less 1107 // profitable than BestSucc. Position is important because we preserve it and 1108 // prefer first best match. Here we aren't comparing in order, so we capture 1109 // the position instead. 1110 if (DupCandidates.size() != 0) { 1111 auto cmp = 1112 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1113 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1114 return std::get<0>(a) > std::get<0>(b); 1115 }; 1116 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1117 } 1118 for(auto &Tup : DupCandidates) { 1119 BranchProbability DupProb; 1120 MachineBasicBlock *Succ; 1121 std::tie(DupProb, Succ) = Tup; 1122 if (DupProb < BestProb) 1123 break; 1124 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1125 // If tail duplication gives us fallthrough when we otherwise wouldn't 1126 // have it, that is a strict gain. 1127 && (BestSucc.BB == nullptr 1128 || isProfitableToTailDup(BB, Succ, BestProb, Chain, 1129 BlockFilter))) { 1130 DEBUG( 1131 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1132 << DupProb 1133 << " (Tail Duplicate)\n"); 1134 BestSucc.BB = Succ; 1135 BestSucc.ShouldTailDup = true; 1136 break; 1137 } 1138 } 1139 1140 if (BestSucc.BB) 1141 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1142 1143 return BestSucc; 1144 } 1145 1146 /// \brief Select the best block from a worklist. 1147 /// 1148 /// This looks through the provided worklist as a list of candidate basic 1149 /// blocks and select the most profitable one to place. The definition of 1150 /// profitable only really makes sense in the context of a loop. This returns 1151 /// the most frequently visited block in the worklist, which in the case of 1152 /// a loop, is the one most desirable to be physically close to the rest of the 1153 /// loop body in order to improve i-cache behavior. 1154 /// 1155 /// \returns The best block found, or null if none are viable. 1156 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1157 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1158 // Once we need to walk the worklist looking for a candidate, cleanup the 1159 // worklist of already placed entries. 1160 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1161 // some code complexity) into the loop below. 1162 WorkList.erase(remove_if(WorkList, 1163 [&](MachineBasicBlock *BB) { 1164 return BlockToChain.lookup(BB) == &Chain; 1165 }), 1166 WorkList.end()); 1167 1168 if (WorkList.empty()) 1169 return nullptr; 1170 1171 bool IsEHPad = WorkList[0]->isEHPad(); 1172 1173 MachineBasicBlock *BestBlock = nullptr; 1174 BlockFrequency BestFreq; 1175 for (MachineBasicBlock *MBB : WorkList) { 1176 assert(MBB->isEHPad() == IsEHPad); 1177 1178 BlockChain &SuccChain = *BlockToChain[MBB]; 1179 if (&SuccChain == &Chain) 1180 continue; 1181 1182 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 1183 1184 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1185 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1186 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1187 1188 // For ehpad, we layout the least probable first as to avoid jumping back 1189 // from least probable landingpads to more probable ones. 1190 // 1191 // FIXME: Using probability is probably (!) not the best way to achieve 1192 // this. We should probably have a more principled approach to layout 1193 // cleanup code. 1194 // 1195 // The goal is to get: 1196 // 1197 // +--------------------------+ 1198 // | V 1199 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1200 // 1201 // Rather than: 1202 // 1203 // +-------------------------------------+ 1204 // V | 1205 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1206 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1207 continue; 1208 1209 BestBlock = MBB; 1210 BestFreq = CandidateFreq; 1211 } 1212 1213 return BestBlock; 1214 } 1215 1216 /// \brief Retrieve the first unplaced basic block. 1217 /// 1218 /// This routine is called when we are unable to use the CFG to walk through 1219 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1220 /// We walk through the function's blocks in order, starting from the 1221 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1222 /// re-scanning the entire sequence on repeated calls to this routine. 1223 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1224 const BlockChain &PlacedChain, 1225 MachineFunction::iterator &PrevUnplacedBlockIt, 1226 const BlockFilterSet *BlockFilter) { 1227 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1228 ++I) { 1229 if (BlockFilter && !BlockFilter->count(&*I)) 1230 continue; 1231 if (BlockToChain[&*I] != &PlacedChain) { 1232 PrevUnplacedBlockIt = I; 1233 // Now select the head of the chain to which the unplaced block belongs 1234 // as the block to place. This will force the entire chain to be placed, 1235 // and satisfies the requirements of merging chains. 1236 return *BlockToChain[&*I]->begin(); 1237 } 1238 } 1239 return nullptr; 1240 } 1241 1242 void MachineBlockPlacement::fillWorkLists( 1243 MachineBasicBlock *MBB, 1244 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1245 const BlockFilterSet *BlockFilter = nullptr) { 1246 BlockChain &Chain = *BlockToChain[MBB]; 1247 if (!UpdatedPreds.insert(&Chain).second) 1248 return; 1249 1250 assert(Chain.UnscheduledPredecessors == 0); 1251 for (MachineBasicBlock *ChainBB : Chain) { 1252 assert(BlockToChain[ChainBB] == &Chain); 1253 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1254 if (BlockFilter && !BlockFilter->count(Pred)) 1255 continue; 1256 if (BlockToChain[Pred] == &Chain) 1257 continue; 1258 ++Chain.UnscheduledPredecessors; 1259 } 1260 } 1261 1262 if (Chain.UnscheduledPredecessors != 0) 1263 return; 1264 1265 MBB = *Chain.begin(); 1266 if (MBB->isEHPad()) 1267 EHPadWorkList.push_back(MBB); 1268 else 1269 BlockWorkList.push_back(MBB); 1270 } 1271 1272 void MachineBlockPlacement::buildChain( 1273 MachineBasicBlock *BB, BlockChain &Chain, 1274 BlockFilterSet *BlockFilter) { 1275 assert(BB && "BB must not be null.\n"); 1276 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); 1277 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1278 1279 MachineBasicBlock *LoopHeaderBB = BB; 1280 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1281 BB = *std::prev(Chain.end()); 1282 for (;;) { 1283 assert(BB && "null block found at end of chain in loop."); 1284 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1285 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1286 1287 1288 // Look for the best viable successor if there is one to place immediately 1289 // after this block. 1290 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1291 MachineBasicBlock* BestSucc = Result.BB; 1292 bool ShouldTailDup = Result.ShouldTailDup; 1293 if (TailDupPlacement) 1294 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1295 1296 // If an immediate successor isn't available, look for the best viable 1297 // block among those we've identified as not violating the loop's CFG at 1298 // this point. This won't be a fallthrough, but it will increase locality. 1299 if (!BestSucc) 1300 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1301 if (!BestSucc) 1302 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1303 1304 if (!BestSucc) { 1305 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1306 if (!BestSucc) 1307 break; 1308 1309 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1310 "layout successor until the CFG reduces\n"); 1311 } 1312 1313 // Placement may have changed tail duplication opportunities. 1314 // Check for that now. 1315 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1316 // If the chosen successor was duplicated into all its predecessors, 1317 // don't bother laying it out, just go round the loop again with BB as 1318 // the chain end. 1319 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1320 BlockFilter, PrevUnplacedBlockIt)) 1321 continue; 1322 } 1323 1324 // Place this block, updating the datastructures to reflect its placement. 1325 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1326 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1327 // we selected a successor that didn't fit naturally into the CFG. 1328 SuccChain.UnscheduledPredecessors = 0; 1329 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1330 << getBlockName(BestSucc) << "\n"); 1331 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1332 Chain.merge(BestSucc, &SuccChain); 1333 BB = *std::prev(Chain.end()); 1334 } 1335 1336 DEBUG(dbgs() << "Finished forming chain for header block " 1337 << getBlockName(*Chain.begin()) << "\n"); 1338 } 1339 1340 /// \brief Find the best loop top block for layout. 1341 /// 1342 /// Look for a block which is strictly better than the loop header for laying 1343 /// out at the top of the loop. This looks for one and only one pattern: 1344 /// a latch block with no conditional exit. This block will cause a conditional 1345 /// jump around it or will be the bottom of the loop if we lay it out in place, 1346 /// but if it it doesn't end up at the bottom of the loop for any reason, 1347 /// rotation alone won't fix it. Because such a block will always result in an 1348 /// unconditional jump (for the backedge) rotating it in front of the loop 1349 /// header is always profitable. 1350 MachineBasicBlock * 1351 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 1352 const BlockFilterSet &LoopBlockSet) { 1353 // Placing the latch block before the header may introduce an extra branch 1354 // that skips this block the first time the loop is executed, which we want 1355 // to avoid when optimising for size. 1356 // FIXME: in theory there is a case that does not introduce a new branch, 1357 // i.e. when the layout predecessor does not fallthrough to the loop header. 1358 // In practice this never happens though: there always seems to be a preheader 1359 // that can fallthrough and that is also placed before the header. 1360 if (F->getFunction()->optForSize()) 1361 return L.getHeader(); 1362 1363 // Check that the header hasn't been fused with a preheader block due to 1364 // crazy branches. If it has, we need to start with the header at the top to 1365 // prevent pulling the preheader into the loop body. 1366 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1367 if (!LoopBlockSet.count(*HeaderChain.begin())) 1368 return L.getHeader(); 1369 1370 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1371 << "\n"); 1372 1373 BlockFrequency BestPredFreq; 1374 MachineBasicBlock *BestPred = nullptr; 1375 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1376 if (!LoopBlockSet.count(Pred)) 1377 continue; 1378 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1379 << Pred->succ_size() << " successors, "; 1380 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1381 if (Pred->succ_size() > 1) 1382 continue; 1383 1384 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1385 if (!BestPred || PredFreq > BestPredFreq || 1386 (!(PredFreq < BestPredFreq) && 1387 Pred->isLayoutSuccessor(L.getHeader()))) { 1388 BestPred = Pred; 1389 BestPredFreq = PredFreq; 1390 } 1391 } 1392 1393 // If no direct predecessor is fine, just use the loop header. 1394 if (!BestPred) { 1395 DEBUG(dbgs() << " final top unchanged\n"); 1396 return L.getHeader(); 1397 } 1398 1399 // Walk backwards through any straight line of predecessors. 1400 while (BestPred->pred_size() == 1 && 1401 (*BestPred->pred_begin())->succ_size() == 1 && 1402 *BestPred->pred_begin() != L.getHeader()) 1403 BestPred = *BestPred->pred_begin(); 1404 1405 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1406 return BestPred; 1407 } 1408 1409 /// \brief Find the best loop exiting block for layout. 1410 /// 1411 /// This routine implements the logic to analyze the loop looking for the best 1412 /// block to layout at the top of the loop. Typically this is done to maximize 1413 /// fallthrough opportunities. 1414 MachineBasicBlock * 1415 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 1416 const BlockFilterSet &LoopBlockSet) { 1417 // We don't want to layout the loop linearly in all cases. If the loop header 1418 // is just a normal basic block in the loop, we want to look for what block 1419 // within the loop is the best one to layout at the top. However, if the loop 1420 // header has be pre-merged into a chain due to predecessors not having 1421 // analyzable branches, *and* the predecessor it is merged with is *not* part 1422 // of the loop, rotating the header into the middle of the loop will create 1423 // a non-contiguous range of blocks which is Very Bad. So start with the 1424 // header and only rotate if safe. 1425 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1426 if (!LoopBlockSet.count(*HeaderChain.begin())) 1427 return nullptr; 1428 1429 BlockFrequency BestExitEdgeFreq; 1430 unsigned BestExitLoopDepth = 0; 1431 MachineBasicBlock *ExitingBB = nullptr; 1432 // If there are exits to outer loops, loop rotation can severely limit 1433 // fallthrough opportunities unless it selects such an exit. Keep a set of 1434 // blocks where rotating to exit with that block will reach an outer loop. 1435 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1436 1437 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1438 << "\n"); 1439 for (MachineBasicBlock *MBB : L.getBlocks()) { 1440 BlockChain &Chain = *BlockToChain[MBB]; 1441 // Ensure that this block is at the end of a chain; otherwise it could be 1442 // mid-way through an inner loop or a successor of an unanalyzable branch. 1443 if (MBB != *std::prev(Chain.end())) 1444 continue; 1445 1446 // Now walk the successors. We need to establish whether this has a viable 1447 // exiting successor and whether it has a viable non-exiting successor. 1448 // We store the old exiting state and restore it if a viable looping 1449 // successor isn't found. 1450 MachineBasicBlock *OldExitingBB = ExitingBB; 1451 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1452 bool HasLoopingSucc = false; 1453 for (MachineBasicBlock *Succ : MBB->successors()) { 1454 if (Succ->isEHPad()) 1455 continue; 1456 if (Succ == MBB) 1457 continue; 1458 BlockChain &SuccChain = *BlockToChain[Succ]; 1459 // Don't split chains, either this chain or the successor's chain. 1460 if (&Chain == &SuccChain) { 1461 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1462 << getBlockName(Succ) << " (chain conflict)\n"); 1463 continue; 1464 } 1465 1466 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1467 if (LoopBlockSet.count(Succ)) { 1468 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1469 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1470 HasLoopingSucc = true; 1471 continue; 1472 } 1473 1474 unsigned SuccLoopDepth = 0; 1475 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1476 SuccLoopDepth = ExitLoop->getLoopDepth(); 1477 if (ExitLoop->contains(&L)) 1478 BlocksExitingToOuterLoop.insert(MBB); 1479 } 1480 1481 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1482 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1483 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1484 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1485 // Note that we bias this toward an existing layout successor to retain 1486 // incoming order in the absence of better information. The exit must have 1487 // a frequency higher than the current exit before we consider breaking 1488 // the layout. 1489 BranchProbability Bias(100 - ExitBlockBias, 100); 1490 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1491 ExitEdgeFreq > BestExitEdgeFreq || 1492 (MBB->isLayoutSuccessor(Succ) && 1493 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1494 BestExitEdgeFreq = ExitEdgeFreq; 1495 ExitingBB = MBB; 1496 } 1497 } 1498 1499 if (!HasLoopingSucc) { 1500 // Restore the old exiting state, no viable looping successor was found. 1501 ExitingBB = OldExitingBB; 1502 BestExitEdgeFreq = OldBestExitEdgeFreq; 1503 } 1504 } 1505 // Without a candidate exiting block or with only a single block in the 1506 // loop, just use the loop header to layout the loop. 1507 if (!ExitingBB) { 1508 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1509 return nullptr; 1510 } 1511 if (L.getNumBlocks() == 1) { 1512 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1513 return nullptr; 1514 } 1515 1516 // Also, if we have exit blocks which lead to outer loops but didn't select 1517 // one of them as the exiting block we are rotating toward, disable loop 1518 // rotation altogether. 1519 if (!BlocksExitingToOuterLoop.empty() && 1520 !BlocksExitingToOuterLoop.count(ExitingBB)) 1521 return nullptr; 1522 1523 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1524 return ExitingBB; 1525 } 1526 1527 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1528 /// 1529 /// Once we have built a chain, try to rotate it to line up the hot exit block 1530 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1531 /// branches. For example, if the loop has fallthrough into its header and out 1532 /// of its bottom already, don't rotate it. 1533 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1534 MachineBasicBlock *ExitingBB, 1535 const BlockFilterSet &LoopBlockSet) { 1536 if (!ExitingBB) 1537 return; 1538 1539 MachineBasicBlock *Top = *LoopChain.begin(); 1540 bool ViableTopFallthrough = false; 1541 for (MachineBasicBlock *Pred : Top->predecessors()) { 1542 BlockChain *PredChain = BlockToChain[Pred]; 1543 if (!LoopBlockSet.count(Pred) && 1544 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1545 ViableTopFallthrough = true; 1546 break; 1547 } 1548 } 1549 1550 // If the header has viable fallthrough, check whether the current loop 1551 // bottom is a viable exiting block. If so, bail out as rotating will 1552 // introduce an unnecessary branch. 1553 if (ViableTopFallthrough) { 1554 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1555 for (MachineBasicBlock *Succ : Bottom->successors()) { 1556 BlockChain *SuccChain = BlockToChain[Succ]; 1557 if (!LoopBlockSet.count(Succ) && 1558 (!SuccChain || Succ == *SuccChain->begin())) 1559 return; 1560 } 1561 } 1562 1563 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1564 if (ExitIt == LoopChain.end()) 1565 return; 1566 1567 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1568 } 1569 1570 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1571 /// 1572 /// With profile data, we can determine the cost in terms of missed fall through 1573 /// opportunities when rotating a loop chain and select the best rotation. 1574 /// Basically, there are three kinds of cost to consider for each rotation: 1575 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1576 /// the loop to the loop header. 1577 /// 2. The possibly missed fall through edges (if they exist) from the loop 1578 /// exits to BB out of the loop. 1579 /// 3. The missed fall through edge (if it exists) from the last BB to the 1580 /// first BB in the loop chain. 1581 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1582 /// We select the best rotation with the smallest cost. 1583 void MachineBlockPlacement::rotateLoopWithProfile( 1584 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1585 auto HeaderBB = L.getHeader(); 1586 auto HeaderIter = find(LoopChain, HeaderBB); 1587 auto RotationPos = LoopChain.end(); 1588 1589 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1590 1591 // A utility lambda that scales up a block frequency by dividing it by a 1592 // branch probability which is the reciprocal of the scale. 1593 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1594 unsigned Scale) -> BlockFrequency { 1595 if (Scale == 0) 1596 return 0; 1597 // Use operator / between BlockFrequency and BranchProbability to implement 1598 // saturating multiplication. 1599 return Freq / BranchProbability(1, Scale); 1600 }; 1601 1602 // Compute the cost of the missed fall-through edge to the loop header if the 1603 // chain head is not the loop header. As we only consider natural loops with 1604 // single header, this computation can be done only once. 1605 BlockFrequency HeaderFallThroughCost(0); 1606 for (auto *Pred : HeaderBB->predecessors()) { 1607 BlockChain *PredChain = BlockToChain[Pred]; 1608 if (!LoopBlockSet.count(Pred) && 1609 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1610 auto EdgeFreq = 1611 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1612 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1613 // If the predecessor has only an unconditional jump to the header, we 1614 // need to consider the cost of this jump. 1615 if (Pred->succ_size() == 1) 1616 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1617 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1618 } 1619 } 1620 1621 // Here we collect all exit blocks in the loop, and for each exit we find out 1622 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1623 // as the sum of frequencies of exit edges we collect here, excluding the exit 1624 // edge from the tail of the loop chain. 1625 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1626 for (auto BB : LoopChain) { 1627 auto LargestExitEdgeProb = BranchProbability::getZero(); 1628 for (auto *Succ : BB->successors()) { 1629 BlockChain *SuccChain = BlockToChain[Succ]; 1630 if (!LoopBlockSet.count(Succ) && 1631 (!SuccChain || Succ == *SuccChain->begin())) { 1632 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1633 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1634 } 1635 } 1636 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1637 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1638 ExitsWithFreq.emplace_back(BB, ExitFreq); 1639 } 1640 } 1641 1642 // In this loop we iterate every block in the loop chain and calculate the 1643 // cost assuming the block is the head of the loop chain. When the loop ends, 1644 // we should have found the best candidate as the loop chain's head. 1645 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1646 EndIter = LoopChain.end(); 1647 Iter != EndIter; Iter++, TailIter++) { 1648 // TailIter is used to track the tail of the loop chain if the block we are 1649 // checking (pointed by Iter) is the head of the chain. 1650 if (TailIter == LoopChain.end()) 1651 TailIter = LoopChain.begin(); 1652 1653 auto TailBB = *TailIter; 1654 1655 // Calculate the cost by putting this BB to the top. 1656 BlockFrequency Cost = 0; 1657 1658 // If the current BB is the loop header, we need to take into account the 1659 // cost of the missed fall through edge from outside of the loop to the 1660 // header. 1661 if (Iter != HeaderIter) 1662 Cost += HeaderFallThroughCost; 1663 1664 // Collect the loop exit cost by summing up frequencies of all exit edges 1665 // except the one from the chain tail. 1666 for (auto &ExitWithFreq : ExitsWithFreq) 1667 if (TailBB != ExitWithFreq.first) 1668 Cost += ExitWithFreq.second; 1669 1670 // The cost of breaking the once fall-through edge from the tail to the top 1671 // of the loop chain. Here we need to consider three cases: 1672 // 1. If the tail node has only one successor, then we will get an 1673 // additional jmp instruction. So the cost here is (MisfetchCost + 1674 // JumpInstCost) * tail node frequency. 1675 // 2. If the tail node has two successors, then we may still get an 1676 // additional jmp instruction if the layout successor after the loop 1677 // chain is not its CFG successor. Note that the more frequently executed 1678 // jmp instruction will be put ahead of the other one. Assume the 1679 // frequency of those two branches are x and y, where x is the frequency 1680 // of the edge to the chain head, then the cost will be 1681 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1682 // 3. If the tail node has more than two successors (this rarely happens), 1683 // we won't consider any additional cost. 1684 if (TailBB->isSuccessor(*Iter)) { 1685 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1686 if (TailBB->succ_size() == 1) 1687 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1688 MisfetchCost + JumpInstCost); 1689 else if (TailBB->succ_size() == 2) { 1690 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1691 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1692 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1693 ? TailBBFreq * TailToHeadProb.getCompl() 1694 : TailToHeadFreq; 1695 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1696 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1697 } 1698 } 1699 1700 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1701 << " to the top: " << Cost.getFrequency() << "\n"); 1702 1703 if (Cost < SmallestRotationCost) { 1704 SmallestRotationCost = Cost; 1705 RotationPos = Iter; 1706 } 1707 } 1708 1709 if (RotationPos != LoopChain.end()) { 1710 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1711 << " to the top\n"); 1712 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1713 } 1714 } 1715 1716 /// \brief Collect blocks in the given loop that are to be placed. 1717 /// 1718 /// When profile data is available, exclude cold blocks from the returned set; 1719 /// otherwise, collect all blocks in the loop. 1720 MachineBlockPlacement::BlockFilterSet 1721 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1722 BlockFilterSet LoopBlockSet; 1723 1724 // Filter cold blocks off from LoopBlockSet when profile data is available. 1725 // Collect the sum of frequencies of incoming edges to the loop header from 1726 // outside. If we treat the loop as a super block, this is the frequency of 1727 // the loop. Then for each block in the loop, we calculate the ratio between 1728 // its frequency and the frequency of the loop block. When it is too small, 1729 // don't add it to the loop chain. If there are outer loops, then this block 1730 // will be merged into the first outer loop chain for which this block is not 1731 // cold anymore. This needs precise profile data and we only do this when 1732 // profile data is available. 1733 if (F->getFunction()->getEntryCount()) { 1734 BlockFrequency LoopFreq(0); 1735 for (auto LoopPred : L.getHeader()->predecessors()) 1736 if (!L.contains(LoopPred)) 1737 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1738 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1739 1740 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1741 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1742 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1743 continue; 1744 LoopBlockSet.insert(LoopBB); 1745 } 1746 } else 1747 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1748 1749 return LoopBlockSet; 1750 } 1751 1752 /// \brief Forms basic block chains from the natural loop structures. 1753 /// 1754 /// These chains are designed to preserve the existing *structure* of the code 1755 /// as much as possible. We can then stitch the chains together in a way which 1756 /// both preserves the topological structure and minimizes taken conditional 1757 /// branches. 1758 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1759 // First recurse through any nested loops, building chains for those inner 1760 // loops. 1761 for (MachineLoop *InnerLoop : L) 1762 buildLoopChains(*InnerLoop); 1763 1764 assert(BlockWorkList.empty()); 1765 assert(EHPadWorkList.empty()); 1766 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1767 1768 // Check if we have profile data for this function. If yes, we will rotate 1769 // this loop by modeling costs more precisely which requires the profile data 1770 // for better layout. 1771 bool RotateLoopWithProfile = 1772 ForcePreciseRotationCost || 1773 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1774 1775 // First check to see if there is an obviously preferable top block for the 1776 // loop. This will default to the header, but may end up as one of the 1777 // predecessors to the header if there is one which will result in strictly 1778 // fewer branches in the loop body. 1779 // When we use profile data to rotate the loop, this is unnecessary. 1780 MachineBasicBlock *LoopTop = 1781 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1782 1783 // If we selected just the header for the loop top, look for a potentially 1784 // profitable exit block in the event that rotating the loop can eliminate 1785 // branches by placing an exit edge at the bottom. 1786 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1787 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 1788 1789 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1790 1791 // FIXME: This is a really lame way of walking the chains in the loop: we 1792 // walk the blocks, and use a set to prevent visiting a particular chain 1793 // twice. 1794 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1795 assert(LoopChain.UnscheduledPredecessors == 0); 1796 UpdatedPreds.insert(&LoopChain); 1797 1798 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1799 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 1800 1801 buildChain(LoopTop, LoopChain, &LoopBlockSet); 1802 1803 if (RotateLoopWithProfile) 1804 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1805 else 1806 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 1807 1808 DEBUG({ 1809 // Crash at the end so we get all of the debugging output first. 1810 bool BadLoop = false; 1811 if (LoopChain.UnscheduledPredecessors) { 1812 BadLoop = true; 1813 dbgs() << "Loop chain contains a block without its preds placed!\n" 1814 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1815 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1816 } 1817 for (MachineBasicBlock *ChainBB : LoopChain) { 1818 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1819 if (!LoopBlockSet.remove(ChainBB)) { 1820 // We don't mark the loop as bad here because there are real situations 1821 // where this can occur. For example, with an unanalyzable fallthrough 1822 // from a loop block to a non-loop block or vice versa. 1823 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1824 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1825 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1826 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1827 } 1828 } 1829 1830 if (!LoopBlockSet.empty()) { 1831 BadLoop = true; 1832 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1833 dbgs() << "Loop contains blocks never placed into a chain!\n" 1834 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1835 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1836 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1837 } 1838 assert(!BadLoop && "Detected problems with the placement of this loop."); 1839 }); 1840 1841 BlockWorkList.clear(); 1842 EHPadWorkList.clear(); 1843 } 1844 1845 /// When OutlineOpitonalBranches is on, this method collects BBs that 1846 /// dominates all terminator blocks of the function \p F. 1847 void MachineBlockPlacement::collectMustExecuteBBs() { 1848 if (OutlineOptionalBranches) { 1849 // Find the nearest common dominator of all of F's terminators. 1850 MachineBasicBlock *Terminator = nullptr; 1851 for (MachineBasicBlock &MBB : *F) { 1852 if (MBB.succ_size() == 0) { 1853 if (Terminator == nullptr) 1854 Terminator = &MBB; 1855 else 1856 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1857 } 1858 } 1859 1860 // MBBs dominating this common dominator are unavoidable. 1861 UnavoidableBlocks.clear(); 1862 for (MachineBasicBlock &MBB : *F) { 1863 if (MDT->dominates(&MBB, Terminator)) { 1864 UnavoidableBlocks.insert(&MBB); 1865 } 1866 } 1867 } 1868 } 1869 1870 void MachineBlockPlacement::buildCFGChains() { 1871 // Ensure that every BB in the function has an associated chain to simplify 1872 // the assumptions of the remaining algorithm. 1873 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1874 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1875 ++FI) { 1876 MachineBasicBlock *BB = &*FI; 1877 BlockChain *Chain = 1878 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1879 // Also, merge any blocks which we cannot reason about and must preserve 1880 // the exact fallthrough behavior for. 1881 for (;;) { 1882 Cond.clear(); 1883 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1884 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1885 break; 1886 1887 MachineFunction::iterator NextFI = std::next(FI); 1888 MachineBasicBlock *NextBB = &*NextFI; 1889 // Ensure that the layout successor is a viable block, as we know that 1890 // fallthrough is a possibility. 1891 assert(NextFI != FE && "Can't fallthrough past the last block."); 1892 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1893 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1894 << "\n"); 1895 Chain->merge(NextBB, nullptr); 1896 #ifndef NDEBUG 1897 BlocksWithUnanalyzableExits.insert(&*BB); 1898 #endif 1899 FI = NextFI; 1900 BB = NextBB; 1901 } 1902 } 1903 1904 // Turned on with OutlineOptionalBranches option 1905 collectMustExecuteBBs(); 1906 1907 // Build any loop-based chains. 1908 PreferredLoopExit = nullptr; 1909 for (MachineLoop *L : *MLI) 1910 buildLoopChains(*L); 1911 1912 assert(BlockWorkList.empty()); 1913 assert(EHPadWorkList.empty()); 1914 1915 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1916 for (MachineBasicBlock &MBB : *F) 1917 fillWorkLists(&MBB, UpdatedPreds); 1918 1919 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1920 buildChain(&F->front(), FunctionChain); 1921 1922 #ifndef NDEBUG 1923 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1924 #endif 1925 DEBUG({ 1926 // Crash at the end so we get all of the debugging output first. 1927 bool BadFunc = false; 1928 FunctionBlockSetType FunctionBlockSet; 1929 for (MachineBasicBlock &MBB : *F) 1930 FunctionBlockSet.insert(&MBB); 1931 1932 for (MachineBasicBlock *ChainBB : FunctionChain) 1933 if (!FunctionBlockSet.erase(ChainBB)) { 1934 BadFunc = true; 1935 dbgs() << "Function chain contains a block not in the function!\n" 1936 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1937 } 1938 1939 if (!FunctionBlockSet.empty()) { 1940 BadFunc = true; 1941 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1942 dbgs() << "Function contains blocks never placed into a chain!\n" 1943 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1944 } 1945 assert(!BadFunc && "Detected problems with the block placement."); 1946 }); 1947 1948 // Splice the blocks into place. 1949 MachineFunction::iterator InsertPos = F->begin(); 1950 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 1951 for (MachineBasicBlock *ChainBB : FunctionChain) { 1952 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1953 : " ... ") 1954 << getBlockName(ChainBB) << "\n"); 1955 if (InsertPos != MachineFunction::iterator(ChainBB)) 1956 F->splice(InsertPos, ChainBB); 1957 else 1958 ++InsertPos; 1959 1960 // Update the terminator of the previous block. 1961 if (ChainBB == *FunctionChain.begin()) 1962 continue; 1963 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1964 1965 // FIXME: It would be awesome of updateTerminator would just return rather 1966 // than assert when the branch cannot be analyzed in order to remove this 1967 // boiler plate. 1968 Cond.clear(); 1969 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1970 1971 #ifndef NDEBUG 1972 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 1973 // Given the exact block placement we chose, we may actually not _need_ to 1974 // be able to edit PrevBB's terminator sequence, but not being _able_ to 1975 // do that at this point is a bug. 1976 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 1977 !PrevBB->canFallThrough()) && 1978 "Unexpected block with un-analyzable fallthrough!"); 1979 Cond.clear(); 1980 TBB = FBB = nullptr; 1981 } 1982 #endif 1983 1984 // The "PrevBB" is not yet updated to reflect current code layout, so, 1985 // o. it may fall-through to a block without explicit "goto" instruction 1986 // before layout, and no longer fall-through it after layout; or 1987 // o. just opposite. 1988 // 1989 // analyzeBranch() may return erroneous value for FBB when these two 1990 // situations take place. For the first scenario FBB is mistakenly set NULL; 1991 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1992 // mistakenly pointing to "*BI". 1993 // Thus, if the future change needs to use FBB before the layout is set, it 1994 // has to correct FBB first by using the code similar to the following: 1995 // 1996 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1997 // PrevBB->updateTerminator(); 1998 // Cond.clear(); 1999 // TBB = FBB = nullptr; 2000 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2001 // // FIXME: This should never take place. 2002 // TBB = FBB = nullptr; 2003 // } 2004 // } 2005 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2006 PrevBB->updateTerminator(); 2007 } 2008 2009 // Fixup the last block. 2010 Cond.clear(); 2011 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2012 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2013 F->back().updateTerminator(); 2014 2015 BlockWorkList.clear(); 2016 EHPadWorkList.clear(); 2017 } 2018 2019 void MachineBlockPlacement::optimizeBranches() { 2020 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2021 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2022 2023 // Now that all the basic blocks in the chain have the proper layout, 2024 // make a final call to AnalyzeBranch with AllowModify set. 2025 // Indeed, the target may be able to optimize the branches in a way we 2026 // cannot because all branches may not be analyzable. 2027 // E.g., the target may be able to remove an unconditional branch to 2028 // a fallthrough when it occurs after predicated terminators. 2029 for (MachineBasicBlock *ChainBB : FunctionChain) { 2030 Cond.clear(); 2031 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2032 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2033 // If PrevBB has a two-way branch, try to re-order the branches 2034 // such that we branch to the successor with higher probability first. 2035 if (TBB && !Cond.empty() && FBB && 2036 MBPI->getEdgeProbability(ChainBB, FBB) > 2037 MBPI->getEdgeProbability(ChainBB, TBB) && 2038 !TII->reverseBranchCondition(Cond)) { 2039 DEBUG(dbgs() << "Reverse order of the two branches: " 2040 << getBlockName(ChainBB) << "\n"); 2041 DEBUG(dbgs() << " Edge probability: " 2042 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2043 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2044 DebugLoc dl; // FIXME: this is nowhere 2045 TII->removeBranch(*ChainBB); 2046 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2047 ChainBB->updateTerminator(); 2048 } 2049 } 2050 } 2051 } 2052 2053 void MachineBlockPlacement::alignBlocks() { 2054 // Walk through the backedges of the function now that we have fully laid out 2055 // the basic blocks and align the destination of each backedge. We don't rely 2056 // exclusively on the loop info here so that we can align backedges in 2057 // unnatural CFGs and backedges that were introduced purely because of the 2058 // loop rotations done during this layout pass. 2059 if (F->getFunction()->optForSize()) 2060 return; 2061 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2062 if (FunctionChain.begin() == FunctionChain.end()) 2063 return; // Empty chain. 2064 2065 const BranchProbability ColdProb(1, 5); // 20% 2066 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2067 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2068 for (MachineBasicBlock *ChainBB : FunctionChain) { 2069 if (ChainBB == *FunctionChain.begin()) 2070 continue; 2071 2072 // Don't align non-looping basic blocks. These are unlikely to execute 2073 // enough times to matter in practice. Note that we'll still handle 2074 // unnatural CFGs inside of a natural outer loop (the common case) and 2075 // rotated loops. 2076 MachineLoop *L = MLI->getLoopFor(ChainBB); 2077 if (!L) 2078 continue; 2079 2080 unsigned Align = TLI->getPrefLoopAlignment(L); 2081 if (!Align) 2082 continue; // Don't care about loop alignment. 2083 2084 // If the block is cold relative to the function entry don't waste space 2085 // aligning it. 2086 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2087 if (Freq < WeightedEntryFreq) 2088 continue; 2089 2090 // If the block is cold relative to its loop header, don't align it 2091 // regardless of what edges into the block exist. 2092 MachineBasicBlock *LoopHeader = L->getHeader(); 2093 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2094 if (Freq < (LoopHeaderFreq * ColdProb)) 2095 continue; 2096 2097 // Check for the existence of a non-layout predecessor which would benefit 2098 // from aligning this block. 2099 MachineBasicBlock *LayoutPred = 2100 &*std::prev(MachineFunction::iterator(ChainBB)); 2101 2102 // Force alignment if all the predecessors are jumps. We already checked 2103 // that the block isn't cold above. 2104 if (!LayoutPred->isSuccessor(ChainBB)) { 2105 ChainBB->setAlignment(Align); 2106 continue; 2107 } 2108 2109 // Align this block if the layout predecessor's edge into this block is 2110 // cold relative to the block. When this is true, other predecessors make up 2111 // all of the hot entries into the block and thus alignment is likely to be 2112 // important. 2113 BranchProbability LayoutProb = 2114 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2115 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2116 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2117 ChainBB->setAlignment(Align); 2118 } 2119 } 2120 2121 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2122 /// it was duplicated into its chain predecessor and removed. 2123 /// \p BB - Basic block that may be duplicated. 2124 /// 2125 /// \p LPred - Chosen layout predecessor of \p BB. 2126 /// Updated to be the chain end if LPred is removed. 2127 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2128 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2129 /// Used to identify which blocks to update predecessor 2130 /// counts. 2131 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2132 /// chosen in the given order due to unnatural CFG 2133 /// only needed if \p BB is removed and 2134 /// \p PrevUnplacedBlockIt pointed to \p BB. 2135 /// @return true if \p BB was removed. 2136 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2137 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2138 MachineBasicBlock *LoopHeaderBB, 2139 BlockChain &Chain, BlockFilterSet *BlockFilter, 2140 MachineFunction::iterator &PrevUnplacedBlockIt) { 2141 bool Removed, DuplicatedToLPred; 2142 bool DuplicatedToOriginalLPred; 2143 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2144 PrevUnplacedBlockIt, 2145 DuplicatedToLPred); 2146 if (!Removed) 2147 return false; 2148 DuplicatedToOriginalLPred = DuplicatedToLPred; 2149 // Iteratively try to duplicate again. It can happen that a block that is 2150 // duplicated into is still small enough to be duplicated again. 2151 // No need to call markBlockSuccessors in this case, as the blocks being 2152 // duplicated from here on are already scheduled. 2153 // Note that DuplicatedToLPred always implies Removed. 2154 while (DuplicatedToLPred) { 2155 assert (Removed && "Block must have been removed to be duplicated into its " 2156 "layout predecessor."); 2157 MachineBasicBlock *DupBB, *DupPred; 2158 // The removal callback causes Chain.end() to be updated when a block is 2159 // removed. On the first pass through the loop, the chain end should be the 2160 // same as it was on function entry. On subsequent passes, because we are 2161 // duplicating the block at the end of the chain, if it is removed the 2162 // chain will have shrunk by one block. 2163 BlockChain::iterator ChainEnd = Chain.end(); 2164 DupBB = *(--ChainEnd); 2165 // Now try to duplicate again. 2166 if (ChainEnd == Chain.begin()) 2167 break; 2168 DupPred = *std::prev(ChainEnd); 2169 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2170 PrevUnplacedBlockIt, 2171 DuplicatedToLPred); 2172 } 2173 // If BB was duplicated into LPred, it is now scheduled. But because it was 2174 // removed, markChainSuccessors won't be called for its chain. Instead we 2175 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2176 // at the end because repeating the tail duplication can increase the number 2177 // of unscheduled predecessors. 2178 LPred = *std::prev(Chain.end()); 2179 if (DuplicatedToOriginalLPred) 2180 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2181 return true; 2182 } 2183 2184 /// Tail duplicate \p BB into (some) predecessors if profitable. 2185 /// \p BB - Basic block that may be duplicated 2186 /// \p LPred - Chosen layout predecessor of \p BB 2187 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2188 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2189 /// Used to identify which blocks to update predecessor 2190 /// counts. 2191 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2192 /// chosen in the given order due to unnatural CFG 2193 /// only needed if \p BB is removed and 2194 /// \p PrevUnplacedBlockIt pointed to \p BB. 2195 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2196 /// only be true if the block was removed. 2197 /// \return - True if the block was duplicated into all preds and removed. 2198 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2199 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2200 const BlockChain &Chain, BlockFilterSet *BlockFilter, 2201 MachineFunction::iterator &PrevUnplacedBlockIt, 2202 bool &DuplicatedToLPred) { 2203 2204 DuplicatedToLPred = false; 2205 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2206 << BB->getNumber() << "\n"); 2207 2208 if (!shouldTailDuplicate(BB)) 2209 return false; 2210 // This has to be a callback because none of it can be done after 2211 // BB is deleted. 2212 bool Removed = false; 2213 auto RemovalCallback = 2214 [&](MachineBasicBlock *RemBB) { 2215 // Signal to outer function 2216 Removed = true; 2217 2218 // Conservative default. 2219 bool InWorkList = true; 2220 // Remove from the Chain and Chain Map 2221 if (BlockToChain.count(RemBB)) { 2222 BlockChain *Chain = BlockToChain[RemBB]; 2223 InWorkList = Chain->UnscheduledPredecessors == 0; 2224 Chain->remove(RemBB); 2225 BlockToChain.erase(RemBB); 2226 } 2227 2228 // Handle the unplaced block iterator 2229 if (&(*PrevUnplacedBlockIt) == RemBB) { 2230 PrevUnplacedBlockIt++; 2231 } 2232 2233 // Handle the Work Lists 2234 if (InWorkList) { 2235 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2236 if (RemBB->isEHPad()) 2237 RemoveList = EHPadWorkList; 2238 RemoveList.erase( 2239 remove_if(RemoveList, 2240 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2241 RemoveList.end()); 2242 } 2243 2244 // Handle the filter set 2245 if (BlockFilter) { 2246 BlockFilter->remove(RemBB); 2247 } 2248 2249 // Remove the block from loop info. 2250 MLI->removeBlock(RemBB); 2251 if (RemBB == PreferredLoopExit) 2252 PreferredLoopExit = nullptr; 2253 2254 DEBUG(dbgs() << "TailDuplicator deleted block: " 2255 << getBlockName(RemBB) << "\n"); 2256 }; 2257 auto RemovalCallbackRef = 2258 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2259 2260 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2261 bool IsSimple = TailDup.isSimpleBB(BB); 2262 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2263 &DuplicatedPreds, &RemovalCallbackRef); 2264 2265 // Update UnscheduledPredecessors to reflect tail-duplication. 2266 DuplicatedToLPred = false; 2267 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2268 // We're only looking for unscheduled predecessors that match the filter. 2269 BlockChain* PredChain = BlockToChain[Pred]; 2270 if (Pred == LPred) 2271 DuplicatedToLPred = true; 2272 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2273 || PredChain == &Chain) 2274 continue; 2275 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2276 if (BlockFilter && !BlockFilter->count(NewSucc)) 2277 continue; 2278 BlockChain *NewChain = BlockToChain[NewSucc]; 2279 if (NewChain != &Chain && NewChain != PredChain) 2280 NewChain->UnscheduledPredecessors++; 2281 } 2282 } 2283 return Removed; 2284 } 2285 2286 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2287 if (skipFunction(*MF.getFunction())) 2288 return false; 2289 2290 // Check for single-block functions and skip them. 2291 if (std::next(MF.begin()) == MF.end()) 2292 return false; 2293 2294 F = &MF; 2295 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2296 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2297 getAnalysis<MachineBlockFrequencyInfo>()); 2298 MLI = &getAnalysis<MachineLoopInfo>(); 2299 TII = MF.getSubtarget().getInstrInfo(); 2300 TLI = MF.getSubtarget().getTargetLowering(); 2301 MDT = &getAnalysis<MachineDominatorTree>(); 2302 MPDT = nullptr; 2303 2304 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2305 // there are no MachineLoops. 2306 PreferredLoopExit = nullptr; 2307 2308 if (TailDupPlacement) { 2309 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2310 unsigned TailDupSize = TailDupPlacementThreshold; 2311 if (MF.getFunction()->optForSize()) 2312 TailDupSize = 1; 2313 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2314 } 2315 2316 assert(BlockToChain.empty()); 2317 2318 buildCFGChains(); 2319 2320 // Changing the layout can create new tail merging opportunities. 2321 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2322 // TailMerge can create jump into if branches that make CFG irreducible for 2323 // HW that requires structured CFG. 2324 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2325 PassConfig->getEnableTailMerge() && 2326 BranchFoldPlacement; 2327 // No tail merging opportunities if the block number is less than four. 2328 if (MF.size() > 3 && EnableTailMerge) { 2329 unsigned TailMergeSize = TailDupPlacementThreshold + 1; 2330 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2331 *MBPI, TailMergeSize); 2332 2333 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2334 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2335 /*AfterBlockPlacement=*/true)) { 2336 // Redo the layout if tail merging creates/removes/moves blocks. 2337 BlockToChain.clear(); 2338 // Must redo the dominator tree if blocks were changed. 2339 MDT->runOnMachineFunction(MF); 2340 if (MPDT) 2341 MPDT->runOnMachineFunction(MF); 2342 ChainAllocator.DestroyAll(); 2343 buildCFGChains(); 2344 } 2345 } 2346 2347 optimizeBranches(); 2348 alignBlocks(); 2349 2350 BlockToChain.clear(); 2351 ChainAllocator.DestroyAll(); 2352 2353 if (AlignAllBlock) 2354 // Align all of the blocks in the function to a specific alignment. 2355 for (MachineBasicBlock &MBB : MF) 2356 MBB.setAlignment(AlignAllBlock); 2357 else if (AlignAllNonFallThruBlocks) { 2358 // Align all of the blocks that have no fall-through predecessors to a 2359 // specific alignment. 2360 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2361 auto LayoutPred = std::prev(MBI); 2362 if (!LayoutPred->isSuccessor(&*MBI)) 2363 MBI->setAlignment(AlignAllNonFallThruBlocks); 2364 } 2365 } 2366 if (ViewBlockLayoutWithBFI != GVDT_None && 2367 (ViewBlockFreqFuncName.empty() || 2368 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2369 MBFI->view(false); 2370 } 2371 2372 2373 // We always return true as we have no way to track whether the final order 2374 // differs from the original order. 2375 return true; 2376 } 2377 2378 namespace { 2379 /// \brief A pass to compute block placement statistics. 2380 /// 2381 /// A separate pass to compute interesting statistics for evaluating block 2382 /// placement. This is separate from the actual placement pass so that they can 2383 /// be computed in the absence of any placement transformations or when using 2384 /// alternative placement strategies. 2385 class MachineBlockPlacementStats : public MachineFunctionPass { 2386 /// \brief A handle to the branch probability pass. 2387 const MachineBranchProbabilityInfo *MBPI; 2388 2389 /// \brief A handle to the function-wide block frequency pass. 2390 const MachineBlockFrequencyInfo *MBFI; 2391 2392 public: 2393 static char ID; // Pass identification, replacement for typeid 2394 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2395 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2396 } 2397 2398 bool runOnMachineFunction(MachineFunction &F) override; 2399 2400 void getAnalysisUsage(AnalysisUsage &AU) const override { 2401 AU.addRequired<MachineBranchProbabilityInfo>(); 2402 AU.addRequired<MachineBlockFrequencyInfo>(); 2403 AU.setPreservesAll(); 2404 MachineFunctionPass::getAnalysisUsage(AU); 2405 } 2406 }; 2407 } 2408 2409 char MachineBlockPlacementStats::ID = 0; 2410 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2411 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2412 "Basic Block Placement Stats", false, false) 2413 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2414 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2415 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2416 "Basic Block Placement Stats", false, false) 2417 2418 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2419 // Check for single-block functions and skip them. 2420 if (std::next(F.begin()) == F.end()) 2421 return false; 2422 2423 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2424 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2425 2426 for (MachineBasicBlock &MBB : F) { 2427 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2428 Statistic &NumBranches = 2429 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2430 Statistic &BranchTakenFreq = 2431 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2432 for (MachineBasicBlock *Succ : MBB.successors()) { 2433 // Skip if this successor is a fallthrough. 2434 if (MBB.isLayoutSuccessor(Succ)) 2435 continue; 2436 2437 BlockFrequency EdgeFreq = 2438 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2439 ++NumBranches; 2440 BranchTakenFreq += EdgeFreq.getFrequency(); 2441 } 2442 } 2443 2444 return false; 2445 } 2446