xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 1b9fc8ed659589ee2f1d010adfd63f3d890c6ec3)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetLowering.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "block-placement"
54 
55 STATISTIC(NumCondBranches, "Number of conditional branches");
56 STATISTIC(NumUncondBranches, "Number of unconditional branches");
57 STATISTIC(CondBranchTakenFreq,
58           "Potential frequency of taking conditional branches");
59 STATISTIC(UncondBranchTakenFreq,
60           "Potential frequency of taking unconditional branches");
61 
62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
63                                        cl::desc("Force the alignment of all "
64                                                 "blocks in the function."),
65                                        cl::init(0), cl::Hidden);
66 
67 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
68     "align-all-nofallthru-blocks",
69     cl::desc("Force the alignment of all "
70              "blocks that have no fall-through predecessors (i.e. don't add "
71              "nops that are executed)."),
72     cl::init(0), cl::Hidden);
73 
74 // FIXME: Find a good default for this flag and remove the flag.
75 static cl::opt<unsigned> ExitBlockBias(
76     "block-placement-exit-block-bias",
77     cl::desc("Block frequency percentage a loop exit block needs "
78              "over the original exit to be considered the new exit."),
79     cl::init(0), cl::Hidden);
80 
81 // Definition:
82 // - Outlining: placement of a basic block outside the chain or hot path.
83 
84 static cl::opt<bool> OutlineOptionalBranches(
85     "outline-optional-branches",
86     cl::desc("Outlining optional branches will place blocks that are optional "
87               "branches, i.e. branches with a common post dominator, outside "
88               "the hot path or chain"),
89     cl::init(false), cl::Hidden);
90 
91 static cl::opt<unsigned> OutlineOptionalThreshold(
92     "outline-optional-threshold",
93     cl::desc("Don't outline optional branches that are a single block with an "
94              "instruction count below this threshold"),
95     cl::init(4), cl::Hidden);
96 
97 static cl::opt<unsigned> LoopToColdBlockRatio(
98     "loop-to-cold-block-ratio",
99     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
100              "(frequency of block) is greater than this ratio"),
101     cl::init(5), cl::Hidden);
102 
103 static cl::opt<bool>
104     PreciseRotationCost("precise-rotation-cost",
105                         cl::desc("Model the cost of loop rotation more "
106                                  "precisely by using profile data."),
107                         cl::init(false), cl::Hidden);
108 static cl::opt<bool>
109     ForcePreciseRotationCost("force-precise-rotation-cost",
110                              cl::desc("Force the use of precise cost "
111                                       "loop rotation strategy."),
112                              cl::init(false), cl::Hidden);
113 
114 static cl::opt<unsigned> MisfetchCost(
115     "misfetch-cost",
116     cl::desc("Cost that models the probabilistic risk of an instruction "
117              "misfetch due to a jump comparing to falling through, whose cost "
118              "is zero."),
119     cl::init(1), cl::Hidden);
120 
121 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
122                                       cl::desc("Cost of jump instructions."),
123                                       cl::init(1), cl::Hidden);
124 
125 static cl::opt<bool>
126 BranchFoldPlacement("branch-fold-placement",
127               cl::desc("Perform branch folding during placement. "
128                        "Reduces code size."),
129               cl::init(true), cl::Hidden);
130 
131 extern cl::opt<unsigned> StaticLikelyProb;
132 extern cl::opt<unsigned> ProfileLikelyProb;
133 
134 namespace {
135 class BlockChain;
136 /// \brief Type for our function-wide basic block -> block chain mapping.
137 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
138 }
139 
140 namespace {
141 /// \brief A chain of blocks which will be laid out contiguously.
142 ///
143 /// This is the datastructure representing a chain of consecutive blocks that
144 /// are profitable to layout together in order to maximize fallthrough
145 /// probabilities and code locality. We also can use a block chain to represent
146 /// a sequence of basic blocks which have some external (correctness)
147 /// requirement for sequential layout.
148 ///
149 /// Chains can be built around a single basic block and can be merged to grow
150 /// them. They participate in a block-to-chain mapping, which is updated
151 /// automatically as chains are merged together.
152 class BlockChain {
153   /// \brief The sequence of blocks belonging to this chain.
154   ///
155   /// This is the sequence of blocks for a particular chain. These will be laid
156   /// out in-order within the function.
157   SmallVector<MachineBasicBlock *, 4> Blocks;
158 
159   /// \brief A handle to the function-wide basic block to block chain mapping.
160   ///
161   /// This is retained in each block chain to simplify the computation of child
162   /// block chains for SCC-formation and iteration. We store the edges to child
163   /// basic blocks, and map them back to their associated chains using this
164   /// structure.
165   BlockToChainMapType &BlockToChain;
166 
167 public:
168   /// \brief Construct a new BlockChain.
169   ///
170   /// This builds a new block chain representing a single basic block in the
171   /// function. It also registers itself as the chain that block participates
172   /// in with the BlockToChain mapping.
173   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
174       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
175     assert(BB && "Cannot create a chain with a null basic block");
176     BlockToChain[BB] = this;
177   }
178 
179   /// \brief Iterator over blocks within the chain.
180   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
181 
182   /// \brief Beginning of blocks within the chain.
183   iterator begin() { return Blocks.begin(); }
184 
185   /// \brief End of blocks within the chain.
186   iterator end() { return Blocks.end(); }
187 
188   /// \brief Merge a block chain into this one.
189   ///
190   /// This routine merges a block chain into this one. It takes care of forming
191   /// a contiguous sequence of basic blocks, updating the edge list, and
192   /// updating the block -> chain mapping. It does not free or tear down the
193   /// old chain, but the old chain's block list is no longer valid.
194   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
195     assert(BB);
196     assert(!Blocks.empty());
197 
198     // Fast path in case we don't have a chain already.
199     if (!Chain) {
200       assert(!BlockToChain[BB]);
201       Blocks.push_back(BB);
202       BlockToChain[BB] = this;
203       return;
204     }
205 
206     assert(BB == *Chain->begin());
207     assert(Chain->begin() != Chain->end());
208 
209     // Update the incoming blocks to point to this chain, and add them to the
210     // chain structure.
211     for (MachineBasicBlock *ChainBB : *Chain) {
212       Blocks.push_back(ChainBB);
213       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
214       BlockToChain[ChainBB] = this;
215     }
216   }
217 
218 #ifndef NDEBUG
219   /// \brief Dump the blocks in this chain.
220   LLVM_DUMP_METHOD void dump() {
221     for (MachineBasicBlock *MBB : *this)
222       MBB->dump();
223   }
224 #endif // NDEBUG
225 
226   /// \brief Count of predecessors of any block within the chain which have not
227   /// yet been scheduled.  In general, we will delay scheduling this chain
228   /// until those predecessors are scheduled (or we find a sufficiently good
229   /// reason to override this heuristic.)  Note that when forming loop chains,
230   /// blocks outside the loop are ignored and treated as if they were already
231   /// scheduled.
232   ///
233   /// Note: This field is reinitialized multiple times - once for each loop,
234   /// and then once for the function as a whole.
235   unsigned UnscheduledPredecessors;
236 };
237 }
238 
239 namespace {
240 class MachineBlockPlacement : public MachineFunctionPass {
241   /// \brief A typedef for a block filter set.
242   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
243 
244   /// \brief work lists of blocks that are ready to be laid out
245   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
246   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
247 
248   /// \brief Machine Function
249   MachineFunction *F;
250 
251   /// \brief A handle to the branch probability pass.
252   const MachineBranchProbabilityInfo *MBPI;
253 
254   /// \brief A handle to the function-wide block frequency pass.
255   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
256 
257   /// \brief A handle to the loop info.
258   MachineLoopInfo *MLI;
259 
260   /// \brief A handle to the target's instruction info.
261   const TargetInstrInfo *TII;
262 
263   /// \brief A handle to the target's lowering info.
264   const TargetLoweringBase *TLI;
265 
266   /// \brief A handle to the post dominator tree.
267   MachineDominatorTree *MDT;
268 
269   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
270   /// all terminators of the MachineFunction.
271   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
272 
273   /// \brief Allocator and owner of BlockChain structures.
274   ///
275   /// We build BlockChains lazily while processing the loop structure of
276   /// a function. To reduce malloc traffic, we allocate them using this
277   /// slab-like allocator, and destroy them after the pass completes. An
278   /// important guarantee is that this allocator produces stable pointers to
279   /// the chains.
280   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
281 
282   /// \brief Function wide BasicBlock to BlockChain mapping.
283   ///
284   /// This mapping allows efficiently moving from any given basic block to the
285   /// BlockChain it participates in, if any. We use it to, among other things,
286   /// allow implicitly defining edges between chains as the existing edges
287   /// between basic blocks.
288   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
289 
290   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
291                            const BlockFilterSet *BlockFilter = nullptr);
292   BranchProbability
293   collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
294                           const BlockFilterSet *BlockFilter,
295                           SmallVector<MachineBasicBlock *, 4> &Successors);
296   bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
297                                  BlockChain &Chain,
298                                  const BlockFilterSet *BlockFilter,
299                                  BranchProbability SuccProb,
300                                  BranchProbability HotProb);
301   bool
302   hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
303                              BlockChain &SuccChain, BranchProbability SuccProb,
304                              BranchProbability RealSuccProb, BlockChain &Chain,
305                              const BlockFilterSet *BlockFilter);
306   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
307                                          BlockChain &Chain,
308                                          const BlockFilterSet *BlockFilter);
309   MachineBasicBlock *
310   selectBestCandidateBlock(BlockChain &Chain,
311                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
312   MachineBasicBlock *
313   getFirstUnplacedBlock(const BlockChain &PlacedChain,
314                         MachineFunction::iterator &PrevUnplacedBlockIt,
315                         const BlockFilterSet *BlockFilter);
316 
317   /// \brief Add a basic block to the work list if it is appropriate.
318   ///
319   /// If the optional parameter BlockFilter is provided, only MBB
320   /// present in the set will be added to the worklist. If nullptr
321   /// is provided, no filtering occurs.
322   void fillWorkLists(MachineBasicBlock *MBB,
323                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
324                      const BlockFilterSet *BlockFilter);
325   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
326                   const BlockFilterSet *BlockFilter = nullptr);
327   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
328                                      const BlockFilterSet &LoopBlockSet);
329   MachineBasicBlock *findBestLoopExit(MachineLoop &L,
330                                       const BlockFilterSet &LoopBlockSet);
331   BlockFilterSet collectLoopBlockSet(MachineLoop &L);
332   void buildLoopChains(MachineLoop &L);
333   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
334                   const BlockFilterSet &LoopBlockSet);
335   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
336                              const BlockFilterSet &LoopBlockSet);
337   void collectMustExecuteBBs();
338   void buildCFGChains();
339   void optimizeBranches();
340   void alignBlocks();
341 
342 public:
343   static char ID; // Pass identification, replacement for typeid
344   MachineBlockPlacement() : MachineFunctionPass(ID) {
345     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
346   }
347 
348   bool runOnMachineFunction(MachineFunction &F) override;
349 
350   void getAnalysisUsage(AnalysisUsage &AU) const override {
351     AU.addRequired<MachineBranchProbabilityInfo>();
352     AU.addRequired<MachineBlockFrequencyInfo>();
353     AU.addRequired<MachineDominatorTree>();
354     AU.addRequired<MachineLoopInfo>();
355     AU.addRequired<TargetPassConfig>();
356     MachineFunctionPass::getAnalysisUsage(AU);
357   }
358 };
359 }
360 
361 char MachineBlockPlacement::ID = 0;
362 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
363 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
364                       "Branch Probability Basic Block Placement", false, false)
365 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
366 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
367 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
368 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
369 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
370                     "Branch Probability Basic Block Placement", false, false)
371 
372 #ifndef NDEBUG
373 /// \brief Helper to print the name of a MBB.
374 ///
375 /// Only used by debug logging.
376 static std::string getBlockName(MachineBasicBlock *BB) {
377   std::string Result;
378   raw_string_ostream OS(Result);
379   OS << "BB#" << BB->getNumber();
380   OS << " ('" << BB->getName() << "')";
381   OS.flush();
382   return Result;
383 }
384 #endif
385 
386 /// \brief Mark a chain's successors as having one fewer preds.
387 ///
388 /// When a chain is being merged into the "placed" chain, this routine will
389 /// quickly walk the successors of each block in the chain and mark them as
390 /// having one fewer active predecessor. It also adds any successors of this
391 /// chain which reach the zero-predecessor state to the worklist passed in.
392 void MachineBlockPlacement::markChainSuccessors(
393     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
394     const BlockFilterSet *BlockFilter) {
395   // Walk all the blocks in this chain, marking their successors as having
396   // a predecessor placed.
397   for (MachineBasicBlock *MBB : Chain) {
398     // Add any successors for which this is the only un-placed in-loop
399     // predecessor to the worklist as a viable candidate for CFG-neutral
400     // placement. No subsequent placement of this block will violate the CFG
401     // shape, so we get to use heuristics to choose a favorable placement.
402     for (MachineBasicBlock *Succ : MBB->successors()) {
403       if (BlockFilter && !BlockFilter->count(Succ))
404         continue;
405       BlockChain &SuccChain = *BlockToChain[Succ];
406       // Disregard edges within a fixed chain, or edges to the loop header.
407       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
408         continue;
409 
410       // This is a cross-chain edge that is within the loop, so decrement the
411       // loop predecessor count of the destination chain.
412       if (SuccChain.UnscheduledPredecessors == 0 ||
413           --SuccChain.UnscheduledPredecessors > 0)
414         continue;
415 
416       auto *MBB = *SuccChain.begin();
417       if (MBB->isEHPad())
418         EHPadWorkList.push_back(MBB);
419       else
420         BlockWorkList.push_back(MBB);
421     }
422   }
423 }
424 
425 /// This helper function collects the set of successors of block
426 /// \p BB that are allowed to be its layout successors, and return
427 /// the total branch probability of edges from \p BB to those
428 /// blocks.
429 BranchProbability MachineBlockPlacement::collectViableSuccessors(
430     MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
431     SmallVector<MachineBasicBlock *, 4> &Successors) {
432   // Adjust edge probabilities by excluding edges pointing to blocks that is
433   // either not in BlockFilter or is already in the current chain. Consider the
434   // following CFG:
435   //
436   //     --->A
437   //     |  / \
438   //     | B   C
439   //     |  \ / \
440   //     ----D   E
441   //
442   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
443   // A->C is chosen as a fall-through, D won't be selected as a successor of C
444   // due to CFG constraint (the probability of C->D is not greater than
445   // HotProb to break top-order). If we exclude E that is not in BlockFilter
446   // when calculating the  probability of C->D, D will be selected and we
447   // will get A C D B as the layout of this loop.
448   auto AdjustedSumProb = BranchProbability::getOne();
449   for (MachineBasicBlock *Succ : BB->successors()) {
450     bool SkipSucc = false;
451     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
452       SkipSucc = true;
453     } else {
454       BlockChain *SuccChain = BlockToChain[Succ];
455       if (SuccChain == &Chain) {
456         SkipSucc = true;
457       } else if (Succ != *SuccChain->begin()) {
458         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
459         continue;
460       }
461     }
462     if (SkipSucc)
463       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
464     else
465       Successors.push_back(Succ);
466   }
467 
468   return AdjustedSumProb;
469 }
470 
471 /// The helper function returns the branch probability that is adjusted
472 /// or normalized over the new total \p AdjustedSumProb.
473 static BranchProbability
474 getAdjustedProbability(BranchProbability OrigProb,
475                        BranchProbability AdjustedSumProb) {
476   BranchProbability SuccProb;
477   uint32_t SuccProbN = OrigProb.getNumerator();
478   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
479   if (SuccProbN >= SuccProbD)
480     SuccProb = BranchProbability::getOne();
481   else
482     SuccProb = BranchProbability(SuccProbN, SuccProbD);
483 
484   return SuccProb;
485 }
486 
487 /// When the option OutlineOptionalBranches is on, this method
488 /// checks if the fallthrough candidate block \p Succ (of block
489 /// \p BB) also has other unscheduled predecessor blocks which
490 /// are also successors of \p BB (forming triangular shape CFG).
491 /// If none of such predecessors are small, it returns true.
492 /// The caller can choose to select \p Succ as the layout successors
493 /// so that \p Succ's predecessors (optional branches) can be
494 /// outlined.
495 /// FIXME: fold this with more general layout cost analysis.
496 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
497     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
498     const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
499     BranchProbability HotProb) {
500   if (!OutlineOptionalBranches)
501     return false;
502   // If we outline optional branches, look whether Succ is unavoidable, i.e.
503   // dominates all terminators of the MachineFunction. If it does, other
504   // successors must be optional. Don't do this for cold branches.
505   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
506     for (MachineBasicBlock *Pred : Succ->predecessors()) {
507       // Check whether there is an unplaced optional branch.
508       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
509           BlockToChain[Pred] == &Chain)
510         continue;
511       // Check whether the optional branch has exactly one BB.
512       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
513         continue;
514       // Check whether the optional branch is small.
515       if (Pred->size() < OutlineOptionalThreshold)
516         return false;
517     }
518     return true;
519   } else
520     return false;
521 }
522 
523 // When profile is not present, return the StaticLikelyProb.
524 // When profile is available, we need to handle the triangle-shape CFG.
525 static BranchProbability getLayoutSuccessorProbThreshold(
526       MachineBasicBlock *BB) {
527   if (!BB->getParent()->getFunction()->getEntryCount())
528     return BranchProbability(StaticLikelyProb, 100);
529   if (BB->succ_size() == 2) {
530     const MachineBasicBlock *Succ1 = *BB->succ_begin();
531     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
532     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
533       /* See case 1 below for the cost analysis. For BB->Succ to
534        * be taken with smaller cost, the following needs to hold:
535        *   Prob(BB->Succ) > 2* Prob(BB->Pred)
536        *   So the threshold T
537        *   T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
538        * We have  T + T/2 = 1, i.e. T = 2/3. Also adding user specified
539        * branch bias, we have
540        *   T = (2/3)*(ProfileLikelyProb/50)
541        *     = (2*ProfileLikelyProb)/150)
542        */
543       return BranchProbability(2 * ProfileLikelyProb, 150);
544     }
545   }
546   return BranchProbability(ProfileLikelyProb, 100);
547 }
548 
549 /// Checks to see if the layout candidate block \p Succ has a better layout
550 /// predecessor than \c BB. If yes, returns true.
551 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
552     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
553     BranchProbability SuccProb, BranchProbability RealSuccProb,
554     BlockChain &Chain, const BlockFilterSet *BlockFilter) {
555 
556   // There isn't a better layout when there are no unscheduled predecessors.
557   if (SuccChain.UnscheduledPredecessors == 0)
558     return false;
559 
560   // There are two basic scenarios here:
561   // -------------------------------------
562   // Case 1: triangular shape CFG (if-then):
563   //     BB
564   //     | \
565   //     |  \
566   //     |   Pred
567   //     |   /
568   //     Succ
569   // In this case, we are evaluating whether to select edge -> Succ, e.g.
570   // set Succ as the layout successor of BB. Picking Succ as BB's
571   // successor breaks the CFG constraints (FIXME: define these constraints).
572   // With this layout, Pred BB
573   // is forced to be outlined, so the overall cost will be cost of the
574   // branch taken from BB to Pred, plus the cost of back taken branch
575   // from Pred to Succ, as well as the additional cost associated
576   // with the needed unconditional jump instruction from Pred To Succ.
577 
578   // The cost of the topological order layout is the taken branch cost
579   // from BB to Succ, so to make BB->Succ a viable candidate, the following
580   // must hold:
581   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
582   //      < freq(BB->Succ) *  taken_branch_cost.
583   // Ignoring unconditional jump cost, we get
584   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
585   //    prob(BB->Succ) > 2 * prob(BB->Pred)
586   //
587   // When real profile data is available, we can precisely compute the
588   // probability threshold that is needed for edge BB->Succ to be considered.
589   // Without profile data, the heuristic requires the branch bias to be
590   // a lot larger to make sure the signal is very strong (e.g. 80% default).
591   // -----------------------------------------------------------------
592   // Case 2: diamond like CFG (if-then-else):
593   //     S
594   //    / \
595   //   |   \
596   //  BB    Pred
597   //   \    /
598   //    Succ
599   //    ..
600   //
601   // The current block is BB and edge BB->Succ is now being evaluated.
602   // Note that edge S->BB was previously already selected because
603   // prob(S->BB) > prob(S->Pred).
604   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
605   // choose Pred, we will have a topological ordering as shown on the left
606   // in the picture below. If we choose Succ, we have the solution as shown
607   // on the right:
608   //
609   //   topo-order:
610   //
611   //       S-----                             ---S
612   //       |    |                             |  |
613   //    ---BB   |                             |  BB
614   //    |       |                             |  |
615   //    |  pred--                             |  Succ--
616   //    |  |                                  |       |
617   //    ---succ                               ---pred--
618   //
619   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
620   //      = freq(S->Pred) + freq(S->BB)
621   //
622   // If we have profile data (i.e, branch probabilities can be trusted), the
623   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
624   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
625   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
626   // means the cost of topological order is greater.
627   // When profile data is not available, however, we need to be more
628   // conservative. If the branch prediction is wrong, breaking the topo-order
629   // will actually yield a layout with large cost. For this reason, we need
630   // strong biased branch at block S with Prob(S->BB) in order to select
631   // BB->Succ. This is equivalent to looking the CFG backward with backward
632   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
633   // profile data).
634   // --------------------------------------------------------------------------
635   // Case 3: forked diamond
636   //       S
637   //      / \
638   //     /   \
639   //   BB    Pred
640   //   | \   / |
641   //   |  \ /  |
642   //   |   X   |
643   //   |  / \  |
644   //   | /   \ |
645   //   S1     S2
646   //
647   // The current block is BB and edge BB->S1 is now being evaluated.
648   // As above S->BB was already selected because
649   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
650   //
651   // topo-order:
652   //
653   //     S-------|                     ---S
654   //     |       |                     |  |
655   //  ---BB      |                     |  BB
656   //  |          |                     |  |
657   //  |  Pred----|                     |  S1----
658   //  |  |                             |       |
659   //  --(S1 or S2)                     ---Pred--
660   //
661   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
662   //    + min(freq(Pred->S1), freq(Pred->S2))
663   // Non-topo-order cost:
664   // In the worst case, S2 will not get laid out after Pred.
665   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
666   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
667   // is 0. Then the non topo layout is better when
668   // freq(S->Pred) < freq(BB->S1).
669   // This is exactly what is checked below.
670   // Note there are other shapes that apply (Pred may not be a single block,
671   // but they all fit this general pattern.)
672   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
673 
674   // Make sure that a hot successor doesn't have a globally more
675   // important predecessor.
676   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
677   bool BadCFGConflict = false;
678 
679   for (MachineBasicBlock *Pred : Succ->predecessors()) {
680     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
681         (BlockFilter && !BlockFilter->count(Pred)) ||
682         BlockToChain[Pred] == &Chain)
683       continue;
684     // Do backward checking.
685     // For all cases above, we need a backward checking to filter out edges that
686     // are not 'strongly' biased. With profile data available, the check is
687     // mostly redundant for case 2 (when threshold prob is set at 50%) unless S
688     // has more than two successors.
689     // BB  Pred
690     //  \ /
691     //  Succ
692     // We select edge BB->Succ if
693     //      freq(BB->Succ) > freq(Succ) * HotProb
694     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
695     //      HotProb
696     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
697     // Case 1 is covered too, because the first equation reduces to:
698     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
699     BlockFrequency PredEdgeFreq =
700         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
701     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
702       BadCFGConflict = true;
703       break;
704     }
705   }
706 
707   if (BadCFGConflict) {
708     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
709                  << " (prob) (non-cold CFG conflict)\n");
710     return true;
711   }
712 
713   return false;
714 }
715 
716 /// \brief Select the best successor for a block.
717 ///
718 /// This looks across all successors of a particular block and attempts to
719 /// select the "best" one to be the layout successor. It only considers direct
720 /// successors which also pass the block filter. It will attempt to avoid
721 /// breaking CFG structure, but cave and break such structures in the case of
722 /// very hot successor edges.
723 ///
724 /// \returns The best successor block found, or null if none are viable.
725 MachineBasicBlock *
726 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
727                                            BlockChain &Chain,
728                                            const BlockFilterSet *BlockFilter) {
729   const BranchProbability HotProb(StaticLikelyProb, 100);
730 
731   MachineBasicBlock *BestSucc = nullptr;
732   auto BestProb = BranchProbability::getZero();
733 
734   SmallVector<MachineBasicBlock *, 4> Successors;
735   auto AdjustedSumProb =
736       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
737 
738   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
739   for (MachineBasicBlock *Succ : Successors) {
740     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
741     BranchProbability SuccProb =
742         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
743 
744     // This heuristic is off by default.
745     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
746                                   HotProb))
747       return Succ;
748 
749     BlockChain &SuccChain = *BlockToChain[Succ];
750     // Skip the edge \c BB->Succ if block \c Succ has a better layout
751     // predecessor that yields lower global cost.
752     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
753                                    Chain, BlockFilter))
754       continue;
755 
756     DEBUG(
757         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
758                << SuccProb
759                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
760                << "\n");
761 
762     if (BestSucc && BestProb >= SuccProb) {
763       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
764       continue;
765     }
766 
767     DEBUG(dbgs() << "    Setting it as best candidate\n");
768     BestSucc = Succ;
769     BestProb = SuccProb;
770   }
771   if (BestSucc)
772     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc) << "\n");
773 
774   return BestSucc;
775 }
776 
777 /// \brief Select the best block from a worklist.
778 ///
779 /// This looks through the provided worklist as a list of candidate basic
780 /// blocks and select the most profitable one to place. The definition of
781 /// profitable only really makes sense in the context of a loop. This returns
782 /// the most frequently visited block in the worklist, which in the case of
783 /// a loop, is the one most desirable to be physically close to the rest of the
784 /// loop body in order to improve i-cache behavior.
785 ///
786 /// \returns The best block found, or null if none are viable.
787 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
788     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
789   // Once we need to walk the worklist looking for a candidate, cleanup the
790   // worklist of already placed entries.
791   // FIXME: If this shows up on profiles, it could be folded (at the cost of
792   // some code complexity) into the loop below.
793   WorkList.erase(remove_if(WorkList,
794                            [&](MachineBasicBlock *BB) {
795                              return BlockToChain.lookup(BB) == &Chain;
796                            }),
797                  WorkList.end());
798 
799   if (WorkList.empty())
800     return nullptr;
801 
802   bool IsEHPad = WorkList[0]->isEHPad();
803 
804   MachineBasicBlock *BestBlock = nullptr;
805   BlockFrequency BestFreq;
806   for (MachineBasicBlock *MBB : WorkList) {
807     assert(MBB->isEHPad() == IsEHPad);
808 
809     BlockChain &SuccChain = *BlockToChain[MBB];
810     if (&SuccChain == &Chain)
811       continue;
812 
813     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
814 
815     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
816     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
817           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
818 
819     // For ehpad, we layout the least probable first as to avoid jumping back
820     // from least probable landingpads to more probable ones.
821     //
822     // FIXME: Using probability is probably (!) not the best way to achieve
823     // this. We should probably have a more principled approach to layout
824     // cleanup code.
825     //
826     // The goal is to get:
827     //
828     //                 +--------------------------+
829     //                 |                          V
830     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
831     //
832     // Rather than:
833     //
834     //                 +-------------------------------------+
835     //                 V                                     |
836     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
837     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
838       continue;
839 
840     BestBlock = MBB;
841     BestFreq = CandidateFreq;
842   }
843 
844   return BestBlock;
845 }
846 
847 /// \brief Retrieve the first unplaced basic block.
848 ///
849 /// This routine is called when we are unable to use the CFG to walk through
850 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
851 /// We walk through the function's blocks in order, starting from the
852 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
853 /// re-scanning the entire sequence on repeated calls to this routine.
854 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
855     const BlockChain &PlacedChain,
856     MachineFunction::iterator &PrevUnplacedBlockIt,
857     const BlockFilterSet *BlockFilter) {
858   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
859        ++I) {
860     if (BlockFilter && !BlockFilter->count(&*I))
861       continue;
862     if (BlockToChain[&*I] != &PlacedChain) {
863       PrevUnplacedBlockIt = I;
864       // Now select the head of the chain to which the unplaced block belongs
865       // as the block to place. This will force the entire chain to be placed,
866       // and satisfies the requirements of merging chains.
867       return *BlockToChain[&*I]->begin();
868     }
869   }
870   return nullptr;
871 }
872 
873 void MachineBlockPlacement::fillWorkLists(
874     MachineBasicBlock *MBB,
875     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
876     const BlockFilterSet *BlockFilter = nullptr) {
877   BlockChain &Chain = *BlockToChain[MBB];
878   if (!UpdatedPreds.insert(&Chain).second)
879     return;
880 
881   assert(Chain.UnscheduledPredecessors == 0);
882   for (MachineBasicBlock *ChainBB : Chain) {
883     assert(BlockToChain[ChainBB] == &Chain);
884     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
885       if (BlockFilter && !BlockFilter->count(Pred))
886         continue;
887       if (BlockToChain[Pred] == &Chain)
888         continue;
889       ++Chain.UnscheduledPredecessors;
890     }
891   }
892 
893   if (Chain.UnscheduledPredecessors != 0)
894     return;
895 
896   MBB = *Chain.begin();
897   if (MBB->isEHPad())
898     EHPadWorkList.push_back(MBB);
899   else
900     BlockWorkList.push_back(MBB);
901 }
902 
903 void MachineBlockPlacement::buildChain(
904     MachineBasicBlock *BB, BlockChain &Chain,
905     const BlockFilterSet *BlockFilter) {
906   assert(BB && "BB must not be null.\n");
907   assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
908   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
909 
910   MachineBasicBlock *LoopHeaderBB = BB;
911   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
912   BB = *std::prev(Chain.end());
913   for (;;) {
914     assert(BB && "null block found at end of chain in loop.");
915     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
916     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
917 
918 
919     // Look for the best viable successor if there is one to place immediately
920     // after this block.
921     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
922 
923     // If an immediate successor isn't available, look for the best viable
924     // block among those we've identified as not violating the loop's CFG at
925     // this point. This won't be a fallthrough, but it will increase locality.
926     if (!BestSucc)
927       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
928     if (!BestSucc)
929       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
930 
931     if (!BestSucc) {
932       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
933       if (!BestSucc)
934         break;
935 
936       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
937                       "layout successor until the CFG reduces\n");
938     }
939 
940     // Place this block, updating the datastructures to reflect its placement.
941     BlockChain &SuccChain = *BlockToChain[BestSucc];
942     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
943     // we selected a successor that didn't fit naturally into the CFG.
944     SuccChain.UnscheduledPredecessors = 0;
945     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
946                  << getBlockName(BestSucc) << "\n");
947     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
948     Chain.merge(BestSucc, &SuccChain);
949     BB = *std::prev(Chain.end());
950   }
951 
952   DEBUG(dbgs() << "Finished forming chain for header block "
953                << getBlockName(*Chain.begin()) << "\n");
954 }
955 
956 /// \brief Find the best loop top block for layout.
957 ///
958 /// Look for a block which is strictly better than the loop header for laying
959 /// out at the top of the loop. This looks for one and only one pattern:
960 /// a latch block with no conditional exit. This block will cause a conditional
961 /// jump around it or will be the bottom of the loop if we lay it out in place,
962 /// but if it it doesn't end up at the bottom of the loop for any reason,
963 /// rotation alone won't fix it. Because such a block will always result in an
964 /// unconditional jump (for the backedge) rotating it in front of the loop
965 /// header is always profitable.
966 MachineBasicBlock *
967 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
968                                        const BlockFilterSet &LoopBlockSet) {
969   // Placing the latch block before the header may introduce an extra branch
970   // that skips this block the first time the loop is executed, which we want
971   // to avoid when optimising for size.
972   // FIXME: in theory there is a case that does not introduce a new branch,
973   // i.e. when the layout predecessor does not fallthrough to the loop header.
974   // In practice this never happens though: there always seems to be a preheader
975   // that can fallthrough and that is also placed before the header.
976   if (F->getFunction()->optForSize())
977     return L.getHeader();
978 
979   // Check that the header hasn't been fused with a preheader block due to
980   // crazy branches. If it has, we need to start with the header at the top to
981   // prevent pulling the preheader into the loop body.
982   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
983   if (!LoopBlockSet.count(*HeaderChain.begin()))
984     return L.getHeader();
985 
986   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
987                << "\n");
988 
989   BlockFrequency BestPredFreq;
990   MachineBasicBlock *BestPred = nullptr;
991   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
992     if (!LoopBlockSet.count(Pred))
993       continue;
994     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
995                  << Pred->succ_size() << " successors, ";
996           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
997     if (Pred->succ_size() > 1)
998       continue;
999 
1000     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1001     if (!BestPred || PredFreq > BestPredFreq ||
1002         (!(PredFreq < BestPredFreq) &&
1003          Pred->isLayoutSuccessor(L.getHeader()))) {
1004       BestPred = Pred;
1005       BestPredFreq = PredFreq;
1006     }
1007   }
1008 
1009   // If no direct predecessor is fine, just use the loop header.
1010   if (!BestPred) {
1011     DEBUG(dbgs() << "    final top unchanged\n");
1012     return L.getHeader();
1013   }
1014 
1015   // Walk backwards through any straight line of predecessors.
1016   while (BestPred->pred_size() == 1 &&
1017          (*BestPred->pred_begin())->succ_size() == 1 &&
1018          *BestPred->pred_begin() != L.getHeader())
1019     BestPred = *BestPred->pred_begin();
1020 
1021   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1022   return BestPred;
1023 }
1024 
1025 /// \brief Find the best loop exiting block for layout.
1026 ///
1027 /// This routine implements the logic to analyze the loop looking for the best
1028 /// block to layout at the top of the loop. Typically this is done to maximize
1029 /// fallthrough opportunities.
1030 MachineBasicBlock *
1031 MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
1032                                         const BlockFilterSet &LoopBlockSet) {
1033   // We don't want to layout the loop linearly in all cases. If the loop header
1034   // is just a normal basic block in the loop, we want to look for what block
1035   // within the loop is the best one to layout at the top. However, if the loop
1036   // header has be pre-merged into a chain due to predecessors not having
1037   // analyzable branches, *and* the predecessor it is merged with is *not* part
1038   // of the loop, rotating the header into the middle of the loop will create
1039   // a non-contiguous range of blocks which is Very Bad. So start with the
1040   // header and only rotate if safe.
1041   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1042   if (!LoopBlockSet.count(*HeaderChain.begin()))
1043     return nullptr;
1044 
1045   BlockFrequency BestExitEdgeFreq;
1046   unsigned BestExitLoopDepth = 0;
1047   MachineBasicBlock *ExitingBB = nullptr;
1048   // If there are exits to outer loops, loop rotation can severely limit
1049   // fallthrough opportunities unless it selects such an exit. Keep a set of
1050   // blocks where rotating to exit with that block will reach an outer loop.
1051   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1052 
1053   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1054                << "\n");
1055   for (MachineBasicBlock *MBB : L.getBlocks()) {
1056     BlockChain &Chain = *BlockToChain[MBB];
1057     // Ensure that this block is at the end of a chain; otherwise it could be
1058     // mid-way through an inner loop or a successor of an unanalyzable branch.
1059     if (MBB != *std::prev(Chain.end()))
1060       continue;
1061 
1062     // Now walk the successors. We need to establish whether this has a viable
1063     // exiting successor and whether it has a viable non-exiting successor.
1064     // We store the old exiting state and restore it if a viable looping
1065     // successor isn't found.
1066     MachineBasicBlock *OldExitingBB = ExitingBB;
1067     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1068     bool HasLoopingSucc = false;
1069     for (MachineBasicBlock *Succ : MBB->successors()) {
1070       if (Succ->isEHPad())
1071         continue;
1072       if (Succ == MBB)
1073         continue;
1074       BlockChain &SuccChain = *BlockToChain[Succ];
1075       // Don't split chains, either this chain or the successor's chain.
1076       if (&Chain == &SuccChain) {
1077         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1078                      << getBlockName(Succ) << " (chain conflict)\n");
1079         continue;
1080       }
1081 
1082       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1083       if (LoopBlockSet.count(Succ)) {
1084         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1085                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1086         HasLoopingSucc = true;
1087         continue;
1088       }
1089 
1090       unsigned SuccLoopDepth = 0;
1091       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1092         SuccLoopDepth = ExitLoop->getLoopDepth();
1093         if (ExitLoop->contains(&L))
1094           BlocksExitingToOuterLoop.insert(MBB);
1095       }
1096 
1097       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1098       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1099                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1100             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1101       // Note that we bias this toward an existing layout successor to retain
1102       // incoming order in the absence of better information. The exit must have
1103       // a frequency higher than the current exit before we consider breaking
1104       // the layout.
1105       BranchProbability Bias(100 - ExitBlockBias, 100);
1106       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1107           ExitEdgeFreq > BestExitEdgeFreq ||
1108           (MBB->isLayoutSuccessor(Succ) &&
1109            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1110         BestExitEdgeFreq = ExitEdgeFreq;
1111         ExitingBB = MBB;
1112       }
1113     }
1114 
1115     if (!HasLoopingSucc) {
1116       // Restore the old exiting state, no viable looping successor was found.
1117       ExitingBB = OldExitingBB;
1118       BestExitEdgeFreq = OldBestExitEdgeFreq;
1119     }
1120   }
1121   // Without a candidate exiting block or with only a single block in the
1122   // loop, just use the loop header to layout the loop.
1123   if (!ExitingBB) {
1124     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1125     return nullptr;
1126   }
1127   if (L.getNumBlocks() == 1) {
1128     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1129     return nullptr;
1130   }
1131 
1132   // Also, if we have exit blocks which lead to outer loops but didn't select
1133   // one of them as the exiting block we are rotating toward, disable loop
1134   // rotation altogether.
1135   if (!BlocksExitingToOuterLoop.empty() &&
1136       !BlocksExitingToOuterLoop.count(ExitingBB))
1137     return nullptr;
1138 
1139   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1140   return ExitingBB;
1141 }
1142 
1143 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1144 ///
1145 /// Once we have built a chain, try to rotate it to line up the hot exit block
1146 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1147 /// branches. For example, if the loop has fallthrough into its header and out
1148 /// of its bottom already, don't rotate it.
1149 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1150                                        MachineBasicBlock *ExitingBB,
1151                                        const BlockFilterSet &LoopBlockSet) {
1152   if (!ExitingBB)
1153     return;
1154 
1155   MachineBasicBlock *Top = *LoopChain.begin();
1156   bool ViableTopFallthrough = false;
1157   for (MachineBasicBlock *Pred : Top->predecessors()) {
1158     BlockChain *PredChain = BlockToChain[Pred];
1159     if (!LoopBlockSet.count(Pred) &&
1160         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1161       ViableTopFallthrough = true;
1162       break;
1163     }
1164   }
1165 
1166   // If the header has viable fallthrough, check whether the current loop
1167   // bottom is a viable exiting block. If so, bail out as rotating will
1168   // introduce an unnecessary branch.
1169   if (ViableTopFallthrough) {
1170     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1171     for (MachineBasicBlock *Succ : Bottom->successors()) {
1172       BlockChain *SuccChain = BlockToChain[Succ];
1173       if (!LoopBlockSet.count(Succ) &&
1174           (!SuccChain || Succ == *SuccChain->begin()))
1175         return;
1176     }
1177   }
1178 
1179   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1180   if (ExitIt == LoopChain.end())
1181     return;
1182 
1183   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1184 }
1185 
1186 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1187 ///
1188 /// With profile data, we can determine the cost in terms of missed fall through
1189 /// opportunities when rotating a loop chain and select the best rotation.
1190 /// Basically, there are three kinds of cost to consider for each rotation:
1191 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1192 ///    the loop to the loop header.
1193 ///    2. The possibly missed fall through edges (if they exist) from the loop
1194 ///    exits to BB out of the loop.
1195 ///    3. The missed fall through edge (if it exists) from the last BB to the
1196 ///    first BB in the loop chain.
1197 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1198 ///  We select the best rotation with the smallest cost.
1199 void MachineBlockPlacement::rotateLoopWithProfile(
1200     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1201   auto HeaderBB = L.getHeader();
1202   auto HeaderIter = find(LoopChain, HeaderBB);
1203   auto RotationPos = LoopChain.end();
1204 
1205   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1206 
1207   // A utility lambda that scales up a block frequency by dividing it by a
1208   // branch probability which is the reciprocal of the scale.
1209   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1210                                 unsigned Scale) -> BlockFrequency {
1211     if (Scale == 0)
1212       return 0;
1213     // Use operator / between BlockFrequency and BranchProbability to implement
1214     // saturating multiplication.
1215     return Freq / BranchProbability(1, Scale);
1216   };
1217 
1218   // Compute the cost of the missed fall-through edge to the loop header if the
1219   // chain head is not the loop header. As we only consider natural loops with
1220   // single header, this computation can be done only once.
1221   BlockFrequency HeaderFallThroughCost(0);
1222   for (auto *Pred : HeaderBB->predecessors()) {
1223     BlockChain *PredChain = BlockToChain[Pred];
1224     if (!LoopBlockSet.count(Pred) &&
1225         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1226       auto EdgeFreq =
1227           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1228       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1229       // If the predecessor has only an unconditional jump to the header, we
1230       // need to consider the cost of this jump.
1231       if (Pred->succ_size() == 1)
1232         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1233       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1234     }
1235   }
1236 
1237   // Here we collect all exit blocks in the loop, and for each exit we find out
1238   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1239   // as the sum of frequencies of exit edges we collect here, excluding the exit
1240   // edge from the tail of the loop chain.
1241   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1242   for (auto BB : LoopChain) {
1243     auto LargestExitEdgeProb = BranchProbability::getZero();
1244     for (auto *Succ : BB->successors()) {
1245       BlockChain *SuccChain = BlockToChain[Succ];
1246       if (!LoopBlockSet.count(Succ) &&
1247           (!SuccChain || Succ == *SuccChain->begin())) {
1248         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1249         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1250       }
1251     }
1252     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1253       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1254       ExitsWithFreq.emplace_back(BB, ExitFreq);
1255     }
1256   }
1257 
1258   // In this loop we iterate every block in the loop chain and calculate the
1259   // cost assuming the block is the head of the loop chain. When the loop ends,
1260   // we should have found the best candidate as the loop chain's head.
1261   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1262             EndIter = LoopChain.end();
1263        Iter != EndIter; Iter++, TailIter++) {
1264     // TailIter is used to track the tail of the loop chain if the block we are
1265     // checking (pointed by Iter) is the head of the chain.
1266     if (TailIter == LoopChain.end())
1267       TailIter = LoopChain.begin();
1268 
1269     auto TailBB = *TailIter;
1270 
1271     // Calculate the cost by putting this BB to the top.
1272     BlockFrequency Cost = 0;
1273 
1274     // If the current BB is the loop header, we need to take into account the
1275     // cost of the missed fall through edge from outside of the loop to the
1276     // header.
1277     if (Iter != HeaderIter)
1278       Cost += HeaderFallThroughCost;
1279 
1280     // Collect the loop exit cost by summing up frequencies of all exit edges
1281     // except the one from the chain tail.
1282     for (auto &ExitWithFreq : ExitsWithFreq)
1283       if (TailBB != ExitWithFreq.first)
1284         Cost += ExitWithFreq.second;
1285 
1286     // The cost of breaking the once fall-through edge from the tail to the top
1287     // of the loop chain. Here we need to consider three cases:
1288     // 1. If the tail node has only one successor, then we will get an
1289     //    additional jmp instruction. So the cost here is (MisfetchCost +
1290     //    JumpInstCost) * tail node frequency.
1291     // 2. If the tail node has two successors, then we may still get an
1292     //    additional jmp instruction if the layout successor after the loop
1293     //    chain is not its CFG successor. Note that the more frequently executed
1294     //    jmp instruction will be put ahead of the other one. Assume the
1295     //    frequency of those two branches are x and y, where x is the frequency
1296     //    of the edge to the chain head, then the cost will be
1297     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1298     // 3. If the tail node has more than two successors (this rarely happens),
1299     //    we won't consider any additional cost.
1300     if (TailBB->isSuccessor(*Iter)) {
1301       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1302       if (TailBB->succ_size() == 1)
1303         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1304                                     MisfetchCost + JumpInstCost);
1305       else if (TailBB->succ_size() == 2) {
1306         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1307         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1308         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1309                                   ? TailBBFreq * TailToHeadProb.getCompl()
1310                                   : TailToHeadFreq;
1311         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1312                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1313       }
1314     }
1315 
1316     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1317                  << " to the top: " << Cost.getFrequency() << "\n");
1318 
1319     if (Cost < SmallestRotationCost) {
1320       SmallestRotationCost = Cost;
1321       RotationPos = Iter;
1322     }
1323   }
1324 
1325   if (RotationPos != LoopChain.end()) {
1326     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1327                  << " to the top\n");
1328     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1329   }
1330 }
1331 
1332 /// \brief Collect blocks in the given loop that are to be placed.
1333 ///
1334 /// When profile data is available, exclude cold blocks from the returned set;
1335 /// otherwise, collect all blocks in the loop.
1336 MachineBlockPlacement::BlockFilterSet
1337 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1338   BlockFilterSet LoopBlockSet;
1339 
1340   // Filter cold blocks off from LoopBlockSet when profile data is available.
1341   // Collect the sum of frequencies of incoming edges to the loop header from
1342   // outside. If we treat the loop as a super block, this is the frequency of
1343   // the loop. Then for each block in the loop, we calculate the ratio between
1344   // its frequency and the frequency of the loop block. When it is too small,
1345   // don't add it to the loop chain. If there are outer loops, then this block
1346   // will be merged into the first outer loop chain for which this block is not
1347   // cold anymore. This needs precise profile data and we only do this when
1348   // profile data is available.
1349   if (F->getFunction()->getEntryCount()) {
1350     BlockFrequency LoopFreq(0);
1351     for (auto LoopPred : L.getHeader()->predecessors())
1352       if (!L.contains(LoopPred))
1353         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1354                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1355 
1356     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1357       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1358       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1359         continue;
1360       LoopBlockSet.insert(LoopBB);
1361     }
1362   } else
1363     LoopBlockSet.insert(L.block_begin(), L.block_end());
1364 
1365   return LoopBlockSet;
1366 }
1367 
1368 /// \brief Forms basic block chains from the natural loop structures.
1369 ///
1370 /// These chains are designed to preserve the existing *structure* of the code
1371 /// as much as possible. We can then stitch the chains together in a way which
1372 /// both preserves the topological structure and minimizes taken conditional
1373 /// branches.
1374 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1375   // First recurse through any nested loops, building chains for those inner
1376   // loops.
1377   for (MachineLoop *InnerLoop : L)
1378     buildLoopChains(*InnerLoop);
1379 
1380   assert(BlockWorkList.empty());
1381   assert(EHPadWorkList.empty());
1382   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1383 
1384   // Check if we have profile data for this function. If yes, we will rotate
1385   // this loop by modeling costs more precisely which requires the profile data
1386   // for better layout.
1387   bool RotateLoopWithProfile =
1388       ForcePreciseRotationCost ||
1389       (PreciseRotationCost && F->getFunction()->getEntryCount());
1390 
1391   // First check to see if there is an obviously preferable top block for the
1392   // loop. This will default to the header, but may end up as one of the
1393   // predecessors to the header if there is one which will result in strictly
1394   // fewer branches in the loop body.
1395   // When we use profile data to rotate the loop, this is unnecessary.
1396   MachineBasicBlock *LoopTop =
1397       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1398 
1399   // If we selected just the header for the loop top, look for a potentially
1400   // profitable exit block in the event that rotating the loop can eliminate
1401   // branches by placing an exit edge at the bottom.
1402   MachineBasicBlock *ExitingBB = nullptr;
1403   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1404     ExitingBB = findBestLoopExit(L, LoopBlockSet);
1405 
1406   BlockChain &LoopChain = *BlockToChain[LoopTop];
1407 
1408   // FIXME: This is a really lame way of walking the chains in the loop: we
1409   // walk the blocks, and use a set to prevent visiting a particular chain
1410   // twice.
1411   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1412   assert(LoopChain.UnscheduledPredecessors == 0);
1413   UpdatedPreds.insert(&LoopChain);
1414 
1415   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1416     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
1417 
1418   buildChain(LoopTop, LoopChain, &LoopBlockSet);
1419 
1420   if (RotateLoopWithProfile)
1421     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1422   else
1423     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1424 
1425   DEBUG({
1426     // Crash at the end so we get all of the debugging output first.
1427     bool BadLoop = false;
1428     if (LoopChain.UnscheduledPredecessors) {
1429       BadLoop = true;
1430       dbgs() << "Loop chain contains a block without its preds placed!\n"
1431              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1432              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1433     }
1434     for (MachineBasicBlock *ChainBB : LoopChain) {
1435       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1436       if (!LoopBlockSet.erase(ChainBB)) {
1437         // We don't mark the loop as bad here because there are real situations
1438         // where this can occur. For example, with an unanalyzable fallthrough
1439         // from a loop block to a non-loop block or vice versa.
1440         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1441                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1442                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1443                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1444       }
1445     }
1446 
1447     if (!LoopBlockSet.empty()) {
1448       BadLoop = true;
1449       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1450         dbgs() << "Loop contains blocks never placed into a chain!\n"
1451                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1452                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1453                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1454     }
1455     assert(!BadLoop && "Detected problems with the placement of this loop.");
1456   });
1457 
1458   BlockWorkList.clear();
1459   EHPadWorkList.clear();
1460 }
1461 
1462 /// When OutlineOpitonalBranches is on, this method collects BBs that
1463 /// dominates all terminator blocks of the function \p F.
1464 void MachineBlockPlacement::collectMustExecuteBBs() {
1465   if (OutlineOptionalBranches) {
1466     // Find the nearest common dominator of all of F's terminators.
1467     MachineBasicBlock *Terminator = nullptr;
1468     for (MachineBasicBlock &MBB : *F) {
1469       if (MBB.succ_size() == 0) {
1470         if (Terminator == nullptr)
1471           Terminator = &MBB;
1472         else
1473           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1474       }
1475     }
1476 
1477     // MBBs dominating this common dominator are unavoidable.
1478     UnavoidableBlocks.clear();
1479     for (MachineBasicBlock &MBB : *F) {
1480       if (MDT->dominates(&MBB, Terminator)) {
1481         UnavoidableBlocks.insert(&MBB);
1482       }
1483     }
1484   }
1485 }
1486 
1487 void MachineBlockPlacement::buildCFGChains() {
1488   // Ensure that every BB in the function has an associated chain to simplify
1489   // the assumptions of the remaining algorithm.
1490   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1491   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1492        ++FI) {
1493     MachineBasicBlock *BB = &*FI;
1494     BlockChain *Chain =
1495         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1496     // Also, merge any blocks which we cannot reason about and must preserve
1497     // the exact fallthrough behavior for.
1498     for (;;) {
1499       Cond.clear();
1500       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1501       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1502         break;
1503 
1504       MachineFunction::iterator NextFI = std::next(FI);
1505       MachineBasicBlock *NextBB = &*NextFI;
1506       // Ensure that the layout successor is a viable block, as we know that
1507       // fallthrough is a possibility.
1508       assert(NextFI != FE && "Can't fallthrough past the last block.");
1509       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1510                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1511                    << "\n");
1512       Chain->merge(NextBB, nullptr);
1513       FI = NextFI;
1514       BB = NextBB;
1515     }
1516   }
1517 
1518   // Turned on with OutlineOptionalBranches option
1519   collectMustExecuteBBs();
1520 
1521   // Build any loop-based chains.
1522   for (MachineLoop *L : *MLI)
1523     buildLoopChains(*L);
1524 
1525   assert(BlockWorkList.empty());
1526   assert(EHPadWorkList.empty());
1527 
1528   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1529   for (MachineBasicBlock &MBB : *F)
1530     fillWorkLists(&MBB, UpdatedPreds);
1531 
1532   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1533   buildChain(&F->front(), FunctionChain);
1534 
1535 #ifndef NDEBUG
1536   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1537 #endif
1538   DEBUG({
1539     // Crash at the end so we get all of the debugging output first.
1540     bool BadFunc = false;
1541     FunctionBlockSetType FunctionBlockSet;
1542     for (MachineBasicBlock &MBB : *F)
1543       FunctionBlockSet.insert(&MBB);
1544 
1545     for (MachineBasicBlock *ChainBB : FunctionChain)
1546       if (!FunctionBlockSet.erase(ChainBB)) {
1547         BadFunc = true;
1548         dbgs() << "Function chain contains a block not in the function!\n"
1549                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1550       }
1551 
1552     if (!FunctionBlockSet.empty()) {
1553       BadFunc = true;
1554       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1555         dbgs() << "Function contains blocks never placed into a chain!\n"
1556                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1557     }
1558     assert(!BadFunc && "Detected problems with the block placement.");
1559   });
1560 
1561   // Splice the blocks into place.
1562   MachineFunction::iterator InsertPos = F->begin();
1563   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1564   for (MachineBasicBlock *ChainBB : FunctionChain) {
1565     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1566                                                        : "          ... ")
1567                  << getBlockName(ChainBB) << "\n");
1568     if (InsertPos != MachineFunction::iterator(ChainBB))
1569       F->splice(InsertPos, ChainBB);
1570     else
1571       ++InsertPos;
1572 
1573     // Update the terminator of the previous block.
1574     if (ChainBB == *FunctionChain.begin())
1575       continue;
1576     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1577 
1578     // FIXME: It would be awesome of updateTerminator would just return rather
1579     // than assert when the branch cannot be analyzed in order to remove this
1580     // boiler plate.
1581     Cond.clear();
1582     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1583 
1584     // The "PrevBB" is not yet updated to reflect current code layout, so,
1585     //   o. it may fall-through to a block without explicit "goto" instruction
1586     //      before layout, and no longer fall-through it after layout; or
1587     //   o. just opposite.
1588     //
1589     // analyzeBranch() may return erroneous value for FBB when these two
1590     // situations take place. For the first scenario FBB is mistakenly set NULL;
1591     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1592     // mistakenly pointing to "*BI".
1593     // Thus, if the future change needs to use FBB before the layout is set, it
1594     // has to correct FBB first by using the code similar to the following:
1595     //
1596     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1597     //   PrevBB->updateTerminator();
1598     //   Cond.clear();
1599     //   TBB = FBB = nullptr;
1600     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1601     //     // FIXME: This should never take place.
1602     //     TBB = FBB = nullptr;
1603     //   }
1604     // }
1605     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
1606       PrevBB->updateTerminator();
1607   }
1608 
1609   // Fixup the last block.
1610   Cond.clear();
1611   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1612   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
1613     F->back().updateTerminator();
1614 
1615   BlockWorkList.clear();
1616   EHPadWorkList.clear();
1617 }
1618 
1619 void MachineBlockPlacement::optimizeBranches() {
1620   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1621   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1622 
1623   // Now that all the basic blocks in the chain have the proper layout,
1624   // make a final call to AnalyzeBranch with AllowModify set.
1625   // Indeed, the target may be able to optimize the branches in a way we
1626   // cannot because all branches may not be analyzable.
1627   // E.g., the target may be able to remove an unconditional branch to
1628   // a fallthrough when it occurs after predicated terminators.
1629   for (MachineBasicBlock *ChainBB : FunctionChain) {
1630     Cond.clear();
1631     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1632     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1633       // If PrevBB has a two-way branch, try to re-order the branches
1634       // such that we branch to the successor with higher probability first.
1635       if (TBB && !Cond.empty() && FBB &&
1636           MBPI->getEdgeProbability(ChainBB, FBB) >
1637               MBPI->getEdgeProbability(ChainBB, TBB) &&
1638           !TII->reverseBranchCondition(Cond)) {
1639         DEBUG(dbgs() << "Reverse order of the two branches: "
1640                      << getBlockName(ChainBB) << "\n");
1641         DEBUG(dbgs() << "    Edge probability: "
1642                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1643                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1644         DebugLoc dl; // FIXME: this is nowhere
1645         TII->removeBranch(*ChainBB);
1646         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
1647         ChainBB->updateTerminator();
1648       }
1649     }
1650   }
1651 }
1652 
1653 void MachineBlockPlacement::alignBlocks() {
1654   // Walk through the backedges of the function now that we have fully laid out
1655   // the basic blocks and align the destination of each backedge. We don't rely
1656   // exclusively on the loop info here so that we can align backedges in
1657   // unnatural CFGs and backedges that were introduced purely because of the
1658   // loop rotations done during this layout pass.
1659   if (F->getFunction()->optForSize())
1660     return;
1661   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1662   if (FunctionChain.begin() == FunctionChain.end())
1663     return; // Empty chain.
1664 
1665   const BranchProbability ColdProb(1, 5); // 20%
1666   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1667   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1668   for (MachineBasicBlock *ChainBB : FunctionChain) {
1669     if (ChainBB == *FunctionChain.begin())
1670       continue;
1671 
1672     // Don't align non-looping basic blocks. These are unlikely to execute
1673     // enough times to matter in practice. Note that we'll still handle
1674     // unnatural CFGs inside of a natural outer loop (the common case) and
1675     // rotated loops.
1676     MachineLoop *L = MLI->getLoopFor(ChainBB);
1677     if (!L)
1678       continue;
1679 
1680     unsigned Align = TLI->getPrefLoopAlignment(L);
1681     if (!Align)
1682       continue; // Don't care about loop alignment.
1683 
1684     // If the block is cold relative to the function entry don't waste space
1685     // aligning it.
1686     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1687     if (Freq < WeightedEntryFreq)
1688       continue;
1689 
1690     // If the block is cold relative to its loop header, don't align it
1691     // regardless of what edges into the block exist.
1692     MachineBasicBlock *LoopHeader = L->getHeader();
1693     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1694     if (Freq < (LoopHeaderFreq * ColdProb))
1695       continue;
1696 
1697     // Check for the existence of a non-layout predecessor which would benefit
1698     // from aligning this block.
1699     MachineBasicBlock *LayoutPred =
1700         &*std::prev(MachineFunction::iterator(ChainBB));
1701 
1702     // Force alignment if all the predecessors are jumps. We already checked
1703     // that the block isn't cold above.
1704     if (!LayoutPred->isSuccessor(ChainBB)) {
1705       ChainBB->setAlignment(Align);
1706       continue;
1707     }
1708 
1709     // Align this block if the layout predecessor's edge into this block is
1710     // cold relative to the block. When this is true, other predecessors make up
1711     // all of the hot entries into the block and thus alignment is likely to be
1712     // important.
1713     BranchProbability LayoutProb =
1714         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1715     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1716     if (LayoutEdgeFreq <= (Freq * ColdProb))
1717       ChainBB->setAlignment(Align);
1718   }
1719 }
1720 
1721 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
1722   if (skipFunction(*MF.getFunction()))
1723     return false;
1724 
1725   // Check for single-block functions and skip them.
1726   if (std::next(MF.begin()) == MF.end())
1727     return false;
1728 
1729   F = &MF;
1730   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1731   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
1732       getAnalysis<MachineBlockFrequencyInfo>());
1733   MLI = &getAnalysis<MachineLoopInfo>();
1734   TII = MF.getSubtarget().getInstrInfo();
1735   TLI = MF.getSubtarget().getTargetLowering();
1736   MDT = &getAnalysis<MachineDominatorTree>();
1737   assert(BlockToChain.empty());
1738 
1739   buildCFGChains();
1740 
1741   // Changing the layout can create new tail merging opportunities.
1742   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
1743   // TailMerge can create jump into if branches that make CFG irreducible for
1744   // HW that requires structured CFG.
1745   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
1746                          PassConfig->getEnableTailMerge() &&
1747                          BranchFoldPlacement;
1748   // No tail merging opportunities if the block number is less than four.
1749   if (MF.size() > 3 && EnableTailMerge) {
1750     // Default to the standard tail-merge-size option.
1751     unsigned TailMergeSize = 0;
1752     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
1753                     *MBPI, TailMergeSize);
1754 
1755     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
1756                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
1757                             /*AfterBlockPlacement=*/true)) {
1758       // Redo the layout if tail merging creates/removes/moves blocks.
1759       BlockToChain.clear();
1760       ChainAllocator.DestroyAll();
1761       buildCFGChains();
1762     }
1763   }
1764 
1765   optimizeBranches();
1766   alignBlocks();
1767 
1768   BlockToChain.clear();
1769   ChainAllocator.DestroyAll();
1770 
1771   if (AlignAllBlock)
1772     // Align all of the blocks in the function to a specific alignment.
1773     for (MachineBasicBlock &MBB : MF)
1774       MBB.setAlignment(AlignAllBlock);
1775   else if (AlignAllNonFallThruBlocks) {
1776     // Align all of the blocks that have no fall-through predecessors to a
1777     // specific alignment.
1778     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
1779       auto LayoutPred = std::prev(MBI);
1780       if (!LayoutPred->isSuccessor(&*MBI))
1781         MBI->setAlignment(AlignAllNonFallThruBlocks);
1782     }
1783   }
1784 
1785   // We always return true as we have no way to track whether the final order
1786   // differs from the original order.
1787   return true;
1788 }
1789 
1790 namespace {
1791 /// \brief A pass to compute block placement statistics.
1792 ///
1793 /// A separate pass to compute interesting statistics for evaluating block
1794 /// placement. This is separate from the actual placement pass so that they can
1795 /// be computed in the absence of any placement transformations or when using
1796 /// alternative placement strategies.
1797 class MachineBlockPlacementStats : public MachineFunctionPass {
1798   /// \brief A handle to the branch probability pass.
1799   const MachineBranchProbabilityInfo *MBPI;
1800 
1801   /// \brief A handle to the function-wide block frequency pass.
1802   const MachineBlockFrequencyInfo *MBFI;
1803 
1804 public:
1805   static char ID; // Pass identification, replacement for typeid
1806   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1807     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1808   }
1809 
1810   bool runOnMachineFunction(MachineFunction &F) override;
1811 
1812   void getAnalysisUsage(AnalysisUsage &AU) const override {
1813     AU.addRequired<MachineBranchProbabilityInfo>();
1814     AU.addRequired<MachineBlockFrequencyInfo>();
1815     AU.setPreservesAll();
1816     MachineFunctionPass::getAnalysisUsage(AU);
1817   }
1818 };
1819 }
1820 
1821 char MachineBlockPlacementStats::ID = 0;
1822 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1823 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1824                       "Basic Block Placement Stats", false, false)
1825 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1826 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1827 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1828                     "Basic Block Placement Stats", false, false)
1829 
1830 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1831   // Check for single-block functions and skip them.
1832   if (std::next(F.begin()) == F.end())
1833     return false;
1834 
1835   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1836   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1837 
1838   for (MachineBasicBlock &MBB : F) {
1839     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1840     Statistic &NumBranches =
1841         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1842     Statistic &BranchTakenFreq =
1843         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1844     for (MachineBasicBlock *Succ : MBB.successors()) {
1845       // Skip if this successor is a fallthrough.
1846       if (MBB.isLayoutSuccessor(Succ))
1847         continue;
1848 
1849       BlockFrequency EdgeFreq =
1850           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1851       ++NumBranches;
1852       BranchTakenFreq += EdgeFreq.getFrequency();
1853     }
1854   }
1855 
1856   return false;
1857 }
1858