1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/DataTypes.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 57 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// When an MBB is added to an MF, we need to update the parent pointer of the 72 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 73 /// operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 79 MachineBasicBlock *N) { 80 MachineFunction &MF = *N->getParent(); 81 N->Number = MF.addToMBBNumbering(N); 82 83 // Make sure the instructions have their operands in the reginfo lists. 84 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 85 for (MachineBasicBlock::instr_iterator 86 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 87 I->AddRegOperandsToUseLists(RegInfo); 88 } 89 90 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 91 MachineBasicBlock *N) { 92 N->getParent()->removeFromMBBNumbering(N->Number); 93 N->Number = -1; 94 } 95 96 /// When we add an instruction to a basic block list, we update its parent 97 /// pointer and add its operands from reg use/def lists if appropriate. 98 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 99 assert(!N->getParent() && "machine instruction already in a basic block"); 100 N->setParent(Parent); 101 102 // Add the instruction's register operands to their corresponding 103 // use/def lists. 104 MachineFunction *MF = Parent->getParent(); 105 N->AddRegOperandsToUseLists(MF->getRegInfo()); 106 } 107 108 /// When we remove an instruction from a basic block list, we update its parent 109 /// pointer and remove its operands from reg use/def lists if appropriate. 110 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 111 assert(N->getParent() && "machine instruction not in a basic block"); 112 113 // Remove from the use/def lists. 114 if (MachineFunction *MF = N->getParent()->getParent()) 115 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 116 117 N->setParent(nullptr); 118 } 119 120 /// When moving a range of instructions from one MBB list to another, we need to 121 /// update the parent pointers and the use/def lists. 122 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 123 instr_iterator First, 124 instr_iterator Last) { 125 assert(Parent->getParent() == FromList.Parent->getParent() && 126 "MachineInstr parent mismatch!"); 127 assert(this != &FromList && "Called without a real transfer..."); 128 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 129 130 // If splicing between two blocks within the same function, just update the 131 // parent pointers. 132 for (; First != Last; ++First) 133 First->setParent(Parent); 134 } 135 136 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 137 assert(!MI->getParent() && "MI is still in a block!"); 138 Parent->getParent()->DeleteMachineInstr(MI); 139 } 140 141 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 142 instr_iterator I = instr_begin(), E = instr_end(); 143 while (I != E && I->isPHI()) 144 ++I; 145 assert((I == E || !I->isInsideBundle()) && 146 "First non-phi MI cannot be inside a bundle!"); 147 return I; 148 } 149 150 MachineBasicBlock::iterator 151 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 152 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 153 154 iterator E = end(); 155 while (I != E && (I->isPHI() || I->isPosition() || 156 TII->isBasicBlockPrologue(*I))) 157 ++I; 158 // FIXME: This needs to change if we wish to bundle labels 159 // inside the bundle. 160 assert((I == E || !I->isInsideBundle()) && 161 "First non-phi / non-label instruction is inside a bundle!"); 162 return I; 163 } 164 165 MachineBasicBlock::iterator 166 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 167 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 168 169 iterator E = end(); 170 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 171 TII->isBasicBlockPrologue(*I))) 172 ++I; 173 // FIXME: This needs to change if we wish to bundle labels / dbg_values 174 // inside the bundle. 175 assert((I == E || !I->isInsideBundle()) && 176 "First non-phi / non-label / non-debug " 177 "instruction is inside a bundle!"); 178 return I; 179 } 180 181 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 182 iterator B = begin(), E = end(), I = E; 183 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 184 ; /*noop */ 185 while (I != E && !I->isTerminator()) 186 ++I; 187 return I; 188 } 189 190 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 191 instr_iterator B = instr_begin(), E = instr_end(), I = E; 192 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 193 ; /*noop */ 194 while (I != E && !I->isTerminator()) 195 ++I; 196 return I; 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 200 // Skip over begin-of-block dbg_value instructions. 201 return skipDebugInstructionsForward(begin(), end()); 202 } 203 204 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 205 // Skip over end-of-block dbg_value instructions. 206 instr_iterator B = instr_begin(), I = instr_end(); 207 while (I != B) { 208 --I; 209 // Return instruction that starts a bundle. 210 if (I->isDebugValue() || I->isInsideBundle()) 211 continue; 212 return I; 213 } 214 // The block is all debug values. 215 return end(); 216 } 217 218 bool MachineBasicBlock::hasEHPadSuccessor() const { 219 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 220 if ((*I)->isEHPad()) 221 return true; 222 return false; 223 } 224 225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 226 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 227 print(dbgs()); 228 } 229 #endif 230 231 StringRef MachineBasicBlock::getName() const { 232 if (const BasicBlock *LBB = getBasicBlock()) 233 return LBB->getName(); 234 else 235 return StringRef("", 0); 236 } 237 238 /// Return a hopefully unique identifier for this block. 239 std::string MachineBasicBlock::getFullName() const { 240 std::string Name; 241 if (getParent()) 242 Name = (getParent()->getName() + ":").str(); 243 if (getBasicBlock()) 244 Name += getBasicBlock()->getName(); 245 else 246 Name += ("BB" + Twine(getNumber())).str(); 247 return Name; 248 } 249 250 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 251 const { 252 const MachineFunction *MF = getParent(); 253 if (!MF) { 254 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 255 << " is null\n"; 256 return; 257 } 258 const Function *F = MF->getFunction(); 259 const Module *M = F ? F->getParent() : nullptr; 260 ModuleSlotTracker MST(M); 261 print(OS, MST, Indexes); 262 } 263 264 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 265 const SlotIndexes *Indexes) const { 266 const MachineFunction *MF = getParent(); 267 if (!MF) { 268 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 269 << " is null\n"; 270 return; 271 } 272 273 if (Indexes) 274 OS << Indexes->getMBBStartIdx(this) << '\t'; 275 276 OS << "BB#" << getNumber() << ": "; 277 278 const char *Comma = ""; 279 if (const BasicBlock *LBB = getBasicBlock()) { 280 OS << Comma << "derived from LLVM BB "; 281 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 282 Comma = ", "; 283 } 284 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 285 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 286 if (Alignment) 287 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 288 << " bytes)"; 289 290 OS << '\n'; 291 292 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 293 if (!livein_empty()) { 294 if (Indexes) OS << '\t'; 295 OS << " Live Ins:"; 296 for (const auto &LI : LiveIns) { 297 OS << ' ' << PrintReg(LI.PhysReg, TRI); 298 if (!LI.LaneMask.all()) 299 OS << ':' << PrintLaneMask(LI.LaneMask); 300 } 301 OS << '\n'; 302 } 303 // Print the preds of this block according to the CFG. 304 if (!pred_empty()) { 305 if (Indexes) OS << '\t'; 306 OS << " Predecessors according to CFG:"; 307 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 308 OS << " BB#" << (*PI)->getNumber(); 309 OS << '\n'; 310 } 311 312 for (auto &I : instrs()) { 313 if (Indexes) { 314 if (Indexes->hasIndex(I)) 315 OS << Indexes->getInstructionIndex(I); 316 OS << '\t'; 317 } 318 OS << '\t'; 319 if (I.isInsideBundle()) 320 OS << " * "; 321 I.print(OS, MST); 322 } 323 324 // Print the successors of this block according to the CFG. 325 if (!succ_empty()) { 326 if (Indexes) OS << '\t'; 327 OS << " Successors according to CFG:"; 328 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 329 OS << " BB#" << (*SI)->getNumber(); 330 if (!Probs.empty()) 331 OS << '(' << *getProbabilityIterator(SI) << ')'; 332 } 333 OS << '\n'; 334 } 335 } 336 337 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 338 bool /*PrintType*/) const { 339 OS << "BB#" << getNumber(); 340 } 341 342 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 343 LiveInVector::iterator I = find_if( 344 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 345 if (I == LiveIns.end()) 346 return; 347 348 I->LaneMask &= ~LaneMask; 349 if (I->LaneMask.none()) 350 LiveIns.erase(I); 351 } 352 353 MachineBasicBlock::livein_iterator 354 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 355 return LiveIns.erase(I); 356 } 357 358 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 359 livein_iterator I = find_if( 360 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 361 return I != livein_end() && (I->LaneMask & LaneMask).any(); 362 } 363 364 void MachineBasicBlock::sortUniqueLiveIns() { 365 std::sort(LiveIns.begin(), LiveIns.end(), 366 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 367 return LI0.PhysReg < LI1.PhysReg; 368 }); 369 // Liveins are sorted by physreg now we can merge their lanemasks. 370 LiveInVector::const_iterator I = LiveIns.begin(); 371 LiveInVector::const_iterator J; 372 LiveInVector::iterator Out = LiveIns.begin(); 373 for (; I != LiveIns.end(); ++Out, I = J) { 374 unsigned PhysReg = I->PhysReg; 375 LaneBitmask LaneMask = I->LaneMask; 376 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 377 LaneMask |= J->LaneMask; 378 Out->PhysReg = PhysReg; 379 Out->LaneMask = LaneMask; 380 } 381 LiveIns.erase(Out, LiveIns.end()); 382 } 383 384 unsigned 385 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 386 assert(getParent() && "MBB must be inserted in function"); 387 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 388 assert(RC && "Register class is required"); 389 assert((isEHPad() || this == &getParent()->front()) && 390 "Only the entry block and landing pads can have physreg live ins"); 391 392 bool LiveIn = isLiveIn(PhysReg); 393 iterator I = SkipPHIsAndLabels(begin()), E = end(); 394 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 395 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 396 397 // Look for an existing copy. 398 if (LiveIn) 399 for (;I != E && I->isCopy(); ++I) 400 if (I->getOperand(1).getReg() == PhysReg) { 401 unsigned VirtReg = I->getOperand(0).getReg(); 402 if (!MRI.constrainRegClass(VirtReg, RC)) 403 llvm_unreachable("Incompatible live-in register class."); 404 return VirtReg; 405 } 406 407 // No luck, create a virtual register. 408 unsigned VirtReg = MRI.createVirtualRegister(RC); 409 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 410 .addReg(PhysReg, RegState::Kill); 411 if (!LiveIn) 412 addLiveIn(PhysReg); 413 return VirtReg; 414 } 415 416 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 417 getParent()->splice(NewAfter->getIterator(), getIterator()); 418 } 419 420 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 421 getParent()->splice(++NewBefore->getIterator(), getIterator()); 422 } 423 424 void MachineBasicBlock::updateTerminator() { 425 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 426 // A block with no successors has no concerns with fall-through edges. 427 if (this->succ_empty()) 428 return; 429 430 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 431 SmallVector<MachineOperand, 4> Cond; 432 DebugLoc DL = findBranchDebugLoc(); 433 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 434 (void) B; 435 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 436 if (Cond.empty()) { 437 if (TBB) { 438 // The block has an unconditional branch. If its successor is now its 439 // layout successor, delete the branch. 440 if (isLayoutSuccessor(TBB)) 441 TII->removeBranch(*this); 442 } else { 443 // The block has an unconditional fallthrough. If its successor is not its 444 // layout successor, insert a branch. First we have to locate the only 445 // non-landing-pad successor, as that is the fallthrough block. 446 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 447 if ((*SI)->isEHPad()) 448 continue; 449 assert(!TBB && "Found more than one non-landing-pad successor!"); 450 TBB = *SI; 451 } 452 453 // If there is no non-landing-pad successor, the block has no fall-through 454 // edges to be concerned with. 455 if (!TBB) 456 return; 457 458 // Finally update the unconditional successor to be reached via a branch 459 // if it would not be reached by fallthrough. 460 if (!isLayoutSuccessor(TBB)) 461 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 462 } 463 return; 464 } 465 466 if (FBB) { 467 // The block has a non-fallthrough conditional branch. If one of its 468 // successors is its layout successor, rewrite it to a fallthrough 469 // conditional branch. 470 if (isLayoutSuccessor(TBB)) { 471 if (TII->reverseBranchCondition(Cond)) 472 return; 473 TII->removeBranch(*this); 474 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 475 } else if (isLayoutSuccessor(FBB)) { 476 TII->removeBranch(*this); 477 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 478 } 479 return; 480 } 481 482 // Walk through the successors and find the successor which is not a landing 483 // pad and is not the conditional branch destination (in TBB) as the 484 // fallthrough successor. 485 MachineBasicBlock *FallthroughBB = nullptr; 486 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 487 if ((*SI)->isEHPad() || *SI == TBB) 488 continue; 489 assert(!FallthroughBB && "Found more than one fallthrough successor."); 490 FallthroughBB = *SI; 491 } 492 493 if (!FallthroughBB) { 494 if (canFallThrough()) { 495 // We fallthrough to the same basic block as the conditional jump targets. 496 // Remove the conditional jump, leaving unconditional fallthrough. 497 // FIXME: This does not seem like a reasonable pattern to support, but it 498 // has been seen in the wild coming out of degenerate ARM test cases. 499 TII->removeBranch(*this); 500 501 // Finally update the unconditional successor to be reached via a branch if 502 // it would not be reached by fallthrough. 503 if (!isLayoutSuccessor(TBB)) 504 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 505 return; 506 } 507 508 // We enter here iff exactly one successor is TBB which cannot fallthrough 509 // and the rest successors if any are EHPads. In this case, we need to 510 // change the conditional branch into unconditional branch. 511 TII->removeBranch(*this); 512 Cond.clear(); 513 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 514 return; 515 } 516 517 // The block has a fallthrough conditional branch. 518 if (isLayoutSuccessor(TBB)) { 519 if (TII->reverseBranchCondition(Cond)) { 520 // We can't reverse the condition, add an unconditional branch. 521 Cond.clear(); 522 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 523 return; 524 } 525 TII->removeBranch(*this); 526 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 527 } else if (!isLayoutSuccessor(FallthroughBB)) { 528 TII->removeBranch(*this); 529 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 530 } 531 } 532 533 void MachineBasicBlock::validateSuccProbs() const { 534 #ifndef NDEBUG 535 int64_t Sum = 0; 536 for (auto Prob : Probs) 537 Sum += Prob.getNumerator(); 538 // Due to precision issue, we assume that the sum of probabilities is one if 539 // the difference between the sum of their numerators and the denominator is 540 // no greater than the number of successors. 541 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 542 Probs.size() && 543 "The sum of successors's probabilities exceeds one."); 544 #endif // NDEBUG 545 } 546 547 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 548 BranchProbability Prob) { 549 // Probability list is either empty (if successor list isn't empty, this means 550 // disabled optimization) or has the same size as successor list. 551 if (!(Probs.empty() && !Successors.empty())) 552 Probs.push_back(Prob); 553 Successors.push_back(Succ); 554 Succ->addPredecessor(this); 555 } 556 557 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 558 // We need to make sure probability list is either empty or has the same size 559 // of successor list. When this function is called, we can safely delete all 560 // probability in the list. 561 Probs.clear(); 562 Successors.push_back(Succ); 563 Succ->addPredecessor(this); 564 } 565 566 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 567 bool NormalizeSuccProbs) { 568 succ_iterator I = find(Successors, Succ); 569 removeSuccessor(I, NormalizeSuccProbs); 570 } 571 572 MachineBasicBlock::succ_iterator 573 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 574 assert(I != Successors.end() && "Not a current successor!"); 575 576 // If probability list is empty it means we don't use it (disabled 577 // optimization). 578 if (!Probs.empty()) { 579 probability_iterator WI = getProbabilityIterator(I); 580 Probs.erase(WI); 581 if (NormalizeSuccProbs) 582 normalizeSuccProbs(); 583 } 584 585 (*I)->removePredecessor(this); 586 return Successors.erase(I); 587 } 588 589 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 590 MachineBasicBlock *New) { 591 if (Old == New) 592 return; 593 594 succ_iterator E = succ_end(); 595 succ_iterator NewI = E; 596 succ_iterator OldI = E; 597 for (succ_iterator I = succ_begin(); I != E; ++I) { 598 if (*I == Old) { 599 OldI = I; 600 if (NewI != E) 601 break; 602 } 603 if (*I == New) { 604 NewI = I; 605 if (OldI != E) 606 break; 607 } 608 } 609 assert(OldI != E && "Old is not a successor of this block"); 610 611 // If New isn't already a successor, let it take Old's place. 612 if (NewI == E) { 613 Old->removePredecessor(this); 614 New->addPredecessor(this); 615 *OldI = New; 616 return; 617 } 618 619 // New is already a successor. 620 // Update its probability instead of adding a duplicate edge. 621 if (!Probs.empty()) { 622 auto ProbIter = getProbabilityIterator(NewI); 623 if (!ProbIter->isUnknown()) 624 *ProbIter += *getProbabilityIterator(OldI); 625 } 626 removeSuccessor(OldI); 627 } 628 629 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 630 Predecessors.push_back(Pred); 631 } 632 633 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 634 pred_iterator I = find(Predecessors, Pred); 635 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 636 Predecessors.erase(I); 637 } 638 639 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 640 if (this == FromMBB) 641 return; 642 643 while (!FromMBB->succ_empty()) { 644 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 645 646 // If probability list is empty it means we don't use it (disabled optimization). 647 if (!FromMBB->Probs.empty()) { 648 auto Prob = *FromMBB->Probs.begin(); 649 addSuccessor(Succ, Prob); 650 } else 651 addSuccessorWithoutProb(Succ); 652 653 FromMBB->removeSuccessor(Succ); 654 } 655 } 656 657 void 658 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 659 if (this == FromMBB) 660 return; 661 662 while (!FromMBB->succ_empty()) { 663 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 664 if (!FromMBB->Probs.empty()) { 665 auto Prob = *FromMBB->Probs.begin(); 666 addSuccessor(Succ, Prob); 667 } else 668 addSuccessorWithoutProb(Succ); 669 FromMBB->removeSuccessor(Succ); 670 671 // Fix up any PHI nodes in the successor. 672 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 673 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 674 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 675 MachineOperand &MO = MI->getOperand(i); 676 if (MO.getMBB() == FromMBB) 677 MO.setMBB(this); 678 } 679 } 680 normalizeSuccProbs(); 681 } 682 683 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 684 return is_contained(predecessors(), MBB); 685 } 686 687 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 688 return is_contained(successors(), MBB); 689 } 690 691 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 692 MachineFunction::const_iterator I(this); 693 return std::next(I) == MachineFunction::const_iterator(MBB); 694 } 695 696 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 697 MachineFunction::iterator Fallthrough = getIterator(); 698 ++Fallthrough; 699 // If FallthroughBlock is off the end of the function, it can't fall through. 700 if (Fallthrough == getParent()->end()) 701 return nullptr; 702 703 // If FallthroughBlock isn't a successor, no fallthrough is possible. 704 if (!isSuccessor(&*Fallthrough)) 705 return nullptr; 706 707 // Analyze the branches, if any, at the end of the block. 708 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 709 SmallVector<MachineOperand, 4> Cond; 710 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 711 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 712 // If we couldn't analyze the branch, examine the last instruction. 713 // If the block doesn't end in a known control barrier, assume fallthrough 714 // is possible. The isPredicated check is needed because this code can be 715 // called during IfConversion, where an instruction which is normally a 716 // Barrier is predicated and thus no longer an actual control barrier. 717 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 718 ? &*Fallthrough 719 : nullptr; 720 } 721 722 // If there is no branch, control always falls through. 723 if (!TBB) return &*Fallthrough; 724 725 // If there is some explicit branch to the fallthrough block, it can obviously 726 // reach, even though the branch should get folded to fall through implicitly. 727 if (MachineFunction::iterator(TBB) == Fallthrough || 728 MachineFunction::iterator(FBB) == Fallthrough) 729 return &*Fallthrough; 730 731 // If it's an unconditional branch to some block not the fall through, it 732 // doesn't fall through. 733 if (Cond.empty()) return nullptr; 734 735 // Otherwise, if it is conditional and has no explicit false block, it falls 736 // through. 737 return (FBB == nullptr) ? &*Fallthrough : nullptr; 738 } 739 740 bool MachineBasicBlock::canFallThrough() { 741 return getFallThrough() != nullptr; 742 } 743 744 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 745 Pass &P) { 746 if (!canSplitCriticalEdge(Succ)) 747 return nullptr; 748 749 MachineFunction *MF = getParent(); 750 DebugLoc DL; // FIXME: this is nowhere 751 752 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 753 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 754 DEBUG(dbgs() << "Splitting critical edge:" 755 " BB#" << getNumber() 756 << " -- BB#" << NMBB->getNumber() 757 << " -- BB#" << Succ->getNumber() << '\n'); 758 759 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 760 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 761 if (LIS) 762 LIS->insertMBBInMaps(NMBB); 763 else if (Indexes) 764 Indexes->insertMBBInMaps(NMBB); 765 766 // On some targets like Mips, branches may kill virtual registers. Make sure 767 // that LiveVariables is properly updated after updateTerminator replaces the 768 // terminators. 769 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 770 771 // Collect a list of virtual registers killed by the terminators. 772 SmallVector<unsigned, 4> KilledRegs; 773 if (LV) 774 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 775 I != E; ++I) { 776 MachineInstr *MI = &*I; 777 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 778 OE = MI->operands_end(); OI != OE; ++OI) { 779 if (!OI->isReg() || OI->getReg() == 0 || 780 !OI->isUse() || !OI->isKill() || OI->isUndef()) 781 continue; 782 unsigned Reg = OI->getReg(); 783 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 784 LV->getVarInfo(Reg).removeKill(*MI)) { 785 KilledRegs.push_back(Reg); 786 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 787 OI->setIsKill(false); 788 } 789 } 790 } 791 792 SmallVector<unsigned, 4> UsedRegs; 793 if (LIS) { 794 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 795 I != E; ++I) { 796 MachineInstr *MI = &*I; 797 798 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 799 OE = MI->operands_end(); OI != OE; ++OI) { 800 if (!OI->isReg() || OI->getReg() == 0) 801 continue; 802 803 unsigned Reg = OI->getReg(); 804 if (!is_contained(UsedRegs, Reg)) 805 UsedRegs.push_back(Reg); 806 } 807 } 808 } 809 810 ReplaceUsesOfBlockWith(Succ, NMBB); 811 812 // If updateTerminator() removes instructions, we need to remove them from 813 // SlotIndexes. 814 SmallVector<MachineInstr*, 4> Terminators; 815 if (Indexes) { 816 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 817 I != E; ++I) 818 Terminators.push_back(&*I); 819 } 820 821 updateTerminator(); 822 823 if (Indexes) { 824 SmallVector<MachineInstr*, 4> NewTerminators; 825 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 826 I != E; ++I) 827 NewTerminators.push_back(&*I); 828 829 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 830 E = Terminators.end(); I != E; ++I) { 831 if (!is_contained(NewTerminators, *I)) 832 Indexes->removeMachineInstrFromMaps(**I); 833 } 834 } 835 836 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 837 NMBB->addSuccessor(Succ); 838 if (!NMBB->isLayoutSuccessor(Succ)) { 839 SmallVector<MachineOperand, 4> Cond; 840 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 841 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 842 843 if (Indexes) { 844 for (MachineInstr &MI : NMBB->instrs()) { 845 // Some instructions may have been moved to NMBB by updateTerminator(), 846 // so we first remove any instruction that already has an index. 847 if (Indexes->hasIndex(MI)) 848 Indexes->removeMachineInstrFromMaps(MI); 849 Indexes->insertMachineInstrInMaps(MI); 850 } 851 } 852 } 853 854 // Fix PHI nodes in Succ so they refer to NMBB instead of this 855 for (MachineBasicBlock::instr_iterator 856 i = Succ->instr_begin(),e = Succ->instr_end(); 857 i != e && i->isPHI(); ++i) 858 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 859 if (i->getOperand(ni+1).getMBB() == this) 860 i->getOperand(ni+1).setMBB(NMBB); 861 862 // Inherit live-ins from the successor 863 for (const auto &LI : Succ->liveins()) 864 NMBB->addLiveIn(LI); 865 866 // Update LiveVariables. 867 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 868 if (LV) { 869 // Restore kills of virtual registers that were killed by the terminators. 870 while (!KilledRegs.empty()) { 871 unsigned Reg = KilledRegs.pop_back_val(); 872 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 873 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 874 continue; 875 if (TargetRegisterInfo::isVirtualRegister(Reg)) 876 LV->getVarInfo(Reg).Kills.push_back(&*I); 877 DEBUG(dbgs() << "Restored terminator kill: " << *I); 878 break; 879 } 880 } 881 // Update relevant live-through information. 882 LV->addNewBlock(NMBB, this, Succ); 883 } 884 885 if (LIS) { 886 // After splitting the edge and updating SlotIndexes, live intervals may be 887 // in one of two situations, depending on whether this block was the last in 888 // the function. If the original block was the last in the function, all 889 // live intervals will end prior to the beginning of the new split block. If 890 // the original block was not at the end of the function, all live intervals 891 // will extend to the end of the new split block. 892 893 bool isLastMBB = 894 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 895 896 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 897 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 898 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 899 900 // Find the registers used from NMBB in PHIs in Succ. 901 SmallSet<unsigned, 8> PHISrcRegs; 902 for (MachineBasicBlock::instr_iterator 903 I = Succ->instr_begin(), E = Succ->instr_end(); 904 I != E && I->isPHI(); ++I) { 905 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 906 if (I->getOperand(ni+1).getMBB() == NMBB) { 907 MachineOperand &MO = I->getOperand(ni); 908 unsigned Reg = MO.getReg(); 909 PHISrcRegs.insert(Reg); 910 if (MO.isUndef()) 911 continue; 912 913 LiveInterval &LI = LIS->getInterval(Reg); 914 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 915 assert(VNI && 916 "PHI sources should be live out of their predecessors."); 917 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 918 } 919 } 920 } 921 922 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 923 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 924 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 925 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 926 continue; 927 928 LiveInterval &LI = LIS->getInterval(Reg); 929 if (!LI.liveAt(PrevIndex)) 930 continue; 931 932 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 933 if (isLiveOut && isLastMBB) { 934 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 935 assert(VNI && "LiveInterval should have VNInfo where it is live."); 936 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 937 } else if (!isLiveOut && !isLastMBB) { 938 LI.removeSegment(StartIndex, EndIndex); 939 } 940 } 941 942 // Update all intervals for registers whose uses may have been modified by 943 // updateTerminator(). 944 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 945 } 946 947 if (MachineDominatorTree *MDT = 948 P.getAnalysisIfAvailable<MachineDominatorTree>()) 949 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 950 951 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 952 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 953 // If one or the other blocks were not in a loop, the new block is not 954 // either, and thus LI doesn't need to be updated. 955 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 956 if (TIL == DestLoop) { 957 // Both in the same loop, the NMBB joins loop. 958 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 959 } else if (TIL->contains(DestLoop)) { 960 // Edge from an outer loop to an inner loop. Add to the outer loop. 961 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 962 } else if (DestLoop->contains(TIL)) { 963 // Edge from an inner loop to an outer loop. Add to the outer loop. 964 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 965 } else { 966 // Edge from two loops with no containment relation. Because these 967 // are natural loops, we know that the destination block must be the 968 // header of its loop (adding a branch into a loop elsewhere would 969 // create an irreducible loop). 970 assert(DestLoop->getHeader() == Succ && 971 "Should not create irreducible loops!"); 972 if (MachineLoop *P = DestLoop->getParentLoop()) 973 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 974 } 975 } 976 } 977 978 return NMBB; 979 } 980 981 bool MachineBasicBlock::canSplitCriticalEdge( 982 const MachineBasicBlock *Succ) const { 983 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 984 // it in this generic function. 985 if (Succ->isEHPad()) 986 return false; 987 988 const MachineFunction *MF = getParent(); 989 990 // Performance might be harmed on HW that implements branching using exec mask 991 // where both sides of the branches are always executed. 992 if (MF->getTarget().requiresStructuredCFG()) 993 return false; 994 995 // We may need to update this's terminator, but we can't do that if 996 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 997 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 998 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 999 SmallVector<MachineOperand, 4> Cond; 1000 // AnalyzeBanch should modify this, since we did not allow modification. 1001 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1002 /*AllowModify*/ false)) 1003 return false; 1004 1005 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1006 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1007 // case that we can't handle. Since this never happens in properly optimized 1008 // code, just skip those edges. 1009 if (TBB && TBB == FBB) { 1010 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 1011 << getNumber() << '\n'); 1012 return false; 1013 } 1014 return true; 1015 } 1016 1017 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1018 /// neighboring instructions so the bundle won't be broken by removing MI. 1019 static void unbundleSingleMI(MachineInstr *MI) { 1020 // Removing the first instruction in a bundle. 1021 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1022 MI->unbundleFromSucc(); 1023 // Removing the last instruction in a bundle. 1024 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1025 MI->unbundleFromPred(); 1026 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1027 // are already fine. 1028 } 1029 1030 MachineBasicBlock::instr_iterator 1031 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1032 unbundleSingleMI(&*I); 1033 return Insts.erase(I); 1034 } 1035 1036 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1037 unbundleSingleMI(MI); 1038 MI->clearFlag(MachineInstr::BundledPred); 1039 MI->clearFlag(MachineInstr::BundledSucc); 1040 return Insts.remove(MI); 1041 } 1042 1043 MachineBasicBlock::instr_iterator 1044 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1045 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1046 "Cannot insert instruction with bundle flags"); 1047 // Set the bundle flags when inserting inside a bundle. 1048 if (I != instr_end() && I->isBundledWithPred()) { 1049 MI->setFlag(MachineInstr::BundledPred); 1050 MI->setFlag(MachineInstr::BundledSucc); 1051 } 1052 return Insts.insert(I, MI); 1053 } 1054 1055 /// This method unlinks 'this' from the containing function, and returns it, but 1056 /// does not delete it. 1057 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1058 assert(getParent() && "Not embedded in a function!"); 1059 getParent()->remove(this); 1060 return this; 1061 } 1062 1063 /// This method unlinks 'this' from the containing function, and deletes it. 1064 void MachineBasicBlock::eraseFromParent() { 1065 assert(getParent() && "Not embedded in a function!"); 1066 getParent()->erase(this); 1067 } 1068 1069 /// Given a machine basic block that branched to 'Old', change the code and CFG 1070 /// so that it branches to 'New' instead. 1071 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1072 MachineBasicBlock *New) { 1073 assert(Old != New && "Cannot replace self with self!"); 1074 1075 MachineBasicBlock::instr_iterator I = instr_end(); 1076 while (I != instr_begin()) { 1077 --I; 1078 if (!I->isTerminator()) break; 1079 1080 // Scan the operands of this machine instruction, replacing any uses of Old 1081 // with New. 1082 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1083 if (I->getOperand(i).isMBB() && 1084 I->getOperand(i).getMBB() == Old) 1085 I->getOperand(i).setMBB(New); 1086 } 1087 1088 // Update the successor information. 1089 replaceSuccessor(Old, New); 1090 } 1091 1092 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1093 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1094 /// MBB successors from the CFG. DestA and DestB can be null. 1095 /// 1096 /// Besides DestA and DestB, retain other edges leading to LandingPads 1097 /// (currently there can be only one; we don't check or require that here). 1098 /// Note it is possible that DestA and/or DestB are LandingPads. 1099 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1100 MachineBasicBlock *DestB, 1101 bool IsCond) { 1102 // The values of DestA and DestB frequently come from a call to the 1103 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1104 // values from there. 1105 // 1106 // 1. If both DestA and DestB are null, then the block ends with no branches 1107 // (it falls through to its successor). 1108 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1109 // with only an unconditional branch. 1110 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1111 // with a conditional branch that falls through to a successor (DestB). 1112 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1113 // conditional branch followed by an unconditional branch. DestA is the 1114 // 'true' destination and DestB is the 'false' destination. 1115 1116 bool Changed = false; 1117 1118 MachineBasicBlock *FallThru = getNextNode(); 1119 1120 if (!DestA && !DestB) { 1121 // Block falls through to successor. 1122 DestA = FallThru; 1123 DestB = FallThru; 1124 } else if (DestA && !DestB) { 1125 if (IsCond) 1126 // Block ends in conditional jump that falls through to successor. 1127 DestB = FallThru; 1128 } else { 1129 assert(DestA && DestB && IsCond && 1130 "CFG in a bad state. Cannot correct CFG edges"); 1131 } 1132 1133 // Remove superfluous edges. I.e., those which aren't destinations of this 1134 // basic block, duplicate edges, or landing pads. 1135 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1136 MachineBasicBlock::succ_iterator SI = succ_begin(); 1137 while (SI != succ_end()) { 1138 const MachineBasicBlock *MBB = *SI; 1139 if (!SeenMBBs.insert(MBB).second || 1140 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1141 // This is a superfluous edge, remove it. 1142 SI = removeSuccessor(SI); 1143 Changed = true; 1144 } else { 1145 ++SI; 1146 } 1147 } 1148 1149 if (Changed) 1150 normalizeSuccProbs(); 1151 return Changed; 1152 } 1153 1154 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1155 /// instructions. Return UnknownLoc if there is none. 1156 DebugLoc 1157 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1158 // Skip debug declarations, we don't want a DebugLoc from them. 1159 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1160 if (MBBI != instr_end()) 1161 return MBBI->getDebugLoc(); 1162 return {}; 1163 } 1164 1165 /// Find and return the merged DebugLoc of the branch instructions of the block. 1166 /// Return UnknownLoc if there is none. 1167 DebugLoc 1168 MachineBasicBlock::findBranchDebugLoc() { 1169 DebugLoc DL; 1170 auto TI = getFirstTerminator(); 1171 while (TI != end() && !TI->isBranch()) 1172 ++TI; 1173 1174 if (TI != end()) { 1175 DL = TI->getDebugLoc(); 1176 for (++TI ; TI != end() ; ++TI) 1177 if (TI->isBranch()) 1178 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1179 } 1180 return DL; 1181 } 1182 1183 /// Return probability of the edge from this block to MBB. 1184 BranchProbability 1185 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1186 if (Probs.empty()) 1187 return BranchProbability(1, succ_size()); 1188 1189 const auto &Prob = *getProbabilityIterator(Succ); 1190 if (Prob.isUnknown()) { 1191 // For unknown probabilities, collect the sum of all known ones, and evenly 1192 // ditribute the complemental of the sum to each unknown probability. 1193 unsigned KnownProbNum = 0; 1194 auto Sum = BranchProbability::getZero(); 1195 for (auto &P : Probs) { 1196 if (!P.isUnknown()) { 1197 Sum += P; 1198 KnownProbNum++; 1199 } 1200 } 1201 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1202 } else 1203 return Prob; 1204 } 1205 1206 /// Set successor probability of a given iterator. 1207 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1208 BranchProbability Prob) { 1209 assert(!Prob.isUnknown()); 1210 if (Probs.empty()) 1211 return; 1212 *getProbabilityIterator(I) = Prob; 1213 } 1214 1215 /// Return probability iterator corresonding to the I successor iterator 1216 MachineBasicBlock::const_probability_iterator 1217 MachineBasicBlock::getProbabilityIterator( 1218 MachineBasicBlock::const_succ_iterator I) const { 1219 assert(Probs.size() == Successors.size() && "Async probability list!"); 1220 const size_t index = std::distance(Successors.begin(), I); 1221 assert(index < Probs.size() && "Not a current successor!"); 1222 return Probs.begin() + index; 1223 } 1224 1225 /// Return probability iterator corresonding to the I successor iterator. 1226 MachineBasicBlock::probability_iterator 1227 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1228 assert(Probs.size() == Successors.size() && "Async probability list!"); 1229 const size_t index = std::distance(Successors.begin(), I); 1230 assert(index < Probs.size() && "Not a current successor!"); 1231 return Probs.begin() + index; 1232 } 1233 1234 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1235 /// as of just before "MI". 1236 /// 1237 /// Search is localised to a neighborhood of 1238 /// Neighborhood instructions before (searching for defs or kills) and N 1239 /// instructions after (searching just for defs) MI. 1240 MachineBasicBlock::LivenessQueryResult 1241 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1242 unsigned Reg, const_iterator Before, 1243 unsigned Neighborhood) const { 1244 unsigned N = Neighborhood; 1245 1246 // Start by searching backwards from Before, looking for kills, reads or defs. 1247 const_iterator I(Before); 1248 // If this is the first insn in the block, don't search backwards. 1249 if (I != begin()) { 1250 do { 1251 --I; 1252 1253 MachineOperandIteratorBase::PhysRegInfo Info = 1254 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1255 1256 // Defs happen after uses so they take precedence if both are present. 1257 1258 // Register is dead after a dead def of the full register. 1259 if (Info.DeadDef) 1260 return LQR_Dead; 1261 // Register is (at least partially) live after a def. 1262 if (Info.Defined) { 1263 if (!Info.PartialDeadDef) 1264 return LQR_Live; 1265 // As soon as we saw a partial definition (dead or not), 1266 // we cannot tell if the value is partial live without 1267 // tracking the lanemasks. We are not going to do this, 1268 // so fall back on the remaining of the analysis. 1269 break; 1270 } 1271 // Register is dead after a full kill or clobber and no def. 1272 if (Info.Killed || Info.Clobbered) 1273 return LQR_Dead; 1274 // Register must be live if we read it. 1275 if (Info.Read) 1276 return LQR_Live; 1277 } while (I != begin() && --N > 0); 1278 } 1279 1280 // Did we get to the start of the block? 1281 if (I == begin()) { 1282 // If so, the register's state is definitely defined by the live-in state. 1283 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1284 ++RAI) 1285 if (isLiveIn(*RAI)) 1286 return LQR_Live; 1287 1288 return LQR_Dead; 1289 } 1290 1291 N = Neighborhood; 1292 1293 // Try searching forwards from Before, looking for reads or defs. 1294 I = const_iterator(Before); 1295 // If this is the last insn in the block, don't search forwards. 1296 if (I != end()) { 1297 for (++I; I != end() && N > 0; ++I, --N) { 1298 MachineOperandIteratorBase::PhysRegInfo Info = 1299 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1300 1301 // Register is live when we read it here. 1302 if (Info.Read) 1303 return LQR_Live; 1304 // Register is dead if we can fully overwrite or clobber it here. 1305 if (Info.FullyDefined || Info.Clobbered) 1306 return LQR_Dead; 1307 } 1308 } 1309 1310 // At this point we have no idea of the liveness of the register. 1311 return LQR_Unknown; 1312 } 1313 1314 const uint32_t * 1315 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1316 // EH funclet entry does not preserve any registers. 1317 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1318 } 1319 1320 const uint32_t * 1321 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1322 // If we see a return block with successors, this must be a funclet return, 1323 // which does not preserve any registers. If there are no successors, we don't 1324 // care what kind of return it is, putting a mask after it is a no-op. 1325 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1326 } 1327 1328 void MachineBasicBlock::clearLiveIns() { 1329 LiveIns.clear(); 1330 } 1331 1332 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1333 assert(getParent()->getProperties().hasProperty( 1334 MachineFunctionProperties::Property::TracksLiveness) && 1335 "Liveness information is accurate"); 1336 return LiveIns.begin(); 1337 } 1338