1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LiveRangeEdit class represents changes done to a virtual register when it 11 // is spilled or split. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/LiveRangeEdit.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/CodeGen/CalcSpillWeights.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "regalloc" 27 28 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 30 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 31 32 void LiveRangeEdit::Delegate::anchor() { } 33 34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) { 35 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 36 if (VRM) { 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 } 39 LiveInterval &LI = LIS.createEmptyInterval(VReg); 40 // Create empty subranges if the OldReg's interval has them. Do not create 41 // the main range here---it will be constructed later after the subranges 42 // have been finalized. 43 LiveInterval &OldLI = LIS.getInterval(OldReg); 44 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 45 for (LiveInterval::SubRange &S : OldLI.subranges()) 46 LI.createSubRange(Alloc, S.LaneMask); 47 return LI; 48 } 49 50 unsigned LiveRangeEdit::createFrom(unsigned OldReg) { 51 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 52 if (VRM) { 53 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 54 } 55 return VReg; 56 } 57 58 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 59 const MachineInstr *DefMI, 60 AliasAnalysis *aa) { 61 assert(DefMI && "Missing instruction"); 62 ScannedRemattable = true; 63 if (!TII.isTriviallyReMaterializable(*DefMI, aa)) 64 return false; 65 Remattable.insert(VNI); 66 return true; 67 } 68 69 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { 70 for (VNInfo *VNI : getParent().valnos) { 71 if (VNI->isUnused()) 72 continue; 73 unsigned Original = VRM->getOriginal(getReg()); 74 LiveInterval &OrigLI = LIS.getInterval(Original); 75 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 76 if (!OrigVNI) 77 continue; 78 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 79 if (!DefMI) 80 continue; 81 checkRematerializable(OrigVNI, DefMI, aa); 82 } 83 ScannedRemattable = true; 84 } 85 86 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { 87 if (!ScannedRemattable) 88 scanRemattable(aa); 89 return !Remattable.empty(); 90 } 91 92 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 93 /// OrigIdx are also available with the same value at UseIdx. 94 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 95 SlotIndex OrigIdx, 96 SlotIndex UseIdx) const { 97 OrigIdx = OrigIdx.getRegSlot(true); 98 UseIdx = UseIdx.getRegSlot(true); 99 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 100 const MachineOperand &MO = OrigMI->getOperand(i); 101 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 102 continue; 103 104 // We can't remat physreg uses, unless it is a constant. 105 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 106 if (MRI.isConstantPhysReg(MO.getReg())) 107 continue; 108 return false; 109 } 110 111 LiveInterval &li = LIS.getInterval(MO.getReg()); 112 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 113 if (!OVNI) 114 continue; 115 116 // Don't allow rematerialization immediately after the original def. 117 // It would be incorrect if OrigMI redefines the register. 118 // See PR14098. 119 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 120 return false; 121 122 if (OVNI != li.getVNInfoAt(UseIdx)) 123 return false; 124 } 125 return true; 126 } 127 128 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 129 SlotIndex UseIdx, bool cheapAsAMove) { 130 assert(ScannedRemattable && "Call anyRematerializable first"); 131 132 // Use scanRemattable info. 133 if (!Remattable.count(OrigVNI)) 134 return false; 135 136 // No defining instruction provided. 137 SlotIndex DefIdx; 138 assert(RM.OrigMI && "No defining instruction for remattable value"); 139 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 140 141 // If only cheap remats were requested, bail out early. 142 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 143 return false; 144 145 // Verify that all used registers are available with the same values. 146 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 147 return false; 148 149 return true; 150 } 151 152 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 153 MachineBasicBlock::iterator MI, 154 unsigned DestReg, 155 const Remat &RM, 156 const TargetRegisterInfo &tri, 157 bool Late) { 158 assert(RM.OrigMI && "Invalid remat"); 159 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); 160 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 161 // to false anyway in case the isDead flag of RM.OrigMI's dest register 162 // is true. 163 (*--MI).getOperand(0).setIsDead(false); 164 Rematted.insert(RM.ParentVNI); 165 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 166 } 167 168 void LiveRangeEdit::eraseVirtReg(unsigned Reg) { 169 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 170 LIS.removeInterval(Reg); 171 } 172 173 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 174 SmallVectorImpl<MachineInstr*> &Dead) { 175 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 176 177 // Check that there is a single def and a single use. 178 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 179 MachineInstr *MI = MO.getParent(); 180 if (MO.isDef()) { 181 if (DefMI && DefMI != MI) 182 return false; 183 if (!MI->canFoldAsLoad()) 184 return false; 185 DefMI = MI; 186 } else if (!MO.isUndef()) { 187 if (UseMI && UseMI != MI) 188 return false; 189 // FIXME: Targets don't know how to fold subreg uses. 190 if (MO.getSubReg()) 191 return false; 192 UseMI = MI; 193 } 194 } 195 if (!DefMI || !UseMI) 196 return false; 197 198 // Since we're moving the DefMI load, make sure we're not extending any live 199 // ranges. 200 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 201 LIS.getInstructionIndex(*UseMI))) 202 return false; 203 204 // We also need to make sure it is safe to move the load. 205 // Assume there are stores between DefMI and UseMI. 206 bool SawStore = true; 207 if (!DefMI->isSafeToMove(nullptr, SawStore)) 208 return false; 209 210 DEBUG(dbgs() << "Try to fold single def: " << *DefMI 211 << " into single use: " << *UseMI); 212 213 SmallVector<unsigned, 8> Ops; 214 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 215 return false; 216 217 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 218 if (!FoldMI) 219 return false; 220 DEBUG(dbgs() << " folded: " << *FoldMI); 221 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 222 UseMI->eraseFromParent(); 223 DefMI->addRegisterDead(LI->reg, nullptr); 224 Dead.push_back(DefMI); 225 ++NumDCEFoldedLoads; 226 return true; 227 } 228 229 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 230 const MachineOperand &MO) const { 231 const MachineInstr &MI = *MO.getParent(); 232 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 233 if (LI.Query(Idx).isKill()) 234 return true; 235 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 236 unsigned SubReg = MO.getSubReg(); 237 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 238 for (const LiveInterval::SubRange &S : LI.subranges()) { 239 if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill()) 240 return true; 241 } 242 return false; 243 } 244 245 /// Find all live intervals that need to shrink, then remove the instruction. 246 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, 247 AliasAnalysis *AA) { 248 assert(MI->allDefsAreDead() && "Def isn't really dead"); 249 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 250 251 // Never delete a bundled instruction. 252 if (MI->isBundled()) { 253 return; 254 } 255 // Never delete inline asm. 256 if (MI->isInlineAsm()) { 257 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 258 return; 259 } 260 261 // Use the same criteria as DeadMachineInstructionElim. 262 bool SawStore = false; 263 if (!MI->isSafeToMove(nullptr, SawStore)) { 264 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 265 return; 266 } 267 268 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 269 270 // Collect virtual registers to be erased after MI is gone. 271 SmallVector<unsigned, 8> RegsToErase; 272 bool ReadsPhysRegs = false; 273 bool isOrigDef = false; 274 unsigned Dest; 275 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef()) { 276 assert(MI->getDesc().getNumDefs() == 1); 277 Dest = MI->getOperand(0).getReg(); 278 unsigned Original = VRM->getOriginal(Dest); 279 LiveInterval &OrigLI = LIS.getInterval(Original); 280 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 281 // The original live-range may have been shrunk to 282 // an empty live-range. It happens when it is dead, but 283 // we still keep it around to be able to rematerialize 284 // other values that depend on it. 285 if (OrigVNI) 286 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 287 } 288 289 // Check for live intervals that may shrink 290 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 291 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 292 if (!MOI->isReg()) 293 continue; 294 unsigned Reg = MOI->getReg(); 295 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 296 // Check if MI reads any unreserved physregs. 297 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 298 ReadsPhysRegs = true; 299 else if (MOI->isDef()) 300 LIS.removePhysRegDefAt(Reg, Idx); 301 continue; 302 } 303 LiveInterval &LI = LIS.getInterval(Reg); 304 305 // Shrink read registers, unless it is likely to be expensive and 306 // unlikely to change anything. We typically don't want to shrink the 307 // PIC base register that has lots of uses everywhere. 308 // Always shrink COPY uses that probably come from live range splitting. 309 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || 310 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) 311 ToShrink.insert(&LI); 312 313 // Remove defined value. 314 if (MOI->isDef()) { 315 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 316 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 317 LIS.removeVRegDefAt(LI, Idx); 318 if (LI.empty()) 319 RegsToErase.push_back(Reg); 320 } 321 } 322 323 // Currently, we don't support DCE of physreg live ranges. If MI reads 324 // any unreserved physregs, don't erase the instruction, but turn it into 325 // a KILL instead. This way, the physreg live ranges don't end up 326 // dangling. 327 // FIXME: It would be better to have something like shrinkToUses() for 328 // physregs. That could potentially enable more DCE and it would free up 329 // the physreg. It would not happen often, though. 330 if (ReadsPhysRegs) { 331 MI->setDesc(TII.get(TargetOpcode::KILL)); 332 // Remove all operands that aren't physregs. 333 for (unsigned i = MI->getNumOperands(); i; --i) { 334 const MachineOperand &MO = MI->getOperand(i-1); 335 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 336 continue; 337 MI->RemoveOperand(i-1); 338 } 339 DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 340 } else { 341 // If the dest of MI is an original reg and MI is reMaterializable, 342 // don't delete the inst. Replace the dest with a new reg, and keep 343 // the inst for remat of other siblings. The inst is saved in 344 // LiveRangeEdit::DeadRemats and will be deleted after all the 345 // allocations of the func are done. 346 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) { 347 LiveInterval &NewLI = createEmptyIntervalFrom(Dest); 348 NewLI.removeEmptySubRanges(); 349 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); 350 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 351 pop_back(); 352 markDeadRemat(MI); 353 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 354 MI->substituteRegister(Dest, NewLI.reg, 0, TRI); 355 MI->getOperand(0).setIsDead(true); 356 } else { 357 if (TheDelegate) 358 TheDelegate->LRE_WillEraseInstruction(MI); 359 LIS.RemoveMachineInstrFromMaps(*MI); 360 MI->eraseFromParent(); 361 ++NumDCEDeleted; 362 } 363 } 364 365 // Erase any virtregs that are now empty and unused. There may be <undef> 366 // uses around. Keep the empty live range in that case. 367 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 368 unsigned Reg = RegsToErase[i]; 369 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 370 ToShrink.remove(&LIS.getInterval(Reg)); 371 eraseVirtReg(Reg); 372 } 373 } 374 } 375 376 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 377 ArrayRef<unsigned> RegsBeingSpilled, 378 AliasAnalysis *AA) { 379 ToShrinkSet ToShrink; 380 381 for (;;) { 382 // Erase all dead defs. 383 while (!Dead.empty()) 384 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); 385 386 if (ToShrink.empty()) 387 break; 388 389 // Shrink just one live interval. Then delete new dead defs. 390 LiveInterval *LI = ToShrink.back(); 391 ToShrink.pop_back(); 392 if (foldAsLoad(LI, Dead)) 393 continue; 394 unsigned VReg = LI->reg; 395 if (TheDelegate) 396 TheDelegate->LRE_WillShrinkVirtReg(VReg); 397 if (!LIS.shrinkToUses(LI, &Dead)) 398 continue; 399 400 // Don't create new intervals for a register being spilled. 401 // The new intervals would have to be spilled anyway so its not worth it. 402 // Also they currently aren't spilled so creating them and not spilling 403 // them results in incorrect code. 404 bool BeingSpilled = false; 405 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 406 if (VReg == RegsBeingSpilled[i]) { 407 BeingSpilled = true; 408 break; 409 } 410 } 411 412 if (BeingSpilled) continue; 413 414 // LI may have been separated, create new intervals. 415 LI->RenumberValues(); 416 SmallVector<LiveInterval*, 8> SplitLIs; 417 LIS.splitSeparateComponents(*LI, SplitLIs); 418 if (!SplitLIs.empty()) 419 ++NumFracRanges; 420 421 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; 422 for (const LiveInterval *SplitLI : SplitLIs) { 423 // If LI is an original interval that hasn't been split yet, make the new 424 // intervals their own originals instead of referring to LI. The original 425 // interval must contain all the split products, and LI doesn't. 426 if (Original != VReg && Original != 0) 427 VRM->setIsSplitFromReg(SplitLI->reg, Original); 428 if (TheDelegate) 429 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); 430 } 431 } 432 } 433 434 // Keep track of new virtual registers created via 435 // MachineRegisterInfo::createVirtualRegister. 436 void 437 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) 438 { 439 if (VRM) 440 VRM->grow(); 441 442 if (Parent && !Parent->isSpillable()) 443 LIS.getInterval(VReg).markNotSpillable(); 444 445 NewRegs.push_back(VReg); 446 } 447 448 void 449 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 450 const MachineLoopInfo &Loops, 451 const MachineBlockFrequencyInfo &MBFI) { 452 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); 453 for (unsigned I = 0, Size = size(); I < Size; ++I) { 454 LiveInterval &LI = LIS.getInterval(get(I)); 455 if (MRI.recomputeRegClass(LI.reg)) 456 DEBUG({ 457 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 458 dbgs() << "Inflated " << PrintReg(LI.reg) << " to " 459 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; 460 }); 461 VRAI.calculateSpillWeightAndHint(LI); 462 } 463 } 464