1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CodeView.h" 17 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 18 #include "llvm/DebugInfo/CodeView/Line.h" 19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 20 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 21 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 22 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCSectionCOFF.h" 25 #include "llvm/MC/MCSymbol.h" 26 #include "llvm/Support/COFF.h" 27 #include "llvm/Support/ScopedPrinter.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetRegisterInfo.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 32 using namespace llvm; 33 using namespace llvm::codeview; 34 35 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 36 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 37 // If module doesn't have named metadata anchors or COFF debug section 38 // is not available, skip any debug info related stuff. 39 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 40 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 41 Asm = nullptr; 42 return; 43 } 44 45 // Tell MMI that we have debug info. 46 MMI->setDebugInfoAvailability(true); 47 } 48 49 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 50 std::string &Filepath = FileToFilepathMap[File]; 51 if (!Filepath.empty()) 52 return Filepath; 53 54 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 55 56 // Clang emits directory and relative filename info into the IR, but CodeView 57 // operates on full paths. We could change Clang to emit full paths too, but 58 // that would increase the IR size and probably not needed for other users. 59 // For now, just concatenate and canonicalize the path here. 60 if (Filename.find(':') == 1) 61 Filepath = Filename; 62 else 63 Filepath = (Dir + "\\" + Filename).str(); 64 65 // Canonicalize the path. We have to do it textually because we may no longer 66 // have access the file in the filesystem. 67 // First, replace all slashes with backslashes. 68 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 69 70 // Remove all "\.\" with "\". 71 size_t Cursor = 0; 72 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 73 Filepath.erase(Cursor, 2); 74 75 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 76 // path should be well-formatted, e.g. start with a drive letter, etc. 77 Cursor = 0; 78 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 79 // Something's wrong if the path starts with "\..\", abort. 80 if (Cursor == 0) 81 break; 82 83 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 84 if (PrevSlash == std::string::npos) 85 // Something's wrong, abort. 86 break; 87 88 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 89 // The next ".." might be following the one we've just erased. 90 Cursor = PrevSlash; 91 } 92 93 // Remove all duplicate backslashes. 94 Cursor = 0; 95 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 96 Filepath.erase(Cursor, 1); 97 98 return Filepath; 99 } 100 101 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 102 unsigned NextId = FileIdMap.size() + 1; 103 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 104 if (Insertion.second) { 105 // We have to compute the full filepath and emit a .cv_file directive. 106 StringRef FullPath = getFullFilepath(F); 107 NextId = OS.EmitCVFileDirective(NextId, FullPath); 108 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 109 } 110 return Insertion.first->second; 111 } 112 113 CodeViewDebug::InlineSite & 114 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 115 const DISubprogram *Inlinee) { 116 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 117 InlineSite *Site = &SiteInsertion.first->second; 118 if (SiteInsertion.second) { 119 Site->SiteFuncId = NextFuncId++; 120 Site->Inlinee = Inlinee; 121 InlinedSubprograms.insert(Inlinee); 122 getFuncIdForSubprogram(Inlinee); 123 } 124 return *Site; 125 } 126 127 static const DISubprogram *getQualifiedNameComponents( 128 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 129 const DISubprogram *ClosestSubprogram = nullptr; 130 while (Scope != nullptr) { 131 if (ClosestSubprogram == nullptr) 132 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 133 StringRef ScopeName = Scope->getName(); 134 if (!ScopeName.empty()) 135 QualifiedNameComponents.push_back(ScopeName); 136 Scope = Scope->getScope().resolve(); 137 } 138 return ClosestSubprogram; 139 } 140 141 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 142 StringRef TypeName) { 143 std::string FullyQualifiedName; 144 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 145 FullyQualifiedName.append(QualifiedNameComponent); 146 FullyQualifiedName.append("::"); 147 } 148 FullyQualifiedName.append(TypeName); 149 return FullyQualifiedName; 150 } 151 152 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 153 SmallVector<StringRef, 5> QualifiedNameComponents; 154 getQualifiedNameComponents(Scope, QualifiedNameComponents); 155 return getQualifiedName(QualifiedNameComponents, Name); 156 } 157 158 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 159 // No scope means global scope and that uses the zero index. 160 if (!Scope || isa<DIFile>(Scope)) 161 return TypeIndex(); 162 163 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 164 165 // Check if we've already translated this scope. 166 auto I = TypeIndices.find({Scope, nullptr}); 167 if (I != TypeIndices.end()) 168 return I->second; 169 170 // Build the fully qualified name of the scope. 171 std::string ScopeName = 172 getFullyQualifiedName(Scope->getScope().resolve(), Scope->getName()); 173 TypeIndex TI = 174 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 175 return recordTypeIndexForDINode(Scope, TI); 176 } 177 178 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 179 // It's possible to ask for the FuncId of a function which doesn't have a 180 // subprogram: inlining a function with debug info into a function with none. 181 if (!SP) 182 return TypeIndex::None(); 183 184 // Check if we've already translated this subprogram. 185 auto I = TypeIndices.find({SP, nullptr}); 186 if (I != TypeIndices.end()) 187 return I->second; 188 189 // The display name includes function template arguments. Drop them to match 190 // MSVC. 191 StringRef DisplayName = SP->getDisplayName().split('<').first; 192 193 const DIScope *Scope = SP->getScope().resolve(); 194 TypeIndex TI; 195 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 196 // If the scope is a DICompositeType, then this must be a method. Member 197 // function types take some special handling, and require access to the 198 // subprogram. 199 TypeIndex ClassType = getTypeIndex(Class); 200 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 201 DisplayName); 202 TI = TypeTable.writeMemberFuncId(MFuncId); 203 } else { 204 // Otherwise, this must be a free function. 205 TypeIndex ParentScope = getScopeIndex(Scope); 206 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 207 TI = TypeTable.writeFuncId(FuncId); 208 } 209 210 return recordTypeIndexForDINode(SP, TI); 211 } 212 213 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 214 const DICompositeType *Class) { 215 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 216 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 217 auto I = TypeIndices.find({SP, nullptr}); 218 if (I != TypeIndices.end()) 219 return I->second; 220 221 // FIXME: Get the ThisAdjustment off of SP when it is available. 222 TypeIndex TI = 223 lowerTypeMemberFunction(SP->getType(), Class, /*ThisAdjustment=*/0); 224 225 return recordTypeIndexForDINode(SP, TI, Class); 226 } 227 228 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, 229 const DIType *ClassTy) { 230 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 231 (void)InsertResult; 232 assert(InsertResult.second && "DINode was already assigned a type index"); 233 return TI; 234 } 235 236 unsigned CodeViewDebug::getPointerSizeInBytes() { 237 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 238 } 239 240 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 241 const DILocation *InlinedAt) { 242 if (InlinedAt) { 243 // This variable was inlined. Associate it with the InlineSite. 244 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 245 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 246 Site.InlinedLocals.emplace_back(Var); 247 } else { 248 // This variable goes in the main ProcSym. 249 CurFn->Locals.emplace_back(Var); 250 } 251 } 252 253 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 254 const DILocation *Loc) { 255 auto B = Locs.begin(), E = Locs.end(); 256 if (std::find(B, E, Loc) == E) 257 Locs.push_back(Loc); 258 } 259 260 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 261 const MachineFunction *MF) { 262 // Skip this instruction if it has the same location as the previous one. 263 if (DL == CurFn->LastLoc) 264 return; 265 266 const DIScope *Scope = DL.get()->getScope(); 267 if (!Scope) 268 return; 269 270 // Skip this line if it is longer than the maximum we can record. 271 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 272 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 273 LI.isNeverStepInto()) 274 return; 275 276 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 277 if (CI.getStartColumn() != DL.getCol()) 278 return; 279 280 if (!CurFn->HaveLineInfo) 281 CurFn->HaveLineInfo = true; 282 unsigned FileId = 0; 283 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 284 FileId = CurFn->LastFileId; 285 else 286 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 287 CurFn->LastLoc = DL; 288 289 unsigned FuncId = CurFn->FuncId; 290 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 291 const DILocation *Loc = DL.get(); 292 293 // If this location was actually inlined from somewhere else, give it the ID 294 // of the inline call site. 295 FuncId = 296 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 297 298 // Ensure we have links in the tree of inline call sites. 299 bool FirstLoc = true; 300 while ((SiteLoc = Loc->getInlinedAt())) { 301 InlineSite &Site = 302 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 303 if (!FirstLoc) 304 addLocIfNotPresent(Site.ChildSites, Loc); 305 FirstLoc = false; 306 Loc = SiteLoc; 307 } 308 addLocIfNotPresent(CurFn->ChildSites, Loc); 309 } 310 311 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 312 /*PrologueEnd=*/false, 313 /*IsStmt=*/false, DL->getFilename()); 314 } 315 316 void CodeViewDebug::emitCodeViewMagicVersion() { 317 OS.EmitValueToAlignment(4); 318 OS.AddComment("Debug section magic"); 319 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 320 } 321 322 void CodeViewDebug::endModule() { 323 if (!Asm || !MMI->hasDebugInfo()) 324 return; 325 326 assert(Asm != nullptr); 327 328 // The COFF .debug$S section consists of several subsections, each starting 329 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 330 // of the payload followed by the payload itself. The subsections are 4-byte 331 // aligned. 332 333 // Use the generic .debug$S section, and make a subsection for all the inlined 334 // subprograms. 335 switchToDebugSectionForSymbol(nullptr); 336 emitInlineeLinesSubsection(); 337 338 // Emit per-function debug information. 339 for (auto &P : FnDebugInfo) 340 if (!P.first->isDeclarationForLinker()) 341 emitDebugInfoForFunction(P.first, P.second); 342 343 // Emit global variable debug information. 344 setCurrentSubprogram(nullptr); 345 emitDebugInfoForGlobals(); 346 347 // Emit retained types. 348 emitDebugInfoForRetainedTypes(); 349 350 // Switch back to the generic .debug$S section after potentially processing 351 // comdat symbol sections. 352 switchToDebugSectionForSymbol(nullptr); 353 354 // Emit UDT records for any types used by global variables. 355 if (!GlobalUDTs.empty()) { 356 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 357 emitDebugInfoForUDTs(GlobalUDTs); 358 endCVSubsection(SymbolsEnd); 359 } 360 361 // This subsection holds a file index to offset in string table table. 362 OS.AddComment("File index to string table offset subsection"); 363 OS.EmitCVFileChecksumsDirective(); 364 365 // This subsection holds the string table. 366 OS.AddComment("String table"); 367 OS.EmitCVStringTableDirective(); 368 369 // Emit type information last, so that any types we translate while emitting 370 // function info are included. 371 emitTypeInformation(); 372 373 clear(); 374 } 375 376 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 377 // Microsoft's linker seems to have trouble with symbol names longer than 378 // 0xffd8 bytes. 379 S = S.substr(0, 0xffd8); 380 SmallString<32> NullTerminatedString(S); 381 NullTerminatedString.push_back('\0'); 382 OS.EmitBytes(NullTerminatedString); 383 } 384 385 void CodeViewDebug::emitTypeInformation() { 386 // Do nothing if we have no debug info or if no non-trivial types were emitted 387 // to TypeTable during codegen. 388 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 389 if (!CU_Nodes) 390 return; 391 if (TypeTable.empty()) 392 return; 393 394 // Start the .debug$T section with 0x4. 395 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 396 emitCodeViewMagicVersion(); 397 398 SmallString<8> CommentPrefix; 399 if (OS.isVerboseAsm()) { 400 CommentPrefix += '\t'; 401 CommentPrefix += Asm->MAI->getCommentString(); 402 CommentPrefix += ' '; 403 } 404 405 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 406 TypeTable.ForEachRecord( 407 [&](TypeIndex Index, StringRef Record) { 408 if (OS.isVerboseAsm()) { 409 // Emit a block comment describing the type record for readability. 410 SmallString<512> CommentBlock; 411 raw_svector_ostream CommentOS(CommentBlock); 412 ScopedPrinter SP(CommentOS); 413 SP.setPrefix(CommentPrefix); 414 CVTD.setPrinter(&SP); 415 Error EC = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 416 assert(!EC && "produced malformed type record"); 417 consumeError(std::move(EC)); 418 // emitRawComment will insert its own tab and comment string before 419 // the first line, so strip off our first one. It also prints its own 420 // newline. 421 OS.emitRawComment( 422 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 423 } 424 OS.EmitBinaryData(Record); 425 }); 426 } 427 428 void CodeViewDebug::emitInlineeLinesSubsection() { 429 if (InlinedSubprograms.empty()) 430 return; 431 432 OS.AddComment("Inlinee lines subsection"); 433 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 434 435 // We don't provide any extra file info. 436 // FIXME: Find out if debuggers use this info. 437 OS.AddComment("Inlinee lines signature"); 438 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 439 440 for (const DISubprogram *SP : InlinedSubprograms) { 441 assert(TypeIndices.count({SP, nullptr})); 442 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 443 444 OS.AddBlankLine(); 445 unsigned FileId = maybeRecordFile(SP->getFile()); 446 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 447 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 448 OS.AddBlankLine(); 449 // The filechecksum table uses 8 byte entries for now, and file ids start at 450 // 1. 451 unsigned FileOffset = (FileId - 1) * 8; 452 OS.AddComment("Type index of inlined function"); 453 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 454 OS.AddComment("Offset into filechecksum table"); 455 OS.EmitIntValue(FileOffset, 4); 456 OS.AddComment("Starting line number"); 457 OS.EmitIntValue(SP->getLine(), 4); 458 } 459 460 endCVSubsection(InlineEnd); 461 } 462 463 void CodeViewDebug::collectInlineSiteChildren( 464 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 465 const InlineSite &Site) { 466 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 467 auto I = FI.InlineSites.find(ChildSiteLoc); 468 const InlineSite &ChildSite = I->second; 469 Children.push_back(ChildSite.SiteFuncId); 470 collectInlineSiteChildren(Children, FI, ChildSite); 471 } 472 } 473 474 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 475 const DILocation *InlinedAt, 476 const InlineSite &Site) { 477 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 478 *InlineEnd = MMI->getContext().createTempSymbol(); 479 480 assert(TypeIndices.count({Site.Inlinee, nullptr})); 481 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 482 483 // SymbolRecord 484 OS.AddComment("Record length"); 485 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 486 OS.EmitLabel(InlineBegin); 487 OS.AddComment("Record kind: S_INLINESITE"); 488 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 489 490 OS.AddComment("PtrParent"); 491 OS.EmitIntValue(0, 4); 492 OS.AddComment("PtrEnd"); 493 OS.EmitIntValue(0, 4); 494 OS.AddComment("Inlinee type index"); 495 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 496 497 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 498 unsigned StartLineNum = Site.Inlinee->getLine(); 499 SmallVector<unsigned, 3> SecondaryFuncIds; 500 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 501 502 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 503 FI.Begin, FI.End, SecondaryFuncIds); 504 505 OS.EmitLabel(InlineEnd); 506 507 emitLocalVariableList(Site.InlinedLocals); 508 509 // Recurse on child inlined call sites before closing the scope. 510 for (const DILocation *ChildSite : Site.ChildSites) { 511 auto I = FI.InlineSites.find(ChildSite); 512 assert(I != FI.InlineSites.end() && 513 "child site not in function inline site map"); 514 emitInlinedCallSite(FI, ChildSite, I->second); 515 } 516 517 // Close the scope. 518 OS.AddComment("Record length"); 519 OS.EmitIntValue(2, 2); // RecordLength 520 OS.AddComment("Record kind: S_INLINESITE_END"); 521 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 522 } 523 524 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 525 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 526 // comdat key. A section may be comdat because of -ffunction-sections or 527 // because it is comdat in the IR. 528 MCSectionCOFF *GVSec = 529 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 530 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 531 532 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 533 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 534 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 535 536 OS.SwitchSection(DebugSec); 537 538 // Emit the magic version number if this is the first time we've switched to 539 // this section. 540 if (ComdatDebugSections.insert(DebugSec).second) 541 emitCodeViewMagicVersion(); 542 } 543 544 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 545 FunctionInfo &FI) { 546 // For each function there is a separate subsection 547 // which holds the PC to file:line table. 548 const MCSymbol *Fn = Asm->getSymbol(GV); 549 assert(Fn); 550 551 // Switch to the to a comdat section, if appropriate. 552 switchToDebugSectionForSymbol(Fn); 553 554 std::string FuncName; 555 auto *SP = GV->getSubprogram(); 556 setCurrentSubprogram(SP); 557 558 // If we have a display name, build the fully qualified name by walking the 559 // chain of scopes. 560 if (SP != nullptr && !SP->getDisplayName().empty()) 561 FuncName = 562 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 563 564 // If our DISubprogram name is empty, use the mangled name. 565 if (FuncName.empty()) 566 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 567 568 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 569 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 570 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 571 { 572 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 573 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 574 OS.AddComment("Record length"); 575 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 576 OS.EmitLabel(ProcRecordBegin); 577 578 OS.AddComment("Record kind: S_GPROC32_ID"); 579 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 580 581 // These fields are filled in by tools like CVPACK which run after the fact. 582 OS.AddComment("PtrParent"); 583 OS.EmitIntValue(0, 4); 584 OS.AddComment("PtrEnd"); 585 OS.EmitIntValue(0, 4); 586 OS.AddComment("PtrNext"); 587 OS.EmitIntValue(0, 4); 588 // This is the important bit that tells the debugger where the function 589 // code is located and what's its size: 590 OS.AddComment("Code size"); 591 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 592 OS.AddComment("Offset after prologue"); 593 OS.EmitIntValue(0, 4); 594 OS.AddComment("Offset before epilogue"); 595 OS.EmitIntValue(0, 4); 596 OS.AddComment("Function type index"); 597 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 598 OS.AddComment("Function section relative address"); 599 OS.EmitCOFFSecRel32(Fn); 600 OS.AddComment("Function section index"); 601 OS.EmitCOFFSectionIndex(Fn); 602 OS.AddComment("Flags"); 603 OS.EmitIntValue(0, 1); 604 // Emit the function display name as a null-terminated string. 605 OS.AddComment("Function name"); 606 // Truncate the name so we won't overflow the record length field. 607 emitNullTerminatedSymbolName(OS, FuncName); 608 OS.EmitLabel(ProcRecordEnd); 609 610 emitLocalVariableList(FI.Locals); 611 612 // Emit inlined call site information. Only emit functions inlined directly 613 // into the parent function. We'll emit the other sites recursively as part 614 // of their parent inline site. 615 for (const DILocation *InlinedAt : FI.ChildSites) { 616 auto I = FI.InlineSites.find(InlinedAt); 617 assert(I != FI.InlineSites.end() && 618 "child site not in function inline site map"); 619 emitInlinedCallSite(FI, InlinedAt, I->second); 620 } 621 622 if (SP != nullptr) 623 emitDebugInfoForUDTs(LocalUDTs); 624 625 // We're done with this function. 626 OS.AddComment("Record length"); 627 OS.EmitIntValue(0x0002, 2); 628 OS.AddComment("Record kind: S_PROC_ID_END"); 629 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 630 } 631 endCVSubsection(SymbolsEnd); 632 633 // We have an assembler directive that takes care of the whole line table. 634 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 635 } 636 637 CodeViewDebug::LocalVarDefRange 638 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 639 LocalVarDefRange DR; 640 DR.InMemory = -1; 641 DR.DataOffset = Offset; 642 assert(DR.DataOffset == Offset && "truncation"); 643 DR.StructOffset = 0; 644 DR.CVRegister = CVRegister; 645 return DR; 646 } 647 648 CodeViewDebug::LocalVarDefRange 649 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 650 LocalVarDefRange DR; 651 DR.InMemory = 0; 652 DR.DataOffset = 0; 653 DR.StructOffset = 0; 654 DR.CVRegister = CVRegister; 655 return DR; 656 } 657 658 void CodeViewDebug::collectVariableInfoFromMMITable( 659 DenseSet<InlinedVariable> &Processed) { 660 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 661 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 662 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 663 664 for (const MachineModuleInfo::VariableDbgInfo &VI : 665 MMI->getVariableDbgInfo()) { 666 if (!VI.Var) 667 continue; 668 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 669 "Expected inlined-at fields to agree"); 670 671 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 672 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 673 674 // If variable scope is not found then skip this variable. 675 if (!Scope) 676 continue; 677 678 // Get the frame register used and the offset. 679 unsigned FrameReg = 0; 680 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 681 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 682 683 // Calculate the label ranges. 684 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 685 for (const InsnRange &Range : Scope->getRanges()) { 686 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 687 const MCSymbol *End = getLabelAfterInsn(Range.second); 688 End = End ? End : Asm->getFunctionEnd(); 689 DefRange.Ranges.emplace_back(Begin, End); 690 } 691 692 LocalVariable Var; 693 Var.DIVar = VI.Var; 694 Var.DefRanges.emplace_back(std::move(DefRange)); 695 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 696 } 697 } 698 699 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 700 DenseSet<InlinedVariable> Processed; 701 // Grab the variable info that was squirreled away in the MMI side-table. 702 collectVariableInfoFromMMITable(Processed); 703 704 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 705 706 for (const auto &I : DbgValues) { 707 InlinedVariable IV = I.first; 708 if (Processed.count(IV)) 709 continue; 710 const DILocalVariable *DIVar = IV.first; 711 const DILocation *InlinedAt = IV.second; 712 713 // Instruction ranges, specifying where IV is accessible. 714 const auto &Ranges = I.second; 715 716 LexicalScope *Scope = nullptr; 717 if (InlinedAt) 718 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 719 else 720 Scope = LScopes.findLexicalScope(DIVar->getScope()); 721 // If variable scope is not found then skip this variable. 722 if (!Scope) 723 continue; 724 725 LocalVariable Var; 726 Var.DIVar = DIVar; 727 728 // Calculate the definition ranges. 729 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 730 const InsnRange &Range = *I; 731 const MachineInstr *DVInst = Range.first; 732 assert(DVInst->isDebugValue() && "Invalid History entry"); 733 const DIExpression *DIExpr = DVInst->getDebugExpression(); 734 735 // Bail if there is a complex DWARF expression for now. 736 if (DIExpr && DIExpr->getNumElements() > 0) 737 continue; 738 739 // Bail if operand 0 is not a valid register. This means the variable is a 740 // simple constant, or is described by a complex expression. 741 // FIXME: Find a way to represent constant variables, since they are 742 // relatively common. 743 unsigned Reg = 744 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 745 if (Reg == 0) 746 continue; 747 748 // Handle the two cases we can handle: indirect in memory and in register. 749 bool IsIndirect = DVInst->getOperand(1).isImm(); 750 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 751 { 752 LocalVarDefRange DefRange; 753 if (IsIndirect) { 754 int64_t Offset = DVInst->getOperand(1).getImm(); 755 DefRange = createDefRangeMem(CVReg, Offset); 756 } else { 757 DefRange = createDefRangeReg(CVReg); 758 } 759 if (Var.DefRanges.empty() || 760 Var.DefRanges.back().isDifferentLocation(DefRange)) { 761 Var.DefRanges.emplace_back(std::move(DefRange)); 762 } 763 } 764 765 // Compute the label range. 766 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 767 const MCSymbol *End = getLabelAfterInsn(Range.second); 768 if (!End) { 769 if (std::next(I) != E) 770 End = getLabelBeforeInsn(std::next(I)->first); 771 else 772 End = Asm->getFunctionEnd(); 773 } 774 775 // If the last range end is our begin, just extend the last range. 776 // Otherwise make a new range. 777 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 778 Var.DefRanges.back().Ranges; 779 if (!Ranges.empty() && Ranges.back().second == Begin) 780 Ranges.back().second = End; 781 else 782 Ranges.emplace_back(Begin, End); 783 784 // FIXME: Do more range combining. 785 } 786 787 recordLocalVariable(std::move(Var), InlinedAt); 788 } 789 } 790 791 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 792 assert(!CurFn && "Can't process two functions at once!"); 793 794 if (!Asm || !MMI->hasDebugInfo()) 795 return; 796 797 DebugHandlerBase::beginFunction(MF); 798 799 const Function *GV = MF->getFunction(); 800 assert(FnDebugInfo.count(GV) == false); 801 CurFn = &FnDebugInfo[GV]; 802 CurFn->FuncId = NextFuncId++; 803 CurFn->Begin = Asm->getFunctionBegin(); 804 805 // Find the end of the function prolog. First known non-DBG_VALUE and 806 // non-frame setup location marks the beginning of the function body. 807 // FIXME: is there a simpler a way to do this? Can we just search 808 // for the first instruction of the function, not the last of the prolog? 809 DebugLoc PrologEndLoc; 810 bool EmptyPrologue = true; 811 for (const auto &MBB : *MF) { 812 for (const auto &MI : MBB) { 813 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 814 MI.getDebugLoc()) { 815 PrologEndLoc = MI.getDebugLoc(); 816 break; 817 } else if (!MI.isDebugValue()) { 818 EmptyPrologue = false; 819 } 820 } 821 } 822 823 // Record beginning of function if we have a non-empty prologue. 824 if (PrologEndLoc && !EmptyPrologue) { 825 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 826 maybeRecordLocation(FnStartDL, MF); 827 } 828 } 829 830 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 831 SmallVector<StringRef, 5> QualifiedNameComponents; 832 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 833 Ty->getScope().resolve(), QualifiedNameComponents); 834 835 std::string FullyQualifiedName = 836 getQualifiedName(QualifiedNameComponents, Ty->getName()); 837 838 if (ClosestSubprogram == nullptr) 839 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 840 else if (ClosestSubprogram == CurrentSubprogram) 841 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 842 843 // TODO: What if the ClosestSubprogram is neither null or the current 844 // subprogram? Currently, the UDT just gets dropped on the floor. 845 // 846 // The current behavior is not desirable. To get maximal fidelity, we would 847 // need to perform all type translation before beginning emission of .debug$S 848 // and then make LocalUDTs a member of FunctionInfo 849 } 850 851 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 852 // Generic dispatch for lowering an unknown type. 853 switch (Ty->getTag()) { 854 case dwarf::DW_TAG_array_type: 855 return lowerTypeArray(cast<DICompositeType>(Ty)); 856 case dwarf::DW_TAG_typedef: 857 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 858 case dwarf::DW_TAG_base_type: 859 return lowerTypeBasic(cast<DIBasicType>(Ty)); 860 case dwarf::DW_TAG_pointer_type: 861 case dwarf::DW_TAG_reference_type: 862 case dwarf::DW_TAG_rvalue_reference_type: 863 return lowerTypePointer(cast<DIDerivedType>(Ty)); 864 case dwarf::DW_TAG_ptr_to_member_type: 865 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 866 case dwarf::DW_TAG_const_type: 867 case dwarf::DW_TAG_volatile_type: 868 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 869 case dwarf::DW_TAG_subroutine_type: 870 if (ClassTy) { 871 // The member function type of a member function pointer has no 872 // ThisAdjustment. 873 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 874 /*ThisAdjustment=*/0); 875 } 876 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 877 case dwarf::DW_TAG_enumeration_type: 878 return lowerTypeEnum(cast<DICompositeType>(Ty)); 879 case dwarf::DW_TAG_class_type: 880 case dwarf::DW_TAG_structure_type: 881 return lowerTypeClass(cast<DICompositeType>(Ty)); 882 case dwarf::DW_TAG_union_type: 883 return lowerTypeUnion(cast<DICompositeType>(Ty)); 884 default: 885 // Use the null type index. 886 return TypeIndex(); 887 } 888 } 889 890 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 891 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 892 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 893 StringRef TypeName = Ty->getName(); 894 895 addToUDTs(Ty, UnderlyingTypeIndex); 896 897 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 898 TypeName == "HRESULT") 899 return TypeIndex(SimpleTypeKind::HResult); 900 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 901 TypeName == "wchar_t") 902 return TypeIndex(SimpleTypeKind::WideCharacter); 903 904 return UnderlyingTypeIndex; 905 } 906 907 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 908 DITypeRef ElementTypeRef = Ty->getBaseType(); 909 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 910 // IndexType is size_t, which depends on the bitness of the target. 911 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 912 ? TypeIndex(SimpleTypeKind::UInt64Quad) 913 : TypeIndex(SimpleTypeKind::UInt32Long); 914 uint64_t Size = Ty->getSizeInBits() / 8; 915 assert(ElementTypeRef.resolve()); 916 uint64_t ElementSize = ElementTypeRef.resolve()->getSizeInBits() / 8; 917 918 bool UndefinedSubrange = false; 919 920 // FIXME: 921 // There is a bug in the front-end where an array of a structure, which was 922 // declared as incomplete structure first, ends up not getting a size assigned 923 // to it. (PR28303) 924 // Example: 925 // struct A(*p)[3]; 926 // struct A { int f; } a[3]; 927 // 928 // This needs to be fixed in the front-end, but in the meantime we don't want 929 // to trigger an assertion because of this. 930 if (Ty->getSizeInBits() == 0) { 931 UndefinedSubrange = true; 932 } 933 934 // Add subranges to array type. 935 DINodeArray Elements = Ty->getElements(); 936 for (int i = Elements.size() - 1; i >= 0; --i) { 937 const DINode *Element = Elements[i]; 938 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 939 940 const DISubrange *Subrange = cast<DISubrange>(Element); 941 assert(Subrange->getLowerBound() == 0 && 942 "codeview doesn't support subranges with lower bounds"); 943 int64_t Count = Subrange->getCount(); 944 945 // Variable Length Array (VLA) has Count equal to '-1'. 946 // Replace with Count '1', assume it is the minimum VLA length. 947 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 948 if (Count == -1) { 949 Count = 1; 950 UndefinedSubrange = true; 951 } 952 953 StringRef Name = (i == 0) ? Ty->getName() : ""; 954 // Update the element size and element type index for subsequent subranges. 955 ElementSize *= Count; 956 ElementTypeIndex = TypeTable.writeArray( 957 ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name)); 958 } 959 960 (void)UndefinedSubrange; 961 assert(UndefinedSubrange || ElementSize == Size); 962 963 return ElementTypeIndex; 964 } 965 966 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 967 TypeIndex Index; 968 dwarf::TypeKind Kind; 969 uint32_t ByteSize; 970 971 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 972 ByteSize = Ty->getSizeInBits() / 8; 973 974 SimpleTypeKind STK = SimpleTypeKind::None; 975 switch (Kind) { 976 case dwarf::DW_ATE_address: 977 // FIXME: Translate 978 break; 979 case dwarf::DW_ATE_boolean: 980 switch (ByteSize) { 981 case 1: STK = SimpleTypeKind::Boolean8; break; 982 case 2: STK = SimpleTypeKind::Boolean16; break; 983 case 4: STK = SimpleTypeKind::Boolean32; break; 984 case 8: STK = SimpleTypeKind::Boolean64; break; 985 case 16: STK = SimpleTypeKind::Boolean128; break; 986 } 987 break; 988 case dwarf::DW_ATE_complex_float: 989 switch (ByteSize) { 990 case 2: STK = SimpleTypeKind::Complex16; break; 991 case 4: STK = SimpleTypeKind::Complex32; break; 992 case 8: STK = SimpleTypeKind::Complex64; break; 993 case 10: STK = SimpleTypeKind::Complex80; break; 994 case 16: STK = SimpleTypeKind::Complex128; break; 995 } 996 break; 997 case dwarf::DW_ATE_float: 998 switch (ByteSize) { 999 case 2: STK = SimpleTypeKind::Float16; break; 1000 case 4: STK = SimpleTypeKind::Float32; break; 1001 case 6: STK = SimpleTypeKind::Float48; break; 1002 case 8: STK = SimpleTypeKind::Float64; break; 1003 case 10: STK = SimpleTypeKind::Float80; break; 1004 case 16: STK = SimpleTypeKind::Float128; break; 1005 } 1006 break; 1007 case dwarf::DW_ATE_signed: 1008 switch (ByteSize) { 1009 case 1: STK = SimpleTypeKind::SByte; break; 1010 case 2: STK = SimpleTypeKind::Int16Short; break; 1011 case 4: STK = SimpleTypeKind::Int32; break; 1012 case 8: STK = SimpleTypeKind::Int64Quad; break; 1013 case 16: STK = SimpleTypeKind::Int128Oct; break; 1014 } 1015 break; 1016 case dwarf::DW_ATE_unsigned: 1017 switch (ByteSize) { 1018 case 1: STK = SimpleTypeKind::Byte; break; 1019 case 2: STK = SimpleTypeKind::UInt16Short; break; 1020 case 4: STK = SimpleTypeKind::UInt32; break; 1021 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1022 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1023 } 1024 break; 1025 case dwarf::DW_ATE_UTF: 1026 switch (ByteSize) { 1027 case 2: STK = SimpleTypeKind::Character16; break; 1028 case 4: STK = SimpleTypeKind::Character32; break; 1029 } 1030 break; 1031 case dwarf::DW_ATE_signed_char: 1032 if (ByteSize == 1) 1033 STK = SimpleTypeKind::SignedCharacter; 1034 break; 1035 case dwarf::DW_ATE_unsigned_char: 1036 if (ByteSize == 1) 1037 STK = SimpleTypeKind::UnsignedCharacter; 1038 break; 1039 default: 1040 break; 1041 } 1042 1043 // Apply some fixups based on the source-level type name. 1044 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1045 STK = SimpleTypeKind::Int32Long; 1046 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1047 STK = SimpleTypeKind::UInt32Long; 1048 if (STK == SimpleTypeKind::UInt16Short && 1049 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1050 STK = SimpleTypeKind::WideCharacter; 1051 if ((STK == SimpleTypeKind::SignedCharacter || 1052 STK == SimpleTypeKind::UnsignedCharacter) && 1053 Ty->getName() == "char") 1054 STK = SimpleTypeKind::NarrowCharacter; 1055 1056 return TypeIndex(STK); 1057 } 1058 1059 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1060 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1061 1062 // While processing the type being pointed to it is possible we already 1063 // created this pointer type. If so, we check here and return the existing 1064 // pointer type. 1065 auto I = TypeIndices.find({Ty, nullptr}); 1066 if (I != TypeIndices.end()) 1067 return I->second; 1068 1069 // Pointers to simple types can use SimpleTypeMode, rather than having a 1070 // dedicated pointer type record. 1071 if (PointeeTI.isSimple() && 1072 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1073 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1074 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1075 ? SimpleTypeMode::NearPointer64 1076 : SimpleTypeMode::NearPointer32; 1077 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1078 } 1079 1080 PointerKind PK = 1081 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1082 PointerMode PM = PointerMode::Pointer; 1083 switch (Ty->getTag()) { 1084 default: llvm_unreachable("not a pointer tag type"); 1085 case dwarf::DW_TAG_pointer_type: 1086 PM = PointerMode::Pointer; 1087 break; 1088 case dwarf::DW_TAG_reference_type: 1089 PM = PointerMode::LValueReference; 1090 break; 1091 case dwarf::DW_TAG_rvalue_reference_type: 1092 PM = PointerMode::RValueReference; 1093 break; 1094 } 1095 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1096 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1097 // do. 1098 PointerOptions PO = PointerOptions::None; 1099 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1100 return TypeTable.writePointer(PR); 1101 } 1102 1103 static PointerToMemberRepresentation 1104 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1105 // SizeInBytes being zero generally implies that the member pointer type was 1106 // incomplete, which can happen if it is part of a function prototype. In this 1107 // case, use the unknown model instead of the general model. 1108 if (IsPMF) { 1109 switch (Flags & DINode::FlagPtrToMemberRep) { 1110 case 0: 1111 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1112 : PointerToMemberRepresentation::GeneralFunction; 1113 case DINode::FlagSingleInheritance: 1114 return PointerToMemberRepresentation::SingleInheritanceFunction; 1115 case DINode::FlagMultipleInheritance: 1116 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1117 case DINode::FlagVirtualInheritance: 1118 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1119 } 1120 } else { 1121 switch (Flags & DINode::FlagPtrToMemberRep) { 1122 case 0: 1123 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1124 : PointerToMemberRepresentation::GeneralData; 1125 case DINode::FlagSingleInheritance: 1126 return PointerToMemberRepresentation::SingleInheritanceData; 1127 case DINode::FlagMultipleInheritance: 1128 return PointerToMemberRepresentation::MultipleInheritanceData; 1129 case DINode::FlagVirtualInheritance: 1130 return PointerToMemberRepresentation::VirtualInheritanceData; 1131 } 1132 } 1133 llvm_unreachable("invalid ptr to member representation"); 1134 } 1135 1136 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1137 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1138 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1139 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1140 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1141 : PointerKind::Near32; 1142 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1143 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1144 : PointerMode::PointerToDataMember; 1145 PointerOptions PO = PointerOptions::None; // FIXME 1146 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1147 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1148 MemberPointerInfo MPI( 1149 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1150 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1151 return TypeTable.writePointer(PR); 1152 } 1153 1154 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1155 /// have a translation, use the NearC convention. 1156 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1157 switch (DwarfCC) { 1158 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1159 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1160 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1161 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1162 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1163 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1164 } 1165 return CallingConvention::NearC; 1166 } 1167 1168 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1169 ModifierOptions Mods = ModifierOptions::None; 1170 bool IsModifier = true; 1171 const DIType *BaseTy = Ty; 1172 while (IsModifier && BaseTy) { 1173 // FIXME: Need to add DWARF tag for __unaligned. 1174 switch (BaseTy->getTag()) { 1175 case dwarf::DW_TAG_const_type: 1176 Mods |= ModifierOptions::Const; 1177 break; 1178 case dwarf::DW_TAG_volatile_type: 1179 Mods |= ModifierOptions::Volatile; 1180 break; 1181 default: 1182 IsModifier = false; 1183 break; 1184 } 1185 if (IsModifier) 1186 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1187 } 1188 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1189 1190 // While processing the type being pointed to, it is possible we already 1191 // created this modifier type. If so, we check here and return the existing 1192 // modifier type. 1193 auto I = TypeIndices.find({Ty, nullptr}); 1194 if (I != TypeIndices.end()) 1195 return I->second; 1196 1197 ModifierRecord MR(ModifiedTI, Mods); 1198 return TypeTable.writeModifier(MR); 1199 } 1200 1201 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1202 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1203 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1204 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1205 1206 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1207 ArrayRef<TypeIndex> ArgTypeIndices = None; 1208 if (!ReturnAndArgTypeIndices.empty()) { 1209 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1210 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1211 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1212 } 1213 1214 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1215 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1216 1217 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1218 1219 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1220 ArgTypeIndices.size(), ArgListIndex); 1221 return TypeTable.writeProcedure(Procedure); 1222 } 1223 1224 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1225 const DIType *ClassTy, 1226 int ThisAdjustment) { 1227 // Lower the containing class type. 1228 TypeIndex ClassType = getTypeIndex(ClassTy); 1229 1230 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1231 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1232 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1233 1234 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1235 ArrayRef<TypeIndex> ArgTypeIndices = None; 1236 if (!ReturnAndArgTypeIndices.empty()) { 1237 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1238 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1239 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1240 } 1241 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1242 if (!ArgTypeIndices.empty()) { 1243 ThisTypeIndex = ArgTypeIndices.front(); 1244 ArgTypeIndices = ArgTypeIndices.drop_front(); 1245 } 1246 1247 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1248 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1249 1250 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1251 1252 // TODO: Need to use the correct values for: 1253 // FunctionOptions 1254 // ThisPointerAdjustment. 1255 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1256 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1257 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1258 1259 return TI; 1260 } 1261 1262 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1263 switch (Flags & DINode::FlagAccessibility) { 1264 case DINode::FlagPrivate: return MemberAccess::Private; 1265 case DINode::FlagPublic: return MemberAccess::Public; 1266 case DINode::FlagProtected: return MemberAccess::Protected; 1267 case 0: 1268 // If there was no explicit access control, provide the default for the tag. 1269 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1270 : MemberAccess::Public; 1271 } 1272 llvm_unreachable("access flags are exclusive"); 1273 } 1274 1275 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1276 if (SP->isArtificial()) 1277 return MethodOptions::CompilerGenerated; 1278 1279 // FIXME: Handle other MethodOptions. 1280 1281 return MethodOptions::None; 1282 } 1283 1284 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1285 bool Introduced) { 1286 switch (SP->getVirtuality()) { 1287 case dwarf::DW_VIRTUALITY_none: 1288 break; 1289 case dwarf::DW_VIRTUALITY_virtual: 1290 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1291 case dwarf::DW_VIRTUALITY_pure_virtual: 1292 return Introduced ? MethodKind::PureIntroducingVirtual 1293 : MethodKind::PureVirtual; 1294 default: 1295 llvm_unreachable("unhandled virtuality case"); 1296 } 1297 1298 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1299 1300 return MethodKind::Vanilla; 1301 } 1302 1303 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1304 switch (Ty->getTag()) { 1305 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1306 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1307 } 1308 llvm_unreachable("unexpected tag"); 1309 } 1310 1311 /// Return the HasUniqueName option if it should be present in ClassOptions, or 1312 /// None otherwise. 1313 static ClassOptions getRecordUniqueNameOption(const DICompositeType *Ty) { 1314 // MSVC always sets this flag now, even for local types. Clang doesn't always 1315 // appear to give every type a linkage name, which may be problematic for us. 1316 // FIXME: Investigate the consequences of not following them here. 1317 return !Ty->getIdentifier().empty() ? ClassOptions::HasUniqueName 1318 : ClassOptions::None; 1319 } 1320 1321 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1322 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1323 TypeIndex FTI; 1324 unsigned EnumeratorCount = 0; 1325 1326 if (Ty->isForwardDecl()) { 1327 CO |= ClassOptions::ForwardReference; 1328 } else { 1329 FieldListRecordBuilder Fields; 1330 for (const DINode *Element : Ty->getElements()) { 1331 // We assume that the frontend provides all members in source declaration 1332 // order, which is what MSVC does. 1333 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1334 Fields.writeEnumerator(EnumeratorRecord( 1335 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1336 Enumerator->getName())); 1337 EnumeratorCount++; 1338 } 1339 } 1340 FTI = TypeTable.writeFieldList(Fields); 1341 } 1342 1343 std::string FullName = 1344 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1345 1346 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1347 Ty->getIdentifier(), 1348 getTypeIndex(Ty->getBaseType()))); 1349 } 1350 1351 //===----------------------------------------------------------------------===// 1352 // ClassInfo 1353 //===----------------------------------------------------------------------===// 1354 1355 struct llvm::ClassInfo { 1356 struct MemberInfo { 1357 const DIDerivedType *MemberTypeNode; 1358 unsigned BaseOffset; 1359 }; 1360 // [MemberInfo] 1361 typedef std::vector<MemberInfo> MemberList; 1362 1363 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1364 // MethodName -> MethodsList 1365 typedef MapVector<MDString *, MethodsList> MethodsMap; 1366 1367 /// Base classes. 1368 std::vector<const DIDerivedType *> Inheritance; 1369 1370 /// Direct members. 1371 MemberList Members; 1372 // Direct overloaded methods gathered by name. 1373 MethodsMap Methods; 1374 }; 1375 1376 void CodeViewDebug::clear() { 1377 assert(CurFn == nullptr); 1378 FileIdMap.clear(); 1379 FnDebugInfo.clear(); 1380 FileToFilepathMap.clear(); 1381 LocalUDTs.clear(); 1382 GlobalUDTs.clear(); 1383 TypeIndices.clear(); 1384 CompleteTypeIndices.clear(); 1385 } 1386 1387 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1388 const DIDerivedType *DDTy) { 1389 if (!DDTy->getName().empty()) { 1390 Info.Members.push_back({DDTy, 0}); 1391 return; 1392 } 1393 // An unnamed member must represent a nested struct or union. Add all the 1394 // indirect fields to the current record. 1395 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1396 unsigned Offset = DDTy->getOffsetInBits() / 8; 1397 const DIType *Ty = DDTy->getBaseType().resolve(); 1398 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1399 ClassInfo NestedInfo = collectClassInfo(DCTy); 1400 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1401 Info.Members.push_back( 1402 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1403 } 1404 1405 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1406 ClassInfo Info; 1407 // Add elements to structure type. 1408 DINodeArray Elements = Ty->getElements(); 1409 for (auto *Element : Elements) { 1410 // We assume that the frontend provides all members in source declaration 1411 // order, which is what MSVC does. 1412 if (!Element) 1413 continue; 1414 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1415 Info.Methods[SP->getRawName()].push_back(SP); 1416 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1417 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1418 collectMemberInfo(Info, DDTy); 1419 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1420 Info.Inheritance.push_back(DDTy); 1421 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1422 // Ignore friend members. It appears that MSVC emitted info about 1423 // friends in the past, but modern versions do not. 1424 } 1425 // FIXME: Get Clang to emit function virtual table here and handle it. 1426 // FIXME: Get clang to emit nested types here and do something with 1427 // them. 1428 } 1429 // Skip other unrecognized kinds of elements. 1430 } 1431 return Info; 1432 } 1433 1434 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1435 // First, construct the forward decl. Don't look into Ty to compute the 1436 // forward decl options, since it might not be available in all TUs. 1437 TypeRecordKind Kind = getRecordKind(Ty); 1438 ClassOptions CO = 1439 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1440 std::string FullName = 1441 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1442 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1443 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1444 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1445 if (!Ty->isForwardDecl()) 1446 DeferredCompleteTypes.push_back(Ty); 1447 return FwdDeclTI; 1448 } 1449 1450 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1451 // Construct the field list and complete type record. 1452 TypeRecordKind Kind = getRecordKind(Ty); 1453 // FIXME: Other ClassOptions, like ContainsNestedClass and NestedClass. 1454 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1455 TypeIndex FieldTI; 1456 TypeIndex VShapeTI; 1457 unsigned FieldCount; 1458 std::tie(FieldTI, VShapeTI, FieldCount) = lowerRecordFieldList(Ty); 1459 1460 std::string FullName = 1461 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1462 1463 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1464 1465 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord( 1466 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1467 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1468 1469 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1470 ClassTI, TypeTable.writeStringId(StringIdRecord( 1471 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1472 Ty->getLine())); 1473 1474 addToUDTs(Ty, ClassTI); 1475 1476 return ClassTI; 1477 } 1478 1479 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1480 ClassOptions CO = 1481 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1482 std::string FullName = 1483 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1484 TypeIndex FwdDeclTI = 1485 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1486 FullName, Ty->getIdentifier())); 1487 if (!Ty->isForwardDecl()) 1488 DeferredCompleteTypes.push_back(Ty); 1489 return FwdDeclTI; 1490 } 1491 1492 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1493 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1494 TypeIndex FieldTI; 1495 unsigned FieldCount; 1496 std::tie(FieldTI, std::ignore, FieldCount) = lowerRecordFieldList(Ty); 1497 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1498 std::string FullName = 1499 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1500 1501 TypeIndex UnionTI = TypeTable.writeUnion( 1502 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1503 Ty->getIdentifier())); 1504 1505 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1506 UnionTI, TypeTable.writeStringId(StringIdRecord( 1507 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1508 Ty->getLine())); 1509 1510 addToUDTs(Ty, UnionTI); 1511 1512 return UnionTI; 1513 } 1514 1515 std::tuple<TypeIndex, TypeIndex, unsigned> 1516 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1517 // Manually count members. MSVC appears to count everything that generates a 1518 // field list record. Each individual overload in a method overload group 1519 // contributes to this count, even though the overload group is a single field 1520 // list record. 1521 unsigned MemberCount = 0; 1522 ClassInfo Info = collectClassInfo(Ty); 1523 FieldListRecordBuilder Fields; 1524 1525 // Create base classes. 1526 for (const DIDerivedType *I : Info.Inheritance) { 1527 if (I->getFlags() & DINode::FlagVirtual) { 1528 // Virtual base. 1529 // FIXME: Emit VBPtrOffset when the frontend provides it. 1530 unsigned VBPtrOffset = 0; 1531 // FIXME: Despite the accessor name, the offset is really in bytes. 1532 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1533 Fields.writeVirtualBaseClass(VirtualBaseClassRecord( 1534 translateAccessFlags(Ty->getTag(), I->getFlags()), 1535 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1536 VBTableIndex)); 1537 } else { 1538 assert(I->getOffsetInBits() % 8 == 0 && 1539 "bases must be on byte boundaries"); 1540 Fields.writeBaseClass(BaseClassRecord( 1541 translateAccessFlags(Ty->getTag(), I->getFlags()), 1542 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1543 } 1544 } 1545 1546 // Create members. 1547 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1548 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1549 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1550 1551 if (Member->isStaticMember()) { 1552 Fields.writeStaticDataMember(StaticDataMemberRecord( 1553 translateAccessFlags(Ty->getTag(), Member->getFlags()), 1554 MemberBaseType, Member->getName())); 1555 MemberCount++; 1556 continue; 1557 } 1558 1559 uint64_t OffsetInBytes = MemberInfo.BaseOffset; 1560 1561 // FIXME: Handle bitfield type memeber. 1562 OffsetInBytes += Member->getOffsetInBits() / 8; 1563 1564 Fields.writeDataMember( 1565 DataMemberRecord(translateAccessFlags(Ty->getTag(), Member->getFlags()), 1566 MemberBaseType, OffsetInBytes, Member->getName())); 1567 MemberCount++; 1568 } 1569 1570 // Create methods 1571 for (auto &MethodItr : Info.Methods) { 1572 StringRef Name = MethodItr.first->getString(); 1573 1574 std::vector<OneMethodRecord> Methods; 1575 for (const DISubprogram *SP : MethodItr.second) { 1576 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1577 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1578 1579 unsigned VFTableOffset = -1; 1580 if (Introduced) 1581 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1582 1583 Methods.push_back( 1584 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1585 translateMethodOptionFlags(SP), 1586 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1587 VFTableOffset, Name)); 1588 MemberCount++; 1589 } 1590 assert(Methods.size() > 0 && "Empty methods map entry"); 1591 if (Methods.size() == 1) 1592 Fields.writeOneMethod(Methods[0]); 1593 else { 1594 TypeIndex MethodList = 1595 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1596 Fields.writeOverloadedMethod( 1597 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1598 } 1599 } 1600 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1601 return std::make_tuple(FieldTI, TypeIndex(), MemberCount); 1602 } 1603 1604 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1605 if (!VBPType.getIndex()) { 1606 // Make a 'const int *' type. 1607 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1608 TypeIndex ModifiedTI = TypeTable.writeModifier(MR); 1609 1610 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1611 : PointerKind::Near32; 1612 PointerMode PM = PointerMode::Pointer; 1613 PointerOptions PO = PointerOptions::None; 1614 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1615 1616 VBPType = TypeTable.writePointer(PR); 1617 } 1618 1619 return VBPType; 1620 } 1621 1622 struct CodeViewDebug::TypeLoweringScope { 1623 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 1624 ~TypeLoweringScope() { 1625 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 1626 // inner TypeLoweringScopes don't attempt to emit deferred types. 1627 if (CVD.TypeEmissionLevel == 1) 1628 CVD.emitDeferredCompleteTypes(); 1629 --CVD.TypeEmissionLevel; 1630 } 1631 CodeViewDebug &CVD; 1632 }; 1633 1634 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1635 const DIType *Ty = TypeRef.resolve(); 1636 const DIType *ClassTy = ClassTyRef.resolve(); 1637 1638 // The null DIType is the void type. Don't try to hash it. 1639 if (!Ty) 1640 return TypeIndex::Void(); 1641 1642 // Check if we've already translated this type. Don't try to do a 1643 // get-or-create style insertion that caches the hash lookup across the 1644 // lowerType call. It will update the TypeIndices map. 1645 auto I = TypeIndices.find({Ty, ClassTy}); 1646 if (I != TypeIndices.end()) 1647 return I->second; 1648 1649 TypeIndex TI; 1650 { 1651 TypeLoweringScope S(*this); 1652 TI = lowerType(Ty, ClassTy); 1653 recordTypeIndexForDINode(Ty, TI, ClassTy); 1654 } 1655 1656 return TI; 1657 } 1658 1659 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1660 const DIType *Ty = TypeRef.resolve(); 1661 1662 // The null DIType is the void type. Don't try to hash it. 1663 if (!Ty) 1664 return TypeIndex::Void(); 1665 1666 // If this is a non-record type, the complete type index is the same as the 1667 // normal type index. Just call getTypeIndex. 1668 switch (Ty->getTag()) { 1669 case dwarf::DW_TAG_class_type: 1670 case dwarf::DW_TAG_structure_type: 1671 case dwarf::DW_TAG_union_type: 1672 break; 1673 default: 1674 return getTypeIndex(Ty); 1675 } 1676 1677 // Check if we've already translated the complete record type. Lowering a 1678 // complete type should never trigger lowering another complete type, so we 1679 // can reuse the hash table lookup result. 1680 const auto *CTy = cast<DICompositeType>(Ty); 1681 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1682 if (!InsertResult.second) 1683 return InsertResult.first->second; 1684 1685 TypeLoweringScope S(*this); 1686 1687 // Make sure the forward declaration is emitted first. It's unclear if this 1688 // is necessary, but MSVC does it, and we should follow suit until we can show 1689 // otherwise. 1690 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1691 1692 // Just use the forward decl if we don't have complete type info. This might 1693 // happen if the frontend is using modules and expects the complete definition 1694 // to be emitted elsewhere. 1695 if (CTy->isForwardDecl()) 1696 return FwdDeclTI; 1697 1698 TypeIndex TI; 1699 switch (CTy->getTag()) { 1700 case dwarf::DW_TAG_class_type: 1701 case dwarf::DW_TAG_structure_type: 1702 TI = lowerCompleteTypeClass(CTy); 1703 break; 1704 case dwarf::DW_TAG_union_type: 1705 TI = lowerCompleteTypeUnion(CTy); 1706 break; 1707 default: 1708 llvm_unreachable("not a record"); 1709 } 1710 1711 InsertResult.first->second = TI; 1712 return TI; 1713 } 1714 1715 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1716 /// and do this until fixpoint, as each complete record type typically references 1717 /// many other record types. 1718 void CodeViewDebug::emitDeferredCompleteTypes() { 1719 SmallVector<const DICompositeType *, 4> TypesToEmit; 1720 while (!DeferredCompleteTypes.empty()) { 1721 std::swap(DeferredCompleteTypes, TypesToEmit); 1722 for (const DICompositeType *RecordTy : TypesToEmit) 1723 getCompleteTypeIndex(RecordTy); 1724 TypesToEmit.clear(); 1725 } 1726 } 1727 1728 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 1729 // Get the sorted list of parameters and emit them first. 1730 SmallVector<const LocalVariable *, 6> Params; 1731 for (const LocalVariable &L : Locals) 1732 if (L.DIVar->isParameter()) 1733 Params.push_back(&L); 1734 std::sort(Params.begin(), Params.end(), 1735 [](const LocalVariable *L, const LocalVariable *R) { 1736 return L->DIVar->getArg() < R->DIVar->getArg(); 1737 }); 1738 for (const LocalVariable *L : Params) 1739 emitLocalVariable(*L); 1740 1741 // Next emit all non-parameters in the order that we found them. 1742 for (const LocalVariable &L : Locals) 1743 if (!L.DIVar->isParameter()) 1744 emitLocalVariable(L); 1745 } 1746 1747 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1748 // LocalSym record, see SymbolRecord.h for more info. 1749 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1750 *LocalEnd = MMI->getContext().createTempSymbol(); 1751 OS.AddComment("Record length"); 1752 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1753 OS.EmitLabel(LocalBegin); 1754 1755 OS.AddComment("Record kind: S_LOCAL"); 1756 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1757 1758 LocalSymFlags Flags = LocalSymFlags::None; 1759 if (Var.DIVar->isParameter()) 1760 Flags |= LocalSymFlags::IsParameter; 1761 if (Var.DefRanges.empty()) 1762 Flags |= LocalSymFlags::IsOptimizedOut; 1763 1764 OS.AddComment("TypeIndex"); 1765 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1766 OS.EmitIntValue(TI.getIndex(), 4); 1767 OS.AddComment("Flags"); 1768 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1769 // Truncate the name so we won't overflow the record length field. 1770 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1771 OS.EmitLabel(LocalEnd); 1772 1773 // Calculate the on disk prefix of the appropriate def range record. The 1774 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1775 // should be big enough to hold all forms without memory allocation. 1776 SmallString<20> BytePrefix; 1777 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1778 BytePrefix.clear(); 1779 // FIXME: Handle bitpieces. 1780 if (DefRange.StructOffset != 0) 1781 continue; 1782 1783 if (DefRange.InMemory) { 1784 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1785 0, 0, ArrayRef<LocalVariableAddrGap>()); 1786 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1787 BytePrefix += 1788 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1789 BytePrefix += 1790 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1791 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1792 } else { 1793 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1794 // Unclear what matters here. 1795 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1796 ArrayRef<LocalVariableAddrGap>()); 1797 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1798 BytePrefix += 1799 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1800 BytePrefix += 1801 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1802 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1803 } 1804 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1805 } 1806 } 1807 1808 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1809 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1810 return; 1811 1812 const Function *GV = MF->getFunction(); 1813 assert(FnDebugInfo.count(GV)); 1814 assert(CurFn == &FnDebugInfo[GV]); 1815 1816 collectVariableInfo(GV->getSubprogram()); 1817 1818 DebugHandlerBase::endFunction(MF); 1819 1820 // Don't emit anything if we don't have any line tables. 1821 if (!CurFn->HaveLineInfo) { 1822 FnDebugInfo.erase(GV); 1823 CurFn = nullptr; 1824 return; 1825 } 1826 1827 CurFn->End = Asm->getFunctionEnd(); 1828 1829 CurFn = nullptr; 1830 } 1831 1832 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1833 DebugHandlerBase::beginInstruction(MI); 1834 1835 // Ignore DBG_VALUE locations and function prologue. 1836 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1837 return; 1838 DebugLoc DL = MI->getDebugLoc(); 1839 if (DL == PrevInstLoc || !DL) 1840 return; 1841 maybeRecordLocation(DL, Asm->MF); 1842 } 1843 1844 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1845 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1846 *EndLabel = MMI->getContext().createTempSymbol(); 1847 OS.EmitIntValue(unsigned(Kind), 4); 1848 OS.AddComment("Subsection size"); 1849 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1850 OS.EmitLabel(BeginLabel); 1851 return EndLabel; 1852 } 1853 1854 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1855 OS.EmitLabel(EndLabel); 1856 // Every subsection must be aligned to a 4-byte boundary. 1857 OS.EmitValueToAlignment(4); 1858 } 1859 1860 void CodeViewDebug::emitDebugInfoForUDTs( 1861 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1862 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1863 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1864 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1865 OS.AddComment("Record length"); 1866 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1867 OS.EmitLabel(UDTRecordBegin); 1868 1869 OS.AddComment("Record kind: S_UDT"); 1870 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1871 1872 OS.AddComment("Type"); 1873 OS.EmitIntValue(UDT.second.getIndex(), 4); 1874 1875 emitNullTerminatedSymbolName(OS, UDT.first); 1876 OS.EmitLabel(UDTRecordEnd); 1877 } 1878 } 1879 1880 void CodeViewDebug::emitDebugInfoForGlobals() { 1881 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1882 for (const MDNode *Node : CUs->operands()) { 1883 const auto *CU = cast<DICompileUnit>(Node); 1884 1885 // First, emit all globals that are not in a comdat in a single symbol 1886 // substream. MSVC doesn't like it if the substream is empty, so only open 1887 // it if we have at least one global to emit. 1888 switchToDebugSectionForSymbol(nullptr); 1889 MCSymbol *EndLabel = nullptr; 1890 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1891 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1892 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1893 if (!EndLabel) { 1894 OS.AddComment("Symbol subsection for globals"); 1895 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1896 } 1897 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1898 } 1899 } 1900 } 1901 if (EndLabel) 1902 endCVSubsection(EndLabel); 1903 1904 // Second, emit each global that is in a comdat into its own .debug$S 1905 // section along with its own symbol substream. 1906 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1907 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1908 if (GV->hasComdat()) { 1909 MCSymbol *GVSym = Asm->getSymbol(GV); 1910 OS.AddComment("Symbol subsection for " + 1911 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 1912 switchToDebugSectionForSymbol(GVSym); 1913 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1914 emitDebugInfoForGlobal(G, GVSym); 1915 endCVSubsection(EndLabel); 1916 } 1917 } 1918 } 1919 } 1920 } 1921 1922 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 1923 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1924 for (const MDNode *Node : CUs->operands()) { 1925 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 1926 if (DIType *RT = dyn_cast<DIType>(Ty)) { 1927 getTypeIndex(RT); 1928 // FIXME: Add to global/local DTU list. 1929 } 1930 } 1931 } 1932 } 1933 1934 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 1935 MCSymbol *GVSym) { 1936 // DataSym record, see SymbolRecord.h for more info. 1937 // FIXME: Thread local data, etc 1938 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 1939 *DataEnd = MMI->getContext().createTempSymbol(); 1940 OS.AddComment("Record length"); 1941 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 1942 OS.EmitLabel(DataBegin); 1943 OS.AddComment("Record kind: S_GDATA32"); 1944 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 1945 OS.AddComment("Type"); 1946 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 1947 OS.AddComment("DataOffset"); 1948 OS.EmitCOFFSecRel32(GVSym); 1949 OS.AddComment("Segment"); 1950 OS.EmitCOFFSectionIndex(GVSym); 1951 OS.AddComment("Name"); 1952 emitNullTerminatedSymbolName(OS, DIGV->getName()); 1953 OS.EmitLabel(DataEnd); 1954 } 1955