1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 for (auto Annot : FI.Annotations) { 864 MCSymbol *Label = Annot.first; 865 MDTuple *Strs = cast<MDTuple>(Annot.second); 866 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 867 *AnnotEnd = MMI->getContext().createTempSymbol(); 868 OS.AddComment("Record length"); 869 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 870 OS.EmitLabel(AnnotBegin); 871 OS.AddComment("Record kind: S_ANNOTATION"); 872 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 873 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 874 // FIXME: Make sure we don't overflow the max record size. 875 OS.EmitCOFFSectionIndex(Label); 876 OS.EmitIntValue(Strs->getNumOperands(), 2); 877 for (Metadata *MD : Strs->operands()) { 878 // MDStrings are null terminated, so we can do EmitBytes and get the 879 // nice .asciz directive. 880 StringRef Str = cast<MDString>(MD)->getString(); 881 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 882 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 883 } 884 OS.EmitLabel(AnnotEnd); 885 } 886 887 if (SP != nullptr) 888 emitDebugInfoForUDTs(LocalUDTs); 889 890 // We're done with this function. 891 OS.AddComment("Record length"); 892 OS.EmitIntValue(0x0002, 2); 893 OS.AddComment("Record kind: S_PROC_ID_END"); 894 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 895 } 896 endCVSubsection(SymbolsEnd); 897 898 // We have an assembler directive that takes care of the whole line table. 899 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 900 } 901 902 CodeViewDebug::LocalVarDefRange 903 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 904 LocalVarDefRange DR; 905 DR.InMemory = -1; 906 DR.DataOffset = Offset; 907 assert(DR.DataOffset == Offset && "truncation"); 908 DR.IsSubfield = 0; 909 DR.StructOffset = 0; 910 DR.CVRegister = CVRegister; 911 return DR; 912 } 913 914 CodeViewDebug::LocalVarDefRange 915 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 916 int Offset, bool IsSubfield, 917 uint16_t StructOffset) { 918 LocalVarDefRange DR; 919 DR.InMemory = InMemory; 920 DR.DataOffset = Offset; 921 DR.IsSubfield = IsSubfield; 922 DR.StructOffset = StructOffset; 923 DR.CVRegister = CVRegister; 924 return DR; 925 } 926 927 void CodeViewDebug::collectVariableInfoFromMFTable( 928 DenseSet<InlinedVariable> &Processed) { 929 const MachineFunction &MF = *Asm->MF; 930 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 931 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 932 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 933 934 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 935 if (!VI.Var) 936 continue; 937 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 938 "Expected inlined-at fields to agree"); 939 940 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 941 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 942 943 // If variable scope is not found then skip this variable. 944 if (!Scope) 945 continue; 946 947 // If the variable has an attached offset expression, extract it. 948 // FIXME: Try to handle DW_OP_deref as well. 949 int64_t ExprOffset = 0; 950 if (VI.Expr) 951 if (!VI.Expr->extractIfOffset(ExprOffset)) 952 continue; 953 954 // Get the frame register used and the offset. 955 unsigned FrameReg = 0; 956 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 957 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 958 959 // Calculate the label ranges. 960 LocalVarDefRange DefRange = 961 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 962 for (const InsnRange &Range : Scope->getRanges()) { 963 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 964 const MCSymbol *End = getLabelAfterInsn(Range.second); 965 End = End ? End : Asm->getFunctionEnd(); 966 DefRange.Ranges.emplace_back(Begin, End); 967 } 968 969 LocalVariable Var; 970 Var.DIVar = VI.Var; 971 Var.DefRanges.emplace_back(std::move(DefRange)); 972 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 973 } 974 } 975 976 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 977 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 978 } 979 980 static bool needsReferenceType(const DbgVariableLocation &Loc) { 981 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 982 } 983 984 void CodeViewDebug::calculateRanges( 985 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 986 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 987 988 // Calculate the definition ranges. 989 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 990 const InsnRange &Range = *I; 991 const MachineInstr *DVInst = Range.first; 992 assert(DVInst->isDebugValue() && "Invalid History entry"); 993 // FIXME: Find a way to represent constant variables, since they are 994 // relatively common. 995 Optional<DbgVariableLocation> Location = 996 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 997 if (!Location) 998 continue; 999 1000 // CodeView can only express variables in register and variables in memory 1001 // at a constant offset from a register. However, for variables passed 1002 // indirectly by pointer, it is common for that pointer to be spilled to a 1003 // stack location. For the special case of one offseted load followed by a 1004 // zero offset load (a pointer spilled to the stack), we change the type of 1005 // the local variable from a value type to a reference type. This tricks the 1006 // debugger into doing the load for us. 1007 if (Var.UseReferenceType) { 1008 // We're using a reference type. Drop the last zero offset load. 1009 if (canUseReferenceType(*Location)) 1010 Location->LoadChain.pop_back(); 1011 else 1012 continue; 1013 } else if (needsReferenceType(*Location)) { 1014 // This location can't be expressed without switching to a reference type. 1015 // Start over using that. 1016 Var.UseReferenceType = true; 1017 Var.DefRanges.clear(); 1018 calculateRanges(Var, Ranges); 1019 return; 1020 } 1021 1022 // We can only handle a register or an offseted load of a register. 1023 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1024 continue; 1025 { 1026 LocalVarDefRange DR; 1027 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1028 DR.InMemory = !Location->LoadChain.empty(); 1029 DR.DataOffset = 1030 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1031 if (Location->FragmentInfo) { 1032 DR.IsSubfield = true; 1033 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1034 } else { 1035 DR.IsSubfield = false; 1036 DR.StructOffset = 0; 1037 } 1038 1039 if (Var.DefRanges.empty() || 1040 Var.DefRanges.back().isDifferentLocation(DR)) { 1041 Var.DefRanges.emplace_back(std::move(DR)); 1042 } 1043 } 1044 1045 // Compute the label range. 1046 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1047 const MCSymbol *End = getLabelAfterInsn(Range.second); 1048 if (!End) { 1049 // This range is valid until the next overlapping bitpiece. In the 1050 // common case, ranges will not be bitpieces, so they will overlap. 1051 auto J = std::next(I); 1052 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1053 while (J != E && 1054 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1055 ++J; 1056 if (J != E) 1057 End = getLabelBeforeInsn(J->first); 1058 else 1059 End = Asm->getFunctionEnd(); 1060 } 1061 1062 // If the last range end is our begin, just extend the last range. 1063 // Otherwise make a new range. 1064 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1065 Var.DefRanges.back().Ranges; 1066 if (!R.empty() && R.back().second == Begin) 1067 R.back().second = End; 1068 else 1069 R.emplace_back(Begin, End); 1070 1071 // FIXME: Do more range combining. 1072 } 1073 } 1074 1075 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1076 DenseSet<InlinedVariable> Processed; 1077 // Grab the variable info that was squirreled away in the MMI side-table. 1078 collectVariableInfoFromMFTable(Processed); 1079 1080 for (const auto &I : DbgValues) { 1081 InlinedVariable IV = I.first; 1082 if (Processed.count(IV)) 1083 continue; 1084 const DILocalVariable *DIVar = IV.first; 1085 const DILocation *InlinedAt = IV.second; 1086 1087 // Instruction ranges, specifying where IV is accessible. 1088 const auto &Ranges = I.second; 1089 1090 LexicalScope *Scope = nullptr; 1091 if (InlinedAt) 1092 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1093 else 1094 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1095 // If variable scope is not found then skip this variable. 1096 if (!Scope) 1097 continue; 1098 1099 LocalVariable Var; 1100 Var.DIVar = DIVar; 1101 1102 calculateRanges(Var, Ranges); 1103 recordLocalVariable(std::move(Var), InlinedAt); 1104 } 1105 } 1106 1107 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1108 const Function *GV = MF->getFunction(); 1109 assert(FnDebugInfo.count(GV) == false); 1110 CurFn = &FnDebugInfo[GV]; 1111 CurFn->FuncId = NextFuncId++; 1112 CurFn->Begin = Asm->getFunctionBegin(); 1113 1114 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1115 1116 // Find the end of the function prolog. First known non-DBG_VALUE and 1117 // non-frame setup location marks the beginning of the function body. 1118 // FIXME: is there a simpler a way to do this? Can we just search 1119 // for the first instruction of the function, not the last of the prolog? 1120 DebugLoc PrologEndLoc; 1121 bool EmptyPrologue = true; 1122 for (const auto &MBB : *MF) { 1123 for (const auto &MI : MBB) { 1124 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1125 MI.getDebugLoc()) { 1126 PrologEndLoc = MI.getDebugLoc(); 1127 break; 1128 } else if (!MI.isMetaInstruction()) { 1129 EmptyPrologue = false; 1130 } 1131 } 1132 } 1133 1134 // Record beginning of function if we have a non-empty prologue. 1135 if (PrologEndLoc && !EmptyPrologue) { 1136 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1137 maybeRecordLocation(FnStartDL, MF); 1138 } 1139 } 1140 1141 static bool shouldEmitUdt(const DIType *T) { 1142 while (true) { 1143 if (!T || T->isForwardDecl()) 1144 return false; 1145 1146 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1147 if (!DT) 1148 return true; 1149 T = DT->getBaseType().resolve(); 1150 } 1151 return true; 1152 } 1153 1154 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1155 // Don't record empty UDTs. 1156 if (Ty->getName().empty()) 1157 return; 1158 if (!shouldEmitUdt(Ty)) 1159 return; 1160 1161 SmallVector<StringRef, 5> QualifiedNameComponents; 1162 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1163 Ty->getScope().resolve(), QualifiedNameComponents); 1164 1165 std::string FullyQualifiedName = 1166 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1167 1168 if (ClosestSubprogram == nullptr) { 1169 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1170 } else if (ClosestSubprogram == CurrentSubprogram) { 1171 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1172 } 1173 1174 // TODO: What if the ClosestSubprogram is neither null or the current 1175 // subprogram? Currently, the UDT just gets dropped on the floor. 1176 // 1177 // The current behavior is not desirable. To get maximal fidelity, we would 1178 // need to perform all type translation before beginning emission of .debug$S 1179 // and then make LocalUDTs a member of FunctionInfo 1180 } 1181 1182 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1183 // Generic dispatch for lowering an unknown type. 1184 switch (Ty->getTag()) { 1185 case dwarf::DW_TAG_array_type: 1186 return lowerTypeArray(cast<DICompositeType>(Ty)); 1187 case dwarf::DW_TAG_typedef: 1188 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1189 case dwarf::DW_TAG_base_type: 1190 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1191 case dwarf::DW_TAG_pointer_type: 1192 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1193 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1194 LLVM_FALLTHROUGH; 1195 case dwarf::DW_TAG_reference_type: 1196 case dwarf::DW_TAG_rvalue_reference_type: 1197 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1198 case dwarf::DW_TAG_ptr_to_member_type: 1199 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1200 case dwarf::DW_TAG_const_type: 1201 case dwarf::DW_TAG_volatile_type: 1202 // TODO: add support for DW_TAG_atomic_type here 1203 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1204 case dwarf::DW_TAG_subroutine_type: 1205 if (ClassTy) { 1206 // The member function type of a member function pointer has no 1207 // ThisAdjustment. 1208 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1209 /*ThisAdjustment=*/0); 1210 } 1211 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1212 case dwarf::DW_TAG_enumeration_type: 1213 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1214 case dwarf::DW_TAG_class_type: 1215 case dwarf::DW_TAG_structure_type: 1216 return lowerTypeClass(cast<DICompositeType>(Ty)); 1217 case dwarf::DW_TAG_union_type: 1218 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1219 default: 1220 // Use the null type index. 1221 return TypeIndex(); 1222 } 1223 } 1224 1225 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1226 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1227 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1228 StringRef TypeName = Ty->getName(); 1229 1230 addToUDTs(Ty); 1231 1232 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1233 TypeName == "HRESULT") 1234 return TypeIndex(SimpleTypeKind::HResult); 1235 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1236 TypeName == "wchar_t") 1237 return TypeIndex(SimpleTypeKind::WideCharacter); 1238 1239 return UnderlyingTypeIndex; 1240 } 1241 1242 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1243 DITypeRef ElementTypeRef = Ty->getBaseType(); 1244 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1245 // IndexType is size_t, which depends on the bitness of the target. 1246 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1247 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1248 : TypeIndex(SimpleTypeKind::UInt32Long); 1249 1250 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1251 1252 // Add subranges to array type. 1253 DINodeArray Elements = Ty->getElements(); 1254 for (int i = Elements.size() - 1; i >= 0; --i) { 1255 const DINode *Element = Elements[i]; 1256 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1257 1258 const DISubrange *Subrange = cast<DISubrange>(Element); 1259 assert(Subrange->getLowerBound() == 0 && 1260 "codeview doesn't support subranges with lower bounds"); 1261 int64_t Count = Subrange->getCount(); 1262 1263 // Variable Length Array (VLA) has Count equal to '-1'. 1264 // Replace with Count '1', assume it is the minimum VLA length. 1265 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1266 if (Count == -1) 1267 Count = 1; 1268 1269 // Update the element size and element type index for subsequent subranges. 1270 ElementSize *= Count; 1271 1272 // If this is the outermost array, use the size from the array. It will be 1273 // more accurate if we had a VLA or an incomplete element type size. 1274 uint64_t ArraySize = 1275 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1276 1277 StringRef Name = (i == 0) ? Ty->getName() : ""; 1278 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1279 ElementTypeIndex = TypeTable.writeKnownType(AR); 1280 } 1281 1282 return ElementTypeIndex; 1283 } 1284 1285 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1286 TypeIndex Index; 1287 dwarf::TypeKind Kind; 1288 uint32_t ByteSize; 1289 1290 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1291 ByteSize = Ty->getSizeInBits() / 8; 1292 1293 SimpleTypeKind STK = SimpleTypeKind::None; 1294 switch (Kind) { 1295 case dwarf::DW_ATE_address: 1296 // FIXME: Translate 1297 break; 1298 case dwarf::DW_ATE_boolean: 1299 switch (ByteSize) { 1300 case 1: STK = SimpleTypeKind::Boolean8; break; 1301 case 2: STK = SimpleTypeKind::Boolean16; break; 1302 case 4: STK = SimpleTypeKind::Boolean32; break; 1303 case 8: STK = SimpleTypeKind::Boolean64; break; 1304 case 16: STK = SimpleTypeKind::Boolean128; break; 1305 } 1306 break; 1307 case dwarf::DW_ATE_complex_float: 1308 switch (ByteSize) { 1309 case 2: STK = SimpleTypeKind::Complex16; break; 1310 case 4: STK = SimpleTypeKind::Complex32; break; 1311 case 8: STK = SimpleTypeKind::Complex64; break; 1312 case 10: STK = SimpleTypeKind::Complex80; break; 1313 case 16: STK = SimpleTypeKind::Complex128; break; 1314 } 1315 break; 1316 case dwarf::DW_ATE_float: 1317 switch (ByteSize) { 1318 case 2: STK = SimpleTypeKind::Float16; break; 1319 case 4: STK = SimpleTypeKind::Float32; break; 1320 case 6: STK = SimpleTypeKind::Float48; break; 1321 case 8: STK = SimpleTypeKind::Float64; break; 1322 case 10: STK = SimpleTypeKind::Float80; break; 1323 case 16: STK = SimpleTypeKind::Float128; break; 1324 } 1325 break; 1326 case dwarf::DW_ATE_signed: 1327 switch (ByteSize) { 1328 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1329 case 2: STK = SimpleTypeKind::Int16Short; break; 1330 case 4: STK = SimpleTypeKind::Int32; break; 1331 case 8: STK = SimpleTypeKind::Int64Quad; break; 1332 case 16: STK = SimpleTypeKind::Int128Oct; break; 1333 } 1334 break; 1335 case dwarf::DW_ATE_unsigned: 1336 switch (ByteSize) { 1337 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1338 case 2: STK = SimpleTypeKind::UInt16Short; break; 1339 case 4: STK = SimpleTypeKind::UInt32; break; 1340 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1341 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1342 } 1343 break; 1344 case dwarf::DW_ATE_UTF: 1345 switch (ByteSize) { 1346 case 2: STK = SimpleTypeKind::Character16; break; 1347 case 4: STK = SimpleTypeKind::Character32; break; 1348 } 1349 break; 1350 case dwarf::DW_ATE_signed_char: 1351 if (ByteSize == 1) 1352 STK = SimpleTypeKind::SignedCharacter; 1353 break; 1354 case dwarf::DW_ATE_unsigned_char: 1355 if (ByteSize == 1) 1356 STK = SimpleTypeKind::UnsignedCharacter; 1357 break; 1358 default: 1359 break; 1360 } 1361 1362 // Apply some fixups based on the source-level type name. 1363 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1364 STK = SimpleTypeKind::Int32Long; 1365 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1366 STK = SimpleTypeKind::UInt32Long; 1367 if (STK == SimpleTypeKind::UInt16Short && 1368 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1369 STK = SimpleTypeKind::WideCharacter; 1370 if ((STK == SimpleTypeKind::SignedCharacter || 1371 STK == SimpleTypeKind::UnsignedCharacter) && 1372 Ty->getName() == "char") 1373 STK = SimpleTypeKind::NarrowCharacter; 1374 1375 return TypeIndex(STK); 1376 } 1377 1378 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1379 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1380 1381 // Pointers to simple types can use SimpleTypeMode, rather than having a 1382 // dedicated pointer type record. 1383 if (PointeeTI.isSimple() && 1384 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1385 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1386 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1387 ? SimpleTypeMode::NearPointer64 1388 : SimpleTypeMode::NearPointer32; 1389 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1390 } 1391 1392 PointerKind PK = 1393 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1394 PointerMode PM = PointerMode::Pointer; 1395 switch (Ty->getTag()) { 1396 default: llvm_unreachable("not a pointer tag type"); 1397 case dwarf::DW_TAG_pointer_type: 1398 PM = PointerMode::Pointer; 1399 break; 1400 case dwarf::DW_TAG_reference_type: 1401 PM = PointerMode::LValueReference; 1402 break; 1403 case dwarf::DW_TAG_rvalue_reference_type: 1404 PM = PointerMode::RValueReference; 1405 break; 1406 } 1407 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1408 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1409 // do. 1410 PointerOptions PO = PointerOptions::None; 1411 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1412 return TypeTable.writeKnownType(PR); 1413 } 1414 1415 static PointerToMemberRepresentation 1416 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1417 // SizeInBytes being zero generally implies that the member pointer type was 1418 // incomplete, which can happen if it is part of a function prototype. In this 1419 // case, use the unknown model instead of the general model. 1420 if (IsPMF) { 1421 switch (Flags & DINode::FlagPtrToMemberRep) { 1422 case 0: 1423 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1424 : PointerToMemberRepresentation::GeneralFunction; 1425 case DINode::FlagSingleInheritance: 1426 return PointerToMemberRepresentation::SingleInheritanceFunction; 1427 case DINode::FlagMultipleInheritance: 1428 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1429 case DINode::FlagVirtualInheritance: 1430 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1431 } 1432 } else { 1433 switch (Flags & DINode::FlagPtrToMemberRep) { 1434 case 0: 1435 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1436 : PointerToMemberRepresentation::GeneralData; 1437 case DINode::FlagSingleInheritance: 1438 return PointerToMemberRepresentation::SingleInheritanceData; 1439 case DINode::FlagMultipleInheritance: 1440 return PointerToMemberRepresentation::MultipleInheritanceData; 1441 case DINode::FlagVirtualInheritance: 1442 return PointerToMemberRepresentation::VirtualInheritanceData; 1443 } 1444 } 1445 llvm_unreachable("invalid ptr to member representation"); 1446 } 1447 1448 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1449 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1450 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1451 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1452 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1453 : PointerKind::Near32; 1454 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1455 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1456 : PointerMode::PointerToDataMember; 1457 PointerOptions PO = PointerOptions::None; // FIXME 1458 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1459 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1460 MemberPointerInfo MPI( 1461 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1462 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1463 return TypeTable.writeKnownType(PR); 1464 } 1465 1466 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1467 /// have a translation, use the NearC convention. 1468 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1469 switch (DwarfCC) { 1470 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1471 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1472 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1473 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1474 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1475 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1476 } 1477 return CallingConvention::NearC; 1478 } 1479 1480 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1481 ModifierOptions Mods = ModifierOptions::None; 1482 bool IsModifier = true; 1483 const DIType *BaseTy = Ty; 1484 while (IsModifier && BaseTy) { 1485 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1486 switch (BaseTy->getTag()) { 1487 case dwarf::DW_TAG_const_type: 1488 Mods |= ModifierOptions::Const; 1489 break; 1490 case dwarf::DW_TAG_volatile_type: 1491 Mods |= ModifierOptions::Volatile; 1492 break; 1493 default: 1494 IsModifier = false; 1495 break; 1496 } 1497 if (IsModifier) 1498 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1499 } 1500 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1501 ModifierRecord MR(ModifiedTI, Mods); 1502 return TypeTable.writeKnownType(MR); 1503 } 1504 1505 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1506 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1507 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1508 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1509 1510 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1511 ArrayRef<TypeIndex> ArgTypeIndices = None; 1512 if (!ReturnAndArgTypeIndices.empty()) { 1513 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1514 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1515 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1516 } 1517 1518 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1519 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1520 1521 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1522 1523 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1524 ArgTypeIndices.size(), ArgListIndex); 1525 return TypeTable.writeKnownType(Procedure); 1526 } 1527 1528 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1529 const DIType *ClassTy, 1530 int ThisAdjustment) { 1531 // Lower the containing class type. 1532 TypeIndex ClassType = getTypeIndex(ClassTy); 1533 1534 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1535 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1536 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1537 1538 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1539 ArrayRef<TypeIndex> ArgTypeIndices = None; 1540 if (!ReturnAndArgTypeIndices.empty()) { 1541 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1542 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1543 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1544 } 1545 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1546 if (!ArgTypeIndices.empty()) { 1547 ThisTypeIndex = ArgTypeIndices.front(); 1548 ArgTypeIndices = ArgTypeIndices.drop_front(); 1549 } 1550 1551 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1552 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1553 1554 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1555 1556 // TODO: Need to use the correct values for: 1557 // FunctionOptions 1558 // ThisPointerAdjustment. 1559 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1560 FunctionOptions::None, ArgTypeIndices.size(), 1561 ArgListIndex, ThisAdjustment); 1562 TypeIndex TI = TypeTable.writeKnownType(MFR); 1563 1564 return TI; 1565 } 1566 1567 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1568 unsigned VSlotCount = 1569 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1570 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1571 1572 VFTableShapeRecord VFTSR(Slots); 1573 return TypeTable.writeKnownType(VFTSR); 1574 } 1575 1576 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1577 switch (Flags & DINode::FlagAccessibility) { 1578 case DINode::FlagPrivate: return MemberAccess::Private; 1579 case DINode::FlagPublic: return MemberAccess::Public; 1580 case DINode::FlagProtected: return MemberAccess::Protected; 1581 case 0: 1582 // If there was no explicit access control, provide the default for the tag. 1583 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1584 : MemberAccess::Public; 1585 } 1586 llvm_unreachable("access flags are exclusive"); 1587 } 1588 1589 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1590 if (SP->isArtificial()) 1591 return MethodOptions::CompilerGenerated; 1592 1593 // FIXME: Handle other MethodOptions. 1594 1595 return MethodOptions::None; 1596 } 1597 1598 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1599 bool Introduced) { 1600 switch (SP->getVirtuality()) { 1601 case dwarf::DW_VIRTUALITY_none: 1602 break; 1603 case dwarf::DW_VIRTUALITY_virtual: 1604 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1605 case dwarf::DW_VIRTUALITY_pure_virtual: 1606 return Introduced ? MethodKind::PureIntroducingVirtual 1607 : MethodKind::PureVirtual; 1608 default: 1609 llvm_unreachable("unhandled virtuality case"); 1610 } 1611 1612 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1613 1614 return MethodKind::Vanilla; 1615 } 1616 1617 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1618 switch (Ty->getTag()) { 1619 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1620 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1621 } 1622 llvm_unreachable("unexpected tag"); 1623 } 1624 1625 /// Return ClassOptions that should be present on both the forward declaration 1626 /// and the defintion of a tag type. 1627 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1628 ClassOptions CO = ClassOptions::None; 1629 1630 // MSVC always sets this flag, even for local types. Clang doesn't always 1631 // appear to give every type a linkage name, which may be problematic for us. 1632 // FIXME: Investigate the consequences of not following them here. 1633 if (!Ty->getIdentifier().empty()) 1634 CO |= ClassOptions::HasUniqueName; 1635 1636 // Put the Nested flag on a type if it appears immediately inside a tag type. 1637 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1638 // here. That flag is only set on definitions, and not forward declarations. 1639 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1640 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1641 CO |= ClassOptions::Nested; 1642 1643 // Put the Scoped flag on function-local types. 1644 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1645 Scope = Scope->getScope().resolve()) { 1646 if (isa<DISubprogram>(Scope)) { 1647 CO |= ClassOptions::Scoped; 1648 break; 1649 } 1650 } 1651 1652 return CO; 1653 } 1654 1655 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1656 ClassOptions CO = getCommonClassOptions(Ty); 1657 TypeIndex FTI; 1658 unsigned EnumeratorCount = 0; 1659 1660 if (Ty->isForwardDecl()) { 1661 CO |= ClassOptions::ForwardReference; 1662 } else { 1663 FieldListRecordBuilder FLRB(TypeTable); 1664 1665 FLRB.begin(); 1666 for (const DINode *Element : Ty->getElements()) { 1667 // We assume that the frontend provides all members in source declaration 1668 // order, which is what MSVC does. 1669 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1670 EnumeratorRecord ER(MemberAccess::Public, 1671 APSInt::getUnsigned(Enumerator->getValue()), 1672 Enumerator->getName()); 1673 FLRB.writeMemberType(ER); 1674 EnumeratorCount++; 1675 } 1676 } 1677 FTI = FLRB.end(true); 1678 } 1679 1680 std::string FullName = getFullyQualifiedName(Ty); 1681 1682 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1683 getTypeIndex(Ty->getBaseType())); 1684 return TypeTable.writeKnownType(ER); 1685 } 1686 1687 //===----------------------------------------------------------------------===// 1688 // ClassInfo 1689 //===----------------------------------------------------------------------===// 1690 1691 struct llvm::ClassInfo { 1692 struct MemberInfo { 1693 const DIDerivedType *MemberTypeNode; 1694 uint64_t BaseOffset; 1695 }; 1696 // [MemberInfo] 1697 using MemberList = std::vector<MemberInfo>; 1698 1699 using MethodsList = TinyPtrVector<const DISubprogram *>; 1700 // MethodName -> MethodsList 1701 using MethodsMap = MapVector<MDString *, MethodsList>; 1702 1703 /// Base classes. 1704 std::vector<const DIDerivedType *> Inheritance; 1705 1706 /// Direct members. 1707 MemberList Members; 1708 // Direct overloaded methods gathered by name. 1709 MethodsMap Methods; 1710 1711 TypeIndex VShapeTI; 1712 1713 std::vector<const DIType *> NestedTypes; 1714 }; 1715 1716 void CodeViewDebug::clear() { 1717 assert(CurFn == nullptr); 1718 FileIdMap.clear(); 1719 FnDebugInfo.clear(); 1720 FileToFilepathMap.clear(); 1721 LocalUDTs.clear(); 1722 GlobalUDTs.clear(); 1723 TypeIndices.clear(); 1724 CompleteTypeIndices.clear(); 1725 } 1726 1727 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1728 const DIDerivedType *DDTy) { 1729 if (!DDTy->getName().empty()) { 1730 Info.Members.push_back({DDTy, 0}); 1731 return; 1732 } 1733 // An unnamed member must represent a nested struct or union. Add all the 1734 // indirect fields to the current record. 1735 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1736 uint64_t Offset = DDTy->getOffsetInBits(); 1737 const DIType *Ty = DDTy->getBaseType().resolve(); 1738 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1739 ClassInfo NestedInfo = collectClassInfo(DCTy); 1740 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1741 Info.Members.push_back( 1742 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1743 } 1744 1745 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1746 ClassInfo Info; 1747 // Add elements to structure type. 1748 DINodeArray Elements = Ty->getElements(); 1749 for (auto *Element : Elements) { 1750 // We assume that the frontend provides all members in source declaration 1751 // order, which is what MSVC does. 1752 if (!Element) 1753 continue; 1754 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1755 Info.Methods[SP->getRawName()].push_back(SP); 1756 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1757 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1758 collectMemberInfo(Info, DDTy); 1759 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1760 Info.Inheritance.push_back(DDTy); 1761 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1762 DDTy->getName() == "__vtbl_ptr_type") { 1763 Info.VShapeTI = getTypeIndex(DDTy); 1764 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1765 Info.NestedTypes.push_back(DDTy); 1766 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1767 // Ignore friend members. It appears that MSVC emitted info about 1768 // friends in the past, but modern versions do not. 1769 } 1770 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1771 Info.NestedTypes.push_back(Composite); 1772 } 1773 // Skip other unrecognized kinds of elements. 1774 } 1775 return Info; 1776 } 1777 1778 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1779 // First, construct the forward decl. Don't look into Ty to compute the 1780 // forward decl options, since it might not be available in all TUs. 1781 TypeRecordKind Kind = getRecordKind(Ty); 1782 ClassOptions CO = 1783 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1784 std::string FullName = getFullyQualifiedName(Ty); 1785 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1786 FullName, Ty->getIdentifier()); 1787 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1788 if (!Ty->isForwardDecl()) 1789 DeferredCompleteTypes.push_back(Ty); 1790 return FwdDeclTI; 1791 } 1792 1793 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1794 // Construct the field list and complete type record. 1795 TypeRecordKind Kind = getRecordKind(Ty); 1796 ClassOptions CO = getCommonClassOptions(Ty); 1797 TypeIndex FieldTI; 1798 TypeIndex VShapeTI; 1799 unsigned FieldCount; 1800 bool ContainsNestedClass; 1801 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1802 lowerRecordFieldList(Ty); 1803 1804 if (ContainsNestedClass) 1805 CO |= ClassOptions::ContainsNestedClass; 1806 1807 std::string FullName = getFullyQualifiedName(Ty); 1808 1809 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1810 1811 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1812 SizeInBytes, FullName, Ty->getIdentifier()); 1813 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1814 1815 if (const auto *File = Ty->getFile()) { 1816 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1817 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1818 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1819 TypeTable.writeKnownType(USLR); 1820 } 1821 1822 addToUDTs(Ty); 1823 1824 return ClassTI; 1825 } 1826 1827 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1828 ClassOptions CO = 1829 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1830 std::string FullName = getFullyQualifiedName(Ty); 1831 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1832 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1833 if (!Ty->isForwardDecl()) 1834 DeferredCompleteTypes.push_back(Ty); 1835 return FwdDeclTI; 1836 } 1837 1838 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1839 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1840 TypeIndex FieldTI; 1841 unsigned FieldCount; 1842 bool ContainsNestedClass; 1843 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1844 lowerRecordFieldList(Ty); 1845 1846 if (ContainsNestedClass) 1847 CO |= ClassOptions::ContainsNestedClass; 1848 1849 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1850 std::string FullName = getFullyQualifiedName(Ty); 1851 1852 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1853 Ty->getIdentifier()); 1854 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1855 1856 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1857 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1858 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1859 TypeTable.writeKnownType(USLR); 1860 1861 addToUDTs(Ty); 1862 1863 return UnionTI; 1864 } 1865 1866 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1867 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1868 // Manually count members. MSVC appears to count everything that generates a 1869 // field list record. Each individual overload in a method overload group 1870 // contributes to this count, even though the overload group is a single field 1871 // list record. 1872 unsigned MemberCount = 0; 1873 ClassInfo Info = collectClassInfo(Ty); 1874 FieldListRecordBuilder FLBR(TypeTable); 1875 FLBR.begin(); 1876 1877 // Create base classes. 1878 for (const DIDerivedType *I : Info.Inheritance) { 1879 if (I->getFlags() & DINode::FlagVirtual) { 1880 // Virtual base. 1881 // FIXME: Emit VBPtrOffset when the frontend provides it. 1882 unsigned VBPtrOffset = 0; 1883 // FIXME: Despite the accessor name, the offset is really in bytes. 1884 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1885 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1886 ? TypeRecordKind::IndirectVirtualBaseClass 1887 : TypeRecordKind::VirtualBaseClass; 1888 VirtualBaseClassRecord VBCR( 1889 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1890 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1891 VBTableIndex); 1892 1893 FLBR.writeMemberType(VBCR); 1894 } else { 1895 assert(I->getOffsetInBits() % 8 == 0 && 1896 "bases must be on byte boundaries"); 1897 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1898 getTypeIndex(I->getBaseType()), 1899 I->getOffsetInBits() / 8); 1900 FLBR.writeMemberType(BCR); 1901 } 1902 } 1903 1904 // Create members. 1905 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1906 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1907 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1908 StringRef MemberName = Member->getName(); 1909 MemberAccess Access = 1910 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1911 1912 if (Member->isStaticMember()) { 1913 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1914 FLBR.writeMemberType(SDMR); 1915 MemberCount++; 1916 continue; 1917 } 1918 1919 // Virtual function pointer member. 1920 if ((Member->getFlags() & DINode::FlagArtificial) && 1921 Member->getName().startswith("_vptr$")) { 1922 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1923 FLBR.writeMemberType(VFPR); 1924 MemberCount++; 1925 continue; 1926 } 1927 1928 // Data member. 1929 uint64_t MemberOffsetInBits = 1930 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1931 if (Member->isBitField()) { 1932 uint64_t StartBitOffset = MemberOffsetInBits; 1933 if (const auto *CI = 1934 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1935 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1936 } 1937 StartBitOffset -= MemberOffsetInBits; 1938 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1939 StartBitOffset); 1940 MemberBaseType = TypeTable.writeKnownType(BFR); 1941 } 1942 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1943 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1944 MemberName); 1945 FLBR.writeMemberType(DMR); 1946 MemberCount++; 1947 } 1948 1949 // Create methods 1950 for (auto &MethodItr : Info.Methods) { 1951 StringRef Name = MethodItr.first->getString(); 1952 1953 std::vector<OneMethodRecord> Methods; 1954 for (const DISubprogram *SP : MethodItr.second) { 1955 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1956 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1957 1958 unsigned VFTableOffset = -1; 1959 if (Introduced) 1960 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1961 1962 Methods.push_back(OneMethodRecord( 1963 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1964 translateMethodKindFlags(SP, Introduced), 1965 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1966 MemberCount++; 1967 } 1968 assert(!Methods.empty() && "Empty methods map entry"); 1969 if (Methods.size() == 1) 1970 FLBR.writeMemberType(Methods[0]); 1971 else { 1972 MethodOverloadListRecord MOLR(Methods); 1973 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1974 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1975 FLBR.writeMemberType(OMR); 1976 } 1977 } 1978 1979 // Create nested classes. 1980 for (const DIType *Nested : Info.NestedTypes) { 1981 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1982 FLBR.writeMemberType(R); 1983 MemberCount++; 1984 } 1985 1986 TypeIndex FieldTI = FLBR.end(true); 1987 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1988 !Info.NestedTypes.empty()); 1989 } 1990 1991 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1992 if (!VBPType.getIndex()) { 1993 // Make a 'const int *' type. 1994 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1995 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1996 1997 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1998 : PointerKind::Near32; 1999 PointerMode PM = PointerMode::Pointer; 2000 PointerOptions PO = PointerOptions::None; 2001 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2002 2003 VBPType = TypeTable.writeKnownType(PR); 2004 } 2005 2006 return VBPType; 2007 } 2008 2009 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2010 const DIType *Ty = TypeRef.resolve(); 2011 const DIType *ClassTy = ClassTyRef.resolve(); 2012 2013 // The null DIType is the void type. Don't try to hash it. 2014 if (!Ty) 2015 return TypeIndex::Void(); 2016 2017 // Check if we've already translated this type. Don't try to do a 2018 // get-or-create style insertion that caches the hash lookup across the 2019 // lowerType call. It will update the TypeIndices map. 2020 auto I = TypeIndices.find({Ty, ClassTy}); 2021 if (I != TypeIndices.end()) 2022 return I->second; 2023 2024 TypeLoweringScope S(*this); 2025 TypeIndex TI = lowerType(Ty, ClassTy); 2026 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2027 } 2028 2029 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2030 DIType *Ty = TypeRef.resolve(); 2031 PointerRecord PR(getTypeIndex(Ty), 2032 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2033 : PointerKind::Near32, 2034 PointerMode::LValueReference, PointerOptions::None, 2035 Ty->getSizeInBits() / 8); 2036 return TypeTable.writeKnownType(PR); 2037 } 2038 2039 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2040 const DIType *Ty = TypeRef.resolve(); 2041 2042 // The null DIType is the void type. Don't try to hash it. 2043 if (!Ty) 2044 return TypeIndex::Void(); 2045 2046 // If this is a non-record type, the complete type index is the same as the 2047 // normal type index. Just call getTypeIndex. 2048 switch (Ty->getTag()) { 2049 case dwarf::DW_TAG_class_type: 2050 case dwarf::DW_TAG_structure_type: 2051 case dwarf::DW_TAG_union_type: 2052 break; 2053 default: 2054 return getTypeIndex(Ty); 2055 } 2056 2057 // Check if we've already translated the complete record type. Lowering a 2058 // complete type should never trigger lowering another complete type, so we 2059 // can reuse the hash table lookup result. 2060 const auto *CTy = cast<DICompositeType>(Ty); 2061 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2062 if (!InsertResult.second) 2063 return InsertResult.first->second; 2064 2065 TypeLoweringScope S(*this); 2066 2067 // Make sure the forward declaration is emitted first. It's unclear if this 2068 // is necessary, but MSVC does it, and we should follow suit until we can show 2069 // otherwise. 2070 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2071 2072 // Just use the forward decl if we don't have complete type info. This might 2073 // happen if the frontend is using modules and expects the complete definition 2074 // to be emitted elsewhere. 2075 if (CTy->isForwardDecl()) 2076 return FwdDeclTI; 2077 2078 TypeIndex TI; 2079 switch (CTy->getTag()) { 2080 case dwarf::DW_TAG_class_type: 2081 case dwarf::DW_TAG_structure_type: 2082 TI = lowerCompleteTypeClass(CTy); 2083 break; 2084 case dwarf::DW_TAG_union_type: 2085 TI = lowerCompleteTypeUnion(CTy); 2086 break; 2087 default: 2088 llvm_unreachable("not a record"); 2089 } 2090 2091 InsertResult.first->second = TI; 2092 return TI; 2093 } 2094 2095 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2096 /// and do this until fixpoint, as each complete record type typically 2097 /// references 2098 /// many other record types. 2099 void CodeViewDebug::emitDeferredCompleteTypes() { 2100 SmallVector<const DICompositeType *, 4> TypesToEmit; 2101 while (!DeferredCompleteTypes.empty()) { 2102 std::swap(DeferredCompleteTypes, TypesToEmit); 2103 for (const DICompositeType *RecordTy : TypesToEmit) 2104 getCompleteTypeIndex(RecordTy); 2105 TypesToEmit.clear(); 2106 } 2107 } 2108 2109 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2110 // Get the sorted list of parameters and emit them first. 2111 SmallVector<const LocalVariable *, 6> Params; 2112 for (const LocalVariable &L : Locals) 2113 if (L.DIVar->isParameter()) 2114 Params.push_back(&L); 2115 std::sort(Params.begin(), Params.end(), 2116 [](const LocalVariable *L, const LocalVariable *R) { 2117 return L->DIVar->getArg() < R->DIVar->getArg(); 2118 }); 2119 for (const LocalVariable *L : Params) 2120 emitLocalVariable(*L); 2121 2122 // Next emit all non-parameters in the order that we found them. 2123 for (const LocalVariable &L : Locals) 2124 if (!L.DIVar->isParameter()) 2125 emitLocalVariable(L); 2126 } 2127 2128 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2129 // LocalSym record, see SymbolRecord.h for more info. 2130 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2131 *LocalEnd = MMI->getContext().createTempSymbol(); 2132 OS.AddComment("Record length"); 2133 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2134 OS.EmitLabel(LocalBegin); 2135 2136 OS.AddComment("Record kind: S_LOCAL"); 2137 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2138 2139 LocalSymFlags Flags = LocalSymFlags::None; 2140 if (Var.DIVar->isParameter()) 2141 Flags |= LocalSymFlags::IsParameter; 2142 if (Var.DefRanges.empty()) 2143 Flags |= LocalSymFlags::IsOptimizedOut; 2144 2145 OS.AddComment("TypeIndex"); 2146 TypeIndex TI = Var.UseReferenceType 2147 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2148 : getCompleteTypeIndex(Var.DIVar->getType()); 2149 OS.EmitIntValue(TI.getIndex(), 4); 2150 OS.AddComment("Flags"); 2151 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2152 // Truncate the name so we won't overflow the record length field. 2153 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2154 OS.EmitLabel(LocalEnd); 2155 2156 // Calculate the on disk prefix of the appropriate def range record. The 2157 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2158 // should be big enough to hold all forms without memory allocation. 2159 SmallString<20> BytePrefix; 2160 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2161 BytePrefix.clear(); 2162 if (DefRange.InMemory) { 2163 uint16_t RegRelFlags = 0; 2164 if (DefRange.IsSubfield) { 2165 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2166 (DefRange.StructOffset 2167 << DefRangeRegisterRelSym::OffsetInParentShift); 2168 } 2169 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2170 Sym.Hdr.Register = DefRange.CVRegister; 2171 Sym.Hdr.Flags = RegRelFlags; 2172 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2173 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2174 BytePrefix += 2175 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2176 BytePrefix += 2177 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2178 } else { 2179 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2180 if (DefRange.IsSubfield) { 2181 // Unclear what matters here. 2182 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2183 Sym.Hdr.Register = DefRange.CVRegister; 2184 Sym.Hdr.MayHaveNoName = 0; 2185 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2186 2187 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2188 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2189 sizeof(SymKind)); 2190 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2191 sizeof(Sym.Hdr)); 2192 } else { 2193 // Unclear what matters here. 2194 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2195 Sym.Hdr.Register = DefRange.CVRegister; 2196 Sym.Hdr.MayHaveNoName = 0; 2197 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2198 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2199 sizeof(SymKind)); 2200 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2201 sizeof(Sym.Hdr)); 2202 } 2203 } 2204 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2205 } 2206 } 2207 2208 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2209 const Function *GV = MF->getFunction(); 2210 assert(FnDebugInfo.count(GV)); 2211 assert(CurFn == &FnDebugInfo[GV]); 2212 2213 collectVariableInfo(GV->getSubprogram()); 2214 2215 // Don't emit anything if we don't have any line tables. 2216 if (!CurFn->HaveLineInfo) { 2217 FnDebugInfo.erase(GV); 2218 CurFn = nullptr; 2219 return; 2220 } 2221 2222 CurFn->Annotations = MF->getCodeViewAnnotations(); 2223 2224 CurFn->End = Asm->getFunctionEnd(); 2225 2226 CurFn = nullptr; 2227 } 2228 2229 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2230 DebugHandlerBase::beginInstruction(MI); 2231 2232 // Ignore DBG_VALUE locations and function prologue. 2233 if (!Asm || !CurFn || MI->isDebugValue() || 2234 MI->getFlag(MachineInstr::FrameSetup)) 2235 return; 2236 2237 // If the first instruction of a new MBB has no location, find the first 2238 // instruction with a location and use that. 2239 DebugLoc DL = MI->getDebugLoc(); 2240 if (!DL && MI->getParent() != PrevInstBB) { 2241 for (const auto &NextMI : *MI->getParent()) { 2242 if (NextMI.isDebugValue()) 2243 continue; 2244 DL = NextMI.getDebugLoc(); 2245 if (DL) 2246 break; 2247 } 2248 } 2249 PrevInstBB = MI->getParent(); 2250 2251 // If we still don't have a debug location, don't record a location. 2252 if (!DL) 2253 return; 2254 2255 maybeRecordLocation(DL, Asm->MF); 2256 } 2257 2258 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2259 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2260 *EndLabel = MMI->getContext().createTempSymbol(); 2261 OS.EmitIntValue(unsigned(Kind), 4); 2262 OS.AddComment("Subsection size"); 2263 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2264 OS.EmitLabel(BeginLabel); 2265 return EndLabel; 2266 } 2267 2268 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2269 OS.EmitLabel(EndLabel); 2270 // Every subsection must be aligned to a 4-byte boundary. 2271 OS.EmitValueToAlignment(4); 2272 } 2273 2274 void CodeViewDebug::emitDebugInfoForUDTs( 2275 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2276 for (const auto &UDT : UDTs) { 2277 const DIType *T = UDT.second; 2278 assert(shouldEmitUdt(T)); 2279 2280 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2281 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2282 OS.AddComment("Record length"); 2283 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2284 OS.EmitLabel(UDTRecordBegin); 2285 2286 OS.AddComment("Record kind: S_UDT"); 2287 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2288 2289 OS.AddComment("Type"); 2290 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2291 2292 emitNullTerminatedSymbolName(OS, UDT.first); 2293 OS.EmitLabel(UDTRecordEnd); 2294 } 2295 } 2296 2297 void CodeViewDebug::emitDebugInfoForGlobals() { 2298 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2299 GlobalMap; 2300 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2301 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2302 GV.getDebugInfo(GVEs); 2303 for (const auto *GVE : GVEs) 2304 GlobalMap[GVE] = &GV; 2305 } 2306 2307 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2308 for (const MDNode *Node : CUs->operands()) { 2309 const auto *CU = cast<DICompileUnit>(Node); 2310 2311 // First, emit all globals that are not in a comdat in a single symbol 2312 // substream. MSVC doesn't like it if the substream is empty, so only open 2313 // it if we have at least one global to emit. 2314 switchToDebugSectionForSymbol(nullptr); 2315 MCSymbol *EndLabel = nullptr; 2316 for (const auto *GVE : CU->getGlobalVariables()) { 2317 if (const auto *GV = GlobalMap.lookup(GVE)) 2318 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2319 if (!EndLabel) { 2320 OS.AddComment("Symbol subsection for globals"); 2321 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2322 } 2323 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2324 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2325 } 2326 } 2327 if (EndLabel) 2328 endCVSubsection(EndLabel); 2329 2330 // Second, emit each global that is in a comdat into its own .debug$S 2331 // section along with its own symbol substream. 2332 for (const auto *GVE : CU->getGlobalVariables()) { 2333 if (const auto *GV = GlobalMap.lookup(GVE)) { 2334 if (GV->hasComdat()) { 2335 MCSymbol *GVSym = Asm->getSymbol(GV); 2336 OS.AddComment("Symbol subsection for " + 2337 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2338 switchToDebugSectionForSymbol(GVSym); 2339 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2340 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2341 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2342 endCVSubsection(EndLabel); 2343 } 2344 } 2345 } 2346 } 2347 } 2348 2349 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2350 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2351 for (const MDNode *Node : CUs->operands()) { 2352 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2353 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2354 getTypeIndex(RT); 2355 // FIXME: Add to global/local DTU list. 2356 } 2357 } 2358 } 2359 } 2360 2361 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2362 const GlobalVariable *GV, 2363 MCSymbol *GVSym) { 2364 // DataSym record, see SymbolRecord.h for more info. 2365 // FIXME: Thread local data, etc 2366 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2367 *DataEnd = MMI->getContext().createTempSymbol(); 2368 OS.AddComment("Record length"); 2369 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2370 OS.EmitLabel(DataBegin); 2371 if (DIGV->isLocalToUnit()) { 2372 if (GV->isThreadLocal()) { 2373 OS.AddComment("Record kind: S_LTHREAD32"); 2374 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2375 } else { 2376 OS.AddComment("Record kind: S_LDATA32"); 2377 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2378 } 2379 } else { 2380 if (GV->isThreadLocal()) { 2381 OS.AddComment("Record kind: S_GTHREAD32"); 2382 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2383 } else { 2384 OS.AddComment("Record kind: S_GDATA32"); 2385 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2386 } 2387 } 2388 OS.AddComment("Type"); 2389 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2390 OS.AddComment("DataOffset"); 2391 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2392 OS.AddComment("Segment"); 2393 OS.EmitCOFFSectionIndex(GVSym); 2394 OS.AddComment("Name"); 2395 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2396 OS.EmitLabel(DataEnd); 2397 } 2398