xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision e33c94f1b06b4fd5f08cce1e0625c6b6ac474f77)
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
40 #include "llvm/DebugInfo/CodeView/CodeView.h"
41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
46 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/MC/MCAsmInfo.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSectionCOFF.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/BinaryByteStream.h"
63 #include "llvm/Support/BinaryStreamReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Target/TargetFrameLowering.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetRegisterInfo.h"
75 #include "llvm/Target/TargetSubtargetInfo.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <limits>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace llvm::codeview;
89 
90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
91     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
92   // If module doesn't have named metadata anchors or COFF debug section
93   // is not available, skip any debug info related stuff.
94   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
95       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
96     Asm = nullptr;
97     return;
98   }
99 
100   // Tell MMI that we have debug info.
101   MMI->setDebugInfoAvailability(true);
102 }
103 
104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
105   std::string &Filepath = FileToFilepathMap[File];
106   if (!Filepath.empty())
107     return Filepath;
108 
109   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
110 
111   // Clang emits directory and relative filename info into the IR, but CodeView
112   // operates on full paths.  We could change Clang to emit full paths too, but
113   // that would increase the IR size and probably not needed for other users.
114   // For now, just concatenate and canonicalize the path here.
115   if (Filename.find(':') == 1)
116     Filepath = Filename;
117   else
118     Filepath = (Dir + "\\" + Filename).str();
119 
120   // Canonicalize the path.  We have to do it textually because we may no longer
121   // have access the file in the filesystem.
122   // First, replace all slashes with backslashes.
123   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
124 
125   // Remove all "\.\" with "\".
126   size_t Cursor = 0;
127   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
128     Filepath.erase(Cursor, 2);
129 
130   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
131   // path should be well-formatted, e.g. start with a drive letter, etc.
132   Cursor = 0;
133   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
134     // Something's wrong if the path starts with "\..\", abort.
135     if (Cursor == 0)
136       break;
137 
138     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
139     if (PrevSlash == std::string::npos)
140       // Something's wrong, abort.
141       break;
142 
143     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
144     // The next ".." might be following the one we've just erased.
145     Cursor = PrevSlash;
146   }
147 
148   // Remove all duplicate backslashes.
149   Cursor = 0;
150   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
151     Filepath.erase(Cursor, 1);
152 
153   return Filepath;
154 }
155 
156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
157   unsigned NextId = FileIdMap.size() + 1;
158   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
159   if (Insertion.second) {
160     // We have to compute the full filepath and emit a .cv_file directive.
161     StringRef FullPath = getFullFilepath(F);
162     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
163     (void)Success;
164     assert(Success && ".cv_file directive failed");
165   }
166   return Insertion.first->second;
167 }
168 
169 CodeViewDebug::InlineSite &
170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
171                              const DISubprogram *Inlinee) {
172   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
173   InlineSite *Site = &SiteInsertion.first->second;
174   if (SiteInsertion.second) {
175     unsigned ParentFuncId = CurFn->FuncId;
176     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
177       ParentFuncId =
178           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
179               .SiteFuncId;
180 
181     Site->SiteFuncId = NextFuncId++;
182     OS.EmitCVInlineSiteIdDirective(
183         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
184         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
185     Site->Inlinee = Inlinee;
186     InlinedSubprograms.insert(Inlinee);
187     getFuncIdForSubprogram(Inlinee);
188   }
189   return *Site;
190 }
191 
192 static StringRef getPrettyScopeName(const DIScope *Scope) {
193   StringRef ScopeName = Scope->getName();
194   if (!ScopeName.empty())
195     return ScopeName;
196 
197   switch (Scope->getTag()) {
198   case dwarf::DW_TAG_enumeration_type:
199   case dwarf::DW_TAG_class_type:
200   case dwarf::DW_TAG_structure_type:
201   case dwarf::DW_TAG_union_type:
202     return "<unnamed-tag>";
203   case dwarf::DW_TAG_namespace:
204     return "`anonymous namespace'";
205   }
206 
207   return StringRef();
208 }
209 
210 static const DISubprogram *getQualifiedNameComponents(
211     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
212   const DISubprogram *ClosestSubprogram = nullptr;
213   while (Scope != nullptr) {
214     if (ClosestSubprogram == nullptr)
215       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
216     StringRef ScopeName = getPrettyScopeName(Scope);
217     if (!ScopeName.empty())
218       QualifiedNameComponents.push_back(ScopeName);
219     Scope = Scope->getScope().resolve();
220   }
221   return ClosestSubprogram;
222 }
223 
224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
225                                     StringRef TypeName) {
226   std::string FullyQualifiedName;
227   for (StringRef QualifiedNameComponent :
228        llvm::reverse(QualifiedNameComponents)) {
229     FullyQualifiedName.append(QualifiedNameComponent);
230     FullyQualifiedName.append("::");
231   }
232   FullyQualifiedName.append(TypeName);
233   return FullyQualifiedName;
234 }
235 
236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
237   SmallVector<StringRef, 5> QualifiedNameComponents;
238   getQualifiedNameComponents(Scope, QualifiedNameComponents);
239   return getQualifiedName(QualifiedNameComponents, Name);
240 }
241 
242 struct CodeViewDebug::TypeLoweringScope {
243   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
244   ~TypeLoweringScope() {
245     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
246     // inner TypeLoweringScopes don't attempt to emit deferred types.
247     if (CVD.TypeEmissionLevel == 1)
248       CVD.emitDeferredCompleteTypes();
249     --CVD.TypeEmissionLevel;
250   }
251   CodeViewDebug &CVD;
252 };
253 
254 static std::string getFullyQualifiedName(const DIScope *Ty) {
255   const DIScope *Scope = Ty->getScope().resolve();
256   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
257 }
258 
259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
260   // No scope means global scope and that uses the zero index.
261   if (!Scope || isa<DIFile>(Scope))
262     return TypeIndex();
263 
264   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
265 
266   // Check if we've already translated this scope.
267   auto I = TypeIndices.find({Scope, nullptr});
268   if (I != TypeIndices.end())
269     return I->second;
270 
271   // Build the fully qualified name of the scope.
272   std::string ScopeName = getFullyQualifiedName(Scope);
273   StringIdRecord SID(TypeIndex(), ScopeName);
274   auto TI = TypeTable.writeKnownType(SID);
275   return recordTypeIndexForDINode(Scope, TI);
276 }
277 
278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
279   assert(SP);
280 
281   // Check if we've already translated this subprogram.
282   auto I = TypeIndices.find({SP, nullptr});
283   if (I != TypeIndices.end())
284     return I->second;
285 
286   // The display name includes function template arguments. Drop them to match
287   // MSVC.
288   StringRef DisplayName = SP->getName().split('<').first;
289 
290   const DIScope *Scope = SP->getScope().resolve();
291   TypeIndex TI;
292   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
293     // If the scope is a DICompositeType, then this must be a method. Member
294     // function types take some special handling, and require access to the
295     // subprogram.
296     TypeIndex ClassType = getTypeIndex(Class);
297     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
298                                DisplayName);
299     TI = TypeTable.writeKnownType(MFuncId);
300   } else {
301     // Otherwise, this must be a free function.
302     TypeIndex ParentScope = getScopeIndex(Scope);
303     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
304     TI = TypeTable.writeKnownType(FuncId);
305   }
306 
307   return recordTypeIndexForDINode(SP, TI);
308 }
309 
310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
311                                                const DICompositeType *Class) {
312   // Always use the method declaration as the key for the function type. The
313   // method declaration contains the this adjustment.
314   if (SP->getDeclaration())
315     SP = SP->getDeclaration();
316   assert(!SP->getDeclaration() && "should use declaration as key");
317 
318   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
319   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
320   auto I = TypeIndices.find({SP, Class});
321   if (I != TypeIndices.end())
322     return I->second;
323 
324   // Make sure complete type info for the class is emitted *after* the member
325   // function type, as the complete class type is likely to reference this
326   // member function type.
327   TypeLoweringScope S(*this);
328   TypeIndex TI =
329       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
330   return recordTypeIndexForDINode(SP, TI, Class);
331 }
332 
333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
334                                                   TypeIndex TI,
335                                                   const DIType *ClassTy) {
336   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
337   (void)InsertResult;
338   assert(InsertResult.second && "DINode was already assigned a type index");
339   return TI;
340 }
341 
342 unsigned CodeViewDebug::getPointerSizeInBytes() {
343   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
344 }
345 
346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
347                                         const DILocation *InlinedAt) {
348   if (InlinedAt) {
349     // This variable was inlined. Associate it with the InlineSite.
350     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
351     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
352     Site.InlinedLocals.emplace_back(Var);
353   } else {
354     // This variable goes in the main ProcSym.
355     CurFn->Locals.emplace_back(Var);
356   }
357 }
358 
359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
360                                const DILocation *Loc) {
361   auto B = Locs.begin(), E = Locs.end();
362   if (std::find(B, E, Loc) == E)
363     Locs.push_back(Loc);
364 }
365 
366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
367                                         const MachineFunction *MF) {
368   // Skip this instruction if it has the same location as the previous one.
369   if (!DL || DL == PrevInstLoc)
370     return;
371 
372   const DIScope *Scope = DL.get()->getScope();
373   if (!Scope)
374     return;
375 
376   // Skip this line if it is longer than the maximum we can record.
377   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
378   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
379       LI.isNeverStepInto())
380     return;
381 
382   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
383   if (CI.getStartColumn() != DL.getCol())
384     return;
385 
386   if (!CurFn->HaveLineInfo)
387     CurFn->HaveLineInfo = true;
388   unsigned FileId = 0;
389   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
390     FileId = CurFn->LastFileId;
391   else
392     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
393   PrevInstLoc = DL;
394 
395   unsigned FuncId = CurFn->FuncId;
396   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
397     const DILocation *Loc = DL.get();
398 
399     // If this location was actually inlined from somewhere else, give it the ID
400     // of the inline call site.
401     FuncId =
402         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
403 
404     // Ensure we have links in the tree of inline call sites.
405     bool FirstLoc = true;
406     while ((SiteLoc = Loc->getInlinedAt())) {
407       InlineSite &Site =
408           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
409       if (!FirstLoc)
410         addLocIfNotPresent(Site.ChildSites, Loc);
411       FirstLoc = false;
412       Loc = SiteLoc;
413     }
414     addLocIfNotPresent(CurFn->ChildSites, Loc);
415   }
416 
417   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
418                         /*PrologueEnd=*/false, /*IsStmt=*/false,
419                         DL->getFilename(), SMLoc());
420 }
421 
422 void CodeViewDebug::emitCodeViewMagicVersion() {
423   OS.EmitValueToAlignment(4);
424   OS.AddComment("Debug section magic");
425   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
426 }
427 
428 void CodeViewDebug::endModule() {
429   if (!Asm || !MMI->hasDebugInfo())
430     return;
431 
432   assert(Asm != nullptr);
433 
434   // The COFF .debug$S section consists of several subsections, each starting
435   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
436   // of the payload followed by the payload itself.  The subsections are 4-byte
437   // aligned.
438 
439   // Use the generic .debug$S section, and make a subsection for all the inlined
440   // subprograms.
441   switchToDebugSectionForSymbol(nullptr);
442 
443   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
444   emitCompilerInformation();
445   endCVSubsection(CompilerInfo);
446 
447   emitInlineeLinesSubsection();
448 
449   // Emit per-function debug information.
450   for (auto &P : FnDebugInfo)
451     if (!P.first->isDeclarationForLinker())
452       emitDebugInfoForFunction(P.first, P.second);
453 
454   // Emit global variable debug information.
455   setCurrentSubprogram(nullptr);
456   emitDebugInfoForGlobals();
457 
458   // Emit retained types.
459   emitDebugInfoForRetainedTypes();
460 
461   // Switch back to the generic .debug$S section after potentially processing
462   // comdat symbol sections.
463   switchToDebugSectionForSymbol(nullptr);
464 
465   // Emit UDT records for any types used by global variables.
466   if (!GlobalUDTs.empty()) {
467     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
468     emitDebugInfoForUDTs(GlobalUDTs);
469     endCVSubsection(SymbolsEnd);
470   }
471 
472   // This subsection holds a file index to offset in string table table.
473   OS.AddComment("File index to string table offset subsection");
474   OS.EmitCVFileChecksumsDirective();
475 
476   // This subsection holds the string table.
477   OS.AddComment("String table");
478   OS.EmitCVStringTableDirective();
479 
480   // Emit type information last, so that any types we translate while emitting
481   // function info are included.
482   emitTypeInformation();
483 
484   clear();
485 }
486 
487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
488   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
489   // after a fixed length portion of the record. The fixed length portion should
490   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
491   // overall record size is less than the maximum allowed.
492   unsigned MaxFixedRecordLength = 0xF00;
493   SmallString<32> NullTerminatedString(
494       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
495   NullTerminatedString.push_back('\0');
496   OS.EmitBytes(NullTerminatedString);
497 }
498 
499 void CodeViewDebug::emitTypeInformation() {
500   // Do nothing if we have no debug info or if no non-trivial types were emitted
501   // to TypeTable during codegen.
502   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
503   if (!CU_Nodes)
504     return;
505   if (TypeTable.empty())
506     return;
507 
508   // Start the .debug$T section with 0x4.
509   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
510   emitCodeViewMagicVersion();
511 
512   SmallString<8> CommentPrefix;
513   if (OS.isVerboseAsm()) {
514     CommentPrefix += '\t';
515     CommentPrefix += Asm->MAI->getCommentString();
516     CommentPrefix += ' ';
517   }
518 
519   TypeTableCollection Table(TypeTable.records());
520   Optional<TypeIndex> B = Table.getFirst();
521   while (B) {
522     // This will fail if the record data is invalid.
523     CVType Record = Table.getType(*B);
524 
525     if (OS.isVerboseAsm()) {
526       // Emit a block comment describing the type record for readability.
527       SmallString<512> CommentBlock;
528       raw_svector_ostream CommentOS(CommentBlock);
529       ScopedPrinter SP(CommentOS);
530       SP.setPrefix(CommentPrefix);
531       TypeDumpVisitor TDV(Table, &SP, false);
532 
533       Error E = codeview::visitTypeRecord(Record, *B, TDV);
534       if (E) {
535         logAllUnhandledErrors(std::move(E), errs(), "error: ");
536         llvm_unreachable("produced malformed type record");
537       }
538       // emitRawComment will insert its own tab and comment string before
539       // the first line, so strip off our first one. It also prints its own
540       // newline.
541       OS.emitRawComment(
542           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
543     }
544     OS.EmitBinaryData(Record.str_data());
545     B = Table.getNext(*B);
546   }
547 }
548 
549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
550   switch (DWLang) {
551   case dwarf::DW_LANG_C:
552   case dwarf::DW_LANG_C89:
553   case dwarf::DW_LANG_C99:
554   case dwarf::DW_LANG_C11:
555   case dwarf::DW_LANG_ObjC:
556     return SourceLanguage::C;
557   case dwarf::DW_LANG_C_plus_plus:
558   case dwarf::DW_LANG_C_plus_plus_03:
559   case dwarf::DW_LANG_C_plus_plus_11:
560   case dwarf::DW_LANG_C_plus_plus_14:
561     return SourceLanguage::Cpp;
562   case dwarf::DW_LANG_Fortran77:
563   case dwarf::DW_LANG_Fortran90:
564   case dwarf::DW_LANG_Fortran03:
565   case dwarf::DW_LANG_Fortran08:
566     return SourceLanguage::Fortran;
567   case dwarf::DW_LANG_Pascal83:
568     return SourceLanguage::Pascal;
569   case dwarf::DW_LANG_Cobol74:
570   case dwarf::DW_LANG_Cobol85:
571     return SourceLanguage::Cobol;
572   case dwarf::DW_LANG_Java:
573     return SourceLanguage::Java;
574   case dwarf::DW_LANG_D:
575     return SourceLanguage::D;
576   default:
577     // There's no CodeView representation for this language, and CV doesn't
578     // have an "unknown" option for the language field, so we'll use MASM,
579     // as it's very low level.
580     return SourceLanguage::Masm;
581   }
582 }
583 
584 namespace {
585 struct Version {
586   int Part[4];
587 };
588 } // end anonymous namespace
589 
590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
591 // the version number.
592 static Version parseVersion(StringRef Name) {
593   Version V = {{0}};
594   int N = 0;
595   for (const char C : Name) {
596     if (isdigit(C)) {
597       V.Part[N] *= 10;
598       V.Part[N] += C - '0';
599     } else if (C == '.') {
600       ++N;
601       if (N >= 4)
602         return V;
603     } else if (N > 0)
604       return V;
605   }
606   return V;
607 }
608 
609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
610   switch (Type) {
611   case Triple::ArchType::x86:
612     return CPUType::Pentium3;
613   case Triple::ArchType::x86_64:
614     return CPUType::X64;
615   case Triple::ArchType::thumb:
616     return CPUType::Thumb;
617   case Triple::ArchType::aarch64:
618     return CPUType::ARM64;
619   default:
620     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
621   }
622 }
623 
624 void CodeViewDebug::emitCompilerInformation() {
625   MCContext &Context = MMI->getContext();
626   MCSymbol *CompilerBegin = Context.createTempSymbol(),
627            *CompilerEnd = Context.createTempSymbol();
628   OS.AddComment("Record length");
629   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
630   OS.EmitLabel(CompilerBegin);
631   OS.AddComment("Record kind: S_COMPILE3");
632   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
633   uint32_t Flags = 0;
634 
635   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
636   const MDNode *Node = *CUs->operands().begin();
637   const auto *CU = cast<DICompileUnit>(Node);
638 
639   // The low byte of the flags indicates the source language.
640   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
641   // TODO:  Figure out which other flags need to be set.
642 
643   OS.AddComment("Flags and language");
644   OS.EmitIntValue(Flags, 4);
645 
646   OS.AddComment("CPUType");
647   CPUType CPU =
648       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
649   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
650 
651   StringRef CompilerVersion = CU->getProducer();
652   Version FrontVer = parseVersion(CompilerVersion);
653   OS.AddComment("Frontend version");
654   for (int N = 0; N < 4; ++N)
655     OS.EmitIntValue(FrontVer.Part[N], 2);
656 
657   // Some Microsoft tools, like Binscope, expect a backend version number of at
658   // least 8.something, so we'll coerce the LLVM version into a form that
659   // guarantees it'll be big enough without really lying about the version.
660   int Major = 1000 * LLVM_VERSION_MAJOR +
661               10 * LLVM_VERSION_MINOR +
662               LLVM_VERSION_PATCH;
663   // Clamp it for builds that use unusually large version numbers.
664   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
665   Version BackVer = {{ Major, 0, 0, 0 }};
666   OS.AddComment("Backend version");
667   for (int N = 0; N < 4; ++N)
668     OS.EmitIntValue(BackVer.Part[N], 2);
669 
670   OS.AddComment("Null-terminated compiler version string");
671   emitNullTerminatedSymbolName(OS, CompilerVersion);
672 
673   OS.EmitLabel(CompilerEnd);
674 }
675 
676 void CodeViewDebug::emitInlineeLinesSubsection() {
677   if (InlinedSubprograms.empty())
678     return;
679 
680   OS.AddComment("Inlinee lines subsection");
681   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
682 
683   // We don't provide any extra file info.
684   // FIXME: Find out if debuggers use this info.
685   OS.AddComment("Inlinee lines signature");
686   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
687 
688   for (const DISubprogram *SP : InlinedSubprograms) {
689     assert(TypeIndices.count({SP, nullptr}));
690     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
691 
692     OS.AddBlankLine();
693     unsigned FileId = maybeRecordFile(SP->getFile());
694     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
695                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
696     OS.AddBlankLine();
697     // The filechecksum table uses 8 byte entries for now, and file ids start at
698     // 1.
699     unsigned FileOffset = (FileId - 1) * 8;
700     OS.AddComment("Type index of inlined function");
701     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
702     OS.AddComment("Offset into filechecksum table");
703     OS.EmitIntValue(FileOffset, 4);
704     OS.AddComment("Starting line number");
705     OS.EmitIntValue(SP->getLine(), 4);
706   }
707 
708   endCVSubsection(InlineEnd);
709 }
710 
711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
712                                         const DILocation *InlinedAt,
713                                         const InlineSite &Site) {
714   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
715            *InlineEnd = MMI->getContext().createTempSymbol();
716 
717   assert(TypeIndices.count({Site.Inlinee, nullptr}));
718   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
719 
720   // SymbolRecord
721   OS.AddComment("Record length");
722   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
723   OS.EmitLabel(InlineBegin);
724   OS.AddComment("Record kind: S_INLINESITE");
725   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
726 
727   OS.AddComment("PtrParent");
728   OS.EmitIntValue(0, 4);
729   OS.AddComment("PtrEnd");
730   OS.EmitIntValue(0, 4);
731   OS.AddComment("Inlinee type index");
732   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
733 
734   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
735   unsigned StartLineNum = Site.Inlinee->getLine();
736 
737   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
738                                     FI.Begin, FI.End);
739 
740   OS.EmitLabel(InlineEnd);
741 
742   emitLocalVariableList(Site.InlinedLocals);
743 
744   // Recurse on child inlined call sites before closing the scope.
745   for (const DILocation *ChildSite : Site.ChildSites) {
746     auto I = FI.InlineSites.find(ChildSite);
747     assert(I != FI.InlineSites.end() &&
748            "child site not in function inline site map");
749     emitInlinedCallSite(FI, ChildSite, I->second);
750   }
751 
752   // Close the scope.
753   OS.AddComment("Record length");
754   OS.EmitIntValue(2, 2);                                  // RecordLength
755   OS.AddComment("Record kind: S_INLINESITE_END");
756   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
757 }
758 
759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
760   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
761   // comdat key. A section may be comdat because of -ffunction-sections or
762   // because it is comdat in the IR.
763   MCSectionCOFF *GVSec =
764       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
765   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
766 
767   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
768       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
769   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
770 
771   OS.SwitchSection(DebugSec);
772 
773   // Emit the magic version number if this is the first time we've switched to
774   // this section.
775   if (ComdatDebugSections.insert(DebugSec).second)
776     emitCodeViewMagicVersion();
777 }
778 
779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
780                                              FunctionInfo &FI) {
781   // For each function there is a separate subsection
782   // which holds the PC to file:line table.
783   const MCSymbol *Fn = Asm->getSymbol(GV);
784   assert(Fn);
785 
786   // Switch to the to a comdat section, if appropriate.
787   switchToDebugSectionForSymbol(Fn);
788 
789   std::string FuncName;
790   auto *SP = GV->getSubprogram();
791   assert(SP);
792   setCurrentSubprogram(SP);
793 
794   // If we have a display name, build the fully qualified name by walking the
795   // chain of scopes.
796   if (!SP->getName().empty())
797     FuncName =
798         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
799 
800   // If our DISubprogram name is empty, use the mangled name.
801   if (FuncName.empty())
802     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
803 
804   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
805   OS.AddComment("Symbol subsection for " + Twine(FuncName));
806   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
807   {
808     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
809              *ProcRecordEnd = MMI->getContext().createTempSymbol();
810     OS.AddComment("Record length");
811     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
812     OS.EmitLabel(ProcRecordBegin);
813 
814     if (GV->hasLocalLinkage()) {
815       OS.AddComment("Record kind: S_LPROC32_ID");
816       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
817     } else {
818       OS.AddComment("Record kind: S_GPROC32_ID");
819       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
820     }
821 
822     // These fields are filled in by tools like CVPACK which run after the fact.
823     OS.AddComment("PtrParent");
824     OS.EmitIntValue(0, 4);
825     OS.AddComment("PtrEnd");
826     OS.EmitIntValue(0, 4);
827     OS.AddComment("PtrNext");
828     OS.EmitIntValue(0, 4);
829     // This is the important bit that tells the debugger where the function
830     // code is located and what's its size:
831     OS.AddComment("Code size");
832     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
833     OS.AddComment("Offset after prologue");
834     OS.EmitIntValue(0, 4);
835     OS.AddComment("Offset before epilogue");
836     OS.EmitIntValue(0, 4);
837     OS.AddComment("Function type index");
838     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
839     OS.AddComment("Function section relative address");
840     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
841     OS.AddComment("Function section index");
842     OS.EmitCOFFSectionIndex(Fn);
843     OS.AddComment("Flags");
844     OS.EmitIntValue(0, 1);
845     // Emit the function display name as a null-terminated string.
846     OS.AddComment("Function name");
847     // Truncate the name so we won't overflow the record length field.
848     emitNullTerminatedSymbolName(OS, FuncName);
849     OS.EmitLabel(ProcRecordEnd);
850 
851     emitLocalVariableList(FI.Locals);
852 
853     // Emit inlined call site information. Only emit functions inlined directly
854     // into the parent function. We'll emit the other sites recursively as part
855     // of their parent inline site.
856     for (const DILocation *InlinedAt : FI.ChildSites) {
857       auto I = FI.InlineSites.find(InlinedAt);
858       assert(I != FI.InlineSites.end() &&
859              "child site not in function inline site map");
860       emitInlinedCallSite(FI, InlinedAt, I->second);
861     }
862 
863     for (auto Annot : FI.Annotations) {
864       MCSymbol *Label = Annot.first;
865       MDTuple *Strs = cast<MDTuple>(Annot.second);
866       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
867                *AnnotEnd = MMI->getContext().createTempSymbol();
868       OS.AddComment("Record length");
869       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
870       OS.EmitLabel(AnnotBegin);
871       OS.AddComment("Record kind: S_ANNOTATION");
872       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
873       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
874       // FIXME: Make sure we don't overflow the max record size.
875       OS.EmitCOFFSectionIndex(Label);
876       OS.EmitIntValue(Strs->getNumOperands(), 2);
877       for (Metadata *MD : Strs->operands()) {
878         // MDStrings are null terminated, so we can do EmitBytes and get the
879         // nice .asciz directive.
880         StringRef Str = cast<MDString>(MD)->getString();
881         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
882         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
883       }
884       OS.EmitLabel(AnnotEnd);
885     }
886 
887     if (SP != nullptr)
888       emitDebugInfoForUDTs(LocalUDTs);
889 
890     // We're done with this function.
891     OS.AddComment("Record length");
892     OS.EmitIntValue(0x0002, 2);
893     OS.AddComment("Record kind: S_PROC_ID_END");
894     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
895   }
896   endCVSubsection(SymbolsEnd);
897 
898   // We have an assembler directive that takes care of the whole line table.
899   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
900 }
901 
902 CodeViewDebug::LocalVarDefRange
903 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
904   LocalVarDefRange DR;
905   DR.InMemory = -1;
906   DR.DataOffset = Offset;
907   assert(DR.DataOffset == Offset && "truncation");
908   DR.IsSubfield = 0;
909   DR.StructOffset = 0;
910   DR.CVRegister = CVRegister;
911   return DR;
912 }
913 
914 CodeViewDebug::LocalVarDefRange
915 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
916                                      int Offset, bool IsSubfield,
917                                      uint16_t StructOffset) {
918   LocalVarDefRange DR;
919   DR.InMemory = InMemory;
920   DR.DataOffset = Offset;
921   DR.IsSubfield = IsSubfield;
922   DR.StructOffset = StructOffset;
923   DR.CVRegister = CVRegister;
924   return DR;
925 }
926 
927 void CodeViewDebug::collectVariableInfoFromMFTable(
928     DenseSet<InlinedVariable> &Processed) {
929   const MachineFunction &MF = *Asm->MF;
930   const TargetSubtargetInfo &TSI = MF.getSubtarget();
931   const TargetFrameLowering *TFI = TSI.getFrameLowering();
932   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
933 
934   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
935     if (!VI.Var)
936       continue;
937     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
938            "Expected inlined-at fields to agree");
939 
940     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
941     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
942 
943     // If variable scope is not found then skip this variable.
944     if (!Scope)
945       continue;
946 
947     // If the variable has an attached offset expression, extract it.
948     // FIXME: Try to handle DW_OP_deref as well.
949     int64_t ExprOffset = 0;
950     if (VI.Expr)
951       if (!VI.Expr->extractIfOffset(ExprOffset))
952         continue;
953 
954     // Get the frame register used and the offset.
955     unsigned FrameReg = 0;
956     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
957     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
958 
959     // Calculate the label ranges.
960     LocalVarDefRange DefRange =
961         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
962     for (const InsnRange &Range : Scope->getRanges()) {
963       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
964       const MCSymbol *End = getLabelAfterInsn(Range.second);
965       End = End ? End : Asm->getFunctionEnd();
966       DefRange.Ranges.emplace_back(Begin, End);
967     }
968 
969     LocalVariable Var;
970     Var.DIVar = VI.Var;
971     Var.DefRanges.emplace_back(std::move(DefRange));
972     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
973   }
974 }
975 
976 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
977   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
978 }
979 
980 static bool needsReferenceType(const DbgVariableLocation &Loc) {
981   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
982 }
983 
984 void CodeViewDebug::calculateRanges(
985     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
986   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
987 
988   // Calculate the definition ranges.
989   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
990     const InsnRange &Range = *I;
991     const MachineInstr *DVInst = Range.first;
992     assert(DVInst->isDebugValue() && "Invalid History entry");
993     // FIXME: Find a way to represent constant variables, since they are
994     // relatively common.
995     Optional<DbgVariableLocation> Location =
996         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
997     if (!Location)
998       continue;
999 
1000     // CodeView can only express variables in register and variables in memory
1001     // at a constant offset from a register. However, for variables passed
1002     // indirectly by pointer, it is common for that pointer to be spilled to a
1003     // stack location. For the special case of one offseted load followed by a
1004     // zero offset load (a pointer spilled to the stack), we change the type of
1005     // the local variable from a value type to a reference type. This tricks the
1006     // debugger into doing the load for us.
1007     if (Var.UseReferenceType) {
1008       // We're using a reference type. Drop the last zero offset load.
1009       if (canUseReferenceType(*Location))
1010         Location->LoadChain.pop_back();
1011       else
1012         continue;
1013     } else if (needsReferenceType(*Location)) {
1014       // This location can't be expressed without switching to a reference type.
1015       // Start over using that.
1016       Var.UseReferenceType = true;
1017       Var.DefRanges.clear();
1018       calculateRanges(Var, Ranges);
1019       return;
1020     }
1021 
1022     // We can only handle a register or an offseted load of a register.
1023     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1024       continue;
1025     {
1026       LocalVarDefRange DR;
1027       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1028       DR.InMemory = !Location->LoadChain.empty();
1029       DR.DataOffset =
1030           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1031       if (Location->FragmentInfo) {
1032         DR.IsSubfield = true;
1033         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1034       } else {
1035         DR.IsSubfield = false;
1036         DR.StructOffset = 0;
1037       }
1038 
1039       if (Var.DefRanges.empty() ||
1040           Var.DefRanges.back().isDifferentLocation(DR)) {
1041         Var.DefRanges.emplace_back(std::move(DR));
1042       }
1043     }
1044 
1045     // Compute the label range.
1046     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1047     const MCSymbol *End = getLabelAfterInsn(Range.second);
1048     if (!End) {
1049       // This range is valid until the next overlapping bitpiece. In the
1050       // common case, ranges will not be bitpieces, so they will overlap.
1051       auto J = std::next(I);
1052       const DIExpression *DIExpr = DVInst->getDebugExpression();
1053       while (J != E &&
1054              !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1055         ++J;
1056       if (J != E)
1057         End = getLabelBeforeInsn(J->first);
1058       else
1059         End = Asm->getFunctionEnd();
1060     }
1061 
1062     // If the last range end is our begin, just extend the last range.
1063     // Otherwise make a new range.
1064     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1065         Var.DefRanges.back().Ranges;
1066     if (!R.empty() && R.back().second == Begin)
1067       R.back().second = End;
1068     else
1069       R.emplace_back(Begin, End);
1070 
1071     // FIXME: Do more range combining.
1072   }
1073 }
1074 
1075 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1076   DenseSet<InlinedVariable> Processed;
1077   // Grab the variable info that was squirreled away in the MMI side-table.
1078   collectVariableInfoFromMFTable(Processed);
1079 
1080   for (const auto &I : DbgValues) {
1081     InlinedVariable IV = I.first;
1082     if (Processed.count(IV))
1083       continue;
1084     const DILocalVariable *DIVar = IV.first;
1085     const DILocation *InlinedAt = IV.second;
1086 
1087     // Instruction ranges, specifying where IV is accessible.
1088     const auto &Ranges = I.second;
1089 
1090     LexicalScope *Scope = nullptr;
1091     if (InlinedAt)
1092       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1093     else
1094       Scope = LScopes.findLexicalScope(DIVar->getScope());
1095     // If variable scope is not found then skip this variable.
1096     if (!Scope)
1097       continue;
1098 
1099     LocalVariable Var;
1100     Var.DIVar = DIVar;
1101 
1102     calculateRanges(Var, Ranges);
1103     recordLocalVariable(std::move(Var), InlinedAt);
1104   }
1105 }
1106 
1107 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1108   const Function *GV = MF->getFunction();
1109   assert(FnDebugInfo.count(GV) == false);
1110   CurFn = &FnDebugInfo[GV];
1111   CurFn->FuncId = NextFuncId++;
1112   CurFn->Begin = Asm->getFunctionBegin();
1113 
1114   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1115 
1116   // Find the end of the function prolog.  First known non-DBG_VALUE and
1117   // non-frame setup location marks the beginning of the function body.
1118   // FIXME: is there a simpler a way to do this? Can we just search
1119   // for the first instruction of the function, not the last of the prolog?
1120   DebugLoc PrologEndLoc;
1121   bool EmptyPrologue = true;
1122   for (const auto &MBB : *MF) {
1123     for (const auto &MI : MBB) {
1124       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1125           MI.getDebugLoc()) {
1126         PrologEndLoc = MI.getDebugLoc();
1127         break;
1128       } else if (!MI.isMetaInstruction()) {
1129         EmptyPrologue = false;
1130       }
1131     }
1132   }
1133 
1134   // Record beginning of function if we have a non-empty prologue.
1135   if (PrologEndLoc && !EmptyPrologue) {
1136     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1137     maybeRecordLocation(FnStartDL, MF);
1138   }
1139 }
1140 
1141 static bool shouldEmitUdt(const DIType *T) {
1142   while (true) {
1143     if (!T || T->isForwardDecl())
1144       return false;
1145 
1146     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1147     if (!DT)
1148       return true;
1149     T = DT->getBaseType().resolve();
1150   }
1151   return true;
1152 }
1153 
1154 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1155   // Don't record empty UDTs.
1156   if (Ty->getName().empty())
1157     return;
1158   if (!shouldEmitUdt(Ty))
1159     return;
1160 
1161   SmallVector<StringRef, 5> QualifiedNameComponents;
1162   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1163       Ty->getScope().resolve(), QualifiedNameComponents);
1164 
1165   std::string FullyQualifiedName =
1166       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1167 
1168   if (ClosestSubprogram == nullptr) {
1169     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1170   } else if (ClosestSubprogram == CurrentSubprogram) {
1171     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1172   }
1173 
1174   // TODO: What if the ClosestSubprogram is neither null or the current
1175   // subprogram?  Currently, the UDT just gets dropped on the floor.
1176   //
1177   // The current behavior is not desirable.  To get maximal fidelity, we would
1178   // need to perform all type translation before beginning emission of .debug$S
1179   // and then make LocalUDTs a member of FunctionInfo
1180 }
1181 
1182 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1183   // Generic dispatch for lowering an unknown type.
1184   switch (Ty->getTag()) {
1185   case dwarf::DW_TAG_array_type:
1186     return lowerTypeArray(cast<DICompositeType>(Ty));
1187   case dwarf::DW_TAG_typedef:
1188     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1189   case dwarf::DW_TAG_base_type:
1190     return lowerTypeBasic(cast<DIBasicType>(Ty));
1191   case dwarf::DW_TAG_pointer_type:
1192     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1193       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1194     LLVM_FALLTHROUGH;
1195   case dwarf::DW_TAG_reference_type:
1196   case dwarf::DW_TAG_rvalue_reference_type:
1197     return lowerTypePointer(cast<DIDerivedType>(Ty));
1198   case dwarf::DW_TAG_ptr_to_member_type:
1199     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1200   case dwarf::DW_TAG_const_type:
1201   case dwarf::DW_TAG_volatile_type:
1202   // TODO: add support for DW_TAG_atomic_type here
1203     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1204   case dwarf::DW_TAG_subroutine_type:
1205     if (ClassTy) {
1206       // The member function type of a member function pointer has no
1207       // ThisAdjustment.
1208       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1209                                      /*ThisAdjustment=*/0);
1210     }
1211     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1212   case dwarf::DW_TAG_enumeration_type:
1213     return lowerTypeEnum(cast<DICompositeType>(Ty));
1214   case dwarf::DW_TAG_class_type:
1215   case dwarf::DW_TAG_structure_type:
1216     return lowerTypeClass(cast<DICompositeType>(Ty));
1217   case dwarf::DW_TAG_union_type:
1218     return lowerTypeUnion(cast<DICompositeType>(Ty));
1219   default:
1220     // Use the null type index.
1221     return TypeIndex();
1222   }
1223 }
1224 
1225 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1226   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1227   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1228   StringRef TypeName = Ty->getName();
1229 
1230   addToUDTs(Ty);
1231 
1232   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1233       TypeName == "HRESULT")
1234     return TypeIndex(SimpleTypeKind::HResult);
1235   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1236       TypeName == "wchar_t")
1237     return TypeIndex(SimpleTypeKind::WideCharacter);
1238 
1239   return UnderlyingTypeIndex;
1240 }
1241 
1242 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1243   DITypeRef ElementTypeRef = Ty->getBaseType();
1244   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1245   // IndexType is size_t, which depends on the bitness of the target.
1246   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1247                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1248                             : TypeIndex(SimpleTypeKind::UInt32Long);
1249 
1250   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1251 
1252   // Add subranges to array type.
1253   DINodeArray Elements = Ty->getElements();
1254   for (int i = Elements.size() - 1; i >= 0; --i) {
1255     const DINode *Element = Elements[i];
1256     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1257 
1258     const DISubrange *Subrange = cast<DISubrange>(Element);
1259     assert(Subrange->getLowerBound() == 0 &&
1260            "codeview doesn't support subranges with lower bounds");
1261     int64_t Count = Subrange->getCount();
1262 
1263     // Variable Length Array (VLA) has Count equal to '-1'.
1264     // Replace with Count '1', assume it is the minimum VLA length.
1265     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1266     if (Count == -1)
1267       Count = 1;
1268 
1269     // Update the element size and element type index for subsequent subranges.
1270     ElementSize *= Count;
1271 
1272     // If this is the outermost array, use the size from the array. It will be
1273     // more accurate if we had a VLA or an incomplete element type size.
1274     uint64_t ArraySize =
1275         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1276 
1277     StringRef Name = (i == 0) ? Ty->getName() : "";
1278     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1279     ElementTypeIndex = TypeTable.writeKnownType(AR);
1280   }
1281 
1282   return ElementTypeIndex;
1283 }
1284 
1285 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1286   TypeIndex Index;
1287   dwarf::TypeKind Kind;
1288   uint32_t ByteSize;
1289 
1290   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1291   ByteSize = Ty->getSizeInBits() / 8;
1292 
1293   SimpleTypeKind STK = SimpleTypeKind::None;
1294   switch (Kind) {
1295   case dwarf::DW_ATE_address:
1296     // FIXME: Translate
1297     break;
1298   case dwarf::DW_ATE_boolean:
1299     switch (ByteSize) {
1300     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1301     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1302     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1303     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1304     case 16: STK = SimpleTypeKind::Boolean128; break;
1305     }
1306     break;
1307   case dwarf::DW_ATE_complex_float:
1308     switch (ByteSize) {
1309     case 2:  STK = SimpleTypeKind::Complex16;  break;
1310     case 4:  STK = SimpleTypeKind::Complex32;  break;
1311     case 8:  STK = SimpleTypeKind::Complex64;  break;
1312     case 10: STK = SimpleTypeKind::Complex80;  break;
1313     case 16: STK = SimpleTypeKind::Complex128; break;
1314     }
1315     break;
1316   case dwarf::DW_ATE_float:
1317     switch (ByteSize) {
1318     case 2:  STK = SimpleTypeKind::Float16;  break;
1319     case 4:  STK = SimpleTypeKind::Float32;  break;
1320     case 6:  STK = SimpleTypeKind::Float48;  break;
1321     case 8:  STK = SimpleTypeKind::Float64;  break;
1322     case 10: STK = SimpleTypeKind::Float80;  break;
1323     case 16: STK = SimpleTypeKind::Float128; break;
1324     }
1325     break;
1326   case dwarf::DW_ATE_signed:
1327     switch (ByteSize) {
1328     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1329     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1330     case 4:  STK = SimpleTypeKind::Int32;           break;
1331     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1332     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1333     }
1334     break;
1335   case dwarf::DW_ATE_unsigned:
1336     switch (ByteSize) {
1337     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1338     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1339     case 4:  STK = SimpleTypeKind::UInt32;            break;
1340     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1341     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1342     }
1343     break;
1344   case dwarf::DW_ATE_UTF:
1345     switch (ByteSize) {
1346     case 2: STK = SimpleTypeKind::Character16; break;
1347     case 4: STK = SimpleTypeKind::Character32; break;
1348     }
1349     break;
1350   case dwarf::DW_ATE_signed_char:
1351     if (ByteSize == 1)
1352       STK = SimpleTypeKind::SignedCharacter;
1353     break;
1354   case dwarf::DW_ATE_unsigned_char:
1355     if (ByteSize == 1)
1356       STK = SimpleTypeKind::UnsignedCharacter;
1357     break;
1358   default:
1359     break;
1360   }
1361 
1362   // Apply some fixups based on the source-level type name.
1363   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1364     STK = SimpleTypeKind::Int32Long;
1365   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1366     STK = SimpleTypeKind::UInt32Long;
1367   if (STK == SimpleTypeKind::UInt16Short &&
1368       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1369     STK = SimpleTypeKind::WideCharacter;
1370   if ((STK == SimpleTypeKind::SignedCharacter ||
1371        STK == SimpleTypeKind::UnsignedCharacter) &&
1372       Ty->getName() == "char")
1373     STK = SimpleTypeKind::NarrowCharacter;
1374 
1375   return TypeIndex(STK);
1376 }
1377 
1378 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1379   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1380 
1381   // Pointers to simple types can use SimpleTypeMode, rather than having a
1382   // dedicated pointer type record.
1383   if (PointeeTI.isSimple() &&
1384       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1385       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1386     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1387                               ? SimpleTypeMode::NearPointer64
1388                               : SimpleTypeMode::NearPointer32;
1389     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1390   }
1391 
1392   PointerKind PK =
1393       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1394   PointerMode PM = PointerMode::Pointer;
1395   switch (Ty->getTag()) {
1396   default: llvm_unreachable("not a pointer tag type");
1397   case dwarf::DW_TAG_pointer_type:
1398     PM = PointerMode::Pointer;
1399     break;
1400   case dwarf::DW_TAG_reference_type:
1401     PM = PointerMode::LValueReference;
1402     break;
1403   case dwarf::DW_TAG_rvalue_reference_type:
1404     PM = PointerMode::RValueReference;
1405     break;
1406   }
1407   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1408   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1409   // do.
1410   PointerOptions PO = PointerOptions::None;
1411   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1412   return TypeTable.writeKnownType(PR);
1413 }
1414 
1415 static PointerToMemberRepresentation
1416 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1417   // SizeInBytes being zero generally implies that the member pointer type was
1418   // incomplete, which can happen if it is part of a function prototype. In this
1419   // case, use the unknown model instead of the general model.
1420   if (IsPMF) {
1421     switch (Flags & DINode::FlagPtrToMemberRep) {
1422     case 0:
1423       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1424                               : PointerToMemberRepresentation::GeneralFunction;
1425     case DINode::FlagSingleInheritance:
1426       return PointerToMemberRepresentation::SingleInheritanceFunction;
1427     case DINode::FlagMultipleInheritance:
1428       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1429     case DINode::FlagVirtualInheritance:
1430       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1431     }
1432   } else {
1433     switch (Flags & DINode::FlagPtrToMemberRep) {
1434     case 0:
1435       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1436                               : PointerToMemberRepresentation::GeneralData;
1437     case DINode::FlagSingleInheritance:
1438       return PointerToMemberRepresentation::SingleInheritanceData;
1439     case DINode::FlagMultipleInheritance:
1440       return PointerToMemberRepresentation::MultipleInheritanceData;
1441     case DINode::FlagVirtualInheritance:
1442       return PointerToMemberRepresentation::VirtualInheritanceData;
1443     }
1444   }
1445   llvm_unreachable("invalid ptr to member representation");
1446 }
1447 
1448 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1449   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1450   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1451   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1452   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1453                                                  : PointerKind::Near32;
1454   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1455   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1456                          : PointerMode::PointerToDataMember;
1457   PointerOptions PO = PointerOptions::None; // FIXME
1458   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1459   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1460   MemberPointerInfo MPI(
1461       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1462   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1463   return TypeTable.writeKnownType(PR);
1464 }
1465 
1466 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1467 /// have a translation, use the NearC convention.
1468 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1469   switch (DwarfCC) {
1470   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1471   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1472   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1473   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1474   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1475   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1476   }
1477   return CallingConvention::NearC;
1478 }
1479 
1480 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1481   ModifierOptions Mods = ModifierOptions::None;
1482   bool IsModifier = true;
1483   const DIType *BaseTy = Ty;
1484   while (IsModifier && BaseTy) {
1485     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1486     switch (BaseTy->getTag()) {
1487     case dwarf::DW_TAG_const_type:
1488       Mods |= ModifierOptions::Const;
1489       break;
1490     case dwarf::DW_TAG_volatile_type:
1491       Mods |= ModifierOptions::Volatile;
1492       break;
1493     default:
1494       IsModifier = false;
1495       break;
1496     }
1497     if (IsModifier)
1498       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1499   }
1500   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1501   ModifierRecord MR(ModifiedTI, Mods);
1502   return TypeTable.writeKnownType(MR);
1503 }
1504 
1505 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1506   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1507   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1508     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1509 
1510   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1511   ArrayRef<TypeIndex> ArgTypeIndices = None;
1512   if (!ReturnAndArgTypeIndices.empty()) {
1513     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1514     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1515     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1516   }
1517 
1518   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1519   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1520 
1521   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1522 
1523   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1524                             ArgTypeIndices.size(), ArgListIndex);
1525   return TypeTable.writeKnownType(Procedure);
1526 }
1527 
1528 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1529                                                  const DIType *ClassTy,
1530                                                  int ThisAdjustment) {
1531   // Lower the containing class type.
1532   TypeIndex ClassType = getTypeIndex(ClassTy);
1533 
1534   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1535   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1536     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1537 
1538   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1539   ArrayRef<TypeIndex> ArgTypeIndices = None;
1540   if (!ReturnAndArgTypeIndices.empty()) {
1541     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1542     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1543     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1544   }
1545   TypeIndex ThisTypeIndex = TypeIndex::Void();
1546   if (!ArgTypeIndices.empty()) {
1547     ThisTypeIndex = ArgTypeIndices.front();
1548     ArgTypeIndices = ArgTypeIndices.drop_front();
1549   }
1550 
1551   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1552   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1553 
1554   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1555 
1556   // TODO: Need to use the correct values for:
1557   //       FunctionOptions
1558   //       ThisPointerAdjustment.
1559   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1560                            FunctionOptions::None, ArgTypeIndices.size(),
1561                            ArgListIndex, ThisAdjustment);
1562   TypeIndex TI = TypeTable.writeKnownType(MFR);
1563 
1564   return TI;
1565 }
1566 
1567 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1568   unsigned VSlotCount =
1569       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1570   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1571 
1572   VFTableShapeRecord VFTSR(Slots);
1573   return TypeTable.writeKnownType(VFTSR);
1574 }
1575 
1576 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1577   switch (Flags & DINode::FlagAccessibility) {
1578   case DINode::FlagPrivate:   return MemberAccess::Private;
1579   case DINode::FlagPublic:    return MemberAccess::Public;
1580   case DINode::FlagProtected: return MemberAccess::Protected;
1581   case 0:
1582     // If there was no explicit access control, provide the default for the tag.
1583     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1584                                                  : MemberAccess::Public;
1585   }
1586   llvm_unreachable("access flags are exclusive");
1587 }
1588 
1589 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1590   if (SP->isArtificial())
1591     return MethodOptions::CompilerGenerated;
1592 
1593   // FIXME: Handle other MethodOptions.
1594 
1595   return MethodOptions::None;
1596 }
1597 
1598 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1599                                            bool Introduced) {
1600   switch (SP->getVirtuality()) {
1601   case dwarf::DW_VIRTUALITY_none:
1602     break;
1603   case dwarf::DW_VIRTUALITY_virtual:
1604     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1605   case dwarf::DW_VIRTUALITY_pure_virtual:
1606     return Introduced ? MethodKind::PureIntroducingVirtual
1607                       : MethodKind::PureVirtual;
1608   default:
1609     llvm_unreachable("unhandled virtuality case");
1610   }
1611 
1612   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1613 
1614   return MethodKind::Vanilla;
1615 }
1616 
1617 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1618   switch (Ty->getTag()) {
1619   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1620   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1621   }
1622   llvm_unreachable("unexpected tag");
1623 }
1624 
1625 /// Return ClassOptions that should be present on both the forward declaration
1626 /// and the defintion of a tag type.
1627 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1628   ClassOptions CO = ClassOptions::None;
1629 
1630   // MSVC always sets this flag, even for local types. Clang doesn't always
1631   // appear to give every type a linkage name, which may be problematic for us.
1632   // FIXME: Investigate the consequences of not following them here.
1633   if (!Ty->getIdentifier().empty())
1634     CO |= ClassOptions::HasUniqueName;
1635 
1636   // Put the Nested flag on a type if it appears immediately inside a tag type.
1637   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1638   // here. That flag is only set on definitions, and not forward declarations.
1639   const DIScope *ImmediateScope = Ty->getScope().resolve();
1640   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1641     CO |= ClassOptions::Nested;
1642 
1643   // Put the Scoped flag on function-local types.
1644   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1645        Scope = Scope->getScope().resolve()) {
1646     if (isa<DISubprogram>(Scope)) {
1647       CO |= ClassOptions::Scoped;
1648       break;
1649     }
1650   }
1651 
1652   return CO;
1653 }
1654 
1655 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1656   ClassOptions CO = getCommonClassOptions(Ty);
1657   TypeIndex FTI;
1658   unsigned EnumeratorCount = 0;
1659 
1660   if (Ty->isForwardDecl()) {
1661     CO |= ClassOptions::ForwardReference;
1662   } else {
1663     FieldListRecordBuilder FLRB(TypeTable);
1664 
1665     FLRB.begin();
1666     for (const DINode *Element : Ty->getElements()) {
1667       // We assume that the frontend provides all members in source declaration
1668       // order, which is what MSVC does.
1669       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1670         EnumeratorRecord ER(MemberAccess::Public,
1671                             APSInt::getUnsigned(Enumerator->getValue()),
1672                             Enumerator->getName());
1673         FLRB.writeMemberType(ER);
1674         EnumeratorCount++;
1675       }
1676     }
1677     FTI = FLRB.end(true);
1678   }
1679 
1680   std::string FullName = getFullyQualifiedName(Ty);
1681 
1682   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1683                 getTypeIndex(Ty->getBaseType()));
1684   return TypeTable.writeKnownType(ER);
1685 }
1686 
1687 //===----------------------------------------------------------------------===//
1688 // ClassInfo
1689 //===----------------------------------------------------------------------===//
1690 
1691 struct llvm::ClassInfo {
1692   struct MemberInfo {
1693     const DIDerivedType *MemberTypeNode;
1694     uint64_t BaseOffset;
1695   };
1696   // [MemberInfo]
1697   using MemberList = std::vector<MemberInfo>;
1698 
1699   using MethodsList = TinyPtrVector<const DISubprogram *>;
1700   // MethodName -> MethodsList
1701   using MethodsMap = MapVector<MDString *, MethodsList>;
1702 
1703   /// Base classes.
1704   std::vector<const DIDerivedType *> Inheritance;
1705 
1706   /// Direct members.
1707   MemberList Members;
1708   // Direct overloaded methods gathered by name.
1709   MethodsMap Methods;
1710 
1711   TypeIndex VShapeTI;
1712 
1713   std::vector<const DIType *> NestedTypes;
1714 };
1715 
1716 void CodeViewDebug::clear() {
1717   assert(CurFn == nullptr);
1718   FileIdMap.clear();
1719   FnDebugInfo.clear();
1720   FileToFilepathMap.clear();
1721   LocalUDTs.clear();
1722   GlobalUDTs.clear();
1723   TypeIndices.clear();
1724   CompleteTypeIndices.clear();
1725 }
1726 
1727 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1728                                       const DIDerivedType *DDTy) {
1729   if (!DDTy->getName().empty()) {
1730     Info.Members.push_back({DDTy, 0});
1731     return;
1732   }
1733   // An unnamed member must represent a nested struct or union. Add all the
1734   // indirect fields to the current record.
1735   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1736   uint64_t Offset = DDTy->getOffsetInBits();
1737   const DIType *Ty = DDTy->getBaseType().resolve();
1738   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1739   ClassInfo NestedInfo = collectClassInfo(DCTy);
1740   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1741     Info.Members.push_back(
1742         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1743 }
1744 
1745 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1746   ClassInfo Info;
1747   // Add elements to structure type.
1748   DINodeArray Elements = Ty->getElements();
1749   for (auto *Element : Elements) {
1750     // We assume that the frontend provides all members in source declaration
1751     // order, which is what MSVC does.
1752     if (!Element)
1753       continue;
1754     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1755       Info.Methods[SP->getRawName()].push_back(SP);
1756     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1757       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1758         collectMemberInfo(Info, DDTy);
1759       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1760         Info.Inheritance.push_back(DDTy);
1761       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1762                  DDTy->getName() == "__vtbl_ptr_type") {
1763         Info.VShapeTI = getTypeIndex(DDTy);
1764       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1765         Info.NestedTypes.push_back(DDTy);
1766       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1767         // Ignore friend members. It appears that MSVC emitted info about
1768         // friends in the past, but modern versions do not.
1769       }
1770     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1771       Info.NestedTypes.push_back(Composite);
1772     }
1773     // Skip other unrecognized kinds of elements.
1774   }
1775   return Info;
1776 }
1777 
1778 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1779   // First, construct the forward decl.  Don't look into Ty to compute the
1780   // forward decl options, since it might not be available in all TUs.
1781   TypeRecordKind Kind = getRecordKind(Ty);
1782   ClassOptions CO =
1783       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1784   std::string FullName = getFullyQualifiedName(Ty);
1785   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1786                  FullName, Ty->getIdentifier());
1787   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1788   if (!Ty->isForwardDecl())
1789     DeferredCompleteTypes.push_back(Ty);
1790   return FwdDeclTI;
1791 }
1792 
1793 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1794   // Construct the field list and complete type record.
1795   TypeRecordKind Kind = getRecordKind(Ty);
1796   ClassOptions CO = getCommonClassOptions(Ty);
1797   TypeIndex FieldTI;
1798   TypeIndex VShapeTI;
1799   unsigned FieldCount;
1800   bool ContainsNestedClass;
1801   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1802       lowerRecordFieldList(Ty);
1803 
1804   if (ContainsNestedClass)
1805     CO |= ClassOptions::ContainsNestedClass;
1806 
1807   std::string FullName = getFullyQualifiedName(Ty);
1808 
1809   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1810 
1811   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1812                  SizeInBytes, FullName, Ty->getIdentifier());
1813   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1814 
1815   if (const auto *File = Ty->getFile()) {
1816     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1817     TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1818     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1819     TypeTable.writeKnownType(USLR);
1820   }
1821 
1822   addToUDTs(Ty);
1823 
1824   return ClassTI;
1825 }
1826 
1827 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1828   ClassOptions CO =
1829       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1830   std::string FullName = getFullyQualifiedName(Ty);
1831   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1832   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1833   if (!Ty->isForwardDecl())
1834     DeferredCompleteTypes.push_back(Ty);
1835   return FwdDeclTI;
1836 }
1837 
1838 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1839   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1840   TypeIndex FieldTI;
1841   unsigned FieldCount;
1842   bool ContainsNestedClass;
1843   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1844       lowerRecordFieldList(Ty);
1845 
1846   if (ContainsNestedClass)
1847     CO |= ClassOptions::ContainsNestedClass;
1848 
1849   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1850   std::string FullName = getFullyQualifiedName(Ty);
1851 
1852   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1853                  Ty->getIdentifier());
1854   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1855 
1856   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1857   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1858   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1859   TypeTable.writeKnownType(USLR);
1860 
1861   addToUDTs(Ty);
1862 
1863   return UnionTI;
1864 }
1865 
1866 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1867 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1868   // Manually count members. MSVC appears to count everything that generates a
1869   // field list record. Each individual overload in a method overload group
1870   // contributes to this count, even though the overload group is a single field
1871   // list record.
1872   unsigned MemberCount = 0;
1873   ClassInfo Info = collectClassInfo(Ty);
1874   FieldListRecordBuilder FLBR(TypeTable);
1875   FLBR.begin();
1876 
1877   // Create base classes.
1878   for (const DIDerivedType *I : Info.Inheritance) {
1879     if (I->getFlags() & DINode::FlagVirtual) {
1880       // Virtual base.
1881       // FIXME: Emit VBPtrOffset when the frontend provides it.
1882       unsigned VBPtrOffset = 0;
1883       // FIXME: Despite the accessor name, the offset is really in bytes.
1884       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1885       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1886                             ? TypeRecordKind::IndirectVirtualBaseClass
1887                             : TypeRecordKind::VirtualBaseClass;
1888       VirtualBaseClassRecord VBCR(
1889           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1890           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1891           VBTableIndex);
1892 
1893       FLBR.writeMemberType(VBCR);
1894     } else {
1895       assert(I->getOffsetInBits() % 8 == 0 &&
1896              "bases must be on byte boundaries");
1897       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1898                           getTypeIndex(I->getBaseType()),
1899                           I->getOffsetInBits() / 8);
1900       FLBR.writeMemberType(BCR);
1901     }
1902   }
1903 
1904   // Create members.
1905   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1906     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1907     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1908     StringRef MemberName = Member->getName();
1909     MemberAccess Access =
1910         translateAccessFlags(Ty->getTag(), Member->getFlags());
1911 
1912     if (Member->isStaticMember()) {
1913       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1914       FLBR.writeMemberType(SDMR);
1915       MemberCount++;
1916       continue;
1917     }
1918 
1919     // Virtual function pointer member.
1920     if ((Member->getFlags() & DINode::FlagArtificial) &&
1921         Member->getName().startswith("_vptr$")) {
1922       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1923       FLBR.writeMemberType(VFPR);
1924       MemberCount++;
1925       continue;
1926     }
1927 
1928     // Data member.
1929     uint64_t MemberOffsetInBits =
1930         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1931     if (Member->isBitField()) {
1932       uint64_t StartBitOffset = MemberOffsetInBits;
1933       if (const auto *CI =
1934               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1935         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1936       }
1937       StartBitOffset -= MemberOffsetInBits;
1938       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1939                          StartBitOffset);
1940       MemberBaseType = TypeTable.writeKnownType(BFR);
1941     }
1942     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1943     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1944                          MemberName);
1945     FLBR.writeMemberType(DMR);
1946     MemberCount++;
1947   }
1948 
1949   // Create methods
1950   for (auto &MethodItr : Info.Methods) {
1951     StringRef Name = MethodItr.first->getString();
1952 
1953     std::vector<OneMethodRecord> Methods;
1954     for (const DISubprogram *SP : MethodItr.second) {
1955       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1956       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1957 
1958       unsigned VFTableOffset = -1;
1959       if (Introduced)
1960         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1961 
1962       Methods.push_back(OneMethodRecord(
1963           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1964           translateMethodKindFlags(SP, Introduced),
1965           translateMethodOptionFlags(SP), VFTableOffset, Name));
1966       MemberCount++;
1967     }
1968     assert(!Methods.empty() && "Empty methods map entry");
1969     if (Methods.size() == 1)
1970       FLBR.writeMemberType(Methods[0]);
1971     else {
1972       MethodOverloadListRecord MOLR(Methods);
1973       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1974       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1975       FLBR.writeMemberType(OMR);
1976     }
1977   }
1978 
1979   // Create nested classes.
1980   for (const DIType *Nested : Info.NestedTypes) {
1981     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1982     FLBR.writeMemberType(R);
1983     MemberCount++;
1984   }
1985 
1986   TypeIndex FieldTI = FLBR.end(true);
1987   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1988                          !Info.NestedTypes.empty());
1989 }
1990 
1991 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1992   if (!VBPType.getIndex()) {
1993     // Make a 'const int *' type.
1994     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1995     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1996 
1997     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1998                                                   : PointerKind::Near32;
1999     PointerMode PM = PointerMode::Pointer;
2000     PointerOptions PO = PointerOptions::None;
2001     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2002 
2003     VBPType = TypeTable.writeKnownType(PR);
2004   }
2005 
2006   return VBPType;
2007 }
2008 
2009 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2010   const DIType *Ty = TypeRef.resolve();
2011   const DIType *ClassTy = ClassTyRef.resolve();
2012 
2013   // The null DIType is the void type. Don't try to hash it.
2014   if (!Ty)
2015     return TypeIndex::Void();
2016 
2017   // Check if we've already translated this type. Don't try to do a
2018   // get-or-create style insertion that caches the hash lookup across the
2019   // lowerType call. It will update the TypeIndices map.
2020   auto I = TypeIndices.find({Ty, ClassTy});
2021   if (I != TypeIndices.end())
2022     return I->second;
2023 
2024   TypeLoweringScope S(*this);
2025   TypeIndex TI = lowerType(Ty, ClassTy);
2026   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2027 }
2028 
2029 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2030   DIType *Ty = TypeRef.resolve();
2031   PointerRecord PR(getTypeIndex(Ty),
2032                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2033                                                 : PointerKind::Near32,
2034                    PointerMode::LValueReference, PointerOptions::None,
2035                    Ty->getSizeInBits() / 8);
2036   return TypeTable.writeKnownType(PR);
2037 }
2038 
2039 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2040   const DIType *Ty = TypeRef.resolve();
2041 
2042   // The null DIType is the void type. Don't try to hash it.
2043   if (!Ty)
2044     return TypeIndex::Void();
2045 
2046   // If this is a non-record type, the complete type index is the same as the
2047   // normal type index. Just call getTypeIndex.
2048   switch (Ty->getTag()) {
2049   case dwarf::DW_TAG_class_type:
2050   case dwarf::DW_TAG_structure_type:
2051   case dwarf::DW_TAG_union_type:
2052     break;
2053   default:
2054     return getTypeIndex(Ty);
2055   }
2056 
2057   // Check if we've already translated the complete record type.  Lowering a
2058   // complete type should never trigger lowering another complete type, so we
2059   // can reuse the hash table lookup result.
2060   const auto *CTy = cast<DICompositeType>(Ty);
2061   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2062   if (!InsertResult.second)
2063     return InsertResult.first->second;
2064 
2065   TypeLoweringScope S(*this);
2066 
2067   // Make sure the forward declaration is emitted first. It's unclear if this
2068   // is necessary, but MSVC does it, and we should follow suit until we can show
2069   // otherwise.
2070   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2071 
2072   // Just use the forward decl if we don't have complete type info. This might
2073   // happen if the frontend is using modules and expects the complete definition
2074   // to be emitted elsewhere.
2075   if (CTy->isForwardDecl())
2076     return FwdDeclTI;
2077 
2078   TypeIndex TI;
2079   switch (CTy->getTag()) {
2080   case dwarf::DW_TAG_class_type:
2081   case dwarf::DW_TAG_structure_type:
2082     TI = lowerCompleteTypeClass(CTy);
2083     break;
2084   case dwarf::DW_TAG_union_type:
2085     TI = lowerCompleteTypeUnion(CTy);
2086     break;
2087   default:
2088     llvm_unreachable("not a record");
2089   }
2090 
2091   InsertResult.first->second = TI;
2092   return TI;
2093 }
2094 
2095 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2096 /// and do this until fixpoint, as each complete record type typically
2097 /// references
2098 /// many other record types.
2099 void CodeViewDebug::emitDeferredCompleteTypes() {
2100   SmallVector<const DICompositeType *, 4> TypesToEmit;
2101   while (!DeferredCompleteTypes.empty()) {
2102     std::swap(DeferredCompleteTypes, TypesToEmit);
2103     for (const DICompositeType *RecordTy : TypesToEmit)
2104       getCompleteTypeIndex(RecordTy);
2105     TypesToEmit.clear();
2106   }
2107 }
2108 
2109 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2110   // Get the sorted list of parameters and emit them first.
2111   SmallVector<const LocalVariable *, 6> Params;
2112   for (const LocalVariable &L : Locals)
2113     if (L.DIVar->isParameter())
2114       Params.push_back(&L);
2115   std::sort(Params.begin(), Params.end(),
2116             [](const LocalVariable *L, const LocalVariable *R) {
2117               return L->DIVar->getArg() < R->DIVar->getArg();
2118             });
2119   for (const LocalVariable *L : Params)
2120     emitLocalVariable(*L);
2121 
2122   // Next emit all non-parameters in the order that we found them.
2123   for (const LocalVariable &L : Locals)
2124     if (!L.DIVar->isParameter())
2125       emitLocalVariable(L);
2126 }
2127 
2128 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2129   // LocalSym record, see SymbolRecord.h for more info.
2130   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2131            *LocalEnd = MMI->getContext().createTempSymbol();
2132   OS.AddComment("Record length");
2133   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2134   OS.EmitLabel(LocalBegin);
2135 
2136   OS.AddComment("Record kind: S_LOCAL");
2137   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2138 
2139   LocalSymFlags Flags = LocalSymFlags::None;
2140   if (Var.DIVar->isParameter())
2141     Flags |= LocalSymFlags::IsParameter;
2142   if (Var.DefRanges.empty())
2143     Flags |= LocalSymFlags::IsOptimizedOut;
2144 
2145   OS.AddComment("TypeIndex");
2146   TypeIndex TI = Var.UseReferenceType
2147                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2148                      : getCompleteTypeIndex(Var.DIVar->getType());
2149   OS.EmitIntValue(TI.getIndex(), 4);
2150   OS.AddComment("Flags");
2151   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2152   // Truncate the name so we won't overflow the record length field.
2153   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2154   OS.EmitLabel(LocalEnd);
2155 
2156   // Calculate the on disk prefix of the appropriate def range record. The
2157   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2158   // should be big enough to hold all forms without memory allocation.
2159   SmallString<20> BytePrefix;
2160   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2161     BytePrefix.clear();
2162     if (DefRange.InMemory) {
2163       uint16_t RegRelFlags = 0;
2164       if (DefRange.IsSubfield) {
2165         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2166                       (DefRange.StructOffset
2167                        << DefRangeRegisterRelSym::OffsetInParentShift);
2168       }
2169       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2170       Sym.Hdr.Register = DefRange.CVRegister;
2171       Sym.Hdr.Flags = RegRelFlags;
2172       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2173       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2174       BytePrefix +=
2175           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2176       BytePrefix +=
2177           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2178     } else {
2179       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2180       if (DefRange.IsSubfield) {
2181         // Unclear what matters here.
2182         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2183         Sym.Hdr.Register = DefRange.CVRegister;
2184         Sym.Hdr.MayHaveNoName = 0;
2185         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2186 
2187         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2188         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2189                                 sizeof(SymKind));
2190         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2191                                 sizeof(Sym.Hdr));
2192       } else {
2193         // Unclear what matters here.
2194         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2195         Sym.Hdr.Register = DefRange.CVRegister;
2196         Sym.Hdr.MayHaveNoName = 0;
2197         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2198         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2199                                 sizeof(SymKind));
2200         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2201                                 sizeof(Sym.Hdr));
2202       }
2203     }
2204     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2205   }
2206 }
2207 
2208 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2209   const Function *GV = MF->getFunction();
2210   assert(FnDebugInfo.count(GV));
2211   assert(CurFn == &FnDebugInfo[GV]);
2212 
2213   collectVariableInfo(GV->getSubprogram());
2214 
2215   // Don't emit anything if we don't have any line tables.
2216   if (!CurFn->HaveLineInfo) {
2217     FnDebugInfo.erase(GV);
2218     CurFn = nullptr;
2219     return;
2220   }
2221 
2222   CurFn->Annotations = MF->getCodeViewAnnotations();
2223 
2224   CurFn->End = Asm->getFunctionEnd();
2225 
2226   CurFn = nullptr;
2227 }
2228 
2229 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2230   DebugHandlerBase::beginInstruction(MI);
2231 
2232   // Ignore DBG_VALUE locations and function prologue.
2233   if (!Asm || !CurFn || MI->isDebugValue() ||
2234       MI->getFlag(MachineInstr::FrameSetup))
2235     return;
2236 
2237   // If the first instruction of a new MBB has no location, find the first
2238   // instruction with a location and use that.
2239   DebugLoc DL = MI->getDebugLoc();
2240   if (!DL && MI->getParent() != PrevInstBB) {
2241     for (const auto &NextMI : *MI->getParent()) {
2242       if (NextMI.isDebugValue())
2243         continue;
2244       DL = NextMI.getDebugLoc();
2245       if (DL)
2246         break;
2247     }
2248   }
2249   PrevInstBB = MI->getParent();
2250 
2251   // If we still don't have a debug location, don't record a location.
2252   if (!DL)
2253     return;
2254 
2255   maybeRecordLocation(DL, Asm->MF);
2256 }
2257 
2258 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2259   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2260            *EndLabel = MMI->getContext().createTempSymbol();
2261   OS.EmitIntValue(unsigned(Kind), 4);
2262   OS.AddComment("Subsection size");
2263   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2264   OS.EmitLabel(BeginLabel);
2265   return EndLabel;
2266 }
2267 
2268 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2269   OS.EmitLabel(EndLabel);
2270   // Every subsection must be aligned to a 4-byte boundary.
2271   OS.EmitValueToAlignment(4);
2272 }
2273 
2274 void CodeViewDebug::emitDebugInfoForUDTs(
2275     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2276   for (const auto &UDT : UDTs) {
2277     const DIType *T = UDT.second;
2278     assert(shouldEmitUdt(T));
2279 
2280     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2281              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2282     OS.AddComment("Record length");
2283     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2284     OS.EmitLabel(UDTRecordBegin);
2285 
2286     OS.AddComment("Record kind: S_UDT");
2287     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2288 
2289     OS.AddComment("Type");
2290     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2291 
2292     emitNullTerminatedSymbolName(OS, UDT.first);
2293     OS.EmitLabel(UDTRecordEnd);
2294   }
2295 }
2296 
2297 void CodeViewDebug::emitDebugInfoForGlobals() {
2298   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2299       GlobalMap;
2300   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2301     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2302     GV.getDebugInfo(GVEs);
2303     for (const auto *GVE : GVEs)
2304       GlobalMap[GVE] = &GV;
2305   }
2306 
2307   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2308   for (const MDNode *Node : CUs->operands()) {
2309     const auto *CU = cast<DICompileUnit>(Node);
2310 
2311     // First, emit all globals that are not in a comdat in a single symbol
2312     // substream. MSVC doesn't like it if the substream is empty, so only open
2313     // it if we have at least one global to emit.
2314     switchToDebugSectionForSymbol(nullptr);
2315     MCSymbol *EndLabel = nullptr;
2316     for (const auto *GVE : CU->getGlobalVariables()) {
2317       if (const auto *GV = GlobalMap.lookup(GVE))
2318         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2319           if (!EndLabel) {
2320             OS.AddComment("Symbol subsection for globals");
2321             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2322           }
2323           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2324           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2325         }
2326     }
2327     if (EndLabel)
2328       endCVSubsection(EndLabel);
2329 
2330     // Second, emit each global that is in a comdat into its own .debug$S
2331     // section along with its own symbol substream.
2332     for (const auto *GVE : CU->getGlobalVariables()) {
2333       if (const auto *GV = GlobalMap.lookup(GVE)) {
2334         if (GV->hasComdat()) {
2335           MCSymbol *GVSym = Asm->getSymbol(GV);
2336           OS.AddComment("Symbol subsection for " +
2337                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2338           switchToDebugSectionForSymbol(GVSym);
2339           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2340           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2341           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2342           endCVSubsection(EndLabel);
2343         }
2344       }
2345     }
2346   }
2347 }
2348 
2349 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2350   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2351   for (const MDNode *Node : CUs->operands()) {
2352     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2353       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2354         getTypeIndex(RT);
2355         // FIXME: Add to global/local DTU list.
2356       }
2357     }
2358   }
2359 }
2360 
2361 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2362                                            const GlobalVariable *GV,
2363                                            MCSymbol *GVSym) {
2364   // DataSym record, see SymbolRecord.h for more info.
2365   // FIXME: Thread local data, etc
2366   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2367            *DataEnd = MMI->getContext().createTempSymbol();
2368   OS.AddComment("Record length");
2369   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2370   OS.EmitLabel(DataBegin);
2371   if (DIGV->isLocalToUnit()) {
2372     if (GV->isThreadLocal()) {
2373       OS.AddComment("Record kind: S_LTHREAD32");
2374       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2375     } else {
2376       OS.AddComment("Record kind: S_LDATA32");
2377       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2378     }
2379   } else {
2380     if (GV->isThreadLocal()) {
2381       OS.AddComment("Record kind: S_GTHREAD32");
2382       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2383     } else {
2384       OS.AddComment("Record kind: S_GDATA32");
2385       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2386     }
2387   }
2388   OS.AddComment("Type");
2389   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2390   OS.AddComment("DataOffset");
2391   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2392   OS.AddComment("Segment");
2393   OS.EmitCOFFSectionIndex(GVSym);
2394   OS.AddComment("Name");
2395   emitNullTerminatedSymbolName(OS, DIGV->getName());
2396   OS.EmitLabel(DataEnd);
2397 }
2398