1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/ByteStream.h" 17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 18 #include "llvm/DebugInfo/CodeView/CodeView.h" 19 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 20 #include "llvm/DebugInfo/CodeView/Line.h" 21 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 22 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 23 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 24 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCSectionCOFF.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/Support/COFF.h" 31 #include "llvm/Support/ScopedPrinter.h" 32 #include "llvm/Target/TargetFrameLowering.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 36 using namespace llvm; 37 using namespace llvm::codeview; 38 39 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 40 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 41 // If module doesn't have named metadata anchors or COFF debug section 42 // is not available, skip any debug info related stuff. 43 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 44 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 45 Asm = nullptr; 46 return; 47 } 48 49 // Tell MMI that we have debug info. 50 MMI->setDebugInfoAvailability(true); 51 } 52 53 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 54 std::string &Filepath = FileToFilepathMap[File]; 55 if (!Filepath.empty()) 56 return Filepath; 57 58 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 59 60 // Clang emits directory and relative filename info into the IR, but CodeView 61 // operates on full paths. We could change Clang to emit full paths too, but 62 // that would increase the IR size and probably not needed for other users. 63 // For now, just concatenate and canonicalize the path here. 64 if (Filename.find(':') == 1) 65 Filepath = Filename; 66 else 67 Filepath = (Dir + "\\" + Filename).str(); 68 69 // Canonicalize the path. We have to do it textually because we may no longer 70 // have access the file in the filesystem. 71 // First, replace all slashes with backslashes. 72 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 73 74 // Remove all "\.\" with "\". 75 size_t Cursor = 0; 76 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 77 Filepath.erase(Cursor, 2); 78 79 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 80 // path should be well-formatted, e.g. start with a drive letter, etc. 81 Cursor = 0; 82 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 83 // Something's wrong if the path starts with "\..\", abort. 84 if (Cursor == 0) 85 break; 86 87 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 88 if (PrevSlash == std::string::npos) 89 // Something's wrong, abort. 90 break; 91 92 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 93 // The next ".." might be following the one we've just erased. 94 Cursor = PrevSlash; 95 } 96 97 // Remove all duplicate backslashes. 98 Cursor = 0; 99 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 100 Filepath.erase(Cursor, 1); 101 102 return Filepath; 103 } 104 105 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 106 unsigned NextId = FileIdMap.size() + 1; 107 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 108 if (Insertion.second) { 109 // We have to compute the full filepath and emit a .cv_file directive. 110 StringRef FullPath = getFullFilepath(F); 111 NextId = OS.EmitCVFileDirective(NextId, FullPath); 112 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 113 } 114 return Insertion.first->second; 115 } 116 117 CodeViewDebug::InlineSite & 118 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 119 const DISubprogram *Inlinee) { 120 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 121 InlineSite *Site = &SiteInsertion.first->second; 122 if (SiteInsertion.second) { 123 Site->SiteFuncId = NextFuncId++; 124 Site->Inlinee = Inlinee; 125 InlinedSubprograms.insert(Inlinee); 126 getFuncIdForSubprogram(Inlinee); 127 } 128 return *Site; 129 } 130 131 static StringRef getPrettyScopeName(const DIScope *Scope) { 132 StringRef ScopeName = Scope->getName(); 133 if (!ScopeName.empty()) 134 return ScopeName; 135 136 switch (Scope->getTag()) { 137 case dwarf::DW_TAG_enumeration_type: 138 case dwarf::DW_TAG_class_type: 139 case dwarf::DW_TAG_structure_type: 140 case dwarf::DW_TAG_union_type: 141 return "<unnamed-tag>"; 142 case dwarf::DW_TAG_namespace: 143 return "`anonymous namespace'"; 144 } 145 146 return StringRef(); 147 } 148 149 static const DISubprogram *getQualifiedNameComponents( 150 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 151 const DISubprogram *ClosestSubprogram = nullptr; 152 while (Scope != nullptr) { 153 if (ClosestSubprogram == nullptr) 154 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 155 StringRef ScopeName = getPrettyScopeName(Scope); 156 if (!ScopeName.empty()) 157 QualifiedNameComponents.push_back(ScopeName); 158 Scope = Scope->getScope().resolve(); 159 } 160 return ClosestSubprogram; 161 } 162 163 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 164 StringRef TypeName) { 165 std::string FullyQualifiedName; 166 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 167 FullyQualifiedName.append(QualifiedNameComponent); 168 FullyQualifiedName.append("::"); 169 } 170 FullyQualifiedName.append(TypeName); 171 return FullyQualifiedName; 172 } 173 174 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 175 SmallVector<StringRef, 5> QualifiedNameComponents; 176 getQualifiedNameComponents(Scope, QualifiedNameComponents); 177 return getQualifiedName(QualifiedNameComponents, Name); 178 } 179 180 struct CodeViewDebug::TypeLoweringScope { 181 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 182 ~TypeLoweringScope() { 183 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 184 // inner TypeLoweringScopes don't attempt to emit deferred types. 185 if (CVD.TypeEmissionLevel == 1) 186 CVD.emitDeferredCompleteTypes(); 187 --CVD.TypeEmissionLevel; 188 } 189 CodeViewDebug &CVD; 190 }; 191 192 static std::string getFullyQualifiedName(const DIScope *Ty) { 193 const DIScope *Scope = Ty->getScope().resolve(); 194 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 195 } 196 197 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 198 // No scope means global scope and that uses the zero index. 199 if (!Scope || isa<DIFile>(Scope)) 200 return TypeIndex(); 201 202 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 203 204 // Check if we've already translated this scope. 205 auto I = TypeIndices.find({Scope, nullptr}); 206 if (I != TypeIndices.end()) 207 return I->second; 208 209 // Build the fully qualified name of the scope. 210 std::string ScopeName = getFullyQualifiedName(Scope); 211 TypeIndex TI = 212 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 213 return recordTypeIndexForDINode(Scope, TI); 214 } 215 216 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 217 // It's possible to ask for the FuncId of a function which doesn't have a 218 // subprogram: inlining a function with debug info into a function with none. 219 if (!SP) 220 return TypeIndex::None(); 221 222 // Check if we've already translated this subprogram. 223 auto I = TypeIndices.find({SP, nullptr}); 224 if (I != TypeIndices.end()) 225 return I->second; 226 227 // The display name includes function template arguments. Drop them to match 228 // MSVC. 229 StringRef DisplayName = SP->getDisplayName().split('<').first; 230 231 const DIScope *Scope = SP->getScope().resolve(); 232 TypeIndex TI; 233 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 234 // If the scope is a DICompositeType, then this must be a method. Member 235 // function types take some special handling, and require access to the 236 // subprogram. 237 TypeIndex ClassType = getTypeIndex(Class); 238 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 239 DisplayName); 240 TI = TypeTable.writeMemberFuncId(MFuncId); 241 } else { 242 // Otherwise, this must be a free function. 243 TypeIndex ParentScope = getScopeIndex(Scope); 244 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 245 TI = TypeTable.writeFuncId(FuncId); 246 } 247 248 return recordTypeIndexForDINode(SP, TI); 249 } 250 251 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 252 const DICompositeType *Class) { 253 // Always use the method declaration as the key for the function type. The 254 // method declaration contains the this adjustment. 255 if (SP->getDeclaration()) 256 SP = SP->getDeclaration(); 257 assert(!SP->getDeclaration() && "should use declaration as key"); 258 259 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 260 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 261 auto I = TypeIndices.find({SP, Class}); 262 if (I != TypeIndices.end()) 263 return I->second; 264 265 // Make sure complete type info for the class is emitted *after* the member 266 // function type, as the complete class type is likely to reference this 267 // member function type. 268 TypeLoweringScope S(*this); 269 TypeIndex TI = 270 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 271 return recordTypeIndexForDINode(SP, TI, Class); 272 } 273 274 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, 275 const DIType *ClassTy) { 276 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 277 (void)InsertResult; 278 assert(InsertResult.second && "DINode was already assigned a type index"); 279 return TI; 280 } 281 282 unsigned CodeViewDebug::getPointerSizeInBytes() { 283 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 284 } 285 286 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 287 const DILocation *InlinedAt) { 288 if (InlinedAt) { 289 // This variable was inlined. Associate it with the InlineSite. 290 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 291 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 292 Site.InlinedLocals.emplace_back(Var); 293 } else { 294 // This variable goes in the main ProcSym. 295 CurFn->Locals.emplace_back(Var); 296 } 297 } 298 299 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 300 const DILocation *Loc) { 301 auto B = Locs.begin(), E = Locs.end(); 302 if (std::find(B, E, Loc) == E) 303 Locs.push_back(Loc); 304 } 305 306 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 307 const MachineFunction *MF) { 308 // Skip this instruction if it has the same location as the previous one. 309 if (DL == CurFn->LastLoc) 310 return; 311 312 const DIScope *Scope = DL.get()->getScope(); 313 if (!Scope) 314 return; 315 316 // Skip this line if it is longer than the maximum we can record. 317 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 318 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 319 LI.isNeverStepInto()) 320 return; 321 322 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 323 if (CI.getStartColumn() != DL.getCol()) 324 return; 325 326 if (!CurFn->HaveLineInfo) 327 CurFn->HaveLineInfo = true; 328 unsigned FileId = 0; 329 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 330 FileId = CurFn->LastFileId; 331 else 332 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 333 CurFn->LastLoc = DL; 334 335 unsigned FuncId = CurFn->FuncId; 336 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 337 const DILocation *Loc = DL.get(); 338 339 // If this location was actually inlined from somewhere else, give it the ID 340 // of the inline call site. 341 FuncId = 342 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 343 344 // Ensure we have links in the tree of inline call sites. 345 bool FirstLoc = true; 346 while ((SiteLoc = Loc->getInlinedAt())) { 347 InlineSite &Site = 348 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 349 if (!FirstLoc) 350 addLocIfNotPresent(Site.ChildSites, Loc); 351 FirstLoc = false; 352 Loc = SiteLoc; 353 } 354 addLocIfNotPresent(CurFn->ChildSites, Loc); 355 } 356 357 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 358 /*PrologueEnd=*/false, 359 /*IsStmt=*/false, DL->getFilename()); 360 } 361 362 void CodeViewDebug::emitCodeViewMagicVersion() { 363 OS.EmitValueToAlignment(4); 364 OS.AddComment("Debug section magic"); 365 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 366 } 367 368 void CodeViewDebug::endModule() { 369 if (!Asm || !MMI->hasDebugInfo()) 370 return; 371 372 assert(Asm != nullptr); 373 374 // The COFF .debug$S section consists of several subsections, each starting 375 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 376 // of the payload followed by the payload itself. The subsections are 4-byte 377 // aligned. 378 379 // Use the generic .debug$S section, and make a subsection for all the inlined 380 // subprograms. 381 switchToDebugSectionForSymbol(nullptr); 382 emitInlineeLinesSubsection(); 383 384 // Emit per-function debug information. 385 for (auto &P : FnDebugInfo) 386 if (!P.first->isDeclarationForLinker()) 387 emitDebugInfoForFunction(P.first, P.second); 388 389 // Emit global variable debug information. 390 setCurrentSubprogram(nullptr); 391 emitDebugInfoForGlobals(); 392 393 // Emit retained types. 394 emitDebugInfoForRetainedTypes(); 395 396 // Switch back to the generic .debug$S section after potentially processing 397 // comdat symbol sections. 398 switchToDebugSectionForSymbol(nullptr); 399 400 // Emit UDT records for any types used by global variables. 401 if (!GlobalUDTs.empty()) { 402 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 403 emitDebugInfoForUDTs(GlobalUDTs); 404 endCVSubsection(SymbolsEnd); 405 } 406 407 // This subsection holds a file index to offset in string table table. 408 OS.AddComment("File index to string table offset subsection"); 409 OS.EmitCVFileChecksumsDirective(); 410 411 // This subsection holds the string table. 412 OS.AddComment("String table"); 413 OS.EmitCVStringTableDirective(); 414 415 // Emit type information last, so that any types we translate while emitting 416 // function info are included. 417 emitTypeInformation(); 418 419 clear(); 420 } 421 422 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 423 // Microsoft's linker seems to have trouble with symbol names longer than 424 // 0xffd8 bytes. 425 S = S.substr(0, 0xffd8); 426 SmallString<32> NullTerminatedString(S); 427 NullTerminatedString.push_back('\0'); 428 OS.EmitBytes(NullTerminatedString); 429 } 430 431 void CodeViewDebug::emitTypeInformation() { 432 // Do nothing if we have no debug info or if no non-trivial types were emitted 433 // to TypeTable during codegen. 434 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 435 if (!CU_Nodes) 436 return; 437 if (TypeTable.empty()) 438 return; 439 440 // Start the .debug$T section with 0x4. 441 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 442 emitCodeViewMagicVersion(); 443 444 SmallString<8> CommentPrefix; 445 if (OS.isVerboseAsm()) { 446 CommentPrefix += '\t'; 447 CommentPrefix += Asm->MAI->getCommentString(); 448 CommentPrefix += ' '; 449 } 450 451 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 452 TypeTable.ForEachRecord( 453 [&](TypeIndex Index, StringRef Record) { 454 if (OS.isVerboseAsm()) { 455 // Emit a block comment describing the type record for readability. 456 SmallString<512> CommentBlock; 457 raw_svector_ostream CommentOS(CommentBlock); 458 ScopedPrinter SP(CommentOS); 459 SP.setPrefix(CommentPrefix); 460 CVTD.setPrinter(&SP); 461 Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 462 if (E) { 463 logAllUnhandledErrors(std::move(E), errs(), "error: "); 464 llvm_unreachable("produced malformed type record"); 465 } 466 // emitRawComment will insert its own tab and comment string before 467 // the first line, so strip off our first one. It also prints its own 468 // newline. 469 OS.emitRawComment( 470 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 471 } else { 472 #ifndef NDEBUG 473 // Assert that the type data is valid even if we aren't dumping 474 // comments. The MSVC linker doesn't do much type record validation, 475 // so the first link of an invalid type record can succeed while 476 // subsequent links will fail with LNK1285. 477 ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()}); 478 CVTypeArray Types; 479 StreamReader Reader(Stream); 480 Error E = Reader.readArray(Types, Reader.getLength()); 481 if (!E) { 482 TypeVisitorCallbacks C; 483 E = CVTypeVisitor(C).visitTypeStream(Types); 484 } 485 if (E) { 486 logAllUnhandledErrors(std::move(E), errs(), "error: "); 487 llvm_unreachable("produced malformed type record"); 488 } 489 #endif 490 } 491 OS.EmitBinaryData(Record); 492 }); 493 } 494 495 void CodeViewDebug::emitInlineeLinesSubsection() { 496 if (InlinedSubprograms.empty()) 497 return; 498 499 OS.AddComment("Inlinee lines subsection"); 500 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 501 502 // We don't provide any extra file info. 503 // FIXME: Find out if debuggers use this info. 504 OS.AddComment("Inlinee lines signature"); 505 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 506 507 for (const DISubprogram *SP : InlinedSubprograms) { 508 assert(TypeIndices.count({SP, nullptr})); 509 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 510 511 OS.AddBlankLine(); 512 unsigned FileId = maybeRecordFile(SP->getFile()); 513 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 514 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 515 OS.AddBlankLine(); 516 // The filechecksum table uses 8 byte entries for now, and file ids start at 517 // 1. 518 unsigned FileOffset = (FileId - 1) * 8; 519 OS.AddComment("Type index of inlined function"); 520 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 521 OS.AddComment("Offset into filechecksum table"); 522 OS.EmitIntValue(FileOffset, 4); 523 OS.AddComment("Starting line number"); 524 OS.EmitIntValue(SP->getLine(), 4); 525 } 526 527 endCVSubsection(InlineEnd); 528 } 529 530 void CodeViewDebug::collectInlineSiteChildren( 531 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 532 const InlineSite &Site) { 533 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 534 auto I = FI.InlineSites.find(ChildSiteLoc); 535 const InlineSite &ChildSite = I->second; 536 Children.push_back(ChildSite.SiteFuncId); 537 collectInlineSiteChildren(Children, FI, ChildSite); 538 } 539 } 540 541 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 542 const DILocation *InlinedAt, 543 const InlineSite &Site) { 544 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 545 *InlineEnd = MMI->getContext().createTempSymbol(); 546 547 assert(TypeIndices.count({Site.Inlinee, nullptr})); 548 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 549 550 // SymbolRecord 551 OS.AddComment("Record length"); 552 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 553 OS.EmitLabel(InlineBegin); 554 OS.AddComment("Record kind: S_INLINESITE"); 555 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 556 557 OS.AddComment("PtrParent"); 558 OS.EmitIntValue(0, 4); 559 OS.AddComment("PtrEnd"); 560 OS.EmitIntValue(0, 4); 561 OS.AddComment("Inlinee type index"); 562 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 563 564 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 565 unsigned StartLineNum = Site.Inlinee->getLine(); 566 SmallVector<unsigned, 3> SecondaryFuncIds; 567 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 568 569 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 570 FI.Begin, FI.End, SecondaryFuncIds); 571 572 OS.EmitLabel(InlineEnd); 573 574 emitLocalVariableList(Site.InlinedLocals); 575 576 // Recurse on child inlined call sites before closing the scope. 577 for (const DILocation *ChildSite : Site.ChildSites) { 578 auto I = FI.InlineSites.find(ChildSite); 579 assert(I != FI.InlineSites.end() && 580 "child site not in function inline site map"); 581 emitInlinedCallSite(FI, ChildSite, I->second); 582 } 583 584 // Close the scope. 585 OS.AddComment("Record length"); 586 OS.EmitIntValue(2, 2); // RecordLength 587 OS.AddComment("Record kind: S_INLINESITE_END"); 588 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 589 } 590 591 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 592 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 593 // comdat key. A section may be comdat because of -ffunction-sections or 594 // because it is comdat in the IR. 595 MCSectionCOFF *GVSec = 596 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 597 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 598 599 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 600 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 601 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 602 603 OS.SwitchSection(DebugSec); 604 605 // Emit the magic version number if this is the first time we've switched to 606 // this section. 607 if (ComdatDebugSections.insert(DebugSec).second) 608 emitCodeViewMagicVersion(); 609 } 610 611 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 612 FunctionInfo &FI) { 613 // For each function there is a separate subsection 614 // which holds the PC to file:line table. 615 const MCSymbol *Fn = Asm->getSymbol(GV); 616 assert(Fn); 617 618 // Switch to the to a comdat section, if appropriate. 619 switchToDebugSectionForSymbol(Fn); 620 621 std::string FuncName; 622 auto *SP = GV->getSubprogram(); 623 setCurrentSubprogram(SP); 624 625 // If we have a display name, build the fully qualified name by walking the 626 // chain of scopes. 627 if (SP != nullptr && !SP->getDisplayName().empty()) 628 FuncName = 629 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 630 631 // If our DISubprogram name is empty, use the mangled name. 632 if (FuncName.empty()) 633 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 634 635 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 636 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 637 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 638 { 639 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 640 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 641 OS.AddComment("Record length"); 642 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 643 OS.EmitLabel(ProcRecordBegin); 644 645 OS.AddComment("Record kind: S_GPROC32_ID"); 646 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 647 648 // These fields are filled in by tools like CVPACK which run after the fact. 649 OS.AddComment("PtrParent"); 650 OS.EmitIntValue(0, 4); 651 OS.AddComment("PtrEnd"); 652 OS.EmitIntValue(0, 4); 653 OS.AddComment("PtrNext"); 654 OS.EmitIntValue(0, 4); 655 // This is the important bit that tells the debugger where the function 656 // code is located and what's its size: 657 OS.AddComment("Code size"); 658 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 659 OS.AddComment("Offset after prologue"); 660 OS.EmitIntValue(0, 4); 661 OS.AddComment("Offset before epilogue"); 662 OS.EmitIntValue(0, 4); 663 OS.AddComment("Function type index"); 664 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 665 OS.AddComment("Function section relative address"); 666 OS.EmitCOFFSecRel32(Fn); 667 OS.AddComment("Function section index"); 668 OS.EmitCOFFSectionIndex(Fn); 669 OS.AddComment("Flags"); 670 OS.EmitIntValue(0, 1); 671 // Emit the function display name as a null-terminated string. 672 OS.AddComment("Function name"); 673 // Truncate the name so we won't overflow the record length field. 674 emitNullTerminatedSymbolName(OS, FuncName); 675 OS.EmitLabel(ProcRecordEnd); 676 677 emitLocalVariableList(FI.Locals); 678 679 // Emit inlined call site information. Only emit functions inlined directly 680 // into the parent function. We'll emit the other sites recursively as part 681 // of their parent inline site. 682 for (const DILocation *InlinedAt : FI.ChildSites) { 683 auto I = FI.InlineSites.find(InlinedAt); 684 assert(I != FI.InlineSites.end() && 685 "child site not in function inline site map"); 686 emitInlinedCallSite(FI, InlinedAt, I->second); 687 } 688 689 if (SP != nullptr) 690 emitDebugInfoForUDTs(LocalUDTs); 691 692 // We're done with this function. 693 OS.AddComment("Record length"); 694 OS.EmitIntValue(0x0002, 2); 695 OS.AddComment("Record kind: S_PROC_ID_END"); 696 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 697 } 698 endCVSubsection(SymbolsEnd); 699 700 // We have an assembler directive that takes care of the whole line table. 701 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 702 } 703 704 CodeViewDebug::LocalVarDefRange 705 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 706 LocalVarDefRange DR; 707 DR.InMemory = -1; 708 DR.DataOffset = Offset; 709 assert(DR.DataOffset == Offset && "truncation"); 710 DR.StructOffset = 0; 711 DR.CVRegister = CVRegister; 712 return DR; 713 } 714 715 CodeViewDebug::LocalVarDefRange 716 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 717 LocalVarDefRange DR; 718 DR.InMemory = 0; 719 DR.DataOffset = 0; 720 DR.StructOffset = 0; 721 DR.CVRegister = CVRegister; 722 return DR; 723 } 724 725 void CodeViewDebug::collectVariableInfoFromMMITable( 726 DenseSet<InlinedVariable> &Processed) { 727 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 728 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 729 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 730 731 for (const MachineModuleInfo::VariableDbgInfo &VI : 732 MMI->getVariableDbgInfo()) { 733 if (!VI.Var) 734 continue; 735 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 736 "Expected inlined-at fields to agree"); 737 738 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 739 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 740 741 // If variable scope is not found then skip this variable. 742 if (!Scope) 743 continue; 744 745 // Get the frame register used and the offset. 746 unsigned FrameReg = 0; 747 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 748 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 749 750 // Calculate the label ranges. 751 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 752 for (const InsnRange &Range : Scope->getRanges()) { 753 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 754 const MCSymbol *End = getLabelAfterInsn(Range.second); 755 End = End ? End : Asm->getFunctionEnd(); 756 DefRange.Ranges.emplace_back(Begin, End); 757 } 758 759 LocalVariable Var; 760 Var.DIVar = VI.Var; 761 Var.DefRanges.emplace_back(std::move(DefRange)); 762 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 763 } 764 } 765 766 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 767 DenseSet<InlinedVariable> Processed; 768 // Grab the variable info that was squirreled away in the MMI side-table. 769 collectVariableInfoFromMMITable(Processed); 770 771 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 772 773 for (const auto &I : DbgValues) { 774 InlinedVariable IV = I.first; 775 if (Processed.count(IV)) 776 continue; 777 const DILocalVariable *DIVar = IV.first; 778 const DILocation *InlinedAt = IV.second; 779 780 // Instruction ranges, specifying where IV is accessible. 781 const auto &Ranges = I.second; 782 783 LexicalScope *Scope = nullptr; 784 if (InlinedAt) 785 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 786 else 787 Scope = LScopes.findLexicalScope(DIVar->getScope()); 788 // If variable scope is not found then skip this variable. 789 if (!Scope) 790 continue; 791 792 LocalVariable Var; 793 Var.DIVar = DIVar; 794 795 // Calculate the definition ranges. 796 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 797 const InsnRange &Range = *I; 798 const MachineInstr *DVInst = Range.first; 799 assert(DVInst->isDebugValue() && "Invalid History entry"); 800 const DIExpression *DIExpr = DVInst->getDebugExpression(); 801 802 // Bail if there is a complex DWARF expression for now. 803 if (DIExpr && DIExpr->getNumElements() > 0) 804 continue; 805 806 // Bail if operand 0 is not a valid register. This means the variable is a 807 // simple constant, or is described by a complex expression. 808 // FIXME: Find a way to represent constant variables, since they are 809 // relatively common. 810 unsigned Reg = 811 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 812 if (Reg == 0) 813 continue; 814 815 // Handle the two cases we can handle: indirect in memory and in register. 816 bool IsIndirect = DVInst->getOperand(1).isImm(); 817 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 818 { 819 LocalVarDefRange DefRange; 820 if (IsIndirect) { 821 int64_t Offset = DVInst->getOperand(1).getImm(); 822 DefRange = createDefRangeMem(CVReg, Offset); 823 } else { 824 DefRange = createDefRangeReg(CVReg); 825 } 826 if (Var.DefRanges.empty() || 827 Var.DefRanges.back().isDifferentLocation(DefRange)) { 828 Var.DefRanges.emplace_back(std::move(DefRange)); 829 } 830 } 831 832 // Compute the label range. 833 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 834 const MCSymbol *End = getLabelAfterInsn(Range.second); 835 if (!End) { 836 if (std::next(I) != E) 837 End = getLabelBeforeInsn(std::next(I)->first); 838 else 839 End = Asm->getFunctionEnd(); 840 } 841 842 // If the last range end is our begin, just extend the last range. 843 // Otherwise make a new range. 844 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 845 Var.DefRanges.back().Ranges; 846 if (!Ranges.empty() && Ranges.back().second == Begin) 847 Ranges.back().second = End; 848 else 849 Ranges.emplace_back(Begin, End); 850 851 // FIXME: Do more range combining. 852 } 853 854 recordLocalVariable(std::move(Var), InlinedAt); 855 } 856 } 857 858 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 859 assert(!CurFn && "Can't process two functions at once!"); 860 861 if (!Asm || !MMI->hasDebugInfo()) 862 return; 863 864 DebugHandlerBase::beginFunction(MF); 865 866 const Function *GV = MF->getFunction(); 867 assert(FnDebugInfo.count(GV) == false); 868 CurFn = &FnDebugInfo[GV]; 869 CurFn->FuncId = NextFuncId++; 870 CurFn->Begin = Asm->getFunctionBegin(); 871 872 // Find the end of the function prolog. First known non-DBG_VALUE and 873 // non-frame setup location marks the beginning of the function body. 874 // FIXME: is there a simpler a way to do this? Can we just search 875 // for the first instruction of the function, not the last of the prolog? 876 DebugLoc PrologEndLoc; 877 bool EmptyPrologue = true; 878 for (const auto &MBB : *MF) { 879 for (const auto &MI : MBB) { 880 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 881 MI.getDebugLoc()) { 882 PrologEndLoc = MI.getDebugLoc(); 883 break; 884 } else if (!MI.isDebugValue()) { 885 EmptyPrologue = false; 886 } 887 } 888 } 889 890 // Record beginning of function if we have a non-empty prologue. 891 if (PrologEndLoc && !EmptyPrologue) { 892 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 893 maybeRecordLocation(FnStartDL, MF); 894 } 895 } 896 897 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 898 // Don't record empty UDTs. 899 if (Ty->getName().empty()) 900 return; 901 902 SmallVector<StringRef, 5> QualifiedNameComponents; 903 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 904 Ty->getScope().resolve(), QualifiedNameComponents); 905 906 std::string FullyQualifiedName = 907 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 908 909 if (ClosestSubprogram == nullptr) 910 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 911 else if (ClosestSubprogram == CurrentSubprogram) 912 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 913 914 // TODO: What if the ClosestSubprogram is neither null or the current 915 // subprogram? Currently, the UDT just gets dropped on the floor. 916 // 917 // The current behavior is not desirable. To get maximal fidelity, we would 918 // need to perform all type translation before beginning emission of .debug$S 919 // and then make LocalUDTs a member of FunctionInfo 920 } 921 922 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 923 // Generic dispatch for lowering an unknown type. 924 switch (Ty->getTag()) { 925 case dwarf::DW_TAG_array_type: 926 return lowerTypeArray(cast<DICompositeType>(Ty)); 927 case dwarf::DW_TAG_typedef: 928 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 929 case dwarf::DW_TAG_base_type: 930 return lowerTypeBasic(cast<DIBasicType>(Ty)); 931 case dwarf::DW_TAG_pointer_type: 932 case dwarf::DW_TAG_reference_type: 933 case dwarf::DW_TAG_rvalue_reference_type: 934 return lowerTypePointer(cast<DIDerivedType>(Ty)); 935 case dwarf::DW_TAG_ptr_to_member_type: 936 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 937 case dwarf::DW_TAG_const_type: 938 case dwarf::DW_TAG_volatile_type: 939 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 940 case dwarf::DW_TAG_subroutine_type: 941 if (ClassTy) { 942 // The member function type of a member function pointer has no 943 // ThisAdjustment. 944 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 945 /*ThisAdjustment=*/0); 946 } 947 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 948 case dwarf::DW_TAG_enumeration_type: 949 return lowerTypeEnum(cast<DICompositeType>(Ty)); 950 case dwarf::DW_TAG_class_type: 951 case dwarf::DW_TAG_structure_type: 952 return lowerTypeClass(cast<DICompositeType>(Ty)); 953 case dwarf::DW_TAG_union_type: 954 return lowerTypeUnion(cast<DICompositeType>(Ty)); 955 default: 956 // Use the null type index. 957 return TypeIndex(); 958 } 959 } 960 961 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 962 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 963 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 964 StringRef TypeName = Ty->getName(); 965 966 addToUDTs(Ty, UnderlyingTypeIndex); 967 968 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 969 TypeName == "HRESULT") 970 return TypeIndex(SimpleTypeKind::HResult); 971 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 972 TypeName == "wchar_t") 973 return TypeIndex(SimpleTypeKind::WideCharacter); 974 975 return UnderlyingTypeIndex; 976 } 977 978 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 979 DITypeRef ElementTypeRef = Ty->getBaseType(); 980 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 981 // IndexType is size_t, which depends on the bitness of the target. 982 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 983 ? TypeIndex(SimpleTypeKind::UInt64Quad) 984 : TypeIndex(SimpleTypeKind::UInt32Long); 985 uint64_t Size = Ty->getSizeInBits() / 8; 986 ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName()); 987 return TypeTable.writeArray(Record); 988 } 989 990 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 991 TypeIndex Index; 992 dwarf::TypeKind Kind; 993 uint32_t ByteSize; 994 995 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 996 ByteSize = Ty->getSizeInBits() / 8; 997 998 SimpleTypeKind STK = SimpleTypeKind::None; 999 switch (Kind) { 1000 case dwarf::DW_ATE_address: 1001 // FIXME: Translate 1002 break; 1003 case dwarf::DW_ATE_boolean: 1004 switch (ByteSize) { 1005 case 1: STK = SimpleTypeKind::Boolean8; break; 1006 case 2: STK = SimpleTypeKind::Boolean16; break; 1007 case 4: STK = SimpleTypeKind::Boolean32; break; 1008 case 8: STK = SimpleTypeKind::Boolean64; break; 1009 case 16: STK = SimpleTypeKind::Boolean128; break; 1010 } 1011 break; 1012 case dwarf::DW_ATE_complex_float: 1013 switch (ByteSize) { 1014 case 2: STK = SimpleTypeKind::Complex16; break; 1015 case 4: STK = SimpleTypeKind::Complex32; break; 1016 case 8: STK = SimpleTypeKind::Complex64; break; 1017 case 10: STK = SimpleTypeKind::Complex80; break; 1018 case 16: STK = SimpleTypeKind::Complex128; break; 1019 } 1020 break; 1021 case dwarf::DW_ATE_float: 1022 switch (ByteSize) { 1023 case 2: STK = SimpleTypeKind::Float16; break; 1024 case 4: STK = SimpleTypeKind::Float32; break; 1025 case 6: STK = SimpleTypeKind::Float48; break; 1026 case 8: STK = SimpleTypeKind::Float64; break; 1027 case 10: STK = SimpleTypeKind::Float80; break; 1028 case 16: STK = SimpleTypeKind::Float128; break; 1029 } 1030 break; 1031 case dwarf::DW_ATE_signed: 1032 switch (ByteSize) { 1033 case 1: STK = SimpleTypeKind::SByte; break; 1034 case 2: STK = SimpleTypeKind::Int16Short; break; 1035 case 4: STK = SimpleTypeKind::Int32; break; 1036 case 8: STK = SimpleTypeKind::Int64Quad; break; 1037 case 16: STK = SimpleTypeKind::Int128Oct; break; 1038 } 1039 break; 1040 case dwarf::DW_ATE_unsigned: 1041 switch (ByteSize) { 1042 case 1: STK = SimpleTypeKind::Byte; break; 1043 case 2: STK = SimpleTypeKind::UInt16Short; break; 1044 case 4: STK = SimpleTypeKind::UInt32; break; 1045 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1046 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1047 } 1048 break; 1049 case dwarf::DW_ATE_UTF: 1050 switch (ByteSize) { 1051 case 2: STK = SimpleTypeKind::Character16; break; 1052 case 4: STK = SimpleTypeKind::Character32; break; 1053 } 1054 break; 1055 case dwarf::DW_ATE_signed_char: 1056 if (ByteSize == 1) 1057 STK = SimpleTypeKind::SignedCharacter; 1058 break; 1059 case dwarf::DW_ATE_unsigned_char: 1060 if (ByteSize == 1) 1061 STK = SimpleTypeKind::UnsignedCharacter; 1062 break; 1063 default: 1064 break; 1065 } 1066 1067 // Apply some fixups based on the source-level type name. 1068 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1069 STK = SimpleTypeKind::Int32Long; 1070 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1071 STK = SimpleTypeKind::UInt32Long; 1072 if (STK == SimpleTypeKind::UInt16Short && 1073 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1074 STK = SimpleTypeKind::WideCharacter; 1075 if ((STK == SimpleTypeKind::SignedCharacter || 1076 STK == SimpleTypeKind::UnsignedCharacter) && 1077 Ty->getName() == "char") 1078 STK = SimpleTypeKind::NarrowCharacter; 1079 1080 return TypeIndex(STK); 1081 } 1082 1083 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1084 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1085 1086 // While processing the type being pointed to it is possible we already 1087 // created this pointer type. If so, we check here and return the existing 1088 // pointer type. 1089 auto I = TypeIndices.find({Ty, nullptr}); 1090 if (I != TypeIndices.end()) 1091 return I->second; 1092 1093 // Pointers to simple types can use SimpleTypeMode, rather than having a 1094 // dedicated pointer type record. 1095 if (PointeeTI.isSimple() && 1096 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1097 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1098 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1099 ? SimpleTypeMode::NearPointer64 1100 : SimpleTypeMode::NearPointer32; 1101 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1102 } 1103 1104 PointerKind PK = 1105 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1106 PointerMode PM = PointerMode::Pointer; 1107 switch (Ty->getTag()) { 1108 default: llvm_unreachable("not a pointer tag type"); 1109 case dwarf::DW_TAG_pointer_type: 1110 PM = PointerMode::Pointer; 1111 break; 1112 case dwarf::DW_TAG_reference_type: 1113 PM = PointerMode::LValueReference; 1114 break; 1115 case dwarf::DW_TAG_rvalue_reference_type: 1116 PM = PointerMode::RValueReference; 1117 break; 1118 } 1119 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1120 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1121 // do. 1122 PointerOptions PO = PointerOptions::None; 1123 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1124 return TypeTable.writePointer(PR); 1125 } 1126 1127 static PointerToMemberRepresentation 1128 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1129 // SizeInBytes being zero generally implies that the member pointer type was 1130 // incomplete, which can happen if it is part of a function prototype. In this 1131 // case, use the unknown model instead of the general model. 1132 if (IsPMF) { 1133 switch (Flags & DINode::FlagPtrToMemberRep) { 1134 case 0: 1135 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1136 : PointerToMemberRepresentation::GeneralFunction; 1137 case DINode::FlagSingleInheritance: 1138 return PointerToMemberRepresentation::SingleInheritanceFunction; 1139 case DINode::FlagMultipleInheritance: 1140 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1141 case DINode::FlagVirtualInheritance: 1142 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1143 } 1144 } else { 1145 switch (Flags & DINode::FlagPtrToMemberRep) { 1146 case 0: 1147 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1148 : PointerToMemberRepresentation::GeneralData; 1149 case DINode::FlagSingleInheritance: 1150 return PointerToMemberRepresentation::SingleInheritanceData; 1151 case DINode::FlagMultipleInheritance: 1152 return PointerToMemberRepresentation::MultipleInheritanceData; 1153 case DINode::FlagVirtualInheritance: 1154 return PointerToMemberRepresentation::VirtualInheritanceData; 1155 } 1156 } 1157 llvm_unreachable("invalid ptr to member representation"); 1158 } 1159 1160 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1161 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1162 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1163 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1164 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1165 : PointerKind::Near32; 1166 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1167 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1168 : PointerMode::PointerToDataMember; 1169 PointerOptions PO = PointerOptions::None; // FIXME 1170 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1171 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1172 MemberPointerInfo MPI( 1173 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1174 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1175 return TypeTable.writePointer(PR); 1176 } 1177 1178 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1179 /// have a translation, use the NearC convention. 1180 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1181 switch (DwarfCC) { 1182 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1183 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1184 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1185 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1186 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1187 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1188 } 1189 return CallingConvention::NearC; 1190 } 1191 1192 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1193 ModifierOptions Mods = ModifierOptions::None; 1194 bool IsModifier = true; 1195 const DIType *BaseTy = Ty; 1196 while (IsModifier && BaseTy) { 1197 // FIXME: Need to add DWARF tag for __unaligned. 1198 switch (BaseTy->getTag()) { 1199 case dwarf::DW_TAG_const_type: 1200 Mods |= ModifierOptions::Const; 1201 break; 1202 case dwarf::DW_TAG_volatile_type: 1203 Mods |= ModifierOptions::Volatile; 1204 break; 1205 default: 1206 IsModifier = false; 1207 break; 1208 } 1209 if (IsModifier) 1210 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1211 } 1212 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1213 1214 // While processing the type being pointed to, it is possible we already 1215 // created this modifier type. If so, we check here and return the existing 1216 // modifier type. 1217 auto I = TypeIndices.find({Ty, nullptr}); 1218 if (I != TypeIndices.end()) 1219 return I->second; 1220 1221 ModifierRecord MR(ModifiedTI, Mods); 1222 return TypeTable.writeModifier(MR); 1223 } 1224 1225 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1226 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1227 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1228 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1229 1230 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1231 ArrayRef<TypeIndex> ArgTypeIndices = None; 1232 if (!ReturnAndArgTypeIndices.empty()) { 1233 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1234 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1235 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1236 } 1237 1238 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1239 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1240 1241 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1242 1243 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1244 ArgTypeIndices.size(), ArgListIndex); 1245 return TypeTable.writeProcedure(Procedure); 1246 } 1247 1248 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1249 const DIType *ClassTy, 1250 int ThisAdjustment) { 1251 // Lower the containing class type. 1252 TypeIndex ClassType = getTypeIndex(ClassTy); 1253 1254 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1255 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1256 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1257 1258 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1259 ArrayRef<TypeIndex> ArgTypeIndices = None; 1260 if (!ReturnAndArgTypeIndices.empty()) { 1261 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1262 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1263 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1264 } 1265 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1266 if (!ArgTypeIndices.empty()) { 1267 ThisTypeIndex = ArgTypeIndices.front(); 1268 ArgTypeIndices = ArgTypeIndices.drop_front(); 1269 } 1270 1271 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1272 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1273 1274 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1275 1276 // TODO: Need to use the correct values for: 1277 // FunctionOptions 1278 // ThisPointerAdjustment. 1279 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1280 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1281 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1282 1283 return TI; 1284 } 1285 1286 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1287 switch (Flags & DINode::FlagAccessibility) { 1288 case DINode::FlagPrivate: return MemberAccess::Private; 1289 case DINode::FlagPublic: return MemberAccess::Public; 1290 case DINode::FlagProtected: return MemberAccess::Protected; 1291 case 0: 1292 // If there was no explicit access control, provide the default for the tag. 1293 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1294 : MemberAccess::Public; 1295 } 1296 llvm_unreachable("access flags are exclusive"); 1297 } 1298 1299 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1300 if (SP->isArtificial()) 1301 return MethodOptions::CompilerGenerated; 1302 1303 // FIXME: Handle other MethodOptions. 1304 1305 return MethodOptions::None; 1306 } 1307 1308 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1309 bool Introduced) { 1310 switch (SP->getVirtuality()) { 1311 case dwarf::DW_VIRTUALITY_none: 1312 break; 1313 case dwarf::DW_VIRTUALITY_virtual: 1314 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1315 case dwarf::DW_VIRTUALITY_pure_virtual: 1316 return Introduced ? MethodKind::PureIntroducingVirtual 1317 : MethodKind::PureVirtual; 1318 default: 1319 llvm_unreachable("unhandled virtuality case"); 1320 } 1321 1322 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1323 1324 return MethodKind::Vanilla; 1325 } 1326 1327 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1328 switch (Ty->getTag()) { 1329 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1330 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1331 } 1332 llvm_unreachable("unexpected tag"); 1333 } 1334 1335 /// Return ClassOptions that should be present on both the forward declaration 1336 /// and the defintion of a tag type. 1337 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1338 ClassOptions CO = ClassOptions::None; 1339 1340 // MSVC always sets this flag, even for local types. Clang doesn't always 1341 // appear to give every type a linkage name, which may be problematic for us. 1342 // FIXME: Investigate the consequences of not following them here. 1343 if (!Ty->getIdentifier().empty()) 1344 CO |= ClassOptions::HasUniqueName; 1345 1346 // Put the Nested flag on a type if it appears immediately inside a tag type. 1347 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1348 // here. That flag is only set on definitions, and not forward declarations. 1349 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1350 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1351 CO |= ClassOptions::Nested; 1352 1353 // Put the Scoped flag on function-local types. 1354 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1355 Scope = Scope->getScope().resolve()) { 1356 if (isa<DISubprogram>(Scope)) { 1357 CO |= ClassOptions::Scoped; 1358 break; 1359 } 1360 } 1361 1362 return CO; 1363 } 1364 1365 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1366 ClassOptions CO = getCommonClassOptions(Ty); 1367 TypeIndex FTI; 1368 unsigned EnumeratorCount = 0; 1369 1370 if (Ty->isForwardDecl()) { 1371 CO |= ClassOptions::ForwardReference; 1372 } else { 1373 FieldListRecordBuilder Fields; 1374 for (const DINode *Element : Ty->getElements()) { 1375 // We assume that the frontend provides all members in source declaration 1376 // order, which is what MSVC does. 1377 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1378 Fields.writeEnumerator(EnumeratorRecord( 1379 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1380 Enumerator->getName())); 1381 EnumeratorCount++; 1382 } 1383 } 1384 FTI = TypeTable.writeFieldList(Fields); 1385 } 1386 1387 std::string FullName = getFullyQualifiedName(Ty); 1388 1389 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1390 Ty->getIdentifier(), 1391 getTypeIndex(Ty->getBaseType()))); 1392 } 1393 1394 //===----------------------------------------------------------------------===// 1395 // ClassInfo 1396 //===----------------------------------------------------------------------===// 1397 1398 struct llvm::ClassInfo { 1399 struct MemberInfo { 1400 const DIDerivedType *MemberTypeNode; 1401 uint64_t BaseOffset; 1402 }; 1403 // [MemberInfo] 1404 typedef std::vector<MemberInfo> MemberList; 1405 1406 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1407 // MethodName -> MethodsList 1408 typedef MapVector<MDString *, MethodsList> MethodsMap; 1409 1410 /// Base classes. 1411 std::vector<const DIDerivedType *> Inheritance; 1412 1413 /// Direct members. 1414 MemberList Members; 1415 // Direct overloaded methods gathered by name. 1416 MethodsMap Methods; 1417 1418 std::vector<const DICompositeType *> NestedClasses; 1419 }; 1420 1421 void CodeViewDebug::clear() { 1422 assert(CurFn == nullptr); 1423 FileIdMap.clear(); 1424 FnDebugInfo.clear(); 1425 FileToFilepathMap.clear(); 1426 LocalUDTs.clear(); 1427 GlobalUDTs.clear(); 1428 TypeIndices.clear(); 1429 CompleteTypeIndices.clear(); 1430 } 1431 1432 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1433 const DIDerivedType *DDTy) { 1434 if (!DDTy->getName().empty()) { 1435 Info.Members.push_back({DDTy, 0}); 1436 return; 1437 } 1438 // An unnamed member must represent a nested struct or union. Add all the 1439 // indirect fields to the current record. 1440 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1441 uint64_t Offset = DDTy->getOffsetInBits(); 1442 const DIType *Ty = DDTy->getBaseType().resolve(); 1443 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1444 ClassInfo NestedInfo = collectClassInfo(DCTy); 1445 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1446 Info.Members.push_back( 1447 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1448 } 1449 1450 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1451 ClassInfo Info; 1452 // Add elements to structure type. 1453 DINodeArray Elements = Ty->getElements(); 1454 for (auto *Element : Elements) { 1455 // We assume that the frontend provides all members in source declaration 1456 // order, which is what MSVC does. 1457 if (!Element) 1458 continue; 1459 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1460 Info.Methods[SP->getRawName()].push_back(SP); 1461 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1462 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1463 collectMemberInfo(Info, DDTy); 1464 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1465 Info.Inheritance.push_back(DDTy); 1466 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1467 // Ignore friend members. It appears that MSVC emitted info about 1468 // friends in the past, but modern versions do not. 1469 } 1470 // FIXME: Get Clang to emit function virtual table here and handle it. 1471 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1472 Info.NestedClasses.push_back(Composite); 1473 } 1474 // Skip other unrecognized kinds of elements. 1475 } 1476 return Info; 1477 } 1478 1479 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1480 // First, construct the forward decl. Don't look into Ty to compute the 1481 // forward decl options, since it might not be available in all TUs. 1482 TypeRecordKind Kind = getRecordKind(Ty); 1483 ClassOptions CO = 1484 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1485 std::string FullName = getFullyQualifiedName(Ty); 1486 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1487 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1488 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1489 if (!Ty->isForwardDecl()) 1490 DeferredCompleteTypes.push_back(Ty); 1491 return FwdDeclTI; 1492 } 1493 1494 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1495 // Construct the field list and complete type record. 1496 TypeRecordKind Kind = getRecordKind(Ty); 1497 ClassOptions CO = getCommonClassOptions(Ty); 1498 TypeIndex FieldTI; 1499 TypeIndex VShapeTI; 1500 unsigned FieldCount; 1501 bool ContainsNestedClass; 1502 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1503 lowerRecordFieldList(Ty); 1504 1505 if (ContainsNestedClass) 1506 CO |= ClassOptions::ContainsNestedClass; 1507 1508 std::string FullName = getFullyQualifiedName(Ty); 1509 1510 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1511 1512 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord( 1513 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1514 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1515 1516 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1517 ClassTI, TypeTable.writeStringId(StringIdRecord( 1518 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1519 Ty->getLine())); 1520 1521 addToUDTs(Ty, ClassTI); 1522 1523 return ClassTI; 1524 } 1525 1526 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1527 ClassOptions CO = 1528 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1529 std::string FullName = getFullyQualifiedName(Ty); 1530 TypeIndex FwdDeclTI = 1531 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1532 FullName, Ty->getIdentifier())); 1533 if (!Ty->isForwardDecl()) 1534 DeferredCompleteTypes.push_back(Ty); 1535 return FwdDeclTI; 1536 } 1537 1538 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1539 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1540 TypeIndex FieldTI; 1541 unsigned FieldCount; 1542 bool ContainsNestedClass; 1543 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1544 lowerRecordFieldList(Ty); 1545 1546 if (ContainsNestedClass) 1547 CO |= ClassOptions::ContainsNestedClass; 1548 1549 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1550 std::string FullName = getFullyQualifiedName(Ty); 1551 1552 TypeIndex UnionTI = TypeTable.writeUnion( 1553 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1554 Ty->getIdentifier())); 1555 1556 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1557 UnionTI, TypeTable.writeStringId(StringIdRecord( 1558 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1559 Ty->getLine())); 1560 1561 addToUDTs(Ty, UnionTI); 1562 1563 return UnionTI; 1564 } 1565 1566 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1567 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1568 // Manually count members. MSVC appears to count everything that generates a 1569 // field list record. Each individual overload in a method overload group 1570 // contributes to this count, even though the overload group is a single field 1571 // list record. 1572 unsigned MemberCount = 0; 1573 ClassInfo Info = collectClassInfo(Ty); 1574 FieldListRecordBuilder Fields; 1575 1576 // Create base classes. 1577 for (const DIDerivedType *I : Info.Inheritance) { 1578 if (I->getFlags() & DINode::FlagVirtual) { 1579 // Virtual base. 1580 // FIXME: Emit VBPtrOffset when the frontend provides it. 1581 unsigned VBPtrOffset = 0; 1582 // FIXME: Despite the accessor name, the offset is really in bytes. 1583 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1584 Fields.writeVirtualBaseClass(VirtualBaseClassRecord( 1585 translateAccessFlags(Ty->getTag(), I->getFlags()), 1586 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1587 VBTableIndex)); 1588 } else { 1589 assert(I->getOffsetInBits() % 8 == 0 && 1590 "bases must be on byte boundaries"); 1591 Fields.writeBaseClass(BaseClassRecord( 1592 translateAccessFlags(Ty->getTag(), I->getFlags()), 1593 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1594 } 1595 } 1596 1597 // Create members. 1598 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1599 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1600 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1601 StringRef MemberName = Member->getName(); 1602 MemberAccess Access = 1603 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1604 1605 if (Member->isStaticMember()) { 1606 Fields.writeStaticDataMember( 1607 StaticDataMemberRecord(Access, MemberBaseType, MemberName)); 1608 MemberCount++; 1609 continue; 1610 } 1611 1612 // Data member. 1613 uint64_t MemberOffsetInBits = 1614 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1615 if (Member->isBitField()) { 1616 uint64_t StartBitOffset = MemberOffsetInBits; 1617 if (const auto *CI = 1618 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1619 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1620 } 1621 StartBitOffset -= MemberOffsetInBits; 1622 MemberBaseType = TypeTable.writeBitField(BitFieldRecord( 1623 MemberBaseType, Member->getSizeInBits(), StartBitOffset)); 1624 } 1625 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1626 Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType, 1627 MemberOffsetInBytes, MemberName)); 1628 MemberCount++; 1629 } 1630 1631 // Create methods 1632 for (auto &MethodItr : Info.Methods) { 1633 StringRef Name = MethodItr.first->getString(); 1634 1635 std::vector<OneMethodRecord> Methods; 1636 for (const DISubprogram *SP : MethodItr.second) { 1637 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1638 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1639 1640 unsigned VFTableOffset = -1; 1641 if (Introduced) 1642 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1643 1644 Methods.push_back( 1645 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1646 translateMethodOptionFlags(SP), 1647 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1648 VFTableOffset, Name)); 1649 MemberCount++; 1650 } 1651 assert(Methods.size() > 0 && "Empty methods map entry"); 1652 if (Methods.size() == 1) 1653 Fields.writeOneMethod(Methods[0]); 1654 else { 1655 TypeIndex MethodList = 1656 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1657 Fields.writeOverloadedMethod( 1658 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1659 } 1660 } 1661 1662 // Create nested classes. 1663 for (const DICompositeType *Nested : Info.NestedClasses) { 1664 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1665 Fields.writeNestedType(R); 1666 MemberCount++; 1667 } 1668 1669 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1670 return std::make_tuple(FieldTI, TypeIndex(), MemberCount, 1671 !Info.NestedClasses.empty()); 1672 } 1673 1674 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1675 if (!VBPType.getIndex()) { 1676 // Make a 'const int *' type. 1677 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1678 TypeIndex ModifiedTI = TypeTable.writeModifier(MR); 1679 1680 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1681 : PointerKind::Near32; 1682 PointerMode PM = PointerMode::Pointer; 1683 PointerOptions PO = PointerOptions::None; 1684 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1685 1686 VBPType = TypeTable.writePointer(PR); 1687 } 1688 1689 return VBPType; 1690 } 1691 1692 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1693 const DIType *Ty = TypeRef.resolve(); 1694 const DIType *ClassTy = ClassTyRef.resolve(); 1695 1696 // The null DIType is the void type. Don't try to hash it. 1697 if (!Ty) 1698 return TypeIndex::Void(); 1699 1700 // Check if we've already translated this type. Don't try to do a 1701 // get-or-create style insertion that caches the hash lookup across the 1702 // lowerType call. It will update the TypeIndices map. 1703 auto I = TypeIndices.find({Ty, ClassTy}); 1704 if (I != TypeIndices.end()) 1705 return I->second; 1706 1707 TypeLoweringScope S(*this); 1708 TypeIndex TI = lowerType(Ty, ClassTy); 1709 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1710 } 1711 1712 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1713 const DIType *Ty = TypeRef.resolve(); 1714 1715 // The null DIType is the void type. Don't try to hash it. 1716 if (!Ty) 1717 return TypeIndex::Void(); 1718 1719 // If this is a non-record type, the complete type index is the same as the 1720 // normal type index. Just call getTypeIndex. 1721 switch (Ty->getTag()) { 1722 case dwarf::DW_TAG_class_type: 1723 case dwarf::DW_TAG_structure_type: 1724 case dwarf::DW_TAG_union_type: 1725 break; 1726 default: 1727 return getTypeIndex(Ty); 1728 } 1729 1730 // Check if we've already translated the complete record type. Lowering a 1731 // complete type should never trigger lowering another complete type, so we 1732 // can reuse the hash table lookup result. 1733 const auto *CTy = cast<DICompositeType>(Ty); 1734 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1735 if (!InsertResult.second) 1736 return InsertResult.first->second; 1737 1738 TypeLoweringScope S(*this); 1739 1740 // Make sure the forward declaration is emitted first. It's unclear if this 1741 // is necessary, but MSVC does it, and we should follow suit until we can show 1742 // otherwise. 1743 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1744 1745 // Just use the forward decl if we don't have complete type info. This might 1746 // happen if the frontend is using modules and expects the complete definition 1747 // to be emitted elsewhere. 1748 if (CTy->isForwardDecl()) 1749 return FwdDeclTI; 1750 1751 TypeIndex TI; 1752 switch (CTy->getTag()) { 1753 case dwarf::DW_TAG_class_type: 1754 case dwarf::DW_TAG_structure_type: 1755 TI = lowerCompleteTypeClass(CTy); 1756 break; 1757 case dwarf::DW_TAG_union_type: 1758 TI = lowerCompleteTypeUnion(CTy); 1759 break; 1760 default: 1761 llvm_unreachable("not a record"); 1762 } 1763 1764 InsertResult.first->second = TI; 1765 return TI; 1766 } 1767 1768 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1769 /// and do this until fixpoint, as each complete record type typically references 1770 /// many other record types. 1771 void CodeViewDebug::emitDeferredCompleteTypes() { 1772 SmallVector<const DICompositeType *, 4> TypesToEmit; 1773 while (!DeferredCompleteTypes.empty()) { 1774 std::swap(DeferredCompleteTypes, TypesToEmit); 1775 for (const DICompositeType *RecordTy : TypesToEmit) 1776 getCompleteTypeIndex(RecordTy); 1777 TypesToEmit.clear(); 1778 } 1779 } 1780 1781 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 1782 // Get the sorted list of parameters and emit them first. 1783 SmallVector<const LocalVariable *, 6> Params; 1784 for (const LocalVariable &L : Locals) 1785 if (L.DIVar->isParameter()) 1786 Params.push_back(&L); 1787 std::sort(Params.begin(), Params.end(), 1788 [](const LocalVariable *L, const LocalVariable *R) { 1789 return L->DIVar->getArg() < R->DIVar->getArg(); 1790 }); 1791 for (const LocalVariable *L : Params) 1792 emitLocalVariable(*L); 1793 1794 // Next emit all non-parameters in the order that we found them. 1795 for (const LocalVariable &L : Locals) 1796 if (!L.DIVar->isParameter()) 1797 emitLocalVariable(L); 1798 } 1799 1800 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1801 // LocalSym record, see SymbolRecord.h for more info. 1802 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1803 *LocalEnd = MMI->getContext().createTempSymbol(); 1804 OS.AddComment("Record length"); 1805 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1806 OS.EmitLabel(LocalBegin); 1807 1808 OS.AddComment("Record kind: S_LOCAL"); 1809 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1810 1811 LocalSymFlags Flags = LocalSymFlags::None; 1812 if (Var.DIVar->isParameter()) 1813 Flags |= LocalSymFlags::IsParameter; 1814 if (Var.DefRanges.empty()) 1815 Flags |= LocalSymFlags::IsOptimizedOut; 1816 1817 OS.AddComment("TypeIndex"); 1818 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1819 OS.EmitIntValue(TI.getIndex(), 4); 1820 OS.AddComment("Flags"); 1821 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1822 // Truncate the name so we won't overflow the record length field. 1823 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1824 OS.EmitLabel(LocalEnd); 1825 1826 // Calculate the on disk prefix of the appropriate def range record. The 1827 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1828 // should be big enough to hold all forms without memory allocation. 1829 SmallString<20> BytePrefix; 1830 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1831 BytePrefix.clear(); 1832 // FIXME: Handle bitpieces. 1833 if (DefRange.StructOffset != 0) 1834 continue; 1835 1836 if (DefRange.InMemory) { 1837 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1838 0, 0, ArrayRef<LocalVariableAddrGap>()); 1839 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1840 BytePrefix += 1841 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1842 BytePrefix += 1843 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1844 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1845 } else { 1846 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1847 // Unclear what matters here. 1848 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1849 ArrayRef<LocalVariableAddrGap>()); 1850 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1851 BytePrefix += 1852 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1853 BytePrefix += 1854 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1855 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1856 } 1857 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1858 } 1859 } 1860 1861 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1862 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1863 return; 1864 1865 const Function *GV = MF->getFunction(); 1866 assert(FnDebugInfo.count(GV)); 1867 assert(CurFn == &FnDebugInfo[GV]); 1868 1869 collectVariableInfo(GV->getSubprogram()); 1870 1871 DebugHandlerBase::endFunction(MF); 1872 1873 // Don't emit anything if we don't have any line tables. 1874 if (!CurFn->HaveLineInfo) { 1875 FnDebugInfo.erase(GV); 1876 CurFn = nullptr; 1877 return; 1878 } 1879 1880 CurFn->End = Asm->getFunctionEnd(); 1881 1882 CurFn = nullptr; 1883 } 1884 1885 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1886 DebugHandlerBase::beginInstruction(MI); 1887 1888 // Ignore DBG_VALUE locations and function prologue. 1889 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1890 return; 1891 DebugLoc DL = MI->getDebugLoc(); 1892 if (DL == PrevInstLoc || !DL) 1893 return; 1894 maybeRecordLocation(DL, Asm->MF); 1895 } 1896 1897 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1898 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1899 *EndLabel = MMI->getContext().createTempSymbol(); 1900 OS.EmitIntValue(unsigned(Kind), 4); 1901 OS.AddComment("Subsection size"); 1902 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1903 OS.EmitLabel(BeginLabel); 1904 return EndLabel; 1905 } 1906 1907 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1908 OS.EmitLabel(EndLabel); 1909 // Every subsection must be aligned to a 4-byte boundary. 1910 OS.EmitValueToAlignment(4); 1911 } 1912 1913 void CodeViewDebug::emitDebugInfoForUDTs( 1914 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1915 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1916 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1917 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1918 OS.AddComment("Record length"); 1919 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1920 OS.EmitLabel(UDTRecordBegin); 1921 1922 OS.AddComment("Record kind: S_UDT"); 1923 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1924 1925 OS.AddComment("Type"); 1926 OS.EmitIntValue(UDT.second.getIndex(), 4); 1927 1928 emitNullTerminatedSymbolName(OS, UDT.first); 1929 OS.EmitLabel(UDTRecordEnd); 1930 } 1931 } 1932 1933 void CodeViewDebug::emitDebugInfoForGlobals() { 1934 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1935 for (const MDNode *Node : CUs->operands()) { 1936 const auto *CU = cast<DICompileUnit>(Node); 1937 1938 // First, emit all globals that are not in a comdat in a single symbol 1939 // substream. MSVC doesn't like it if the substream is empty, so only open 1940 // it if we have at least one global to emit. 1941 switchToDebugSectionForSymbol(nullptr); 1942 MCSymbol *EndLabel = nullptr; 1943 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1944 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1945 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1946 if (!EndLabel) { 1947 OS.AddComment("Symbol subsection for globals"); 1948 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1949 } 1950 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1951 } 1952 } 1953 } 1954 if (EndLabel) 1955 endCVSubsection(EndLabel); 1956 1957 // Second, emit each global that is in a comdat into its own .debug$S 1958 // section along with its own symbol substream. 1959 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1960 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1961 if (GV->hasComdat()) { 1962 MCSymbol *GVSym = Asm->getSymbol(GV); 1963 OS.AddComment("Symbol subsection for " + 1964 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 1965 switchToDebugSectionForSymbol(GVSym); 1966 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1967 emitDebugInfoForGlobal(G, GVSym); 1968 endCVSubsection(EndLabel); 1969 } 1970 } 1971 } 1972 } 1973 } 1974 1975 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 1976 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1977 for (const MDNode *Node : CUs->operands()) { 1978 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 1979 if (DIType *RT = dyn_cast<DIType>(Ty)) { 1980 getTypeIndex(RT); 1981 // FIXME: Add to global/local DTU list. 1982 } 1983 } 1984 } 1985 } 1986 1987 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 1988 MCSymbol *GVSym) { 1989 // DataSym record, see SymbolRecord.h for more info. 1990 // FIXME: Thread local data, etc 1991 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 1992 *DataEnd = MMI->getContext().createTempSymbol(); 1993 OS.AddComment("Record length"); 1994 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 1995 OS.EmitLabel(DataBegin); 1996 OS.AddComment("Record kind: S_GDATA32"); 1997 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 1998 OS.AddComment("Type"); 1999 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2000 OS.AddComment("DataOffset"); 2001 OS.EmitCOFFSecRel32(GVSym); 2002 OS.AddComment("Segment"); 2003 OS.EmitCOFFSectionIndex(GVSym); 2004 OS.AddComment("Name"); 2005 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2006 OS.EmitLabel(DataEnd); 2007 } 2008