1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 17 #include "llvm/DebugInfo/CodeView/CodeView.h" 18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 19 #include "llvm/DebugInfo/CodeView/Line.h" 20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 21 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 22 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 23 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 25 #include "llvm/DebugInfo/MSF/ByteStream.h" 26 #include "llvm/DebugInfo/MSF/StreamReader.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/MC/MCSectionCOFF.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/COFF.h" 33 #include "llvm/Support/ScopedPrinter.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 38 using namespace llvm; 39 using namespace llvm::codeview; 40 using namespace llvm::msf; 41 42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 43 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 44 // If module doesn't have named metadata anchors or COFF debug section 45 // is not available, skip any debug info related stuff. 46 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 47 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 48 Asm = nullptr; 49 return; 50 } 51 52 // Tell MMI that we have debug info. 53 MMI->setDebugInfoAvailability(true); 54 } 55 56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 57 std::string &Filepath = FileToFilepathMap[File]; 58 if (!Filepath.empty()) 59 return Filepath; 60 61 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 62 63 // Clang emits directory and relative filename info into the IR, but CodeView 64 // operates on full paths. We could change Clang to emit full paths too, but 65 // that would increase the IR size and probably not needed for other users. 66 // For now, just concatenate and canonicalize the path here. 67 if (Filename.find(':') == 1) 68 Filepath = Filename; 69 else 70 Filepath = (Dir + "\\" + Filename).str(); 71 72 // Canonicalize the path. We have to do it textually because we may no longer 73 // have access the file in the filesystem. 74 // First, replace all slashes with backslashes. 75 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 76 77 // Remove all "\.\" with "\". 78 size_t Cursor = 0; 79 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 80 Filepath.erase(Cursor, 2); 81 82 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 83 // path should be well-formatted, e.g. start with a drive letter, etc. 84 Cursor = 0; 85 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 86 // Something's wrong if the path starts with "\..\", abort. 87 if (Cursor == 0) 88 break; 89 90 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 91 if (PrevSlash == std::string::npos) 92 // Something's wrong, abort. 93 break; 94 95 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 96 // The next ".." might be following the one we've just erased. 97 Cursor = PrevSlash; 98 } 99 100 // Remove all duplicate backslashes. 101 Cursor = 0; 102 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 103 Filepath.erase(Cursor, 1); 104 105 return Filepath; 106 } 107 108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 109 unsigned NextId = FileIdMap.size() + 1; 110 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 111 if (Insertion.second) { 112 // We have to compute the full filepath and emit a .cv_file directive. 113 StringRef FullPath = getFullFilepath(F); 114 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 115 (void)Success; 116 assert(Success && ".cv_file directive failed"); 117 } 118 return Insertion.first->second; 119 } 120 121 CodeViewDebug::InlineSite & 122 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 123 const DISubprogram *Inlinee) { 124 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 125 InlineSite *Site = &SiteInsertion.first->second; 126 if (SiteInsertion.second) { 127 Site->SiteFuncId = NextFuncId++; 128 Site->Inlinee = Inlinee; 129 InlinedSubprograms.insert(Inlinee); 130 getFuncIdForSubprogram(Inlinee); 131 } 132 return *Site; 133 } 134 135 static StringRef getPrettyScopeName(const DIScope *Scope) { 136 StringRef ScopeName = Scope->getName(); 137 if (!ScopeName.empty()) 138 return ScopeName; 139 140 switch (Scope->getTag()) { 141 case dwarf::DW_TAG_enumeration_type: 142 case dwarf::DW_TAG_class_type: 143 case dwarf::DW_TAG_structure_type: 144 case dwarf::DW_TAG_union_type: 145 return "<unnamed-tag>"; 146 case dwarf::DW_TAG_namespace: 147 return "`anonymous namespace'"; 148 } 149 150 return StringRef(); 151 } 152 153 static const DISubprogram *getQualifiedNameComponents( 154 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 155 const DISubprogram *ClosestSubprogram = nullptr; 156 while (Scope != nullptr) { 157 if (ClosestSubprogram == nullptr) 158 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 159 StringRef ScopeName = getPrettyScopeName(Scope); 160 if (!ScopeName.empty()) 161 QualifiedNameComponents.push_back(ScopeName); 162 Scope = Scope->getScope().resolve(); 163 } 164 return ClosestSubprogram; 165 } 166 167 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 168 StringRef TypeName) { 169 std::string FullyQualifiedName; 170 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 171 FullyQualifiedName.append(QualifiedNameComponent); 172 FullyQualifiedName.append("::"); 173 } 174 FullyQualifiedName.append(TypeName); 175 return FullyQualifiedName; 176 } 177 178 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 179 SmallVector<StringRef, 5> QualifiedNameComponents; 180 getQualifiedNameComponents(Scope, QualifiedNameComponents); 181 return getQualifiedName(QualifiedNameComponents, Name); 182 } 183 184 struct CodeViewDebug::TypeLoweringScope { 185 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 186 ~TypeLoweringScope() { 187 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 188 // inner TypeLoweringScopes don't attempt to emit deferred types. 189 if (CVD.TypeEmissionLevel == 1) 190 CVD.emitDeferredCompleteTypes(); 191 --CVD.TypeEmissionLevel; 192 } 193 CodeViewDebug &CVD; 194 }; 195 196 static std::string getFullyQualifiedName(const DIScope *Ty) { 197 const DIScope *Scope = Ty->getScope().resolve(); 198 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 199 } 200 201 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 202 // No scope means global scope and that uses the zero index. 203 if (!Scope || isa<DIFile>(Scope)) 204 return TypeIndex(); 205 206 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 207 208 // Check if we've already translated this scope. 209 auto I = TypeIndices.find({Scope, nullptr}); 210 if (I != TypeIndices.end()) 211 return I->second; 212 213 // Build the fully qualified name of the scope. 214 std::string ScopeName = getFullyQualifiedName(Scope); 215 TypeIndex TI = 216 TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName)); 217 return recordTypeIndexForDINode(Scope, TI); 218 } 219 220 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 221 assert(SP); 222 223 // Check if we've already translated this subprogram. 224 auto I = TypeIndices.find({SP, nullptr}); 225 if (I != TypeIndices.end()) 226 return I->second; 227 228 // The display name includes function template arguments. Drop them to match 229 // MSVC. 230 StringRef DisplayName = SP->getDisplayName().split('<').first; 231 232 const DIScope *Scope = SP->getScope().resolve(); 233 TypeIndex TI; 234 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 235 // If the scope is a DICompositeType, then this must be a method. Member 236 // function types take some special handling, and require access to the 237 // subprogram. 238 TypeIndex ClassType = getTypeIndex(Class); 239 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 240 DisplayName); 241 TI = TypeTable.writeKnownType(MFuncId); 242 } else { 243 // Otherwise, this must be a free function. 244 TypeIndex ParentScope = getScopeIndex(Scope); 245 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 246 TI = TypeTable.writeKnownType(FuncId); 247 } 248 249 return recordTypeIndexForDINode(SP, TI); 250 } 251 252 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 253 const DICompositeType *Class) { 254 // Always use the method declaration as the key for the function type. The 255 // method declaration contains the this adjustment. 256 if (SP->getDeclaration()) 257 SP = SP->getDeclaration(); 258 assert(!SP->getDeclaration() && "should use declaration as key"); 259 260 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 261 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 262 auto I = TypeIndices.find({SP, Class}); 263 if (I != TypeIndices.end()) 264 return I->second; 265 266 // Make sure complete type info for the class is emitted *after* the member 267 // function type, as the complete class type is likely to reference this 268 // member function type. 269 TypeLoweringScope S(*this); 270 TypeIndex TI = 271 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 272 return recordTypeIndexForDINode(SP, TI, Class); 273 } 274 275 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 276 TypeIndex TI, 277 const DIType *ClassTy) { 278 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 279 (void)InsertResult; 280 assert(InsertResult.second && "DINode was already assigned a type index"); 281 return TI; 282 } 283 284 unsigned CodeViewDebug::getPointerSizeInBytes() { 285 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 286 } 287 288 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 289 const DILocation *InlinedAt) { 290 if (InlinedAt) { 291 // This variable was inlined. Associate it with the InlineSite. 292 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 293 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 294 Site.InlinedLocals.emplace_back(Var); 295 } else { 296 // This variable goes in the main ProcSym. 297 CurFn->Locals.emplace_back(Var); 298 } 299 } 300 301 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 302 const DILocation *Loc) { 303 auto B = Locs.begin(), E = Locs.end(); 304 if (std::find(B, E, Loc) == E) 305 Locs.push_back(Loc); 306 } 307 308 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 309 const MachineFunction *MF) { 310 // Skip this instruction if it has the same location as the previous one. 311 if (DL == CurFn->LastLoc) 312 return; 313 314 const DIScope *Scope = DL.get()->getScope(); 315 if (!Scope) 316 return; 317 318 // Skip this line if it is longer than the maximum we can record. 319 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 320 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 321 LI.isNeverStepInto()) 322 return; 323 324 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 325 if (CI.getStartColumn() != DL.getCol()) 326 return; 327 328 if (!CurFn->HaveLineInfo) 329 CurFn->HaveLineInfo = true; 330 unsigned FileId = 0; 331 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 332 FileId = CurFn->LastFileId; 333 else 334 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 335 CurFn->LastLoc = DL; 336 337 unsigned FuncId = CurFn->FuncId; 338 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 339 const DILocation *Loc = DL.get(); 340 341 // If this location was actually inlined from somewhere else, give it the ID 342 // of the inline call site. 343 FuncId = 344 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 345 346 // Ensure we have links in the tree of inline call sites. 347 bool FirstLoc = true; 348 while ((SiteLoc = Loc->getInlinedAt())) { 349 InlineSite &Site = 350 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 351 if (!FirstLoc) 352 addLocIfNotPresent(Site.ChildSites, Loc); 353 FirstLoc = false; 354 Loc = SiteLoc; 355 } 356 addLocIfNotPresent(CurFn->ChildSites, Loc); 357 } 358 359 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 360 /*PrologueEnd=*/false, 361 /*IsStmt=*/false, DL->getFilename()); 362 } 363 364 void CodeViewDebug::emitCodeViewMagicVersion() { 365 OS.EmitValueToAlignment(4); 366 OS.AddComment("Debug section magic"); 367 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 368 } 369 370 void CodeViewDebug::endModule() { 371 if (!Asm || !MMI->hasDebugInfo()) 372 return; 373 374 assert(Asm != nullptr); 375 376 // The COFF .debug$S section consists of several subsections, each starting 377 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 378 // of the payload followed by the payload itself. The subsections are 4-byte 379 // aligned. 380 381 // Use the generic .debug$S section, and make a subsection for all the inlined 382 // subprograms. 383 switchToDebugSectionForSymbol(nullptr); 384 emitInlineeLinesSubsection(); 385 386 // Emit per-function debug information. 387 for (auto &P : FnDebugInfo) 388 if (!P.first->isDeclarationForLinker()) 389 emitDebugInfoForFunction(P.first, P.second); 390 391 // Emit global variable debug information. 392 setCurrentSubprogram(nullptr); 393 emitDebugInfoForGlobals(); 394 395 // Emit retained types. 396 emitDebugInfoForRetainedTypes(); 397 398 // Switch back to the generic .debug$S section after potentially processing 399 // comdat symbol sections. 400 switchToDebugSectionForSymbol(nullptr); 401 402 // Emit UDT records for any types used by global variables. 403 if (!GlobalUDTs.empty()) { 404 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 405 emitDebugInfoForUDTs(GlobalUDTs); 406 endCVSubsection(SymbolsEnd); 407 } 408 409 // This subsection holds a file index to offset in string table table. 410 OS.AddComment("File index to string table offset subsection"); 411 OS.EmitCVFileChecksumsDirective(); 412 413 // This subsection holds the string table. 414 OS.AddComment("String table"); 415 OS.EmitCVStringTableDirective(); 416 417 // Emit type information last, so that any types we translate while emitting 418 // function info are included. 419 emitTypeInformation(); 420 421 clear(); 422 } 423 424 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 425 // Microsoft's linker seems to have trouble with symbol names longer than 426 // 0xffd8 bytes. 427 S = S.substr(0, 0xffd8); 428 SmallString<32> NullTerminatedString(S); 429 NullTerminatedString.push_back('\0'); 430 OS.EmitBytes(NullTerminatedString); 431 } 432 433 void CodeViewDebug::emitTypeInformation() { 434 // Do nothing if we have no debug info or if no non-trivial types were emitted 435 // to TypeTable during codegen. 436 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 437 if (!CU_Nodes) 438 return; 439 if (TypeTable.empty()) 440 return; 441 442 // Start the .debug$T section with 0x4. 443 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 444 emitCodeViewMagicVersion(); 445 446 SmallString<8> CommentPrefix; 447 if (OS.isVerboseAsm()) { 448 CommentPrefix += '\t'; 449 CommentPrefix += Asm->MAI->getCommentString(); 450 CommentPrefix += ' '; 451 } 452 453 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 454 TypeTable.ForEachRecord( 455 [&](TypeIndex Index, StringRef Record) { 456 if (OS.isVerboseAsm()) { 457 // Emit a block comment describing the type record for readability. 458 SmallString<512> CommentBlock; 459 raw_svector_ostream CommentOS(CommentBlock); 460 ScopedPrinter SP(CommentOS); 461 SP.setPrefix(CommentPrefix); 462 CVTD.setPrinter(&SP); 463 Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 464 if (E) { 465 logAllUnhandledErrors(std::move(E), errs(), "error: "); 466 llvm_unreachable("produced malformed type record"); 467 } 468 // emitRawComment will insert its own tab and comment string before 469 // the first line, so strip off our first one. It also prints its own 470 // newline. 471 OS.emitRawComment( 472 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 473 } else { 474 #ifndef NDEBUG 475 // Assert that the type data is valid even if we aren't dumping 476 // comments. The MSVC linker doesn't do much type record validation, 477 // so the first link of an invalid type record can succeed while 478 // subsequent links will fail with LNK1285. 479 ByteStream Stream({Record.bytes_begin(), Record.bytes_end()}); 480 CVTypeArray Types; 481 StreamReader Reader(Stream); 482 Error E = Reader.readArray(Types, Reader.getLength()); 483 if (!E) { 484 TypeVisitorCallbacks C; 485 E = CVTypeVisitor(C).visitTypeStream(Types); 486 } 487 if (E) { 488 logAllUnhandledErrors(std::move(E), errs(), "error: "); 489 llvm_unreachable("produced malformed type record"); 490 } 491 #endif 492 } 493 OS.EmitBinaryData(Record); 494 }); 495 } 496 497 void CodeViewDebug::emitInlineeLinesSubsection() { 498 if (InlinedSubprograms.empty()) 499 return; 500 501 OS.AddComment("Inlinee lines subsection"); 502 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 503 504 // We don't provide any extra file info. 505 // FIXME: Find out if debuggers use this info. 506 OS.AddComment("Inlinee lines signature"); 507 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 508 509 for (const DISubprogram *SP : InlinedSubprograms) { 510 assert(TypeIndices.count({SP, nullptr})); 511 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 512 513 OS.AddBlankLine(); 514 unsigned FileId = maybeRecordFile(SP->getFile()); 515 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 516 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 517 OS.AddBlankLine(); 518 // The filechecksum table uses 8 byte entries for now, and file ids start at 519 // 1. 520 unsigned FileOffset = (FileId - 1) * 8; 521 OS.AddComment("Type index of inlined function"); 522 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 523 OS.AddComment("Offset into filechecksum table"); 524 OS.EmitIntValue(FileOffset, 4); 525 OS.AddComment("Starting line number"); 526 OS.EmitIntValue(SP->getLine(), 4); 527 } 528 529 endCVSubsection(InlineEnd); 530 } 531 532 void CodeViewDebug::collectInlineSiteChildren( 533 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 534 const InlineSite &Site) { 535 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 536 auto I = FI.InlineSites.find(ChildSiteLoc); 537 const InlineSite &ChildSite = I->second; 538 Children.push_back(ChildSite.SiteFuncId); 539 collectInlineSiteChildren(Children, FI, ChildSite); 540 } 541 } 542 543 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 544 const DILocation *InlinedAt, 545 const InlineSite &Site) { 546 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 547 *InlineEnd = MMI->getContext().createTempSymbol(); 548 549 assert(TypeIndices.count({Site.Inlinee, nullptr})); 550 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 551 552 // SymbolRecord 553 OS.AddComment("Record length"); 554 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 555 OS.EmitLabel(InlineBegin); 556 OS.AddComment("Record kind: S_INLINESITE"); 557 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 558 559 OS.AddComment("PtrParent"); 560 OS.EmitIntValue(0, 4); 561 OS.AddComment("PtrEnd"); 562 OS.EmitIntValue(0, 4); 563 OS.AddComment("Inlinee type index"); 564 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 565 566 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 567 unsigned StartLineNum = Site.Inlinee->getLine(); 568 SmallVector<unsigned, 3> SecondaryFuncIds; 569 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 570 571 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 572 FI.Begin, FI.End, SecondaryFuncIds); 573 574 OS.EmitLabel(InlineEnd); 575 576 emitLocalVariableList(Site.InlinedLocals); 577 578 // Recurse on child inlined call sites before closing the scope. 579 for (const DILocation *ChildSite : Site.ChildSites) { 580 auto I = FI.InlineSites.find(ChildSite); 581 assert(I != FI.InlineSites.end() && 582 "child site not in function inline site map"); 583 emitInlinedCallSite(FI, ChildSite, I->second); 584 } 585 586 // Close the scope. 587 OS.AddComment("Record length"); 588 OS.EmitIntValue(2, 2); // RecordLength 589 OS.AddComment("Record kind: S_INLINESITE_END"); 590 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 591 } 592 593 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 594 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 595 // comdat key. A section may be comdat because of -ffunction-sections or 596 // because it is comdat in the IR. 597 MCSectionCOFF *GVSec = 598 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 599 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 600 601 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 602 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 603 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 604 605 OS.SwitchSection(DebugSec); 606 607 // Emit the magic version number if this is the first time we've switched to 608 // this section. 609 if (ComdatDebugSections.insert(DebugSec).second) 610 emitCodeViewMagicVersion(); 611 } 612 613 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 614 FunctionInfo &FI) { 615 // For each function there is a separate subsection 616 // which holds the PC to file:line table. 617 const MCSymbol *Fn = Asm->getSymbol(GV); 618 assert(Fn); 619 620 // Switch to the to a comdat section, if appropriate. 621 switchToDebugSectionForSymbol(Fn); 622 623 std::string FuncName; 624 auto *SP = GV->getSubprogram(); 625 assert(SP); 626 setCurrentSubprogram(SP); 627 628 // If we have a display name, build the fully qualified name by walking the 629 // chain of scopes. 630 if (!SP->getDisplayName().empty()) 631 FuncName = 632 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 633 634 // If our DISubprogram name is empty, use the mangled name. 635 if (FuncName.empty()) 636 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 637 638 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 639 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 640 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 641 { 642 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 643 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 644 OS.AddComment("Record length"); 645 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 646 OS.EmitLabel(ProcRecordBegin); 647 648 if (GV->hasLocalLinkage()) { 649 OS.AddComment("Record kind: S_LPROC32_ID"); 650 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 651 } else { 652 OS.AddComment("Record kind: S_GPROC32_ID"); 653 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 654 } 655 656 // These fields are filled in by tools like CVPACK which run after the fact. 657 OS.AddComment("PtrParent"); 658 OS.EmitIntValue(0, 4); 659 OS.AddComment("PtrEnd"); 660 OS.EmitIntValue(0, 4); 661 OS.AddComment("PtrNext"); 662 OS.EmitIntValue(0, 4); 663 // This is the important bit that tells the debugger where the function 664 // code is located and what's its size: 665 OS.AddComment("Code size"); 666 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 667 OS.AddComment("Offset after prologue"); 668 OS.EmitIntValue(0, 4); 669 OS.AddComment("Offset before epilogue"); 670 OS.EmitIntValue(0, 4); 671 OS.AddComment("Function type index"); 672 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 673 OS.AddComment("Function section relative address"); 674 OS.EmitCOFFSecRel32(Fn); 675 OS.AddComment("Function section index"); 676 OS.EmitCOFFSectionIndex(Fn); 677 OS.AddComment("Flags"); 678 OS.EmitIntValue(0, 1); 679 // Emit the function display name as a null-terminated string. 680 OS.AddComment("Function name"); 681 // Truncate the name so we won't overflow the record length field. 682 emitNullTerminatedSymbolName(OS, FuncName); 683 OS.EmitLabel(ProcRecordEnd); 684 685 emitLocalVariableList(FI.Locals); 686 687 // Emit inlined call site information. Only emit functions inlined directly 688 // into the parent function. We'll emit the other sites recursively as part 689 // of their parent inline site. 690 for (const DILocation *InlinedAt : FI.ChildSites) { 691 auto I = FI.InlineSites.find(InlinedAt); 692 assert(I != FI.InlineSites.end() && 693 "child site not in function inline site map"); 694 emitInlinedCallSite(FI, InlinedAt, I->second); 695 } 696 697 if (SP != nullptr) 698 emitDebugInfoForUDTs(LocalUDTs); 699 700 // We're done with this function. 701 OS.AddComment("Record length"); 702 OS.EmitIntValue(0x0002, 2); 703 OS.AddComment("Record kind: S_PROC_ID_END"); 704 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 705 } 706 endCVSubsection(SymbolsEnd); 707 708 // We have an assembler directive that takes care of the whole line table. 709 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 710 } 711 712 CodeViewDebug::LocalVarDefRange 713 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 714 LocalVarDefRange DR; 715 DR.InMemory = -1; 716 DR.DataOffset = Offset; 717 assert(DR.DataOffset == Offset && "truncation"); 718 DR.StructOffset = 0; 719 DR.CVRegister = CVRegister; 720 return DR; 721 } 722 723 CodeViewDebug::LocalVarDefRange 724 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 725 LocalVarDefRange DR; 726 DR.InMemory = 0; 727 DR.DataOffset = 0; 728 DR.StructOffset = 0; 729 DR.CVRegister = CVRegister; 730 return DR; 731 } 732 733 void CodeViewDebug::collectVariableInfoFromMMITable( 734 DenseSet<InlinedVariable> &Processed) { 735 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 736 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 737 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 738 739 for (const MachineModuleInfo::VariableDbgInfo &VI : 740 MMI->getVariableDbgInfo()) { 741 if (!VI.Var) 742 continue; 743 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 744 "Expected inlined-at fields to agree"); 745 746 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 747 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 748 749 // If variable scope is not found then skip this variable. 750 if (!Scope) 751 continue; 752 753 // Get the frame register used and the offset. 754 unsigned FrameReg = 0; 755 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 756 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 757 758 // Calculate the label ranges. 759 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 760 for (const InsnRange &Range : Scope->getRanges()) { 761 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 762 const MCSymbol *End = getLabelAfterInsn(Range.second); 763 End = End ? End : Asm->getFunctionEnd(); 764 DefRange.Ranges.emplace_back(Begin, End); 765 } 766 767 LocalVariable Var; 768 Var.DIVar = VI.Var; 769 Var.DefRanges.emplace_back(std::move(DefRange)); 770 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 771 } 772 } 773 774 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 775 DenseSet<InlinedVariable> Processed; 776 // Grab the variable info that was squirreled away in the MMI side-table. 777 collectVariableInfoFromMMITable(Processed); 778 779 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 780 781 for (const auto &I : DbgValues) { 782 InlinedVariable IV = I.first; 783 if (Processed.count(IV)) 784 continue; 785 const DILocalVariable *DIVar = IV.first; 786 const DILocation *InlinedAt = IV.second; 787 788 // Instruction ranges, specifying where IV is accessible. 789 const auto &Ranges = I.second; 790 791 LexicalScope *Scope = nullptr; 792 if (InlinedAt) 793 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 794 else 795 Scope = LScopes.findLexicalScope(DIVar->getScope()); 796 // If variable scope is not found then skip this variable. 797 if (!Scope) 798 continue; 799 800 LocalVariable Var; 801 Var.DIVar = DIVar; 802 803 // Calculate the definition ranges. 804 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 805 const InsnRange &Range = *I; 806 const MachineInstr *DVInst = Range.first; 807 assert(DVInst->isDebugValue() && "Invalid History entry"); 808 const DIExpression *DIExpr = DVInst->getDebugExpression(); 809 810 // Bail if there is a complex DWARF expression for now. 811 if (DIExpr && DIExpr->getNumElements() > 0) 812 continue; 813 814 // Bail if operand 0 is not a valid register. This means the variable is a 815 // simple constant, or is described by a complex expression. 816 // FIXME: Find a way to represent constant variables, since they are 817 // relatively common. 818 unsigned Reg = 819 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 820 if (Reg == 0) 821 continue; 822 823 // Handle the two cases we can handle: indirect in memory and in register. 824 bool IsIndirect = DVInst->getOperand(1).isImm(); 825 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 826 { 827 LocalVarDefRange DefRange; 828 if (IsIndirect) { 829 int64_t Offset = DVInst->getOperand(1).getImm(); 830 DefRange = createDefRangeMem(CVReg, Offset); 831 } else { 832 DefRange = createDefRangeReg(CVReg); 833 } 834 if (Var.DefRanges.empty() || 835 Var.DefRanges.back().isDifferentLocation(DefRange)) { 836 Var.DefRanges.emplace_back(std::move(DefRange)); 837 } 838 } 839 840 // Compute the label range. 841 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 842 const MCSymbol *End = getLabelAfterInsn(Range.second); 843 if (!End) { 844 if (std::next(I) != E) 845 End = getLabelBeforeInsn(std::next(I)->first); 846 else 847 End = Asm->getFunctionEnd(); 848 } 849 850 // If the last range end is our begin, just extend the last range. 851 // Otherwise make a new range. 852 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 853 Var.DefRanges.back().Ranges; 854 if (!Ranges.empty() && Ranges.back().second == Begin) 855 Ranges.back().second = End; 856 else 857 Ranges.emplace_back(Begin, End); 858 859 // FIXME: Do more range combining. 860 } 861 862 recordLocalVariable(std::move(Var), InlinedAt); 863 } 864 } 865 866 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 867 assert(!CurFn && "Can't process two functions at once!"); 868 869 if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram()) 870 return; 871 872 DebugHandlerBase::beginFunction(MF); 873 874 const Function *GV = MF->getFunction(); 875 assert(FnDebugInfo.count(GV) == false); 876 CurFn = &FnDebugInfo[GV]; 877 CurFn->FuncId = NextFuncId++; 878 CurFn->Begin = Asm->getFunctionBegin(); 879 880 // Find the end of the function prolog. First known non-DBG_VALUE and 881 // non-frame setup location marks the beginning of the function body. 882 // FIXME: is there a simpler a way to do this? Can we just search 883 // for the first instruction of the function, not the last of the prolog? 884 DebugLoc PrologEndLoc; 885 bool EmptyPrologue = true; 886 for (const auto &MBB : *MF) { 887 for (const auto &MI : MBB) { 888 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 889 MI.getDebugLoc()) { 890 PrologEndLoc = MI.getDebugLoc(); 891 break; 892 } else if (!MI.isDebugValue()) { 893 EmptyPrologue = false; 894 } 895 } 896 } 897 898 // Record beginning of function if we have a non-empty prologue. 899 if (PrologEndLoc && !EmptyPrologue) { 900 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 901 maybeRecordLocation(FnStartDL, MF); 902 } 903 } 904 905 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 906 // Don't record empty UDTs. 907 if (Ty->getName().empty()) 908 return; 909 910 SmallVector<StringRef, 5> QualifiedNameComponents; 911 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 912 Ty->getScope().resolve(), QualifiedNameComponents); 913 914 std::string FullyQualifiedName = 915 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 916 917 if (ClosestSubprogram == nullptr) 918 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 919 else if (ClosestSubprogram == CurrentSubprogram) 920 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 921 922 // TODO: What if the ClosestSubprogram is neither null or the current 923 // subprogram? Currently, the UDT just gets dropped on the floor. 924 // 925 // The current behavior is not desirable. To get maximal fidelity, we would 926 // need to perform all type translation before beginning emission of .debug$S 927 // and then make LocalUDTs a member of FunctionInfo 928 } 929 930 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 931 // Generic dispatch for lowering an unknown type. 932 switch (Ty->getTag()) { 933 case dwarf::DW_TAG_array_type: 934 return lowerTypeArray(cast<DICompositeType>(Ty)); 935 case dwarf::DW_TAG_typedef: 936 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 937 case dwarf::DW_TAG_base_type: 938 return lowerTypeBasic(cast<DIBasicType>(Ty)); 939 case dwarf::DW_TAG_pointer_type: 940 case dwarf::DW_TAG_reference_type: 941 case dwarf::DW_TAG_rvalue_reference_type: 942 return lowerTypePointer(cast<DIDerivedType>(Ty)); 943 case dwarf::DW_TAG_ptr_to_member_type: 944 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 945 case dwarf::DW_TAG_const_type: 946 case dwarf::DW_TAG_volatile_type: 947 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 948 case dwarf::DW_TAG_subroutine_type: 949 if (ClassTy) { 950 // The member function type of a member function pointer has no 951 // ThisAdjustment. 952 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 953 /*ThisAdjustment=*/0); 954 } 955 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 956 case dwarf::DW_TAG_enumeration_type: 957 return lowerTypeEnum(cast<DICompositeType>(Ty)); 958 case dwarf::DW_TAG_class_type: 959 case dwarf::DW_TAG_structure_type: 960 return lowerTypeClass(cast<DICompositeType>(Ty)); 961 case dwarf::DW_TAG_union_type: 962 return lowerTypeUnion(cast<DICompositeType>(Ty)); 963 default: 964 // Use the null type index. 965 return TypeIndex(); 966 } 967 } 968 969 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 970 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 971 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 972 StringRef TypeName = Ty->getName(); 973 974 addToUDTs(Ty, UnderlyingTypeIndex); 975 976 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 977 TypeName == "HRESULT") 978 return TypeIndex(SimpleTypeKind::HResult); 979 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 980 TypeName == "wchar_t") 981 return TypeIndex(SimpleTypeKind::WideCharacter); 982 983 return UnderlyingTypeIndex; 984 } 985 986 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 987 DITypeRef ElementTypeRef = Ty->getBaseType(); 988 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 989 // IndexType is size_t, which depends on the bitness of the target. 990 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 991 ? TypeIndex(SimpleTypeKind::UInt64Quad) 992 : TypeIndex(SimpleTypeKind::UInt32Long); 993 994 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 995 996 bool UndefinedSubrange = false; 997 998 // FIXME: 999 // There is a bug in the front-end where an array of a structure, which was 1000 // declared as incomplete structure first, ends up not getting a size assigned 1001 // to it. (PR28303) 1002 // Example: 1003 // struct A(*p)[3]; 1004 // struct A { int f; } a[3]; 1005 // 1006 // This needs to be fixed in the front-end, but in the meantime we don't want 1007 // to trigger an assertion because of this. 1008 if (Ty->getSizeInBits() == 0) { 1009 UndefinedSubrange = true; 1010 } 1011 1012 // Add subranges to array type. 1013 DINodeArray Elements = Ty->getElements(); 1014 for (int i = Elements.size() - 1; i >= 0; --i) { 1015 const DINode *Element = Elements[i]; 1016 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1017 1018 const DISubrange *Subrange = cast<DISubrange>(Element); 1019 assert(Subrange->getLowerBound() == 0 && 1020 "codeview doesn't support subranges with lower bounds"); 1021 int64_t Count = Subrange->getCount(); 1022 1023 // Variable Length Array (VLA) has Count equal to '-1'. 1024 // Replace with Count '1', assume it is the minimum VLA length. 1025 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1026 if (Count == -1) { 1027 Count = 1; 1028 UndefinedSubrange = true; 1029 } 1030 1031 StringRef Name = (i == 0) ? Ty->getName() : ""; 1032 // Update the element size and element type index for subsequent subranges. 1033 ElementSize *= Count; 1034 ElementTypeIndex = TypeTable.writeKnownType( 1035 ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name)); 1036 } 1037 1038 (void)UndefinedSubrange; 1039 assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8)); 1040 1041 return ElementTypeIndex; 1042 } 1043 1044 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1045 TypeIndex Index; 1046 dwarf::TypeKind Kind; 1047 uint32_t ByteSize; 1048 1049 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1050 ByteSize = Ty->getSizeInBits() / 8; 1051 1052 SimpleTypeKind STK = SimpleTypeKind::None; 1053 switch (Kind) { 1054 case dwarf::DW_ATE_address: 1055 // FIXME: Translate 1056 break; 1057 case dwarf::DW_ATE_boolean: 1058 switch (ByteSize) { 1059 case 1: STK = SimpleTypeKind::Boolean8; break; 1060 case 2: STK = SimpleTypeKind::Boolean16; break; 1061 case 4: STK = SimpleTypeKind::Boolean32; break; 1062 case 8: STK = SimpleTypeKind::Boolean64; break; 1063 case 16: STK = SimpleTypeKind::Boolean128; break; 1064 } 1065 break; 1066 case dwarf::DW_ATE_complex_float: 1067 switch (ByteSize) { 1068 case 2: STK = SimpleTypeKind::Complex16; break; 1069 case 4: STK = SimpleTypeKind::Complex32; break; 1070 case 8: STK = SimpleTypeKind::Complex64; break; 1071 case 10: STK = SimpleTypeKind::Complex80; break; 1072 case 16: STK = SimpleTypeKind::Complex128; break; 1073 } 1074 break; 1075 case dwarf::DW_ATE_float: 1076 switch (ByteSize) { 1077 case 2: STK = SimpleTypeKind::Float16; break; 1078 case 4: STK = SimpleTypeKind::Float32; break; 1079 case 6: STK = SimpleTypeKind::Float48; break; 1080 case 8: STK = SimpleTypeKind::Float64; break; 1081 case 10: STK = SimpleTypeKind::Float80; break; 1082 case 16: STK = SimpleTypeKind::Float128; break; 1083 } 1084 break; 1085 case dwarf::DW_ATE_signed: 1086 switch (ByteSize) { 1087 case 1: STK = SimpleTypeKind::SByte; break; 1088 case 2: STK = SimpleTypeKind::Int16Short; break; 1089 case 4: STK = SimpleTypeKind::Int32; break; 1090 case 8: STK = SimpleTypeKind::Int64Quad; break; 1091 case 16: STK = SimpleTypeKind::Int128Oct; break; 1092 } 1093 break; 1094 case dwarf::DW_ATE_unsigned: 1095 switch (ByteSize) { 1096 case 1: STK = SimpleTypeKind::Byte; break; 1097 case 2: STK = SimpleTypeKind::UInt16Short; break; 1098 case 4: STK = SimpleTypeKind::UInt32; break; 1099 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1100 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1101 } 1102 break; 1103 case dwarf::DW_ATE_UTF: 1104 switch (ByteSize) { 1105 case 2: STK = SimpleTypeKind::Character16; break; 1106 case 4: STK = SimpleTypeKind::Character32; break; 1107 } 1108 break; 1109 case dwarf::DW_ATE_signed_char: 1110 if (ByteSize == 1) 1111 STK = SimpleTypeKind::SignedCharacter; 1112 break; 1113 case dwarf::DW_ATE_unsigned_char: 1114 if (ByteSize == 1) 1115 STK = SimpleTypeKind::UnsignedCharacter; 1116 break; 1117 default: 1118 break; 1119 } 1120 1121 // Apply some fixups based on the source-level type name. 1122 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1123 STK = SimpleTypeKind::Int32Long; 1124 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1125 STK = SimpleTypeKind::UInt32Long; 1126 if (STK == SimpleTypeKind::UInt16Short && 1127 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1128 STK = SimpleTypeKind::WideCharacter; 1129 if ((STK == SimpleTypeKind::SignedCharacter || 1130 STK == SimpleTypeKind::UnsignedCharacter) && 1131 Ty->getName() == "char") 1132 STK = SimpleTypeKind::NarrowCharacter; 1133 1134 return TypeIndex(STK); 1135 } 1136 1137 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1138 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1139 1140 // Pointers to simple types can use SimpleTypeMode, rather than having a 1141 // dedicated pointer type record. 1142 if (PointeeTI.isSimple() && 1143 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1144 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1145 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1146 ? SimpleTypeMode::NearPointer64 1147 : SimpleTypeMode::NearPointer32; 1148 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1149 } 1150 1151 PointerKind PK = 1152 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1153 PointerMode PM = PointerMode::Pointer; 1154 switch (Ty->getTag()) { 1155 default: llvm_unreachable("not a pointer tag type"); 1156 case dwarf::DW_TAG_pointer_type: 1157 PM = PointerMode::Pointer; 1158 break; 1159 case dwarf::DW_TAG_reference_type: 1160 PM = PointerMode::LValueReference; 1161 break; 1162 case dwarf::DW_TAG_rvalue_reference_type: 1163 PM = PointerMode::RValueReference; 1164 break; 1165 } 1166 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1167 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1168 // do. 1169 PointerOptions PO = PointerOptions::None; 1170 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1171 return TypeTable.writeKnownType(PR); 1172 } 1173 1174 static PointerToMemberRepresentation 1175 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1176 // SizeInBytes being zero generally implies that the member pointer type was 1177 // incomplete, which can happen if it is part of a function prototype. In this 1178 // case, use the unknown model instead of the general model. 1179 if (IsPMF) { 1180 switch (Flags & DINode::FlagPtrToMemberRep) { 1181 case 0: 1182 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1183 : PointerToMemberRepresentation::GeneralFunction; 1184 case DINode::FlagSingleInheritance: 1185 return PointerToMemberRepresentation::SingleInheritanceFunction; 1186 case DINode::FlagMultipleInheritance: 1187 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1188 case DINode::FlagVirtualInheritance: 1189 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1190 } 1191 } else { 1192 switch (Flags & DINode::FlagPtrToMemberRep) { 1193 case 0: 1194 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1195 : PointerToMemberRepresentation::GeneralData; 1196 case DINode::FlagSingleInheritance: 1197 return PointerToMemberRepresentation::SingleInheritanceData; 1198 case DINode::FlagMultipleInheritance: 1199 return PointerToMemberRepresentation::MultipleInheritanceData; 1200 case DINode::FlagVirtualInheritance: 1201 return PointerToMemberRepresentation::VirtualInheritanceData; 1202 } 1203 } 1204 llvm_unreachable("invalid ptr to member representation"); 1205 } 1206 1207 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1208 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1209 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1210 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1211 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1212 : PointerKind::Near32; 1213 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1214 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1215 : PointerMode::PointerToDataMember; 1216 PointerOptions PO = PointerOptions::None; // FIXME 1217 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1218 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1219 MemberPointerInfo MPI( 1220 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1221 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1222 return TypeTable.writeKnownType(PR); 1223 } 1224 1225 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1226 /// have a translation, use the NearC convention. 1227 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1228 switch (DwarfCC) { 1229 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1230 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1231 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1232 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1233 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1234 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1235 } 1236 return CallingConvention::NearC; 1237 } 1238 1239 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1240 ModifierOptions Mods = ModifierOptions::None; 1241 bool IsModifier = true; 1242 const DIType *BaseTy = Ty; 1243 while (IsModifier && BaseTy) { 1244 // FIXME: Need to add DWARF tag for __unaligned. 1245 switch (BaseTy->getTag()) { 1246 case dwarf::DW_TAG_const_type: 1247 Mods |= ModifierOptions::Const; 1248 break; 1249 case dwarf::DW_TAG_volatile_type: 1250 Mods |= ModifierOptions::Volatile; 1251 break; 1252 default: 1253 IsModifier = false; 1254 break; 1255 } 1256 if (IsModifier) 1257 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1258 } 1259 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1260 return TypeTable.writeKnownType(ModifierRecord(ModifiedTI, Mods)); 1261 } 1262 1263 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1264 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1265 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1266 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1267 1268 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1269 ArrayRef<TypeIndex> ArgTypeIndices = None; 1270 if (!ReturnAndArgTypeIndices.empty()) { 1271 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1272 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1273 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1274 } 1275 1276 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1277 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1278 1279 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1280 1281 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1282 ArgTypeIndices.size(), ArgListIndex); 1283 return TypeTable.writeKnownType(Procedure); 1284 } 1285 1286 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1287 const DIType *ClassTy, 1288 int ThisAdjustment) { 1289 // Lower the containing class type. 1290 TypeIndex ClassType = getTypeIndex(ClassTy); 1291 1292 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1293 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1294 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1295 1296 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1297 ArrayRef<TypeIndex> ArgTypeIndices = None; 1298 if (!ReturnAndArgTypeIndices.empty()) { 1299 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1300 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1301 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1302 } 1303 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1304 if (!ArgTypeIndices.empty()) { 1305 ThisTypeIndex = ArgTypeIndices.front(); 1306 ArgTypeIndices = ArgTypeIndices.drop_front(); 1307 } 1308 1309 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1310 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1311 1312 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1313 1314 // TODO: Need to use the correct values for: 1315 // FunctionOptions 1316 // ThisPointerAdjustment. 1317 TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord( 1318 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1319 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1320 1321 return TI; 1322 } 1323 1324 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1325 switch (Flags & DINode::FlagAccessibility) { 1326 case DINode::FlagPrivate: return MemberAccess::Private; 1327 case DINode::FlagPublic: return MemberAccess::Public; 1328 case DINode::FlagProtected: return MemberAccess::Protected; 1329 case 0: 1330 // If there was no explicit access control, provide the default for the tag. 1331 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1332 : MemberAccess::Public; 1333 } 1334 llvm_unreachable("access flags are exclusive"); 1335 } 1336 1337 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1338 if (SP->isArtificial()) 1339 return MethodOptions::CompilerGenerated; 1340 1341 // FIXME: Handle other MethodOptions. 1342 1343 return MethodOptions::None; 1344 } 1345 1346 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1347 bool Introduced) { 1348 switch (SP->getVirtuality()) { 1349 case dwarf::DW_VIRTUALITY_none: 1350 break; 1351 case dwarf::DW_VIRTUALITY_virtual: 1352 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1353 case dwarf::DW_VIRTUALITY_pure_virtual: 1354 return Introduced ? MethodKind::PureIntroducingVirtual 1355 : MethodKind::PureVirtual; 1356 default: 1357 llvm_unreachable("unhandled virtuality case"); 1358 } 1359 1360 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1361 1362 return MethodKind::Vanilla; 1363 } 1364 1365 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1366 switch (Ty->getTag()) { 1367 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1368 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1369 } 1370 llvm_unreachable("unexpected tag"); 1371 } 1372 1373 /// Return ClassOptions that should be present on both the forward declaration 1374 /// and the defintion of a tag type. 1375 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1376 ClassOptions CO = ClassOptions::None; 1377 1378 // MSVC always sets this flag, even for local types. Clang doesn't always 1379 // appear to give every type a linkage name, which may be problematic for us. 1380 // FIXME: Investigate the consequences of not following them here. 1381 if (!Ty->getIdentifier().empty()) 1382 CO |= ClassOptions::HasUniqueName; 1383 1384 // Put the Nested flag on a type if it appears immediately inside a tag type. 1385 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1386 // here. That flag is only set on definitions, and not forward declarations. 1387 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1388 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1389 CO |= ClassOptions::Nested; 1390 1391 // Put the Scoped flag on function-local types. 1392 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1393 Scope = Scope->getScope().resolve()) { 1394 if (isa<DISubprogram>(Scope)) { 1395 CO |= ClassOptions::Scoped; 1396 break; 1397 } 1398 } 1399 1400 return CO; 1401 } 1402 1403 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1404 ClassOptions CO = getCommonClassOptions(Ty); 1405 TypeIndex FTI; 1406 unsigned EnumeratorCount = 0; 1407 1408 if (Ty->isForwardDecl()) { 1409 CO |= ClassOptions::ForwardReference; 1410 } else { 1411 FieldListRecordBuilder Fields; 1412 for (const DINode *Element : Ty->getElements()) { 1413 // We assume that the frontend provides all members in source declaration 1414 // order, which is what MSVC does. 1415 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1416 Fields.writeMemberType(EnumeratorRecord( 1417 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1418 Enumerator->getName())); 1419 EnumeratorCount++; 1420 } 1421 } 1422 FTI = TypeTable.writeFieldList(Fields); 1423 } 1424 1425 std::string FullName = getFullyQualifiedName(Ty); 1426 1427 return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1428 Ty->getIdentifier(), 1429 getTypeIndex(Ty->getBaseType()))); 1430 } 1431 1432 //===----------------------------------------------------------------------===// 1433 // ClassInfo 1434 //===----------------------------------------------------------------------===// 1435 1436 struct llvm::ClassInfo { 1437 struct MemberInfo { 1438 const DIDerivedType *MemberTypeNode; 1439 uint64_t BaseOffset; 1440 }; 1441 // [MemberInfo] 1442 typedef std::vector<MemberInfo> MemberList; 1443 1444 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1445 // MethodName -> MethodsList 1446 typedef MapVector<MDString *, MethodsList> MethodsMap; 1447 1448 /// Base classes. 1449 std::vector<const DIDerivedType *> Inheritance; 1450 1451 /// Direct members. 1452 MemberList Members; 1453 // Direct overloaded methods gathered by name. 1454 MethodsMap Methods; 1455 1456 std::vector<const DICompositeType *> NestedClasses; 1457 }; 1458 1459 void CodeViewDebug::clear() { 1460 assert(CurFn == nullptr); 1461 FileIdMap.clear(); 1462 FnDebugInfo.clear(); 1463 FileToFilepathMap.clear(); 1464 LocalUDTs.clear(); 1465 GlobalUDTs.clear(); 1466 TypeIndices.clear(); 1467 CompleteTypeIndices.clear(); 1468 } 1469 1470 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1471 const DIDerivedType *DDTy) { 1472 if (!DDTy->getName().empty()) { 1473 Info.Members.push_back({DDTy, 0}); 1474 return; 1475 } 1476 // An unnamed member must represent a nested struct or union. Add all the 1477 // indirect fields to the current record. 1478 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1479 uint64_t Offset = DDTy->getOffsetInBits(); 1480 const DIType *Ty = DDTy->getBaseType().resolve(); 1481 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1482 ClassInfo NestedInfo = collectClassInfo(DCTy); 1483 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1484 Info.Members.push_back( 1485 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1486 } 1487 1488 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1489 ClassInfo Info; 1490 // Add elements to structure type. 1491 DINodeArray Elements = Ty->getElements(); 1492 for (auto *Element : Elements) { 1493 // We assume that the frontend provides all members in source declaration 1494 // order, which is what MSVC does. 1495 if (!Element) 1496 continue; 1497 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1498 Info.Methods[SP->getRawName()].push_back(SP); 1499 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1500 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1501 collectMemberInfo(Info, DDTy); 1502 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1503 Info.Inheritance.push_back(DDTy); 1504 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1505 // Ignore friend members. It appears that MSVC emitted info about 1506 // friends in the past, but modern versions do not. 1507 } 1508 // FIXME: Get Clang to emit function virtual table here and handle it. 1509 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1510 Info.NestedClasses.push_back(Composite); 1511 } 1512 // Skip other unrecognized kinds of elements. 1513 } 1514 return Info; 1515 } 1516 1517 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1518 // First, construct the forward decl. Don't look into Ty to compute the 1519 // forward decl options, since it might not be available in all TUs. 1520 TypeRecordKind Kind = getRecordKind(Ty); 1521 ClassOptions CO = 1522 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1523 std::string FullName = getFullyQualifiedName(Ty); 1524 TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord( 1525 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1526 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1527 if (!Ty->isForwardDecl()) 1528 DeferredCompleteTypes.push_back(Ty); 1529 return FwdDeclTI; 1530 } 1531 1532 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1533 // Construct the field list and complete type record. 1534 TypeRecordKind Kind = getRecordKind(Ty); 1535 ClassOptions CO = getCommonClassOptions(Ty); 1536 TypeIndex FieldTI; 1537 TypeIndex VShapeTI; 1538 unsigned FieldCount; 1539 bool ContainsNestedClass; 1540 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1541 lowerRecordFieldList(Ty); 1542 1543 if (ContainsNestedClass) 1544 CO |= ClassOptions::ContainsNestedClass; 1545 1546 std::string FullName = getFullyQualifiedName(Ty); 1547 1548 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1549 1550 TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord( 1551 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1552 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1553 1554 TypeTable.writeKnownType(UdtSourceLineRecord( 1555 ClassTI, TypeTable.writeKnownType(StringIdRecord( 1556 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1557 Ty->getLine())); 1558 1559 addToUDTs(Ty, ClassTI); 1560 1561 return ClassTI; 1562 } 1563 1564 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1565 ClassOptions CO = 1566 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1567 std::string FullName = getFullyQualifiedName(Ty); 1568 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord( 1569 0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier())); 1570 if (!Ty->isForwardDecl()) 1571 DeferredCompleteTypes.push_back(Ty); 1572 return FwdDeclTI; 1573 } 1574 1575 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1576 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1577 TypeIndex FieldTI; 1578 unsigned FieldCount; 1579 bool ContainsNestedClass; 1580 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1581 lowerRecordFieldList(Ty); 1582 1583 if (ContainsNestedClass) 1584 CO |= ClassOptions::ContainsNestedClass; 1585 1586 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1587 std::string FullName = getFullyQualifiedName(Ty); 1588 1589 TypeIndex UnionTI = TypeTable.writeKnownType( 1590 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1591 Ty->getIdentifier())); 1592 1593 TypeTable.writeKnownType(UdtSourceLineRecord( 1594 UnionTI, TypeTable.writeKnownType(StringIdRecord( 1595 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1596 Ty->getLine())); 1597 1598 addToUDTs(Ty, UnionTI); 1599 1600 return UnionTI; 1601 } 1602 1603 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1604 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1605 // Manually count members. MSVC appears to count everything that generates a 1606 // field list record. Each individual overload in a method overload group 1607 // contributes to this count, even though the overload group is a single field 1608 // list record. 1609 unsigned MemberCount = 0; 1610 ClassInfo Info = collectClassInfo(Ty); 1611 FieldListRecordBuilder Fields; 1612 1613 // Create base classes. 1614 for (const DIDerivedType *I : Info.Inheritance) { 1615 if (I->getFlags() & DINode::FlagVirtual) { 1616 // Virtual base. 1617 // FIXME: Emit VBPtrOffset when the frontend provides it. 1618 unsigned VBPtrOffset = 0; 1619 // FIXME: Despite the accessor name, the offset is really in bytes. 1620 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1621 Fields.writeMemberType(VirtualBaseClassRecord( 1622 translateAccessFlags(Ty->getTag(), I->getFlags()), 1623 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1624 VBTableIndex)); 1625 } else { 1626 assert(I->getOffsetInBits() % 8 == 0 && 1627 "bases must be on byte boundaries"); 1628 Fields.writeMemberType(BaseClassRecord( 1629 translateAccessFlags(Ty->getTag(), I->getFlags()), 1630 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1631 } 1632 } 1633 1634 // Create members. 1635 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1636 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1637 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1638 StringRef MemberName = Member->getName(); 1639 MemberAccess Access = 1640 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1641 1642 if (Member->isStaticMember()) { 1643 Fields.writeMemberType( 1644 StaticDataMemberRecord(Access, MemberBaseType, MemberName)); 1645 MemberCount++; 1646 continue; 1647 } 1648 1649 // Data member. 1650 uint64_t MemberOffsetInBits = 1651 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1652 if (Member->isBitField()) { 1653 uint64_t StartBitOffset = MemberOffsetInBits; 1654 if (const auto *CI = 1655 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1656 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1657 } 1658 StartBitOffset -= MemberOffsetInBits; 1659 MemberBaseType = TypeTable.writeKnownType(BitFieldRecord( 1660 MemberBaseType, Member->getSizeInBits(), StartBitOffset)); 1661 } 1662 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1663 Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType, 1664 MemberOffsetInBytes, MemberName)); 1665 MemberCount++; 1666 } 1667 1668 // Create methods 1669 for (auto &MethodItr : Info.Methods) { 1670 StringRef Name = MethodItr.first->getString(); 1671 1672 std::vector<OneMethodRecord> Methods; 1673 for (const DISubprogram *SP : MethodItr.second) { 1674 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1675 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1676 1677 unsigned VFTableOffset = -1; 1678 if (Introduced) 1679 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1680 1681 Methods.push_back( 1682 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1683 translateMethodOptionFlags(SP), 1684 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1685 VFTableOffset, Name)); 1686 MemberCount++; 1687 } 1688 assert(Methods.size() > 0 && "Empty methods map entry"); 1689 if (Methods.size() == 1) 1690 Fields.writeMemberType(Methods[0]); 1691 else { 1692 TypeIndex MethodList = 1693 TypeTable.writeKnownType(MethodOverloadListRecord(Methods)); 1694 Fields.writeMemberType( 1695 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1696 } 1697 } 1698 1699 // Create nested classes. 1700 for (const DICompositeType *Nested : Info.NestedClasses) { 1701 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1702 Fields.writeMemberType(R); 1703 MemberCount++; 1704 } 1705 1706 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1707 return std::make_tuple(FieldTI, TypeIndex(), MemberCount, 1708 !Info.NestedClasses.empty()); 1709 } 1710 1711 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1712 if (!VBPType.getIndex()) { 1713 // Make a 'const int *' type. 1714 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1715 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1716 1717 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1718 : PointerKind::Near32; 1719 PointerMode PM = PointerMode::Pointer; 1720 PointerOptions PO = PointerOptions::None; 1721 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1722 1723 VBPType = TypeTable.writeKnownType(PR); 1724 } 1725 1726 return VBPType; 1727 } 1728 1729 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1730 const DIType *Ty = TypeRef.resolve(); 1731 const DIType *ClassTy = ClassTyRef.resolve(); 1732 1733 // The null DIType is the void type. Don't try to hash it. 1734 if (!Ty) 1735 return TypeIndex::Void(); 1736 1737 // Check if we've already translated this type. Don't try to do a 1738 // get-or-create style insertion that caches the hash lookup across the 1739 // lowerType call. It will update the TypeIndices map. 1740 auto I = TypeIndices.find({Ty, ClassTy}); 1741 if (I != TypeIndices.end()) 1742 return I->second; 1743 1744 TypeLoweringScope S(*this); 1745 TypeIndex TI = lowerType(Ty, ClassTy); 1746 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1747 } 1748 1749 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1750 const DIType *Ty = TypeRef.resolve(); 1751 1752 // The null DIType is the void type. Don't try to hash it. 1753 if (!Ty) 1754 return TypeIndex::Void(); 1755 1756 // If this is a non-record type, the complete type index is the same as the 1757 // normal type index. Just call getTypeIndex. 1758 switch (Ty->getTag()) { 1759 case dwarf::DW_TAG_class_type: 1760 case dwarf::DW_TAG_structure_type: 1761 case dwarf::DW_TAG_union_type: 1762 break; 1763 default: 1764 return getTypeIndex(Ty); 1765 } 1766 1767 // Check if we've already translated the complete record type. Lowering a 1768 // complete type should never trigger lowering another complete type, so we 1769 // can reuse the hash table lookup result. 1770 const auto *CTy = cast<DICompositeType>(Ty); 1771 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1772 if (!InsertResult.second) 1773 return InsertResult.first->second; 1774 1775 TypeLoweringScope S(*this); 1776 1777 // Make sure the forward declaration is emitted first. It's unclear if this 1778 // is necessary, but MSVC does it, and we should follow suit until we can show 1779 // otherwise. 1780 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1781 1782 // Just use the forward decl if we don't have complete type info. This might 1783 // happen if the frontend is using modules and expects the complete definition 1784 // to be emitted elsewhere. 1785 if (CTy->isForwardDecl()) 1786 return FwdDeclTI; 1787 1788 TypeIndex TI; 1789 switch (CTy->getTag()) { 1790 case dwarf::DW_TAG_class_type: 1791 case dwarf::DW_TAG_structure_type: 1792 TI = lowerCompleteTypeClass(CTy); 1793 break; 1794 case dwarf::DW_TAG_union_type: 1795 TI = lowerCompleteTypeUnion(CTy); 1796 break; 1797 default: 1798 llvm_unreachable("not a record"); 1799 } 1800 1801 InsertResult.first->second = TI; 1802 return TI; 1803 } 1804 1805 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1806 /// and do this until fixpoint, as each complete record type typically 1807 /// references 1808 /// many other record types. 1809 void CodeViewDebug::emitDeferredCompleteTypes() { 1810 SmallVector<const DICompositeType *, 4> TypesToEmit; 1811 while (!DeferredCompleteTypes.empty()) { 1812 std::swap(DeferredCompleteTypes, TypesToEmit); 1813 for (const DICompositeType *RecordTy : TypesToEmit) 1814 getCompleteTypeIndex(RecordTy); 1815 TypesToEmit.clear(); 1816 } 1817 } 1818 1819 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 1820 // Get the sorted list of parameters and emit them first. 1821 SmallVector<const LocalVariable *, 6> Params; 1822 for (const LocalVariable &L : Locals) 1823 if (L.DIVar->isParameter()) 1824 Params.push_back(&L); 1825 std::sort(Params.begin(), Params.end(), 1826 [](const LocalVariable *L, const LocalVariable *R) { 1827 return L->DIVar->getArg() < R->DIVar->getArg(); 1828 }); 1829 for (const LocalVariable *L : Params) 1830 emitLocalVariable(*L); 1831 1832 // Next emit all non-parameters in the order that we found them. 1833 for (const LocalVariable &L : Locals) 1834 if (!L.DIVar->isParameter()) 1835 emitLocalVariable(L); 1836 } 1837 1838 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1839 // LocalSym record, see SymbolRecord.h for more info. 1840 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1841 *LocalEnd = MMI->getContext().createTempSymbol(); 1842 OS.AddComment("Record length"); 1843 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1844 OS.EmitLabel(LocalBegin); 1845 1846 OS.AddComment("Record kind: S_LOCAL"); 1847 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1848 1849 LocalSymFlags Flags = LocalSymFlags::None; 1850 if (Var.DIVar->isParameter()) 1851 Flags |= LocalSymFlags::IsParameter; 1852 if (Var.DefRanges.empty()) 1853 Flags |= LocalSymFlags::IsOptimizedOut; 1854 1855 OS.AddComment("TypeIndex"); 1856 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1857 OS.EmitIntValue(TI.getIndex(), 4); 1858 OS.AddComment("Flags"); 1859 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1860 // Truncate the name so we won't overflow the record length field. 1861 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1862 OS.EmitLabel(LocalEnd); 1863 1864 // Calculate the on disk prefix of the appropriate def range record. The 1865 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1866 // should be big enough to hold all forms without memory allocation. 1867 SmallString<20> BytePrefix; 1868 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1869 BytePrefix.clear(); 1870 // FIXME: Handle bitpieces. 1871 if (DefRange.StructOffset != 0) 1872 continue; 1873 1874 if (DefRange.InMemory) { 1875 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1876 0, 0, ArrayRef<LocalVariableAddrGap>()); 1877 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1878 BytePrefix += 1879 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1880 BytePrefix += 1881 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1882 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1883 } else { 1884 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1885 // Unclear what matters here. 1886 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1887 ArrayRef<LocalVariableAddrGap>()); 1888 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1889 BytePrefix += 1890 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1891 BytePrefix += 1892 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1893 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1894 } 1895 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1896 } 1897 } 1898 1899 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1900 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1901 return; 1902 1903 const Function *GV = MF->getFunction(); 1904 assert(FnDebugInfo.count(GV)); 1905 assert(CurFn == &FnDebugInfo[GV]); 1906 1907 collectVariableInfo(GV->getSubprogram()); 1908 1909 DebugHandlerBase::endFunction(MF); 1910 1911 // Don't emit anything if we don't have any line tables. 1912 if (!CurFn->HaveLineInfo) { 1913 FnDebugInfo.erase(GV); 1914 CurFn = nullptr; 1915 return; 1916 } 1917 1918 CurFn->End = Asm->getFunctionEnd(); 1919 1920 CurFn = nullptr; 1921 } 1922 1923 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1924 DebugHandlerBase::beginInstruction(MI); 1925 1926 // Ignore DBG_VALUE locations and function prologue. 1927 if (!Asm || !CurFn || MI->isDebugValue() || 1928 MI->getFlag(MachineInstr::FrameSetup)) 1929 return; 1930 DebugLoc DL = MI->getDebugLoc(); 1931 if (DL == PrevInstLoc || !DL) 1932 return; 1933 maybeRecordLocation(DL, Asm->MF); 1934 } 1935 1936 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1937 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1938 *EndLabel = MMI->getContext().createTempSymbol(); 1939 OS.EmitIntValue(unsigned(Kind), 4); 1940 OS.AddComment("Subsection size"); 1941 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1942 OS.EmitLabel(BeginLabel); 1943 return EndLabel; 1944 } 1945 1946 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1947 OS.EmitLabel(EndLabel); 1948 // Every subsection must be aligned to a 4-byte boundary. 1949 OS.EmitValueToAlignment(4); 1950 } 1951 1952 void CodeViewDebug::emitDebugInfoForUDTs( 1953 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1954 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1955 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1956 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1957 OS.AddComment("Record length"); 1958 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1959 OS.EmitLabel(UDTRecordBegin); 1960 1961 OS.AddComment("Record kind: S_UDT"); 1962 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1963 1964 OS.AddComment("Type"); 1965 OS.EmitIntValue(UDT.second.getIndex(), 4); 1966 1967 emitNullTerminatedSymbolName(OS, UDT.first); 1968 OS.EmitLabel(UDTRecordEnd); 1969 } 1970 } 1971 1972 void CodeViewDebug::emitDebugInfoForGlobals() { 1973 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1974 for (const MDNode *Node : CUs->operands()) { 1975 const auto *CU = cast<DICompileUnit>(Node); 1976 1977 // First, emit all globals that are not in a comdat in a single symbol 1978 // substream. MSVC doesn't like it if the substream is empty, so only open 1979 // it if we have at least one global to emit. 1980 switchToDebugSectionForSymbol(nullptr); 1981 MCSymbol *EndLabel = nullptr; 1982 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1983 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1984 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1985 if (!EndLabel) { 1986 OS.AddComment("Symbol subsection for globals"); 1987 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1988 } 1989 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1990 } 1991 } 1992 } 1993 if (EndLabel) 1994 endCVSubsection(EndLabel); 1995 1996 // Second, emit each global that is in a comdat into its own .debug$S 1997 // section along with its own symbol substream. 1998 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1999 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 2000 if (GV->hasComdat()) { 2001 MCSymbol *GVSym = Asm->getSymbol(GV); 2002 OS.AddComment("Symbol subsection for " + 2003 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 2004 switchToDebugSectionForSymbol(GVSym); 2005 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2006 emitDebugInfoForGlobal(G, GVSym); 2007 endCVSubsection(EndLabel); 2008 } 2009 } 2010 } 2011 } 2012 } 2013 2014 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2015 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2016 for (const MDNode *Node : CUs->operands()) { 2017 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2018 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2019 getTypeIndex(RT); 2020 // FIXME: Add to global/local DTU list. 2021 } 2022 } 2023 } 2024 } 2025 2026 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2027 MCSymbol *GVSym) { 2028 // DataSym record, see SymbolRecord.h for more info. 2029 // FIXME: Thread local data, etc 2030 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2031 *DataEnd = MMI->getContext().createTempSymbol(); 2032 OS.AddComment("Record length"); 2033 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2034 OS.EmitLabel(DataBegin); 2035 const auto *GV = cast<GlobalVariable>(DIGV->getVariable()); 2036 if (DIGV->isLocalToUnit()) { 2037 if (GV->isThreadLocal()) { 2038 OS.AddComment("Record kind: S_LTHREAD32"); 2039 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2040 } else { 2041 OS.AddComment("Record kind: S_LDATA32"); 2042 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2043 } 2044 } else { 2045 if (GV->isThreadLocal()) { 2046 OS.AddComment("Record kind: S_GTHREAD32"); 2047 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2048 } else { 2049 OS.AddComment("Record kind: S_GDATA32"); 2050 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2051 } 2052 } 2053 OS.AddComment("Type"); 2054 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2055 OS.AddComment("DataOffset"); 2056 OS.EmitCOFFSecRel32(GVSym); 2057 OS.AddComment("Segment"); 2058 OS.EmitCOFFSectionIndex(GVSym); 2059 OS.AddComment("Name"); 2060 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2061 OS.EmitLabel(DataEnd); 2062 } 2063