xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision c68f895702958dda96bfc297a3bc491082c5269d)
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetFrameLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
44 #include "llvm/DebugInfo/CodeView/CodeView.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/Line.h"
48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
50 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
51 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfoMetadata.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/MC/MCAsmInfo.h"
63 #include "llvm/MC/MCContext.h"
64 #include "llvm/MC/MCSectionCOFF.h"
65 #include "llvm/MC/MCStreamer.h"
66 #include "llvm/MC/MCSymbol.h"
67 #include "llvm/Support/BinaryByteStream.h"
68 #include "llvm/Support/BinaryStreamReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Endian.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/Path.h"
77 #include "llvm/Support/SMLoc.h"
78 #include "llvm/Support/ScopedPrinter.h"
79 #include "llvm/Target/TargetLoweringObjectFile.h"
80 #include "llvm/Target/TargetMachine.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cctype>
84 #include <cstddef>
85 #include <cstdint>
86 #include <iterator>
87 #include <limits>
88 #include <string>
89 #include <utility>
90 #include <vector>
91 
92 using namespace llvm;
93 using namespace llvm::codeview;
94 
95 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
96   switch (Type) {
97   case Triple::ArchType::x86:
98     return CPUType::Pentium3;
99   case Triple::ArchType::x86_64:
100     return CPUType::X64;
101   case Triple::ArchType::thumb:
102     return CPUType::Thumb;
103   case Triple::ArchType::aarch64:
104     return CPUType::ARM64;
105   default:
106     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
107   }
108 }
109 
110 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
111     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
112   // If module doesn't have named metadata anchors or COFF debug section
113   // is not available, skip any debug info related stuff.
114   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
115       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
116     Asm = nullptr;
117     MMI->setDebugInfoAvailability(false);
118     return;
119   }
120   // Tell MMI that we have debug info.
121   MMI->setDebugInfoAvailability(true);
122 
123   TheCPU =
124       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
125 
126   // Check if we should emit type record hashes.
127   ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
128       MMI->getModule()->getModuleFlag("CodeViewGHash"));
129   EmitDebugGlobalHashes = GH && !GH->isZero();
130 }
131 
132 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
133   std::string &Filepath = FileToFilepathMap[File];
134   if (!Filepath.empty())
135     return Filepath;
136 
137   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
138 
139   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
140   // it textually because one of the path components could be a symlink.
141   if (Dir.startswith("/") || Filename.startswith("/")) {
142     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
143       return Filename;
144     Filepath = Dir;
145     if (Dir.back() != '/')
146       Filepath += '/';
147     Filepath += Filename;
148     return Filepath;
149   }
150 
151   // Clang emits directory and relative filename info into the IR, but CodeView
152   // operates on full paths.  We could change Clang to emit full paths too, but
153   // that would increase the IR size and probably not needed for other users.
154   // For now, just concatenate and canonicalize the path here.
155   if (Filename.find(':') == 1)
156     Filepath = Filename;
157   else
158     Filepath = (Dir + "\\" + Filename).str();
159 
160   // Canonicalize the path.  We have to do it textually because we may no longer
161   // have access the file in the filesystem.
162   // First, replace all slashes with backslashes.
163   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
164 
165   // Remove all "\.\" with "\".
166   size_t Cursor = 0;
167   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
168     Filepath.erase(Cursor, 2);
169 
170   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
171   // path should be well-formatted, e.g. start with a drive letter, etc.
172   Cursor = 0;
173   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
174     // Something's wrong if the path starts with "\..\", abort.
175     if (Cursor == 0)
176       break;
177 
178     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
179     if (PrevSlash == std::string::npos)
180       // Something's wrong, abort.
181       break;
182 
183     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
184     // The next ".." might be following the one we've just erased.
185     Cursor = PrevSlash;
186   }
187 
188   // Remove all duplicate backslashes.
189   Cursor = 0;
190   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
191     Filepath.erase(Cursor, 1);
192 
193   return Filepath;
194 }
195 
196 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
197   StringRef FullPath = getFullFilepath(F);
198   unsigned NextId = FileIdMap.size() + 1;
199   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
200   if (Insertion.second) {
201     // We have to compute the full filepath and emit a .cv_file directive.
202     ArrayRef<uint8_t> ChecksumAsBytes;
203     FileChecksumKind CSKind = FileChecksumKind::None;
204     if (F->getChecksum()) {
205       std::string Checksum = fromHex(F->getChecksum()->Value);
206       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
207       memcpy(CKMem, Checksum.data(), Checksum.size());
208       ChecksumAsBytes = ArrayRef<uint8_t>(
209           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
210       switch (F->getChecksum()->Kind) {
211       case DIFile::CSK_MD5:  CSKind = FileChecksumKind::MD5; break;
212       case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
213       }
214     }
215     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
216                                           static_cast<unsigned>(CSKind));
217     (void)Success;
218     assert(Success && ".cv_file directive failed");
219   }
220   return Insertion.first->second;
221 }
222 
223 CodeViewDebug::InlineSite &
224 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
225                              const DISubprogram *Inlinee) {
226   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
227   InlineSite *Site = &SiteInsertion.first->second;
228   if (SiteInsertion.second) {
229     unsigned ParentFuncId = CurFn->FuncId;
230     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
231       ParentFuncId =
232           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
233               .SiteFuncId;
234 
235     Site->SiteFuncId = NextFuncId++;
236     OS.EmitCVInlineSiteIdDirective(
237         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
238         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
239     Site->Inlinee = Inlinee;
240     InlinedSubprograms.insert(Inlinee);
241     getFuncIdForSubprogram(Inlinee);
242   }
243   return *Site;
244 }
245 
246 static StringRef getPrettyScopeName(const DIScope *Scope) {
247   StringRef ScopeName = Scope->getName();
248   if (!ScopeName.empty())
249     return ScopeName;
250 
251   switch (Scope->getTag()) {
252   case dwarf::DW_TAG_enumeration_type:
253   case dwarf::DW_TAG_class_type:
254   case dwarf::DW_TAG_structure_type:
255   case dwarf::DW_TAG_union_type:
256     return "<unnamed-tag>";
257   case dwarf::DW_TAG_namespace:
258     return "`anonymous namespace'";
259   }
260 
261   return StringRef();
262 }
263 
264 static const DISubprogram *getQualifiedNameComponents(
265     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
266   const DISubprogram *ClosestSubprogram = nullptr;
267   while (Scope != nullptr) {
268     if (ClosestSubprogram == nullptr)
269       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
270     StringRef ScopeName = getPrettyScopeName(Scope);
271     if (!ScopeName.empty())
272       QualifiedNameComponents.push_back(ScopeName);
273     Scope = Scope->getScope().resolve();
274   }
275   return ClosestSubprogram;
276 }
277 
278 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
279                                     StringRef TypeName) {
280   std::string FullyQualifiedName;
281   for (StringRef QualifiedNameComponent :
282        llvm::reverse(QualifiedNameComponents)) {
283     FullyQualifiedName.append(QualifiedNameComponent);
284     FullyQualifiedName.append("::");
285   }
286   FullyQualifiedName.append(TypeName);
287   return FullyQualifiedName;
288 }
289 
290 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
291   SmallVector<StringRef, 5> QualifiedNameComponents;
292   getQualifiedNameComponents(Scope, QualifiedNameComponents);
293   return getQualifiedName(QualifiedNameComponents, Name);
294 }
295 
296 struct CodeViewDebug::TypeLoweringScope {
297   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
298   ~TypeLoweringScope() {
299     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
300     // inner TypeLoweringScopes don't attempt to emit deferred types.
301     if (CVD.TypeEmissionLevel == 1)
302       CVD.emitDeferredCompleteTypes();
303     --CVD.TypeEmissionLevel;
304   }
305   CodeViewDebug &CVD;
306 };
307 
308 static std::string getFullyQualifiedName(const DIScope *Ty) {
309   const DIScope *Scope = Ty->getScope().resolve();
310   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
311 }
312 
313 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
314   // No scope means global scope and that uses the zero index.
315   if (!Scope || isa<DIFile>(Scope))
316     return TypeIndex();
317 
318   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
319 
320   // Check if we've already translated this scope.
321   auto I = TypeIndices.find({Scope, nullptr});
322   if (I != TypeIndices.end())
323     return I->second;
324 
325   // Build the fully qualified name of the scope.
326   std::string ScopeName = getFullyQualifiedName(Scope);
327   StringIdRecord SID(TypeIndex(), ScopeName);
328   auto TI = TypeTable.writeLeafType(SID);
329   return recordTypeIndexForDINode(Scope, TI);
330 }
331 
332 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
333   assert(SP);
334 
335   // Check if we've already translated this subprogram.
336   auto I = TypeIndices.find({SP, nullptr});
337   if (I != TypeIndices.end())
338     return I->second;
339 
340   // The display name includes function template arguments. Drop them to match
341   // MSVC.
342   StringRef DisplayName = SP->getName().split('<').first;
343 
344   const DIScope *Scope = SP->getScope().resolve();
345   TypeIndex TI;
346   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
347     // If the scope is a DICompositeType, then this must be a method. Member
348     // function types take some special handling, and require access to the
349     // subprogram.
350     TypeIndex ClassType = getTypeIndex(Class);
351     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
352                                DisplayName);
353     TI = TypeTable.writeLeafType(MFuncId);
354   } else {
355     // Otherwise, this must be a free function.
356     TypeIndex ParentScope = getScopeIndex(Scope);
357     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
358     TI = TypeTable.writeLeafType(FuncId);
359   }
360 
361   return recordTypeIndexForDINode(SP, TI);
362 }
363 
364 static bool isTrivial(const DICompositeType *DCTy) {
365   return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial);
366 }
367 
368 static FunctionOptions
369 getFunctionOptions(const DISubroutineType *Ty,
370                    const DICompositeType *ClassTy = nullptr,
371                    StringRef SPName = StringRef("")) {
372   FunctionOptions FO = FunctionOptions::None;
373   const DIType *ReturnTy = nullptr;
374   if (auto TypeArray = Ty->getTypeArray()) {
375     if (TypeArray.size())
376       ReturnTy = TypeArray[0].resolve();
377   }
378 
379   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) {
380     if (!isTrivial(ReturnDCTy))
381       FO |= FunctionOptions::CxxReturnUdt;
382   }
383 
384   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
385   if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) {
386     FO |= FunctionOptions::Constructor;
387 
388   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
389 
390   }
391   return FO;
392 }
393 
394 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
395                                                const DICompositeType *Class) {
396   // Always use the method declaration as the key for the function type. The
397   // method declaration contains the this adjustment.
398   if (SP->getDeclaration())
399     SP = SP->getDeclaration();
400   assert(!SP->getDeclaration() && "should use declaration as key");
401 
402   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
403   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
404   auto I = TypeIndices.find({SP, Class});
405   if (I != TypeIndices.end())
406     return I->second;
407 
408   // Make sure complete type info for the class is emitted *after* the member
409   // function type, as the complete class type is likely to reference this
410   // member function type.
411   TypeLoweringScope S(*this);
412   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
413 
414   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
415   TypeIndex TI = lowerTypeMemberFunction(
416       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
417   return recordTypeIndexForDINode(SP, TI, Class);
418 }
419 
420 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
421                                                   TypeIndex TI,
422                                                   const DIType *ClassTy) {
423   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
424   (void)InsertResult;
425   assert(InsertResult.second && "DINode was already assigned a type index");
426   return TI;
427 }
428 
429 unsigned CodeViewDebug::getPointerSizeInBytes() {
430   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
431 }
432 
433 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
434                                         const LexicalScope *LS) {
435   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
436     // This variable was inlined. Associate it with the InlineSite.
437     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
438     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
439     Site.InlinedLocals.emplace_back(Var);
440   } else {
441     // This variable goes into the corresponding lexical scope.
442     ScopeVariables[LS].emplace_back(Var);
443   }
444 }
445 
446 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
447                                const DILocation *Loc) {
448   auto B = Locs.begin(), E = Locs.end();
449   if (std::find(B, E, Loc) == E)
450     Locs.push_back(Loc);
451 }
452 
453 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
454                                         const MachineFunction *MF) {
455   // Skip this instruction if it has the same location as the previous one.
456   if (!DL || DL == PrevInstLoc)
457     return;
458 
459   const DIScope *Scope = DL.get()->getScope();
460   if (!Scope)
461     return;
462 
463   // Skip this line if it is longer than the maximum we can record.
464   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
465   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
466       LI.isNeverStepInto())
467     return;
468 
469   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
470   if (CI.getStartColumn() != DL.getCol())
471     return;
472 
473   if (!CurFn->HaveLineInfo)
474     CurFn->HaveLineInfo = true;
475   unsigned FileId = 0;
476   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
477     FileId = CurFn->LastFileId;
478   else
479     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
480   PrevInstLoc = DL;
481 
482   unsigned FuncId = CurFn->FuncId;
483   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
484     const DILocation *Loc = DL.get();
485 
486     // If this location was actually inlined from somewhere else, give it the ID
487     // of the inline call site.
488     FuncId =
489         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
490 
491     // Ensure we have links in the tree of inline call sites.
492     bool FirstLoc = true;
493     while ((SiteLoc = Loc->getInlinedAt())) {
494       InlineSite &Site =
495           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
496       if (!FirstLoc)
497         addLocIfNotPresent(Site.ChildSites, Loc);
498       FirstLoc = false;
499       Loc = SiteLoc;
500     }
501     addLocIfNotPresent(CurFn->ChildSites, Loc);
502   }
503 
504   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
505                         /*PrologueEnd=*/false, /*IsStmt=*/false,
506                         DL->getFilename(), SMLoc());
507 }
508 
509 void CodeViewDebug::emitCodeViewMagicVersion() {
510   OS.EmitValueToAlignment(4);
511   OS.AddComment("Debug section magic");
512   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
513 }
514 
515 void CodeViewDebug::endModule() {
516   if (!Asm || !MMI->hasDebugInfo())
517     return;
518 
519   assert(Asm != nullptr);
520 
521   // The COFF .debug$S section consists of several subsections, each starting
522   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
523   // of the payload followed by the payload itself.  The subsections are 4-byte
524   // aligned.
525 
526   // Use the generic .debug$S section, and make a subsection for all the inlined
527   // subprograms.
528   switchToDebugSectionForSymbol(nullptr);
529 
530   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
531   emitCompilerInformation();
532   endCVSubsection(CompilerInfo);
533 
534   emitInlineeLinesSubsection();
535 
536   // Emit per-function debug information.
537   for (auto &P : FnDebugInfo)
538     if (!P.first->isDeclarationForLinker())
539       emitDebugInfoForFunction(P.first, *P.second);
540 
541   // Emit global variable debug information.
542   setCurrentSubprogram(nullptr);
543   emitDebugInfoForGlobals();
544 
545   // Emit retained types.
546   emitDebugInfoForRetainedTypes();
547 
548   // Switch back to the generic .debug$S section after potentially processing
549   // comdat symbol sections.
550   switchToDebugSectionForSymbol(nullptr);
551 
552   // Emit UDT records for any types used by global variables.
553   if (!GlobalUDTs.empty()) {
554     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
555     emitDebugInfoForUDTs(GlobalUDTs);
556     endCVSubsection(SymbolsEnd);
557   }
558 
559   // This subsection holds a file index to offset in string table table.
560   OS.AddComment("File index to string table offset subsection");
561   OS.EmitCVFileChecksumsDirective();
562 
563   // This subsection holds the string table.
564   OS.AddComment("String table");
565   OS.EmitCVStringTableDirective();
566 
567   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
568   // subsection in the generic .debug$S section at the end. There is no
569   // particular reason for this ordering other than to match MSVC.
570   emitBuildInfo();
571 
572   // Emit type information and hashes last, so that any types we translate while
573   // emitting function info are included.
574   emitTypeInformation();
575 
576   if (EmitDebugGlobalHashes)
577     emitTypeGlobalHashes();
578 
579   clear();
580 }
581 
582 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
583     unsigned MaxFixedRecordLength = 0xF00) {
584   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
585   // after a fixed length portion of the record. The fixed length portion should
586   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
587   // overall record size is less than the maximum allowed.
588   SmallString<32> NullTerminatedString(
589       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
590   NullTerminatedString.push_back('\0');
591   OS.EmitBytes(NullTerminatedString);
592 }
593 
594 void CodeViewDebug::emitTypeInformation() {
595   if (TypeTable.empty())
596     return;
597 
598   // Start the .debug$T or .debug$P section with 0x4.
599   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
600   emitCodeViewMagicVersion();
601 
602   SmallString<8> CommentPrefix;
603   if (OS.isVerboseAsm()) {
604     CommentPrefix += '\t';
605     CommentPrefix += Asm->MAI->getCommentString();
606     CommentPrefix += ' ';
607   }
608 
609   TypeTableCollection Table(TypeTable.records());
610   Optional<TypeIndex> B = Table.getFirst();
611   while (B) {
612     // This will fail if the record data is invalid.
613     CVType Record = Table.getType(*B);
614 
615     if (OS.isVerboseAsm()) {
616       // Emit a block comment describing the type record for readability.
617       SmallString<512> CommentBlock;
618       raw_svector_ostream CommentOS(CommentBlock);
619       ScopedPrinter SP(CommentOS);
620       SP.setPrefix(CommentPrefix);
621       TypeDumpVisitor TDV(Table, &SP, false);
622 
623       Error E = codeview::visitTypeRecord(Record, *B, TDV);
624       if (E) {
625         logAllUnhandledErrors(std::move(E), errs(), "error: ");
626         llvm_unreachable("produced malformed type record");
627       }
628       // emitRawComment will insert its own tab and comment string before
629       // the first line, so strip off our first one. It also prints its own
630       // newline.
631       OS.emitRawComment(
632           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
633     }
634     OS.EmitBinaryData(Record.str_data());
635     B = Table.getNext(*B);
636   }
637 }
638 
639 void CodeViewDebug::emitTypeGlobalHashes() {
640   if (TypeTable.empty())
641     return;
642 
643   // Start the .debug$H section with the version and hash algorithm, currently
644   // hardcoded to version 0, SHA1.
645   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
646 
647   OS.EmitValueToAlignment(4);
648   OS.AddComment("Magic");
649   OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
650   OS.AddComment("Section Version");
651   OS.EmitIntValue(0, 2);
652   OS.AddComment("Hash Algorithm");
653   OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);
654 
655   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
656   for (const auto &GHR : TypeTable.hashes()) {
657     if (OS.isVerboseAsm()) {
658       // Emit an EOL-comment describing which TypeIndex this hash corresponds
659       // to, as well as the stringified SHA1 hash.
660       SmallString<32> Comment;
661       raw_svector_ostream CommentOS(Comment);
662       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
663       OS.AddComment(Comment);
664       ++TI;
665     }
666     assert(GHR.Hash.size() == 8);
667     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
668                 GHR.Hash.size());
669     OS.EmitBinaryData(S);
670   }
671 }
672 
673 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
674   switch (DWLang) {
675   case dwarf::DW_LANG_C:
676   case dwarf::DW_LANG_C89:
677   case dwarf::DW_LANG_C99:
678   case dwarf::DW_LANG_C11:
679   case dwarf::DW_LANG_ObjC:
680     return SourceLanguage::C;
681   case dwarf::DW_LANG_C_plus_plus:
682   case dwarf::DW_LANG_C_plus_plus_03:
683   case dwarf::DW_LANG_C_plus_plus_11:
684   case dwarf::DW_LANG_C_plus_plus_14:
685     return SourceLanguage::Cpp;
686   case dwarf::DW_LANG_Fortran77:
687   case dwarf::DW_LANG_Fortran90:
688   case dwarf::DW_LANG_Fortran03:
689   case dwarf::DW_LANG_Fortran08:
690     return SourceLanguage::Fortran;
691   case dwarf::DW_LANG_Pascal83:
692     return SourceLanguage::Pascal;
693   case dwarf::DW_LANG_Cobol74:
694   case dwarf::DW_LANG_Cobol85:
695     return SourceLanguage::Cobol;
696   case dwarf::DW_LANG_Java:
697     return SourceLanguage::Java;
698   case dwarf::DW_LANG_D:
699     return SourceLanguage::D;
700   default:
701     // There's no CodeView representation for this language, and CV doesn't
702     // have an "unknown" option for the language field, so we'll use MASM,
703     // as it's very low level.
704     return SourceLanguage::Masm;
705   }
706 }
707 
708 namespace {
709 struct Version {
710   int Part[4];
711 };
712 } // end anonymous namespace
713 
714 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
715 // the version number.
716 static Version parseVersion(StringRef Name) {
717   Version V = {{0}};
718   int N = 0;
719   for (const char C : Name) {
720     if (isdigit(C)) {
721       V.Part[N] *= 10;
722       V.Part[N] += C - '0';
723     } else if (C == '.') {
724       ++N;
725       if (N >= 4)
726         return V;
727     } else if (N > 0)
728       return V;
729   }
730   return V;
731 }
732 
733 void CodeViewDebug::emitCompilerInformation() {
734   MCContext &Context = MMI->getContext();
735   MCSymbol *CompilerBegin = Context.createTempSymbol(),
736            *CompilerEnd = Context.createTempSymbol();
737   OS.AddComment("Record length");
738   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
739   OS.EmitLabel(CompilerBegin);
740   OS.AddComment("Record kind: S_COMPILE3");
741   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
742   uint32_t Flags = 0;
743 
744   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
745   const MDNode *Node = *CUs->operands().begin();
746   const auto *CU = cast<DICompileUnit>(Node);
747 
748   // The low byte of the flags indicates the source language.
749   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
750   // TODO:  Figure out which other flags need to be set.
751 
752   OS.AddComment("Flags and language");
753   OS.EmitIntValue(Flags, 4);
754 
755   OS.AddComment("CPUType");
756   OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2);
757 
758   StringRef CompilerVersion = CU->getProducer();
759   Version FrontVer = parseVersion(CompilerVersion);
760   OS.AddComment("Frontend version");
761   for (int N = 0; N < 4; ++N)
762     OS.EmitIntValue(FrontVer.Part[N], 2);
763 
764   // Some Microsoft tools, like Binscope, expect a backend version number of at
765   // least 8.something, so we'll coerce the LLVM version into a form that
766   // guarantees it'll be big enough without really lying about the version.
767   int Major = 1000 * LLVM_VERSION_MAJOR +
768               10 * LLVM_VERSION_MINOR +
769               LLVM_VERSION_PATCH;
770   // Clamp it for builds that use unusually large version numbers.
771   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
772   Version BackVer = {{ Major, 0, 0, 0 }};
773   OS.AddComment("Backend version");
774   for (int N = 0; N < 4; ++N)
775     OS.EmitIntValue(BackVer.Part[N], 2);
776 
777   OS.AddComment("Null-terminated compiler version string");
778   emitNullTerminatedSymbolName(OS, CompilerVersion);
779 
780   OS.EmitLabel(CompilerEnd);
781 }
782 
783 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
784                                     StringRef S) {
785   StringIdRecord SIR(TypeIndex(0x0), S);
786   return TypeTable.writeLeafType(SIR);
787 }
788 
789 void CodeViewDebug::emitBuildInfo() {
790   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
791   // build info. The known prefix is:
792   // - Absolute path of current directory
793   // - Compiler path
794   // - Main source file path, relative to CWD or absolute
795   // - Type server PDB file
796   // - Canonical compiler command line
797   // If frontend and backend compilation are separated (think llc or LTO), it's
798   // not clear if the compiler path should refer to the executable for the
799   // frontend or the backend. Leave it blank for now.
800   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
801   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
802   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
803   const auto *CU = cast<DICompileUnit>(Node);
804   const DIFile *MainSourceFile = CU->getFile();
805   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
806       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
807   BuildInfoArgs[BuildInfoRecord::SourceFile] =
808       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
809   // FIXME: Path to compiler and command line. PDB is intentionally blank unless
810   // we implement /Zi type servers.
811   BuildInfoRecord BIR(BuildInfoArgs);
812   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
813 
814   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
815   // from the module symbols into the type stream.
816   MCSymbol *BuildInfoEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
817   OS.AddComment("Record length");
818   OS.EmitIntValue(6, 2);
819   OS.AddComment("Record kind: S_BUILDINFO");
820   OS.EmitIntValue(unsigned(SymbolKind::S_BUILDINFO), 2);
821   OS.AddComment("LF_BUILDINFO index");
822   OS.EmitIntValue(BuildInfoIndex.getIndex(), 4);
823   endCVSubsection(BuildInfoEnd);
824 }
825 
826 void CodeViewDebug::emitInlineeLinesSubsection() {
827   if (InlinedSubprograms.empty())
828     return;
829 
830   OS.AddComment("Inlinee lines subsection");
831   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
832 
833   // We emit the checksum info for files.  This is used by debuggers to
834   // determine if a pdb matches the source before loading it.  Visual Studio,
835   // for instance, will display a warning that the breakpoints are not valid if
836   // the pdb does not match the source.
837   OS.AddComment("Inlinee lines signature");
838   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
839 
840   for (const DISubprogram *SP : InlinedSubprograms) {
841     assert(TypeIndices.count({SP, nullptr}));
842     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
843 
844     OS.AddBlankLine();
845     unsigned FileId = maybeRecordFile(SP->getFile());
846     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
847                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
848     OS.AddBlankLine();
849     OS.AddComment("Type index of inlined function");
850     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
851     OS.AddComment("Offset into filechecksum table");
852     OS.EmitCVFileChecksumOffsetDirective(FileId);
853     OS.AddComment("Starting line number");
854     OS.EmitIntValue(SP->getLine(), 4);
855   }
856 
857   endCVSubsection(InlineEnd);
858 }
859 
860 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
861                                         const DILocation *InlinedAt,
862                                         const InlineSite &Site) {
863   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
864            *InlineEnd = MMI->getContext().createTempSymbol();
865 
866   assert(TypeIndices.count({Site.Inlinee, nullptr}));
867   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
868 
869   // SymbolRecord
870   OS.AddComment("Record length");
871   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
872   OS.EmitLabel(InlineBegin);
873   OS.AddComment("Record kind: S_INLINESITE");
874   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
875 
876   OS.AddComment("PtrParent");
877   OS.EmitIntValue(0, 4);
878   OS.AddComment("PtrEnd");
879   OS.EmitIntValue(0, 4);
880   OS.AddComment("Inlinee type index");
881   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
882 
883   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
884   unsigned StartLineNum = Site.Inlinee->getLine();
885 
886   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
887                                     FI.Begin, FI.End);
888 
889   OS.EmitLabel(InlineEnd);
890 
891   emitLocalVariableList(FI, Site.InlinedLocals);
892 
893   // Recurse on child inlined call sites before closing the scope.
894   for (const DILocation *ChildSite : Site.ChildSites) {
895     auto I = FI.InlineSites.find(ChildSite);
896     assert(I != FI.InlineSites.end() &&
897            "child site not in function inline site map");
898     emitInlinedCallSite(FI, ChildSite, I->second);
899   }
900 
901   // Close the scope.
902   OS.AddComment("Record length");
903   OS.EmitIntValue(2, 2);                                  // RecordLength
904   OS.AddComment("Record kind: S_INLINESITE_END");
905   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
906 }
907 
908 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
909   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
910   // comdat key. A section may be comdat because of -ffunction-sections or
911   // because it is comdat in the IR.
912   MCSectionCOFF *GVSec =
913       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
914   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
915 
916   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
917       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
918   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
919 
920   OS.SwitchSection(DebugSec);
921 
922   // Emit the magic version number if this is the first time we've switched to
923   // this section.
924   if (ComdatDebugSections.insert(DebugSec).second)
925     emitCodeViewMagicVersion();
926 }
927 
928 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
929 // The only supported thunk ordinal is currently the standard type.
930 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
931                                           FunctionInfo &FI,
932                                           const MCSymbol *Fn) {
933   std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
934   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
935 
936   OS.AddComment("Symbol subsection for " + Twine(FuncName));
937   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
938 
939   // Emit S_THUNK32
940   MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(),
941            *ThunkRecordEnd   = MMI->getContext().createTempSymbol();
942   OS.AddComment("Record length");
943   OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2);
944   OS.EmitLabel(ThunkRecordBegin);
945   OS.AddComment("Record kind: S_THUNK32");
946   OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2);
947   OS.AddComment("PtrParent");
948   OS.EmitIntValue(0, 4);
949   OS.AddComment("PtrEnd");
950   OS.EmitIntValue(0, 4);
951   OS.AddComment("PtrNext");
952   OS.EmitIntValue(0, 4);
953   OS.AddComment("Thunk section relative address");
954   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
955   OS.AddComment("Thunk section index");
956   OS.EmitCOFFSectionIndex(Fn);
957   OS.AddComment("Code size");
958   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
959   OS.AddComment("Ordinal");
960   OS.EmitIntValue(unsigned(ordinal), 1);
961   OS.AddComment("Function name");
962   emitNullTerminatedSymbolName(OS, FuncName);
963   // Additional fields specific to the thunk ordinal would go here.
964   OS.EmitLabel(ThunkRecordEnd);
965 
966   // Local variables/inlined routines are purposely omitted here.  The point of
967   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
968 
969   // Emit S_PROC_ID_END
970   const unsigned RecordLengthForSymbolEnd = 2;
971   OS.AddComment("Record length");
972   OS.EmitIntValue(RecordLengthForSymbolEnd, 2);
973   OS.AddComment("Record kind: S_PROC_ID_END");
974   OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
975 
976   endCVSubsection(SymbolsEnd);
977 }
978 
979 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
980                                              FunctionInfo &FI) {
981   // For each function there is a separate subsection which holds the PC to
982   // file:line table.
983   const MCSymbol *Fn = Asm->getSymbol(GV);
984   assert(Fn);
985 
986   // Switch to the to a comdat section, if appropriate.
987   switchToDebugSectionForSymbol(Fn);
988 
989   std::string FuncName;
990   auto *SP = GV->getSubprogram();
991   assert(SP);
992   setCurrentSubprogram(SP);
993 
994   if (SP->isThunk()) {
995     emitDebugInfoForThunk(GV, FI, Fn);
996     return;
997   }
998 
999   // If we have a display name, build the fully qualified name by walking the
1000   // chain of scopes.
1001   if (!SP->getName().empty())
1002     FuncName =
1003         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
1004 
1005   // If our DISubprogram name is empty, use the mangled name.
1006   if (FuncName.empty())
1007     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
1008 
1009   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1010   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1011     OS.EmitCVFPOData(Fn);
1012 
1013   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1014   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1015   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1016   {
1017     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
1018              *ProcRecordEnd = MMI->getContext().createTempSymbol();
1019     OS.AddComment("Record length");
1020     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
1021     OS.EmitLabel(ProcRecordBegin);
1022 
1023     if (GV->hasLocalLinkage()) {
1024       OS.AddComment("Record kind: S_LPROC32_ID");
1025       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
1026     } else {
1027       OS.AddComment("Record kind: S_GPROC32_ID");
1028       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
1029     }
1030 
1031     // These fields are filled in by tools like CVPACK which run after the fact.
1032     OS.AddComment("PtrParent");
1033     OS.EmitIntValue(0, 4);
1034     OS.AddComment("PtrEnd");
1035     OS.EmitIntValue(0, 4);
1036     OS.AddComment("PtrNext");
1037     OS.EmitIntValue(0, 4);
1038     // This is the important bit that tells the debugger where the function
1039     // code is located and what's its size:
1040     OS.AddComment("Code size");
1041     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1042     OS.AddComment("Offset after prologue");
1043     OS.EmitIntValue(0, 4);
1044     OS.AddComment("Offset before epilogue");
1045     OS.EmitIntValue(0, 4);
1046     OS.AddComment("Function type index");
1047     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
1048     OS.AddComment("Function section relative address");
1049     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1050     OS.AddComment("Function section index");
1051     OS.EmitCOFFSectionIndex(Fn);
1052     OS.AddComment("Flags");
1053     OS.EmitIntValue(0, 1);
1054     // Emit the function display name as a null-terminated string.
1055     OS.AddComment("Function name");
1056     // Truncate the name so we won't overflow the record length field.
1057     emitNullTerminatedSymbolName(OS, FuncName);
1058     OS.EmitLabel(ProcRecordEnd);
1059 
1060     MCSymbol *FrameProcBegin = MMI->getContext().createTempSymbol(),
1061              *FrameProcEnd = MMI->getContext().createTempSymbol();
1062     OS.AddComment("Record length");
1063     OS.emitAbsoluteSymbolDiff(FrameProcEnd, FrameProcBegin, 2);
1064     OS.EmitLabel(FrameProcBegin);
1065     OS.AddComment("Record kind: S_FRAMEPROC");
1066     OS.EmitIntValue(unsigned(SymbolKind::S_FRAMEPROC), 2);
1067     // Subtract out the CSR size since MSVC excludes that and we include it.
1068     OS.AddComment("FrameSize");
1069     OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4);
1070     OS.AddComment("Padding");
1071     OS.EmitIntValue(0, 4);
1072     OS.AddComment("Offset of padding");
1073     OS.EmitIntValue(0, 4);
1074     OS.AddComment("Bytes of callee saved registers");
1075     OS.EmitIntValue(FI.CSRSize, 4);
1076     OS.AddComment("Exception handler offset");
1077     OS.EmitIntValue(0, 4);
1078     OS.AddComment("Exception handler section");
1079     OS.EmitIntValue(0, 2);
1080     OS.AddComment("Flags (defines frame register)");
1081     OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4);
1082     OS.EmitLabel(FrameProcEnd);
1083 
1084     emitLocalVariableList(FI, FI.Locals);
1085     emitLexicalBlockList(FI.ChildBlocks, FI);
1086 
1087     // Emit inlined call site information. Only emit functions inlined directly
1088     // into the parent function. We'll emit the other sites recursively as part
1089     // of their parent inline site.
1090     for (const DILocation *InlinedAt : FI.ChildSites) {
1091       auto I = FI.InlineSites.find(InlinedAt);
1092       assert(I != FI.InlineSites.end() &&
1093              "child site not in function inline site map");
1094       emitInlinedCallSite(FI, InlinedAt, I->second);
1095     }
1096 
1097     for (auto Annot : FI.Annotations) {
1098       MCSymbol *Label = Annot.first;
1099       MDTuple *Strs = cast<MDTuple>(Annot.second);
1100       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
1101                *AnnotEnd = MMI->getContext().createTempSymbol();
1102       OS.AddComment("Record length");
1103       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
1104       OS.EmitLabel(AnnotBegin);
1105       OS.AddComment("Record kind: S_ANNOTATION");
1106       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
1107       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1108       // FIXME: Make sure we don't overflow the max record size.
1109       OS.EmitCOFFSectionIndex(Label);
1110       OS.EmitIntValue(Strs->getNumOperands(), 2);
1111       for (Metadata *MD : Strs->operands()) {
1112         // MDStrings are null terminated, so we can do EmitBytes and get the
1113         // nice .asciz directive.
1114         StringRef Str = cast<MDString>(MD)->getString();
1115         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1116         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
1117       }
1118       OS.EmitLabel(AnnotEnd);
1119     }
1120 
1121     if (SP != nullptr)
1122       emitDebugInfoForUDTs(LocalUDTs);
1123 
1124     // We're done with this function.
1125     OS.AddComment("Record length");
1126     OS.EmitIntValue(0x0002, 2);
1127     OS.AddComment("Record kind: S_PROC_ID_END");
1128     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
1129   }
1130   endCVSubsection(SymbolsEnd);
1131 
1132   // We have an assembler directive that takes care of the whole line table.
1133   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1134 }
1135 
1136 CodeViewDebug::LocalVarDefRange
1137 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1138   LocalVarDefRange DR;
1139   DR.InMemory = -1;
1140   DR.DataOffset = Offset;
1141   assert(DR.DataOffset == Offset && "truncation");
1142   DR.IsSubfield = 0;
1143   DR.StructOffset = 0;
1144   DR.CVRegister = CVRegister;
1145   return DR;
1146 }
1147 
1148 void CodeViewDebug::collectVariableInfoFromMFTable(
1149     DenseSet<InlinedEntity> &Processed) {
1150   const MachineFunction &MF = *Asm->MF;
1151   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1152   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1153   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1154 
1155   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1156     if (!VI.Var)
1157       continue;
1158     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1159            "Expected inlined-at fields to agree");
1160 
1161     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1162     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1163 
1164     // If variable scope is not found then skip this variable.
1165     if (!Scope)
1166       continue;
1167 
1168     // If the variable has an attached offset expression, extract it.
1169     // FIXME: Try to handle DW_OP_deref as well.
1170     int64_t ExprOffset = 0;
1171     if (VI.Expr)
1172       if (!VI.Expr->extractIfOffset(ExprOffset))
1173         continue;
1174 
1175     // Get the frame register used and the offset.
1176     unsigned FrameReg = 0;
1177     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1178     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1179 
1180     // Calculate the label ranges.
1181     LocalVarDefRange DefRange =
1182         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1183     for (const InsnRange &Range : Scope->getRanges()) {
1184       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1185       const MCSymbol *End = getLabelAfterInsn(Range.second);
1186       End = End ? End : Asm->getFunctionEnd();
1187       DefRange.Ranges.emplace_back(Begin, End);
1188     }
1189 
1190     LocalVariable Var;
1191     Var.DIVar = VI.Var;
1192     Var.DefRanges.emplace_back(std::move(DefRange));
1193     recordLocalVariable(std::move(Var), Scope);
1194   }
1195 }
1196 
1197 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1198   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1199 }
1200 
1201 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1202   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1203 }
1204 
1205 void CodeViewDebug::calculateRanges(
1206     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
1207   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1208 
1209   // Calculate the definition ranges.
1210   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1211     const InsnRange &Range = *I;
1212     const MachineInstr *DVInst = Range.first;
1213     assert(DVInst->isDebugValue() && "Invalid History entry");
1214     // FIXME: Find a way to represent constant variables, since they are
1215     // relatively common.
1216     Optional<DbgVariableLocation> Location =
1217         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1218     if (!Location)
1219       continue;
1220 
1221     // CodeView can only express variables in register and variables in memory
1222     // at a constant offset from a register. However, for variables passed
1223     // indirectly by pointer, it is common for that pointer to be spilled to a
1224     // stack location. For the special case of one offseted load followed by a
1225     // zero offset load (a pointer spilled to the stack), we change the type of
1226     // the local variable from a value type to a reference type. This tricks the
1227     // debugger into doing the load for us.
1228     if (Var.UseReferenceType) {
1229       // We're using a reference type. Drop the last zero offset load.
1230       if (canUseReferenceType(*Location))
1231         Location->LoadChain.pop_back();
1232       else
1233         continue;
1234     } else if (needsReferenceType(*Location)) {
1235       // This location can't be expressed without switching to a reference type.
1236       // Start over using that.
1237       Var.UseReferenceType = true;
1238       Var.DefRanges.clear();
1239       calculateRanges(Var, Ranges);
1240       return;
1241     }
1242 
1243     // We can only handle a register or an offseted load of a register.
1244     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1245       continue;
1246     {
1247       LocalVarDefRange DR;
1248       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1249       DR.InMemory = !Location->LoadChain.empty();
1250       DR.DataOffset =
1251           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1252       if (Location->FragmentInfo) {
1253         DR.IsSubfield = true;
1254         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1255       } else {
1256         DR.IsSubfield = false;
1257         DR.StructOffset = 0;
1258       }
1259 
1260       if (Var.DefRanges.empty() ||
1261           Var.DefRanges.back().isDifferentLocation(DR)) {
1262         Var.DefRanges.emplace_back(std::move(DR));
1263       }
1264     }
1265 
1266     // Compute the label range.
1267     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1268     const MCSymbol *End = getLabelAfterInsn(Range.second);
1269     if (!End) {
1270       // This range is valid until the next overlapping bitpiece. In the
1271       // common case, ranges will not be bitpieces, so they will overlap.
1272       auto J = std::next(I);
1273       const DIExpression *DIExpr = DVInst->getDebugExpression();
1274       while (J != E &&
1275              !DIExpr->fragmentsOverlap(J->first->getDebugExpression()))
1276         ++J;
1277       if (J != E)
1278         End = getLabelBeforeInsn(J->first);
1279       else
1280         End = Asm->getFunctionEnd();
1281     }
1282 
1283     // If the last range end is our begin, just extend the last range.
1284     // Otherwise make a new range.
1285     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1286         Var.DefRanges.back().Ranges;
1287     if (!R.empty() && R.back().second == Begin)
1288       R.back().second = End;
1289     else
1290       R.emplace_back(Begin, End);
1291 
1292     // FIXME: Do more range combining.
1293   }
1294 }
1295 
1296 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1297   DenseSet<InlinedEntity> Processed;
1298   // Grab the variable info that was squirreled away in the MMI side-table.
1299   collectVariableInfoFromMFTable(Processed);
1300 
1301   for (const auto &I : DbgValues) {
1302     InlinedEntity IV = I.first;
1303     if (Processed.count(IV))
1304       continue;
1305     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1306     const DILocation *InlinedAt = IV.second;
1307 
1308     // Instruction ranges, specifying where IV is accessible.
1309     const auto &Ranges = I.second;
1310 
1311     LexicalScope *Scope = nullptr;
1312     if (InlinedAt)
1313       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1314     else
1315       Scope = LScopes.findLexicalScope(DIVar->getScope());
1316     // If variable scope is not found then skip this variable.
1317     if (!Scope)
1318       continue;
1319 
1320     LocalVariable Var;
1321     Var.DIVar = DIVar;
1322 
1323     calculateRanges(Var, Ranges);
1324     recordLocalVariable(std::move(Var), Scope);
1325   }
1326 }
1327 
1328 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1329   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1330   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1331   const MachineFrameInfo &MFI = MF->getFrameInfo();
1332   const Function &GV = MF->getFunction();
1333   auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()});
1334   assert(Insertion.second && "function already has info");
1335   CurFn = Insertion.first->second.get();
1336   CurFn->FuncId = NextFuncId++;
1337   CurFn->Begin = Asm->getFunctionBegin();
1338 
1339   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1340   // callee-saved registers were used. For targets that don't use a PUSH
1341   // instruction (AArch64), this will be zero.
1342   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1343   CurFn->FrameSize = MFI.getStackSize();
1344   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1345   CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1346 
1347   // For this function S_FRAMEPROC record, figure out which codeview register
1348   // will be the frame pointer.
1349   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1350   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1351   if (CurFn->FrameSize > 0) {
1352     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1353       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1354       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1355     } else {
1356       // If there is an FP, parameters are always relative to it.
1357       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1358       if (CurFn->HasStackRealignment) {
1359         // If the stack needs realignment, locals are relative to SP or VFRAME.
1360         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1361       } else {
1362         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1363         // other stack adjustments.
1364         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1365       }
1366     }
1367   }
1368 
1369   // Compute other frame procedure options.
1370   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1371   if (MFI.hasVarSizedObjects())
1372     FPO |= FrameProcedureOptions::HasAlloca;
1373   if (MF->exposesReturnsTwice())
1374     FPO |= FrameProcedureOptions::HasSetJmp;
1375   // FIXME: Set HasLongJmp if we ever track that info.
1376   if (MF->hasInlineAsm())
1377     FPO |= FrameProcedureOptions::HasInlineAssembly;
1378   if (GV.hasPersonalityFn()) {
1379     if (isAsynchronousEHPersonality(
1380             classifyEHPersonality(GV.getPersonalityFn())))
1381       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1382     else
1383       FPO |= FrameProcedureOptions::HasExceptionHandling;
1384   }
1385   if (GV.hasFnAttribute(Attribute::InlineHint))
1386     FPO |= FrameProcedureOptions::MarkedInline;
1387   if (GV.hasFnAttribute(Attribute::Naked))
1388     FPO |= FrameProcedureOptions::Naked;
1389   if (MFI.hasStackProtectorIndex())
1390     FPO |= FrameProcedureOptions::SecurityChecks;
1391   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1392   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1393   if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() &&
1394       !GV.hasFnAttribute(Attribute::OptimizeNone))
1395     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1396   // FIXME: Set GuardCfg when it is implemented.
1397   CurFn->FrameProcOpts = FPO;
1398 
1399   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1400 
1401   // Find the end of the function prolog.  First known non-DBG_VALUE and
1402   // non-frame setup location marks the beginning of the function body.
1403   // FIXME: is there a simpler a way to do this? Can we just search
1404   // for the first instruction of the function, not the last of the prolog?
1405   DebugLoc PrologEndLoc;
1406   bool EmptyPrologue = true;
1407   for (const auto &MBB : *MF) {
1408     for (const auto &MI : MBB) {
1409       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1410           MI.getDebugLoc()) {
1411         PrologEndLoc = MI.getDebugLoc();
1412         break;
1413       } else if (!MI.isMetaInstruction()) {
1414         EmptyPrologue = false;
1415       }
1416     }
1417   }
1418 
1419   // Record beginning of function if we have a non-empty prologue.
1420   if (PrologEndLoc && !EmptyPrologue) {
1421     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1422     maybeRecordLocation(FnStartDL, MF);
1423   }
1424 }
1425 
1426 static bool shouldEmitUdt(const DIType *T) {
1427   if (!T)
1428     return false;
1429 
1430   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1431   if (T->getTag() == dwarf::DW_TAG_typedef) {
1432     if (DIScope *Scope = T->getScope().resolve()) {
1433       switch (Scope->getTag()) {
1434       case dwarf::DW_TAG_structure_type:
1435       case dwarf::DW_TAG_class_type:
1436       case dwarf::DW_TAG_union_type:
1437         return false;
1438       }
1439     }
1440   }
1441 
1442   while (true) {
1443     if (!T || T->isForwardDecl())
1444       return false;
1445 
1446     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1447     if (!DT)
1448       return true;
1449     T = DT->getBaseType().resolve();
1450   }
1451   return true;
1452 }
1453 
1454 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1455   // Don't record empty UDTs.
1456   if (Ty->getName().empty())
1457     return;
1458   if (!shouldEmitUdt(Ty))
1459     return;
1460 
1461   SmallVector<StringRef, 5> QualifiedNameComponents;
1462   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1463       Ty->getScope().resolve(), QualifiedNameComponents);
1464 
1465   std::string FullyQualifiedName =
1466       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1467 
1468   if (ClosestSubprogram == nullptr) {
1469     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1470   } else if (ClosestSubprogram == CurrentSubprogram) {
1471     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1472   }
1473 
1474   // TODO: What if the ClosestSubprogram is neither null or the current
1475   // subprogram?  Currently, the UDT just gets dropped on the floor.
1476   //
1477   // The current behavior is not desirable.  To get maximal fidelity, we would
1478   // need to perform all type translation before beginning emission of .debug$S
1479   // and then make LocalUDTs a member of FunctionInfo
1480 }
1481 
1482 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1483   // Generic dispatch for lowering an unknown type.
1484   switch (Ty->getTag()) {
1485   case dwarf::DW_TAG_array_type:
1486     return lowerTypeArray(cast<DICompositeType>(Ty));
1487   case dwarf::DW_TAG_typedef:
1488     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1489   case dwarf::DW_TAG_base_type:
1490     return lowerTypeBasic(cast<DIBasicType>(Ty));
1491   case dwarf::DW_TAG_pointer_type:
1492     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1493       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1494     LLVM_FALLTHROUGH;
1495   case dwarf::DW_TAG_reference_type:
1496   case dwarf::DW_TAG_rvalue_reference_type:
1497     return lowerTypePointer(cast<DIDerivedType>(Ty));
1498   case dwarf::DW_TAG_ptr_to_member_type:
1499     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1500   case dwarf::DW_TAG_restrict_type:
1501   case dwarf::DW_TAG_const_type:
1502   case dwarf::DW_TAG_volatile_type:
1503   // TODO: add support for DW_TAG_atomic_type here
1504     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1505   case dwarf::DW_TAG_subroutine_type:
1506     if (ClassTy) {
1507       // The member function type of a member function pointer has no
1508       // ThisAdjustment.
1509       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1510                                      /*ThisAdjustment=*/0,
1511                                      /*IsStaticMethod=*/false);
1512     }
1513     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1514   case dwarf::DW_TAG_enumeration_type:
1515     return lowerTypeEnum(cast<DICompositeType>(Ty));
1516   case dwarf::DW_TAG_class_type:
1517   case dwarf::DW_TAG_structure_type:
1518     return lowerTypeClass(cast<DICompositeType>(Ty));
1519   case dwarf::DW_TAG_union_type:
1520     return lowerTypeUnion(cast<DICompositeType>(Ty));
1521   case dwarf::DW_TAG_unspecified_type:
1522     if (Ty->getName() == "decltype(nullptr)")
1523       return TypeIndex::NullptrT();
1524     return TypeIndex::None();
1525   default:
1526     // Use the null type index.
1527     return TypeIndex();
1528   }
1529 }
1530 
1531 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1532   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1533   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1534   StringRef TypeName = Ty->getName();
1535 
1536   addToUDTs(Ty);
1537 
1538   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1539       TypeName == "HRESULT")
1540     return TypeIndex(SimpleTypeKind::HResult);
1541   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1542       TypeName == "wchar_t")
1543     return TypeIndex(SimpleTypeKind::WideCharacter);
1544 
1545   return UnderlyingTypeIndex;
1546 }
1547 
1548 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1549   DITypeRef ElementTypeRef = Ty->getBaseType();
1550   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1551   // IndexType is size_t, which depends on the bitness of the target.
1552   TypeIndex IndexType = getPointerSizeInBytes() == 8
1553                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1554                             : TypeIndex(SimpleTypeKind::UInt32Long);
1555 
1556   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1557 
1558   // Add subranges to array type.
1559   DINodeArray Elements = Ty->getElements();
1560   for (int i = Elements.size() - 1; i >= 0; --i) {
1561     const DINode *Element = Elements[i];
1562     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1563 
1564     const DISubrange *Subrange = cast<DISubrange>(Element);
1565     assert(Subrange->getLowerBound() == 0 &&
1566            "codeview doesn't support subranges with lower bounds");
1567     int64_t Count = -1;
1568     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1569       Count = CI->getSExtValue();
1570 
1571     // Forward declarations of arrays without a size and VLAs use a count of -1.
1572     // Emit a count of zero in these cases to match what MSVC does for arrays
1573     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1574     // should do for them even if we could distinguish them.
1575     if (Count == -1)
1576       Count = 0;
1577 
1578     // Update the element size and element type index for subsequent subranges.
1579     ElementSize *= Count;
1580 
1581     // If this is the outermost array, use the size from the array. It will be
1582     // more accurate if we had a VLA or an incomplete element type size.
1583     uint64_t ArraySize =
1584         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1585 
1586     StringRef Name = (i == 0) ? Ty->getName() : "";
1587     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1588     ElementTypeIndex = TypeTable.writeLeafType(AR);
1589   }
1590 
1591   return ElementTypeIndex;
1592 }
1593 
1594 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1595   TypeIndex Index;
1596   dwarf::TypeKind Kind;
1597   uint32_t ByteSize;
1598 
1599   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1600   ByteSize = Ty->getSizeInBits() / 8;
1601 
1602   SimpleTypeKind STK = SimpleTypeKind::None;
1603   switch (Kind) {
1604   case dwarf::DW_ATE_address:
1605     // FIXME: Translate
1606     break;
1607   case dwarf::DW_ATE_boolean:
1608     switch (ByteSize) {
1609     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1610     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1611     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1612     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1613     case 16: STK = SimpleTypeKind::Boolean128; break;
1614     }
1615     break;
1616   case dwarf::DW_ATE_complex_float:
1617     switch (ByteSize) {
1618     case 2:  STK = SimpleTypeKind::Complex16;  break;
1619     case 4:  STK = SimpleTypeKind::Complex32;  break;
1620     case 8:  STK = SimpleTypeKind::Complex64;  break;
1621     case 10: STK = SimpleTypeKind::Complex80;  break;
1622     case 16: STK = SimpleTypeKind::Complex128; break;
1623     }
1624     break;
1625   case dwarf::DW_ATE_float:
1626     switch (ByteSize) {
1627     case 2:  STK = SimpleTypeKind::Float16;  break;
1628     case 4:  STK = SimpleTypeKind::Float32;  break;
1629     case 6:  STK = SimpleTypeKind::Float48;  break;
1630     case 8:  STK = SimpleTypeKind::Float64;  break;
1631     case 10: STK = SimpleTypeKind::Float80;  break;
1632     case 16: STK = SimpleTypeKind::Float128; break;
1633     }
1634     break;
1635   case dwarf::DW_ATE_signed:
1636     switch (ByteSize) {
1637     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1638     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1639     case 4:  STK = SimpleTypeKind::Int32;           break;
1640     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1641     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1642     }
1643     break;
1644   case dwarf::DW_ATE_unsigned:
1645     switch (ByteSize) {
1646     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1647     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1648     case 4:  STK = SimpleTypeKind::UInt32;            break;
1649     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1650     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1651     }
1652     break;
1653   case dwarf::DW_ATE_UTF:
1654     switch (ByteSize) {
1655     case 2: STK = SimpleTypeKind::Character16; break;
1656     case 4: STK = SimpleTypeKind::Character32; break;
1657     }
1658     break;
1659   case dwarf::DW_ATE_signed_char:
1660     if (ByteSize == 1)
1661       STK = SimpleTypeKind::SignedCharacter;
1662     break;
1663   case dwarf::DW_ATE_unsigned_char:
1664     if (ByteSize == 1)
1665       STK = SimpleTypeKind::UnsignedCharacter;
1666     break;
1667   default:
1668     break;
1669   }
1670 
1671   // Apply some fixups based on the source-level type name.
1672   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1673     STK = SimpleTypeKind::Int32Long;
1674   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1675     STK = SimpleTypeKind::UInt32Long;
1676   if (STK == SimpleTypeKind::UInt16Short &&
1677       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1678     STK = SimpleTypeKind::WideCharacter;
1679   if ((STK == SimpleTypeKind::SignedCharacter ||
1680        STK == SimpleTypeKind::UnsignedCharacter) &&
1681       Ty->getName() == "char")
1682     STK = SimpleTypeKind::NarrowCharacter;
1683 
1684   return TypeIndex(STK);
1685 }
1686 
1687 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1688                                           PointerOptions PO) {
1689   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1690 
1691   // Pointers to simple types without any options can use SimpleTypeMode, rather
1692   // than having a dedicated pointer type record.
1693   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1694       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1695       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1696     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1697                               ? SimpleTypeMode::NearPointer64
1698                               : SimpleTypeMode::NearPointer32;
1699     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1700   }
1701 
1702   PointerKind PK =
1703       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1704   PointerMode PM = PointerMode::Pointer;
1705   switch (Ty->getTag()) {
1706   default: llvm_unreachable("not a pointer tag type");
1707   case dwarf::DW_TAG_pointer_type:
1708     PM = PointerMode::Pointer;
1709     break;
1710   case dwarf::DW_TAG_reference_type:
1711     PM = PointerMode::LValueReference;
1712     break;
1713   case dwarf::DW_TAG_rvalue_reference_type:
1714     PM = PointerMode::RValueReference;
1715     break;
1716   }
1717 
1718   if (Ty->isObjectPointer())
1719     PO |= PointerOptions::Const;
1720 
1721   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1722   return TypeTable.writeLeafType(PR);
1723 }
1724 
1725 static PointerToMemberRepresentation
1726 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1727   // SizeInBytes being zero generally implies that the member pointer type was
1728   // incomplete, which can happen if it is part of a function prototype. In this
1729   // case, use the unknown model instead of the general model.
1730   if (IsPMF) {
1731     switch (Flags & DINode::FlagPtrToMemberRep) {
1732     case 0:
1733       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1734                               : PointerToMemberRepresentation::GeneralFunction;
1735     case DINode::FlagSingleInheritance:
1736       return PointerToMemberRepresentation::SingleInheritanceFunction;
1737     case DINode::FlagMultipleInheritance:
1738       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1739     case DINode::FlagVirtualInheritance:
1740       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1741     }
1742   } else {
1743     switch (Flags & DINode::FlagPtrToMemberRep) {
1744     case 0:
1745       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1746                               : PointerToMemberRepresentation::GeneralData;
1747     case DINode::FlagSingleInheritance:
1748       return PointerToMemberRepresentation::SingleInheritanceData;
1749     case DINode::FlagMultipleInheritance:
1750       return PointerToMemberRepresentation::MultipleInheritanceData;
1751     case DINode::FlagVirtualInheritance:
1752       return PointerToMemberRepresentation::VirtualInheritanceData;
1753     }
1754   }
1755   llvm_unreachable("invalid ptr to member representation");
1756 }
1757 
1758 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1759                                                 PointerOptions PO) {
1760   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1761   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1762   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1763   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1764                                                 : PointerKind::Near32;
1765   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1766   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1767                          : PointerMode::PointerToDataMember;
1768 
1769   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1770   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1771   MemberPointerInfo MPI(
1772       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1773   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1774   return TypeTable.writeLeafType(PR);
1775 }
1776 
1777 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1778 /// have a translation, use the NearC convention.
1779 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1780   switch (DwarfCC) {
1781   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1782   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1783   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1784   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1785   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1786   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1787   }
1788   return CallingConvention::NearC;
1789 }
1790 
1791 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1792   ModifierOptions Mods = ModifierOptions::None;
1793   PointerOptions PO = PointerOptions::None;
1794   bool IsModifier = true;
1795   const DIType *BaseTy = Ty;
1796   while (IsModifier && BaseTy) {
1797     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1798     switch (BaseTy->getTag()) {
1799     case dwarf::DW_TAG_const_type:
1800       Mods |= ModifierOptions::Const;
1801       PO |= PointerOptions::Const;
1802       break;
1803     case dwarf::DW_TAG_volatile_type:
1804       Mods |= ModifierOptions::Volatile;
1805       PO |= PointerOptions::Volatile;
1806       break;
1807     case dwarf::DW_TAG_restrict_type:
1808       // Only pointer types be marked with __restrict. There is no known flag
1809       // for __restrict in LF_MODIFIER records.
1810       PO |= PointerOptions::Restrict;
1811       break;
1812     default:
1813       IsModifier = false;
1814       break;
1815     }
1816     if (IsModifier)
1817       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1818   }
1819 
1820   // Check if the inner type will use an LF_POINTER record. If so, the
1821   // qualifiers will go in the LF_POINTER record. This comes up for types like
1822   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1823   // char *'.
1824   if (BaseTy) {
1825     switch (BaseTy->getTag()) {
1826     case dwarf::DW_TAG_pointer_type:
1827     case dwarf::DW_TAG_reference_type:
1828     case dwarf::DW_TAG_rvalue_reference_type:
1829       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1830     case dwarf::DW_TAG_ptr_to_member_type:
1831       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1832     default:
1833       break;
1834     }
1835   }
1836 
1837   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1838 
1839   // Return the base type index if there aren't any modifiers. For example, the
1840   // metadata could contain restrict wrappers around non-pointer types.
1841   if (Mods == ModifierOptions::None)
1842     return ModifiedTI;
1843 
1844   ModifierRecord MR(ModifiedTI, Mods);
1845   return TypeTable.writeLeafType(MR);
1846 }
1847 
1848 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1849   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1850   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1851     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1852 
1853   // MSVC uses type none for variadic argument.
1854   if (ReturnAndArgTypeIndices.size() > 1 &&
1855       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1856     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1857   }
1858   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1859   ArrayRef<TypeIndex> ArgTypeIndices = None;
1860   if (!ReturnAndArgTypeIndices.empty()) {
1861     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1862     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1863     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1864   }
1865 
1866   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1867   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1868 
1869   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1870 
1871   FunctionOptions FO = getFunctionOptions(Ty);
1872   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1873                             ArgListIndex);
1874   return TypeTable.writeLeafType(Procedure);
1875 }
1876 
1877 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1878                                                  const DIType *ClassTy,
1879                                                  int ThisAdjustment,
1880                                                  bool IsStaticMethod,
1881                                                  FunctionOptions FO) {
1882   // Lower the containing class type.
1883   TypeIndex ClassType = getTypeIndex(ClassTy);
1884 
1885   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1886 
1887   unsigned Index = 0;
1888   SmallVector<TypeIndex, 8> ArgTypeIndices;
1889   TypeIndex ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1890 
1891   TypeIndex ThisTypeIndex;
1892   if (!IsStaticMethod && ReturnAndArgs.size() > 1)
1893     ThisTypeIndex = getTypeIndexForThisPtr(ReturnAndArgs[Index++], Ty);
1894 
1895   while (Index < ReturnAndArgs.size())
1896     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1897 
1898   // MSVC uses type none for variadic argument.
1899   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1900     ArgTypeIndices.back() = TypeIndex::None();
1901 
1902   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1903   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1904 
1905   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1906 
1907   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1908                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1909   return TypeTable.writeLeafType(MFR);
1910 }
1911 
1912 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1913   unsigned VSlotCount =
1914       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1915   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1916 
1917   VFTableShapeRecord VFTSR(Slots);
1918   return TypeTable.writeLeafType(VFTSR);
1919 }
1920 
1921 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1922   switch (Flags & DINode::FlagAccessibility) {
1923   case DINode::FlagPrivate:   return MemberAccess::Private;
1924   case DINode::FlagPublic:    return MemberAccess::Public;
1925   case DINode::FlagProtected: return MemberAccess::Protected;
1926   case 0:
1927     // If there was no explicit access control, provide the default for the tag.
1928     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1929                                                  : MemberAccess::Public;
1930   }
1931   llvm_unreachable("access flags are exclusive");
1932 }
1933 
1934 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1935   if (SP->isArtificial())
1936     return MethodOptions::CompilerGenerated;
1937 
1938   // FIXME: Handle other MethodOptions.
1939 
1940   return MethodOptions::None;
1941 }
1942 
1943 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1944                                            bool Introduced) {
1945   if (SP->getFlags() & DINode::FlagStaticMember)
1946     return MethodKind::Static;
1947 
1948   switch (SP->getVirtuality()) {
1949   case dwarf::DW_VIRTUALITY_none:
1950     break;
1951   case dwarf::DW_VIRTUALITY_virtual:
1952     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1953   case dwarf::DW_VIRTUALITY_pure_virtual:
1954     return Introduced ? MethodKind::PureIntroducingVirtual
1955                       : MethodKind::PureVirtual;
1956   default:
1957     llvm_unreachable("unhandled virtuality case");
1958   }
1959 
1960   return MethodKind::Vanilla;
1961 }
1962 
1963 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1964   switch (Ty->getTag()) {
1965   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1966   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1967   }
1968   llvm_unreachable("unexpected tag");
1969 }
1970 
1971 /// Return ClassOptions that should be present on both the forward declaration
1972 /// and the defintion of a tag type.
1973 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1974   ClassOptions CO = ClassOptions::None;
1975 
1976   // MSVC always sets this flag, even for local types. Clang doesn't always
1977   // appear to give every type a linkage name, which may be problematic for us.
1978   // FIXME: Investigate the consequences of not following them here.
1979   if (!Ty->getIdentifier().empty())
1980     CO |= ClassOptions::HasUniqueName;
1981 
1982   // Put the Nested flag on a type if it appears immediately inside a tag type.
1983   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1984   // here. That flag is only set on definitions, and not forward declarations.
1985   const DIScope *ImmediateScope = Ty->getScope().resolve();
1986   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1987     CO |= ClassOptions::Nested;
1988 
1989   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
1990   // type only when it has an immediate function scope. Clang never puts enums
1991   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
1992   // always in function, class, or file scopes.
1993   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
1994     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
1995       CO |= ClassOptions::Scoped;
1996   } else {
1997     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1998          Scope = Scope->getScope().resolve()) {
1999       if (isa<DISubprogram>(Scope)) {
2000         CO |= ClassOptions::Scoped;
2001         break;
2002       }
2003     }
2004   }
2005 
2006   return CO;
2007 }
2008 
2009 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2010   switch (Ty->getTag()) {
2011   case dwarf::DW_TAG_class_type:
2012   case dwarf::DW_TAG_structure_type:
2013   case dwarf::DW_TAG_union_type:
2014   case dwarf::DW_TAG_enumeration_type:
2015     break;
2016   default:
2017     return;
2018   }
2019 
2020   if (const auto *File = Ty->getFile()) {
2021     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2022     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2023 
2024     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2025     TypeTable.writeLeafType(USLR);
2026   }
2027 }
2028 
2029 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2030   ClassOptions CO = getCommonClassOptions(Ty);
2031   TypeIndex FTI;
2032   unsigned EnumeratorCount = 0;
2033 
2034   if (Ty->isForwardDecl()) {
2035     CO |= ClassOptions::ForwardReference;
2036   } else {
2037     ContinuationRecordBuilder ContinuationBuilder;
2038     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2039     for (const DINode *Element : Ty->getElements()) {
2040       // We assume that the frontend provides all members in source declaration
2041       // order, which is what MSVC does.
2042       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2043         EnumeratorRecord ER(MemberAccess::Public,
2044                             APSInt::getUnsigned(Enumerator->getValue()),
2045                             Enumerator->getName());
2046         ContinuationBuilder.writeMemberType(ER);
2047         EnumeratorCount++;
2048       }
2049     }
2050     FTI = TypeTable.insertRecord(ContinuationBuilder);
2051   }
2052 
2053   std::string FullName = getFullyQualifiedName(Ty);
2054 
2055   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2056                 getTypeIndex(Ty->getBaseType()));
2057   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2058 
2059   addUDTSrcLine(Ty, EnumTI);
2060 
2061   return EnumTI;
2062 }
2063 
2064 //===----------------------------------------------------------------------===//
2065 // ClassInfo
2066 //===----------------------------------------------------------------------===//
2067 
2068 struct llvm::ClassInfo {
2069   struct MemberInfo {
2070     const DIDerivedType *MemberTypeNode;
2071     uint64_t BaseOffset;
2072   };
2073   // [MemberInfo]
2074   using MemberList = std::vector<MemberInfo>;
2075 
2076   using MethodsList = TinyPtrVector<const DISubprogram *>;
2077   // MethodName -> MethodsList
2078   using MethodsMap = MapVector<MDString *, MethodsList>;
2079 
2080   /// Base classes.
2081   std::vector<const DIDerivedType *> Inheritance;
2082 
2083   /// Direct members.
2084   MemberList Members;
2085   // Direct overloaded methods gathered by name.
2086   MethodsMap Methods;
2087 
2088   TypeIndex VShapeTI;
2089 
2090   std::vector<const DIType *> NestedTypes;
2091 };
2092 
2093 void CodeViewDebug::clear() {
2094   assert(CurFn == nullptr);
2095   FileIdMap.clear();
2096   FnDebugInfo.clear();
2097   FileToFilepathMap.clear();
2098   LocalUDTs.clear();
2099   GlobalUDTs.clear();
2100   TypeIndices.clear();
2101   CompleteTypeIndices.clear();
2102 }
2103 
2104 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2105                                       const DIDerivedType *DDTy) {
2106   if (!DDTy->getName().empty()) {
2107     Info.Members.push_back({DDTy, 0});
2108     return;
2109   }
2110 
2111   // An unnamed member may represent a nested struct or union. Attempt to
2112   // interpret the unnamed member as a DICompositeType possibly wrapped in
2113   // qualifier types. Add all the indirect fields to the current record if that
2114   // succeeds, and drop the member if that fails.
2115   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2116   uint64_t Offset = DDTy->getOffsetInBits();
2117   const DIType *Ty = DDTy->getBaseType().resolve();
2118   bool FullyResolved = false;
2119   while (!FullyResolved) {
2120     switch (Ty->getTag()) {
2121     case dwarf::DW_TAG_const_type:
2122     case dwarf::DW_TAG_volatile_type:
2123       // FIXME: we should apply the qualifier types to the indirect fields
2124       // rather than dropping them.
2125       Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
2126       break;
2127     default:
2128       FullyResolved = true;
2129       break;
2130     }
2131   }
2132 
2133   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2134   if (!DCTy)
2135     return;
2136 
2137   ClassInfo NestedInfo = collectClassInfo(DCTy);
2138   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2139     Info.Members.push_back(
2140         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2141 }
2142 
2143 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2144   ClassInfo Info;
2145   // Add elements to structure type.
2146   DINodeArray Elements = Ty->getElements();
2147   for (auto *Element : Elements) {
2148     // We assume that the frontend provides all members in source declaration
2149     // order, which is what MSVC does.
2150     if (!Element)
2151       continue;
2152     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2153       Info.Methods[SP->getRawName()].push_back(SP);
2154     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2155       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2156         collectMemberInfo(Info, DDTy);
2157       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2158         Info.Inheritance.push_back(DDTy);
2159       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2160                  DDTy->getName() == "__vtbl_ptr_type") {
2161         Info.VShapeTI = getTypeIndex(DDTy);
2162       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2163         Info.NestedTypes.push_back(DDTy);
2164       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2165         // Ignore friend members. It appears that MSVC emitted info about
2166         // friends in the past, but modern versions do not.
2167       }
2168     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2169       Info.NestedTypes.push_back(Composite);
2170     }
2171     // Skip other unrecognized kinds of elements.
2172   }
2173   return Info;
2174 }
2175 
2176 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2177   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2178   // if a complete type should be emitted instead of a forward reference.
2179   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2180       !Ty->isForwardDecl();
2181 }
2182 
2183 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2184   // Emit the complete type for unnamed structs.  C++ classes with methods
2185   // which have a circular reference back to the class type are expected to
2186   // be named by the front-end and should not be "unnamed".  C unnamed
2187   // structs should not have circular references.
2188   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2189     // If this unnamed complete type is already in the process of being defined
2190     // then the description of the type is malformed and cannot be emitted
2191     // into CodeView correctly so report a fatal error.
2192     auto I = CompleteTypeIndices.find(Ty);
2193     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2194       report_fatal_error("cannot debug circular reference to unnamed type");
2195     return getCompleteTypeIndex(Ty);
2196   }
2197 
2198   // First, construct the forward decl.  Don't look into Ty to compute the
2199   // forward decl options, since it might not be available in all TUs.
2200   TypeRecordKind Kind = getRecordKind(Ty);
2201   ClassOptions CO =
2202       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2203   std::string FullName = getFullyQualifiedName(Ty);
2204   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2205                  FullName, Ty->getIdentifier());
2206   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2207   if (!Ty->isForwardDecl())
2208     DeferredCompleteTypes.push_back(Ty);
2209   return FwdDeclTI;
2210 }
2211 
2212 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2213   // Construct the field list and complete type record.
2214   TypeRecordKind Kind = getRecordKind(Ty);
2215   ClassOptions CO = getCommonClassOptions(Ty);
2216   TypeIndex FieldTI;
2217   TypeIndex VShapeTI;
2218   unsigned FieldCount;
2219   bool ContainsNestedClass;
2220   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2221       lowerRecordFieldList(Ty);
2222 
2223   if (ContainsNestedClass)
2224     CO |= ClassOptions::ContainsNestedClass;
2225 
2226   std::string FullName = getFullyQualifiedName(Ty);
2227 
2228   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2229 
2230   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2231                  SizeInBytes, FullName, Ty->getIdentifier());
2232   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2233 
2234   addUDTSrcLine(Ty, ClassTI);
2235 
2236   addToUDTs(Ty);
2237 
2238   return ClassTI;
2239 }
2240 
2241 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2242   // Emit the complete type for unnamed unions.
2243   if (shouldAlwaysEmitCompleteClassType(Ty))
2244     return getCompleteTypeIndex(Ty);
2245 
2246   ClassOptions CO =
2247       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2248   std::string FullName = getFullyQualifiedName(Ty);
2249   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2250   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2251   if (!Ty->isForwardDecl())
2252     DeferredCompleteTypes.push_back(Ty);
2253   return FwdDeclTI;
2254 }
2255 
2256 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2257   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2258   TypeIndex FieldTI;
2259   unsigned FieldCount;
2260   bool ContainsNestedClass;
2261   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2262       lowerRecordFieldList(Ty);
2263 
2264   if (ContainsNestedClass)
2265     CO |= ClassOptions::ContainsNestedClass;
2266 
2267   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2268   std::string FullName = getFullyQualifiedName(Ty);
2269 
2270   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2271                  Ty->getIdentifier());
2272   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2273 
2274   addUDTSrcLine(Ty, UnionTI);
2275 
2276   addToUDTs(Ty);
2277 
2278   return UnionTI;
2279 }
2280 
2281 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2282 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2283   // Manually count members. MSVC appears to count everything that generates a
2284   // field list record. Each individual overload in a method overload group
2285   // contributes to this count, even though the overload group is a single field
2286   // list record.
2287   unsigned MemberCount = 0;
2288   ClassInfo Info = collectClassInfo(Ty);
2289   ContinuationRecordBuilder ContinuationBuilder;
2290   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2291 
2292   // Create base classes.
2293   for (const DIDerivedType *I : Info.Inheritance) {
2294     if (I->getFlags() & DINode::FlagVirtual) {
2295       // Virtual base.
2296       unsigned VBPtrOffset = I->getVBPtrOffset();
2297       // FIXME: Despite the accessor name, the offset is really in bytes.
2298       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2299       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2300                             ? TypeRecordKind::IndirectVirtualBaseClass
2301                             : TypeRecordKind::VirtualBaseClass;
2302       VirtualBaseClassRecord VBCR(
2303           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2304           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2305           VBTableIndex);
2306 
2307       ContinuationBuilder.writeMemberType(VBCR);
2308       MemberCount++;
2309     } else {
2310       assert(I->getOffsetInBits() % 8 == 0 &&
2311              "bases must be on byte boundaries");
2312       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2313                           getTypeIndex(I->getBaseType()),
2314                           I->getOffsetInBits() / 8);
2315       ContinuationBuilder.writeMemberType(BCR);
2316       MemberCount++;
2317     }
2318   }
2319 
2320   // Create members.
2321   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2322     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2323     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2324     StringRef MemberName = Member->getName();
2325     MemberAccess Access =
2326         translateAccessFlags(Ty->getTag(), Member->getFlags());
2327 
2328     if (Member->isStaticMember()) {
2329       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2330       ContinuationBuilder.writeMemberType(SDMR);
2331       MemberCount++;
2332       continue;
2333     }
2334 
2335     // Virtual function pointer member.
2336     if ((Member->getFlags() & DINode::FlagArtificial) &&
2337         Member->getName().startswith("_vptr$")) {
2338       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2339       ContinuationBuilder.writeMemberType(VFPR);
2340       MemberCount++;
2341       continue;
2342     }
2343 
2344     // Data member.
2345     uint64_t MemberOffsetInBits =
2346         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2347     if (Member->isBitField()) {
2348       uint64_t StartBitOffset = MemberOffsetInBits;
2349       if (const auto *CI =
2350               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2351         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2352       }
2353       StartBitOffset -= MemberOffsetInBits;
2354       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2355                          StartBitOffset);
2356       MemberBaseType = TypeTable.writeLeafType(BFR);
2357     }
2358     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2359     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2360                          MemberName);
2361     ContinuationBuilder.writeMemberType(DMR);
2362     MemberCount++;
2363   }
2364 
2365   // Create methods
2366   for (auto &MethodItr : Info.Methods) {
2367     StringRef Name = MethodItr.first->getString();
2368 
2369     std::vector<OneMethodRecord> Methods;
2370     for (const DISubprogram *SP : MethodItr.second) {
2371       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2372       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2373 
2374       unsigned VFTableOffset = -1;
2375       if (Introduced)
2376         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2377 
2378       Methods.push_back(OneMethodRecord(
2379           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2380           translateMethodKindFlags(SP, Introduced),
2381           translateMethodOptionFlags(SP), VFTableOffset, Name));
2382       MemberCount++;
2383     }
2384     assert(!Methods.empty() && "Empty methods map entry");
2385     if (Methods.size() == 1)
2386       ContinuationBuilder.writeMemberType(Methods[0]);
2387     else {
2388       // FIXME: Make this use its own ContinuationBuilder so that
2389       // MethodOverloadList can be split correctly.
2390       MethodOverloadListRecord MOLR(Methods);
2391       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2392 
2393       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2394       ContinuationBuilder.writeMemberType(OMR);
2395     }
2396   }
2397 
2398   // Create nested classes.
2399   for (const DIType *Nested : Info.NestedTypes) {
2400     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2401     ContinuationBuilder.writeMemberType(R);
2402     MemberCount++;
2403   }
2404 
2405   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2406   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2407                          !Info.NestedTypes.empty());
2408 }
2409 
2410 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2411   if (!VBPType.getIndex()) {
2412     // Make a 'const int *' type.
2413     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2414     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2415 
2416     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2417                                                   : PointerKind::Near32;
2418     PointerMode PM = PointerMode::Pointer;
2419     PointerOptions PO = PointerOptions::None;
2420     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2421     VBPType = TypeTable.writeLeafType(PR);
2422   }
2423 
2424   return VBPType;
2425 }
2426 
2427 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2428   const DIType *Ty = TypeRef.resolve();
2429   const DIType *ClassTy = ClassTyRef.resolve();
2430 
2431   // The null DIType is the void type. Don't try to hash it.
2432   if (!Ty)
2433     return TypeIndex::Void();
2434 
2435   // Check if we've already translated this type. Don't try to do a
2436   // get-or-create style insertion that caches the hash lookup across the
2437   // lowerType call. It will update the TypeIndices map.
2438   auto I = TypeIndices.find({Ty, ClassTy});
2439   if (I != TypeIndices.end())
2440     return I->second;
2441 
2442   TypeLoweringScope S(*this);
2443   TypeIndex TI = lowerType(Ty, ClassTy);
2444   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2445 }
2446 
2447 codeview::TypeIndex
2448 CodeViewDebug::getTypeIndexForThisPtr(DITypeRef TypeRef,
2449                                       const DISubroutineType *SubroutineTy) {
2450   const DIType *Ty = TypeRef.resolve();
2451 
2452   PointerOptions Options = PointerOptions::None;
2453   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2454     Options = PointerOptions::LValueRefThisPointer;
2455   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2456     Options = PointerOptions::RValueRefThisPointer;
2457 
2458   // Check if we've already translated this type.  If there is no ref qualifier
2459   // on the function then we look up this pointer type with no associated class
2460   // so that the TypeIndex for the this pointer can be shared with the type
2461   // index for other pointers to this class type.  If there is a ref qualifier
2462   // then we lookup the pointer using the subroutine as the parent type.
2463   const DIType *ParentTy = nullptr;
2464   if (Options != PointerOptions::None)
2465     ParentTy = SubroutineTy;
2466 
2467   auto I = TypeIndices.find({Ty, SubroutineTy});
2468   if (I != TypeIndices.end())
2469     return I->second;
2470 
2471   TypeLoweringScope S(*this);
2472   TypeIndex TI = lowerTypePointer(cast<DIDerivedType>(Ty), Options);
2473   return recordTypeIndexForDINode(Ty, TI, SubroutineTy);
2474 }
2475 
2476 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2477   DIType *Ty = TypeRef.resolve();
2478   PointerRecord PR(getTypeIndex(Ty),
2479                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2480                                                 : PointerKind::Near32,
2481                    PointerMode::LValueReference, PointerOptions::None,
2482                    Ty->getSizeInBits() / 8);
2483   return TypeTable.writeLeafType(PR);
2484 }
2485 
2486 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2487   const DIType *Ty = TypeRef.resolve();
2488 
2489   // The null DIType is the void type. Don't try to hash it.
2490   if (!Ty)
2491     return TypeIndex::Void();
2492 
2493   // If this is a non-record type, the complete type index is the same as the
2494   // normal type index. Just call getTypeIndex.
2495   switch (Ty->getTag()) {
2496   case dwarf::DW_TAG_class_type:
2497   case dwarf::DW_TAG_structure_type:
2498   case dwarf::DW_TAG_union_type:
2499     break;
2500   default:
2501     return getTypeIndex(Ty);
2502   }
2503 
2504   // Check if we've already translated the complete record type.
2505   const auto *CTy = cast<DICompositeType>(Ty);
2506   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2507   if (!InsertResult.second)
2508     return InsertResult.first->second;
2509 
2510   TypeLoweringScope S(*this);
2511 
2512   // Make sure the forward declaration is emitted first. It's unclear if this
2513   // is necessary, but MSVC does it, and we should follow suit until we can show
2514   // otherwise.
2515   // We only emit a forward declaration for named types.
2516   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2517     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2518 
2519     // Just use the forward decl if we don't have complete type info. This
2520     // might happen if the frontend is using modules and expects the complete
2521     // definition to be emitted elsewhere.
2522     if (CTy->isForwardDecl())
2523       return FwdDeclTI;
2524   }
2525 
2526   TypeIndex TI;
2527   switch (CTy->getTag()) {
2528   case dwarf::DW_TAG_class_type:
2529   case dwarf::DW_TAG_structure_type:
2530     TI = lowerCompleteTypeClass(CTy);
2531     break;
2532   case dwarf::DW_TAG_union_type:
2533     TI = lowerCompleteTypeUnion(CTy);
2534     break;
2535   default:
2536     llvm_unreachable("not a record");
2537   }
2538 
2539   // Update the type index associated with this CompositeType.  This cannot
2540   // use the 'InsertResult' iterator above because it is potentially
2541   // invalidated by map insertions which can occur while lowering the class
2542   // type above.
2543   CompleteTypeIndices[CTy] = TI;
2544   return TI;
2545 }
2546 
2547 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2548 /// and do this until fixpoint, as each complete record type typically
2549 /// references
2550 /// many other record types.
2551 void CodeViewDebug::emitDeferredCompleteTypes() {
2552   SmallVector<const DICompositeType *, 4> TypesToEmit;
2553   while (!DeferredCompleteTypes.empty()) {
2554     std::swap(DeferredCompleteTypes, TypesToEmit);
2555     for (const DICompositeType *RecordTy : TypesToEmit)
2556       getCompleteTypeIndex(RecordTy);
2557     TypesToEmit.clear();
2558   }
2559 }
2560 
2561 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2562                                           ArrayRef<LocalVariable> Locals) {
2563   // Get the sorted list of parameters and emit them first.
2564   SmallVector<const LocalVariable *, 6> Params;
2565   for (const LocalVariable &L : Locals)
2566     if (L.DIVar->isParameter())
2567       Params.push_back(&L);
2568   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2569     return L->DIVar->getArg() < R->DIVar->getArg();
2570   });
2571   for (const LocalVariable *L : Params)
2572     emitLocalVariable(FI, *L);
2573 
2574   // Next emit all non-parameters in the order that we found them.
2575   for (const LocalVariable &L : Locals)
2576     if (!L.DIVar->isParameter())
2577       emitLocalVariable(FI, L);
2578 }
2579 
2580 /// Only call this on endian-specific types like ulittle16_t and little32_t, or
2581 /// structs composed of them.
2582 template <typename T>
2583 static void copyBytesForDefRange(SmallString<20> &BytePrefix,
2584                                  SymbolKind SymKind, const T &DefRangeHeader) {
2585   BytePrefix.resize(2 + sizeof(T));
2586   ulittle16_t SymKindLE = ulittle16_t(SymKind);
2587   memcpy(&BytePrefix[0], &SymKindLE, 2);
2588   memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T));
2589 }
2590 
2591 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2592                                       const LocalVariable &Var) {
2593   // LocalSym record, see SymbolRecord.h for more info.
2594   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2595            *LocalEnd = MMI->getContext().createTempSymbol();
2596   OS.AddComment("Record length");
2597   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2598   OS.EmitLabel(LocalBegin);
2599 
2600   OS.AddComment("Record kind: S_LOCAL");
2601   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2602 
2603   LocalSymFlags Flags = LocalSymFlags::None;
2604   if (Var.DIVar->isParameter())
2605     Flags |= LocalSymFlags::IsParameter;
2606   if (Var.DefRanges.empty())
2607     Flags |= LocalSymFlags::IsOptimizedOut;
2608 
2609   OS.AddComment("TypeIndex");
2610   TypeIndex TI = Var.UseReferenceType
2611                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2612                      : getCompleteTypeIndex(Var.DIVar->getType());
2613   OS.EmitIntValue(TI.getIndex(), 4);
2614   OS.AddComment("Flags");
2615   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2616   // Truncate the name so we won't overflow the record length field.
2617   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2618   OS.EmitLabel(LocalEnd);
2619 
2620   // Calculate the on disk prefix of the appropriate def range record. The
2621   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2622   // should be big enough to hold all forms without memory allocation.
2623   SmallString<20> BytePrefix;
2624   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2625     BytePrefix.clear();
2626     if (DefRange.InMemory) {
2627       int Offset = DefRange.DataOffset;
2628       unsigned Reg = DefRange.CVRegister;
2629 
2630       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2631       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2632       // instead. In frames without stack realignment, $T0 will be the CFA.
2633       if (RegisterId(Reg) == RegisterId::ESP) {
2634         Reg = unsigned(RegisterId::VFRAME);
2635         Offset += FI.OffsetAdjustment;
2636       }
2637 
2638       // If we can use the chosen frame pointer for the frame and this isn't a
2639       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2640       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2641       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2642       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2643           (bool(Flags & LocalSymFlags::IsParameter)
2644                ? (EncFP == FI.EncodedParamFramePtrReg)
2645                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2646         little32_t FPOffset = little32_t(Offset);
2647         copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset);
2648       } else {
2649         uint16_t RegRelFlags = 0;
2650         if (DefRange.IsSubfield) {
2651           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2652                         (DefRange.StructOffset
2653                          << DefRangeRegisterRelSym::OffsetInParentShift);
2654         }
2655         DefRangeRegisterRelSym::Header DRHdr;
2656         DRHdr.Register = Reg;
2657         DRHdr.Flags = RegRelFlags;
2658         DRHdr.BasePointerOffset = Offset;
2659         copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr);
2660       }
2661     } else {
2662       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2663       if (DefRange.IsSubfield) {
2664         DefRangeSubfieldRegisterSym::Header DRHdr;
2665         DRHdr.Register = DefRange.CVRegister;
2666         DRHdr.MayHaveNoName = 0;
2667         DRHdr.OffsetInParent = DefRange.StructOffset;
2668         copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr);
2669       } else {
2670         DefRangeRegisterSym::Header DRHdr;
2671         DRHdr.Register = DefRange.CVRegister;
2672         DRHdr.MayHaveNoName = 0;
2673         copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr);
2674       }
2675     }
2676     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2677   }
2678 }
2679 
2680 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2681                                          const FunctionInfo& FI) {
2682   for (LexicalBlock *Block : Blocks)
2683     emitLexicalBlock(*Block, FI);
2684 }
2685 
2686 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2687 /// lexical block scope.
2688 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2689                                      const FunctionInfo& FI) {
2690   MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(),
2691            *RecordEnd   = MMI->getContext().createTempSymbol();
2692 
2693   // Lexical block symbol record.
2694   OS.AddComment("Record length");
2695   OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2);   // Record Length
2696   OS.EmitLabel(RecordBegin);
2697   OS.AddComment("Record kind: S_BLOCK32");
2698   OS.EmitIntValue(SymbolKind::S_BLOCK32, 2);              // Record Kind
2699   OS.AddComment("PtrParent");
2700   OS.EmitIntValue(0, 4);                                  // PtrParent
2701   OS.AddComment("PtrEnd");
2702   OS.EmitIntValue(0, 4);                                  // PtrEnd
2703   OS.AddComment("Code size");
2704   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2705   OS.AddComment("Function section relative address");
2706   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2707   OS.AddComment("Function section index");
2708   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2709   OS.AddComment("Lexical block name");
2710   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2711   OS.EmitLabel(RecordEnd);
2712 
2713   // Emit variables local to this lexical block.
2714   emitLocalVariableList(FI, Block.Locals);
2715 
2716   // Emit lexical blocks contained within this block.
2717   emitLexicalBlockList(Block.Children, FI);
2718 
2719   // Close the lexical block scope.
2720   OS.AddComment("Record length");
2721   OS.EmitIntValue(2, 2);                                  // Record Length
2722   OS.AddComment("Record kind: S_END");
2723   OS.EmitIntValue(SymbolKind::S_END, 2);                  // Record Kind
2724 }
2725 
2726 /// Convenience routine for collecting lexical block information for a list
2727 /// of lexical scopes.
2728 void CodeViewDebug::collectLexicalBlockInfo(
2729         SmallVectorImpl<LexicalScope *> &Scopes,
2730         SmallVectorImpl<LexicalBlock *> &Blocks,
2731         SmallVectorImpl<LocalVariable> &Locals) {
2732   for (LexicalScope *Scope : Scopes)
2733     collectLexicalBlockInfo(*Scope, Blocks, Locals);
2734 }
2735 
2736 /// Populate the lexical blocks and local variable lists of the parent with
2737 /// information about the specified lexical scope.
2738 void CodeViewDebug::collectLexicalBlockInfo(
2739     LexicalScope &Scope,
2740     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2741     SmallVectorImpl<LocalVariable> &ParentLocals) {
2742   if (Scope.isAbstractScope())
2743     return;
2744 
2745   auto LocalsIter = ScopeVariables.find(&Scope);
2746   if (LocalsIter == ScopeVariables.end()) {
2747     // This scope does not contain variables and can be eliminated.
2748     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2749     return;
2750   }
2751   SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second;
2752 
2753   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2754   if (!DILB) {
2755     // This scope is not a lexical block and can be eliminated, but keep any
2756     // local variables it contains.
2757     ParentLocals.append(Locals.begin(), Locals.end());
2758     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2759     return;
2760   }
2761 
2762   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2763   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) {
2764     // This lexical block scope has too many address ranges to represent in the
2765     // current CodeView format or does not have a valid address range.
2766     // Eliminate this lexical scope and promote any locals it contains to the
2767     // parent scope.
2768     //
2769     // For lexical scopes with multiple address ranges you may be tempted to
2770     // construct a single range covering every instruction where the block is
2771     // live and everything in between.  Unfortunately, Visual Studio only
2772     // displays variables from the first matching lexical block scope.  If the
2773     // first lexical block contains exception handling code or cold code which
2774     // is moved to the bottom of the routine creating a single range covering
2775     // nearly the entire routine, then it will hide all other lexical blocks
2776     // and the variables they contain.
2777     //
2778     ParentLocals.append(Locals.begin(), Locals.end());
2779     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2780     return;
2781   }
2782 
2783   // Create a new CodeView lexical block for this lexical scope.  If we've
2784   // seen this DILexicalBlock before then the scope tree is malformed and
2785   // we can handle this gracefully by not processing it a second time.
2786   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2787   if (!BlockInsertion.second)
2788     return;
2789 
2790   // Create a lexical block containing the local variables and collect the
2791   // the lexical block information for the children.
2792   const InsnRange &Range = Ranges.front();
2793   assert(Range.first && Range.second);
2794   LexicalBlock &Block = BlockInsertion.first->second;
2795   Block.Begin = getLabelBeforeInsn(Range.first);
2796   Block.End = getLabelAfterInsn(Range.second);
2797   assert(Block.Begin && "missing label for scope begin");
2798   assert(Block.End && "missing label for scope end");
2799   Block.Name = DILB->getName();
2800   Block.Locals = std::move(Locals);
2801   ParentBlocks.push_back(&Block);
2802   collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals);
2803 }
2804 
2805 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2806   const Function &GV = MF->getFunction();
2807   assert(FnDebugInfo.count(&GV));
2808   assert(CurFn == FnDebugInfo[&GV].get());
2809 
2810   collectVariableInfo(GV.getSubprogram());
2811 
2812   // Build the lexical block structure to emit for this routine.
2813   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2814     collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals);
2815 
2816   // Clear the scope and variable information from the map which will not be
2817   // valid after we have finished processing this routine.  This also prepares
2818   // the map for the subsequent routine.
2819   ScopeVariables.clear();
2820 
2821   // Don't emit anything if we don't have any line tables.
2822   // Thunks are compiler-generated and probably won't have source correlation.
2823   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2824     FnDebugInfo.erase(&GV);
2825     CurFn = nullptr;
2826     return;
2827   }
2828 
2829   CurFn->Annotations = MF->getCodeViewAnnotations();
2830 
2831   CurFn->End = Asm->getFunctionEnd();
2832 
2833   CurFn = nullptr;
2834 }
2835 
2836 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2837   DebugHandlerBase::beginInstruction(MI);
2838 
2839   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2840   if (!Asm || !CurFn || MI->isDebugInstr() ||
2841       MI->getFlag(MachineInstr::FrameSetup))
2842     return;
2843 
2844   // If the first instruction of a new MBB has no location, find the first
2845   // instruction with a location and use that.
2846   DebugLoc DL = MI->getDebugLoc();
2847   if (!DL && MI->getParent() != PrevInstBB) {
2848     for (const auto &NextMI : *MI->getParent()) {
2849       if (NextMI.isDebugInstr())
2850         continue;
2851       DL = NextMI.getDebugLoc();
2852       if (DL)
2853         break;
2854     }
2855   }
2856   PrevInstBB = MI->getParent();
2857 
2858   // If we still don't have a debug location, don't record a location.
2859   if (!DL)
2860     return;
2861 
2862   maybeRecordLocation(DL, Asm->MF);
2863 }
2864 
2865 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2866   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2867            *EndLabel = MMI->getContext().createTempSymbol();
2868   OS.EmitIntValue(unsigned(Kind), 4);
2869   OS.AddComment("Subsection size");
2870   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2871   OS.EmitLabel(BeginLabel);
2872   return EndLabel;
2873 }
2874 
2875 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2876   OS.EmitLabel(EndLabel);
2877   // Every subsection must be aligned to a 4-byte boundary.
2878   OS.EmitValueToAlignment(4);
2879 }
2880 
2881 void CodeViewDebug::emitDebugInfoForUDTs(
2882     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2883   for (const auto &UDT : UDTs) {
2884     const DIType *T = UDT.second;
2885     assert(shouldEmitUdt(T));
2886 
2887     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2888              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2889     OS.AddComment("Record length");
2890     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2891     OS.EmitLabel(UDTRecordBegin);
2892 
2893     OS.AddComment("Record kind: S_UDT");
2894     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2895 
2896     OS.AddComment("Type");
2897     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2898 
2899     emitNullTerminatedSymbolName(OS, UDT.first);
2900     OS.EmitLabel(UDTRecordEnd);
2901   }
2902 }
2903 
2904 void CodeViewDebug::emitDebugInfoForGlobals() {
2905   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2906       GlobalMap;
2907   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2908     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2909     GV.getDebugInfo(GVEs);
2910     for (const auto *GVE : GVEs)
2911       GlobalMap[GVE] = &GV;
2912   }
2913 
2914   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2915   for (const MDNode *Node : CUs->operands()) {
2916     const auto *CU = cast<DICompileUnit>(Node);
2917 
2918     // First, emit all globals that are not in a comdat in a single symbol
2919     // substream. MSVC doesn't like it if the substream is empty, so only open
2920     // it if we have at least one global to emit.
2921     switchToDebugSectionForSymbol(nullptr);
2922     MCSymbol *EndLabel = nullptr;
2923     for (const auto *GVE : CU->getGlobalVariables()) {
2924       if (const auto *GV = GlobalMap.lookup(GVE))
2925         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2926           if (!EndLabel) {
2927             OS.AddComment("Symbol subsection for globals");
2928             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2929           }
2930           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2931           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2932         }
2933     }
2934     if (EndLabel)
2935       endCVSubsection(EndLabel);
2936 
2937     // Second, emit each global that is in a comdat into its own .debug$S
2938     // section along with its own symbol substream.
2939     for (const auto *GVE : CU->getGlobalVariables()) {
2940       if (const auto *GV = GlobalMap.lookup(GVE)) {
2941         if (GV->hasComdat()) {
2942           MCSymbol *GVSym = Asm->getSymbol(GV);
2943           OS.AddComment("Symbol subsection for " +
2944                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2945           switchToDebugSectionForSymbol(GVSym);
2946           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2947           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2948           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2949           endCVSubsection(EndLabel);
2950         }
2951       }
2952     }
2953   }
2954 }
2955 
2956 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2957   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2958   for (const MDNode *Node : CUs->operands()) {
2959     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2960       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2961         getTypeIndex(RT);
2962         // FIXME: Add to global/local DTU list.
2963       }
2964     }
2965   }
2966 }
2967 
2968 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2969                                            const GlobalVariable *GV,
2970                                            MCSymbol *GVSym) {
2971   // DataSym record, see SymbolRecord.h for more info.
2972   // FIXME: Thread local data, etc
2973   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2974            *DataEnd = MMI->getContext().createTempSymbol();
2975   const unsigned FixedLengthOfThisRecord = 12;
2976   OS.AddComment("Record length");
2977   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2978   OS.EmitLabel(DataBegin);
2979   if (DIGV->isLocalToUnit()) {
2980     if (GV->isThreadLocal()) {
2981       OS.AddComment("Record kind: S_LTHREAD32");
2982       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2983     } else {
2984       OS.AddComment("Record kind: S_LDATA32");
2985       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2986     }
2987   } else {
2988     if (GV->isThreadLocal()) {
2989       OS.AddComment("Record kind: S_GTHREAD32");
2990       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2991     } else {
2992       OS.AddComment("Record kind: S_GDATA32");
2993       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2994     }
2995   }
2996   OS.AddComment("Type");
2997   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2998   OS.AddComment("DataOffset");
2999   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3000   OS.AddComment("Segment");
3001   OS.EmitCOFFSectionIndex(GVSym);
3002   OS.AddComment("Name");
3003   emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord);
3004   OS.EmitLabel(DataEnd);
3005 }
3006