1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/BinaryFormat/Dwarf.h" 26 #include "llvm/CodeGen/AsmPrinter.h" 27 #include "llvm/CodeGen/LexicalScopes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/TargetFrameLowering.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/Config/llvm-config.h" 37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/EnumTables.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/BinaryStreamWriter.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/SMLoc.h" 72 #include "llvm/Support/ScopedPrinter.h" 73 #include "llvm/Target/TargetLoweringObjectFile.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <iterator> 80 #include <limits> 81 82 using namespace llvm; 83 using namespace llvm::codeview; 84 85 namespace { 86 class CVMCAdapter : public CodeViewRecordStreamer { 87 public: 88 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 89 : OS(&OS), TypeTable(TypeTable) {} 90 91 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 92 93 void emitIntValue(uint64_t Value, unsigned Size) override { 94 OS->emitIntValueInHex(Value, Size); 95 } 96 97 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 98 99 void AddComment(const Twine &T) override { OS->AddComment(T); } 100 101 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 102 103 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 104 105 std::string getTypeName(TypeIndex TI) override { 106 std::string TypeName; 107 if (!TI.isNoneType()) { 108 if (TI.isSimple()) 109 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 110 else 111 TypeName = std::string(TypeTable.getTypeName(TI)); 112 } 113 return TypeName; 114 } 115 116 private: 117 MCStreamer *OS = nullptr; 118 TypeCollection &TypeTable; 119 }; 120 } // namespace 121 122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 123 switch (Type) { 124 case Triple::ArchType::x86: 125 return CPUType::Pentium3; 126 case Triple::ArchType::x86_64: 127 return CPUType::X64; 128 case Triple::ArchType::thumb: 129 // LLVM currently doesn't support Windows CE and so thumb 130 // here is indiscriminately mapped to ARMNT specifically. 131 return CPUType::ARMNT; 132 case Triple::ArchType::aarch64: 133 return CPUType::ARM64; 134 default: 135 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 136 } 137 } 138 139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 140 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} 141 142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 143 std::string &Filepath = FileToFilepathMap[File]; 144 if (!Filepath.empty()) 145 return Filepath; 146 147 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 148 149 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 150 // it textually because one of the path components could be a symlink. 151 if (Dir.startswith("/") || Filename.startswith("/")) { 152 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 153 return Filename; 154 Filepath = std::string(Dir); 155 if (Dir.back() != '/') 156 Filepath += '/'; 157 Filepath += Filename; 158 return Filepath; 159 } 160 161 // Clang emits directory and relative filename info into the IR, but CodeView 162 // operates on full paths. We could change Clang to emit full paths too, but 163 // that would increase the IR size and probably not needed for other users. 164 // For now, just concatenate and canonicalize the path here. 165 if (Filename.find(':') == 1) 166 Filepath = std::string(Filename); 167 else 168 Filepath = (Dir + "\\" + Filename).str(); 169 170 // Canonicalize the path. We have to do it textually because we may no longer 171 // have access the file in the filesystem. 172 // First, replace all slashes with backslashes. 173 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 174 175 // Remove all "\.\" with "\". 176 size_t Cursor = 0; 177 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 178 Filepath.erase(Cursor, 2); 179 180 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 181 // path should be well-formatted, e.g. start with a drive letter, etc. 182 Cursor = 0; 183 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 184 // Something's wrong if the path starts with "\..\", abort. 185 if (Cursor == 0) 186 break; 187 188 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 189 if (PrevSlash == std::string::npos) 190 // Something's wrong, abort. 191 break; 192 193 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 194 // The next ".." might be following the one we've just erased. 195 Cursor = PrevSlash; 196 } 197 198 // Remove all duplicate backslashes. 199 Cursor = 0; 200 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 201 Filepath.erase(Cursor, 1); 202 203 return Filepath; 204 } 205 206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 207 StringRef FullPath = getFullFilepath(F); 208 unsigned NextId = FileIdMap.size() + 1; 209 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 210 if (Insertion.second) { 211 // We have to compute the full filepath and emit a .cv_file directive. 212 ArrayRef<uint8_t> ChecksumAsBytes; 213 FileChecksumKind CSKind = FileChecksumKind::None; 214 if (F->getChecksum()) { 215 std::string Checksum = fromHex(F->getChecksum()->Value); 216 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 217 memcpy(CKMem, Checksum.data(), Checksum.size()); 218 ChecksumAsBytes = ArrayRef<uint8_t>( 219 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 220 switch (F->getChecksum()->Kind) { 221 case DIFile::CSK_MD5: 222 CSKind = FileChecksumKind::MD5; 223 break; 224 case DIFile::CSK_SHA1: 225 CSKind = FileChecksumKind::SHA1; 226 break; 227 case DIFile::CSK_SHA256: 228 CSKind = FileChecksumKind::SHA256; 229 break; 230 } 231 } 232 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 233 static_cast<unsigned>(CSKind)); 234 (void)Success; 235 assert(Success && ".cv_file directive failed"); 236 } 237 return Insertion.first->second; 238 } 239 240 CodeViewDebug::InlineSite & 241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 242 const DISubprogram *Inlinee) { 243 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 244 InlineSite *Site = &SiteInsertion.first->second; 245 if (SiteInsertion.second) { 246 unsigned ParentFuncId = CurFn->FuncId; 247 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 248 ParentFuncId = 249 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 250 .SiteFuncId; 251 252 Site->SiteFuncId = NextFuncId++; 253 OS.EmitCVInlineSiteIdDirective( 254 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 255 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 256 Site->Inlinee = Inlinee; 257 InlinedSubprograms.insert(Inlinee); 258 getFuncIdForSubprogram(Inlinee); 259 } 260 return *Site; 261 } 262 263 static StringRef getPrettyScopeName(const DIScope *Scope) { 264 StringRef ScopeName = Scope->getName(); 265 if (!ScopeName.empty()) 266 return ScopeName; 267 268 switch (Scope->getTag()) { 269 case dwarf::DW_TAG_enumeration_type: 270 case dwarf::DW_TAG_class_type: 271 case dwarf::DW_TAG_structure_type: 272 case dwarf::DW_TAG_union_type: 273 return "<unnamed-tag>"; 274 case dwarf::DW_TAG_namespace: 275 return "`anonymous namespace'"; 276 } 277 278 return StringRef(); 279 } 280 281 const DISubprogram *CodeViewDebug::collectParentScopeNames( 282 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 283 const DISubprogram *ClosestSubprogram = nullptr; 284 while (Scope != nullptr) { 285 if (ClosestSubprogram == nullptr) 286 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 287 288 // If a type appears in a scope chain, make sure it gets emitted. The 289 // frontend will be responsible for deciding if this should be a forward 290 // declaration or a complete type. 291 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 292 DeferredCompleteTypes.push_back(Ty); 293 294 StringRef ScopeName = getPrettyScopeName(Scope); 295 if (!ScopeName.empty()) 296 QualifiedNameComponents.push_back(ScopeName); 297 Scope = Scope->getScope(); 298 } 299 return ClosestSubprogram; 300 } 301 302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 303 StringRef TypeName) { 304 std::string FullyQualifiedName; 305 for (StringRef QualifiedNameComponent : 306 llvm::reverse(QualifiedNameComponents)) { 307 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 308 FullyQualifiedName.append("::"); 309 } 310 FullyQualifiedName.append(std::string(TypeName)); 311 return FullyQualifiedName; 312 } 313 314 struct CodeViewDebug::TypeLoweringScope { 315 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 316 ~TypeLoweringScope() { 317 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 318 // inner TypeLoweringScopes don't attempt to emit deferred types. 319 if (CVD.TypeEmissionLevel == 1) 320 CVD.emitDeferredCompleteTypes(); 321 --CVD.TypeEmissionLevel; 322 } 323 CodeViewDebug &CVD; 324 }; 325 326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 327 StringRef Name) { 328 // Ensure types in the scope chain are emitted as soon as possible. 329 // This can create otherwise a situation where S_UDTs are emitted while 330 // looping in emitDebugInfoForUDTs. 331 TypeLoweringScope S(*this); 332 SmallVector<StringRef, 5> QualifiedNameComponents; 333 collectParentScopeNames(Scope, QualifiedNameComponents); 334 return formatNestedName(QualifiedNameComponents, Name); 335 } 336 337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 338 const DIScope *Scope = Ty->getScope(); 339 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 340 } 341 342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 343 // No scope means global scope and that uses the zero index. 344 if (!Scope || isa<DIFile>(Scope)) 345 return TypeIndex(); 346 347 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 348 349 // Check if we've already translated this scope. 350 auto I = TypeIndices.find({Scope, nullptr}); 351 if (I != TypeIndices.end()) 352 return I->second; 353 354 // Build the fully qualified name of the scope. 355 std::string ScopeName = getFullyQualifiedName(Scope); 356 StringIdRecord SID(TypeIndex(), ScopeName); 357 auto TI = TypeTable.writeLeafType(SID); 358 return recordTypeIndexForDINode(Scope, TI); 359 } 360 361 static StringRef removeTemplateArgs(StringRef Name) { 362 // Remove template args from the display name. Assume that the template args 363 // are the last thing in the name. 364 if (Name.empty() || Name.back() != '>') 365 return Name; 366 367 int OpenBrackets = 0; 368 for (int i = Name.size() - 1; i >= 0; --i) { 369 if (Name[i] == '>') 370 ++OpenBrackets; 371 else if (Name[i] == '<') { 372 --OpenBrackets; 373 if (OpenBrackets == 0) 374 return Name.substr(0, i); 375 } 376 } 377 return Name; 378 } 379 380 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 381 assert(SP); 382 383 // Check if we've already translated this subprogram. 384 auto I = TypeIndices.find({SP, nullptr}); 385 if (I != TypeIndices.end()) 386 return I->second; 387 388 // The display name includes function template arguments. Drop them to match 389 // MSVC. We need to have the template arguments in the DISubprogram name 390 // because they are used in other symbol records, such as S_GPROC32_IDs. 391 StringRef DisplayName = removeTemplateArgs(SP->getName()); 392 393 const DIScope *Scope = SP->getScope(); 394 TypeIndex TI; 395 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 396 // If the scope is a DICompositeType, then this must be a method. Member 397 // function types take some special handling, and require access to the 398 // subprogram. 399 TypeIndex ClassType = getTypeIndex(Class); 400 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 401 DisplayName); 402 TI = TypeTable.writeLeafType(MFuncId); 403 } else { 404 // Otherwise, this must be a free function. 405 TypeIndex ParentScope = getScopeIndex(Scope); 406 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 407 TI = TypeTable.writeLeafType(FuncId); 408 } 409 410 return recordTypeIndexForDINode(SP, TI); 411 } 412 413 static bool isNonTrivial(const DICompositeType *DCTy) { 414 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 415 } 416 417 static FunctionOptions 418 getFunctionOptions(const DISubroutineType *Ty, 419 const DICompositeType *ClassTy = nullptr, 420 StringRef SPName = StringRef("")) { 421 FunctionOptions FO = FunctionOptions::None; 422 const DIType *ReturnTy = nullptr; 423 if (auto TypeArray = Ty->getTypeArray()) { 424 if (TypeArray.size()) 425 ReturnTy = TypeArray[0]; 426 } 427 428 // Add CxxReturnUdt option to functions that return nontrivial record types 429 // or methods that return record types. 430 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 431 if (isNonTrivial(ReturnDCTy) || ClassTy) 432 FO |= FunctionOptions::CxxReturnUdt; 433 434 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 435 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 436 FO |= FunctionOptions::Constructor; 437 438 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 439 440 } 441 return FO; 442 } 443 444 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 445 const DICompositeType *Class) { 446 // Always use the method declaration as the key for the function type. The 447 // method declaration contains the this adjustment. 448 if (SP->getDeclaration()) 449 SP = SP->getDeclaration(); 450 assert(!SP->getDeclaration() && "should use declaration as key"); 451 452 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 453 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 454 auto I = TypeIndices.find({SP, Class}); 455 if (I != TypeIndices.end()) 456 return I->second; 457 458 // Make sure complete type info for the class is emitted *after* the member 459 // function type, as the complete class type is likely to reference this 460 // member function type. 461 TypeLoweringScope S(*this); 462 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 463 464 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 465 TypeIndex TI = lowerTypeMemberFunction( 466 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 467 return recordTypeIndexForDINode(SP, TI, Class); 468 } 469 470 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 471 TypeIndex TI, 472 const DIType *ClassTy) { 473 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 474 (void)InsertResult; 475 assert(InsertResult.second && "DINode was already assigned a type index"); 476 return TI; 477 } 478 479 unsigned CodeViewDebug::getPointerSizeInBytes() { 480 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 481 } 482 483 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 484 const LexicalScope *LS) { 485 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 486 // This variable was inlined. Associate it with the InlineSite. 487 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 488 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 489 Site.InlinedLocals.emplace_back(Var); 490 } else { 491 // This variable goes into the corresponding lexical scope. 492 ScopeVariables[LS].emplace_back(Var); 493 } 494 } 495 496 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 497 const DILocation *Loc) { 498 if (!llvm::is_contained(Locs, Loc)) 499 Locs.push_back(Loc); 500 } 501 502 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 503 const MachineFunction *MF) { 504 // Skip this instruction if it has the same location as the previous one. 505 if (!DL || DL == PrevInstLoc) 506 return; 507 508 const DIScope *Scope = DL.get()->getScope(); 509 if (!Scope) 510 return; 511 512 // Skip this line if it is longer than the maximum we can record. 513 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 514 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 515 LI.isNeverStepInto()) 516 return; 517 518 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 519 if (CI.getStartColumn() != DL.getCol()) 520 return; 521 522 if (!CurFn->HaveLineInfo) 523 CurFn->HaveLineInfo = true; 524 unsigned FileId = 0; 525 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 526 FileId = CurFn->LastFileId; 527 else 528 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 529 PrevInstLoc = DL; 530 531 unsigned FuncId = CurFn->FuncId; 532 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 533 const DILocation *Loc = DL.get(); 534 535 // If this location was actually inlined from somewhere else, give it the ID 536 // of the inline call site. 537 FuncId = 538 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 539 540 // Ensure we have links in the tree of inline call sites. 541 bool FirstLoc = true; 542 while ((SiteLoc = Loc->getInlinedAt())) { 543 InlineSite &Site = 544 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 545 if (!FirstLoc) 546 addLocIfNotPresent(Site.ChildSites, Loc); 547 FirstLoc = false; 548 Loc = SiteLoc; 549 } 550 addLocIfNotPresent(CurFn->ChildSites, Loc); 551 } 552 553 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 554 /*PrologueEnd=*/false, /*IsStmt=*/false, 555 DL->getFilename(), SMLoc()); 556 } 557 558 void CodeViewDebug::emitCodeViewMagicVersion() { 559 OS.emitValueToAlignment(4); 560 OS.AddComment("Debug section magic"); 561 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 562 } 563 564 void CodeViewDebug::beginModule(Module *M) { 565 // If module doesn't have named metadata anchors or COFF debug section 566 // is not available, skip any debug info related stuff. 567 if (!M->getNamedMetadata("llvm.dbg.cu") || 568 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { 569 Asm = nullptr; 570 return; 571 } 572 // Tell MMI that we have and need debug info. 573 MMI->setDebugInfoAvailability(true); 574 575 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); 576 577 collectGlobalVariableInfo(); 578 579 // Check if we should emit type record hashes. 580 ConstantInt *GH = 581 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); 582 EmitDebugGlobalHashes = GH && !GH->isZero(); 583 } 584 585 void CodeViewDebug::endModule() { 586 if (!Asm || !MMI->hasDebugInfo()) 587 return; 588 589 // The COFF .debug$S section consists of several subsections, each starting 590 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 591 // of the payload followed by the payload itself. The subsections are 4-byte 592 // aligned. 593 594 // Use the generic .debug$S section, and make a subsection for all the inlined 595 // subprograms. 596 switchToDebugSectionForSymbol(nullptr); 597 598 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 599 emitCompilerInformation(); 600 endCVSubsection(CompilerInfo); 601 602 emitInlineeLinesSubsection(); 603 604 // Emit per-function debug information. 605 for (auto &P : FnDebugInfo) 606 if (!P.first->isDeclarationForLinker()) 607 emitDebugInfoForFunction(P.first, *P.second); 608 609 // Get types used by globals without emitting anything. 610 // This is meant to collect all static const data members so they can be 611 // emitted as globals. 612 collectDebugInfoForGlobals(); 613 614 // Emit retained types. 615 emitDebugInfoForRetainedTypes(); 616 617 // Emit global variable debug information. 618 setCurrentSubprogram(nullptr); 619 emitDebugInfoForGlobals(); 620 621 // Switch back to the generic .debug$S section after potentially processing 622 // comdat symbol sections. 623 switchToDebugSectionForSymbol(nullptr); 624 625 // Emit UDT records for any types used by global variables. 626 if (!GlobalUDTs.empty()) { 627 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 628 emitDebugInfoForUDTs(GlobalUDTs); 629 endCVSubsection(SymbolsEnd); 630 } 631 632 // This subsection holds a file index to offset in string table table. 633 OS.AddComment("File index to string table offset subsection"); 634 OS.emitCVFileChecksumsDirective(); 635 636 // This subsection holds the string table. 637 OS.AddComment("String table"); 638 OS.emitCVStringTableDirective(); 639 640 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 641 // subsection in the generic .debug$S section at the end. There is no 642 // particular reason for this ordering other than to match MSVC. 643 emitBuildInfo(); 644 645 // Emit type information and hashes last, so that any types we translate while 646 // emitting function info are included. 647 emitTypeInformation(); 648 649 if (EmitDebugGlobalHashes) 650 emitTypeGlobalHashes(); 651 652 clear(); 653 } 654 655 static void 656 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 657 unsigned MaxFixedRecordLength = 0xF00) { 658 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 659 // after a fixed length portion of the record. The fixed length portion should 660 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 661 // overall record size is less than the maximum allowed. 662 SmallString<32> NullTerminatedString( 663 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 664 NullTerminatedString.push_back('\0'); 665 OS.emitBytes(NullTerminatedString); 666 } 667 668 void CodeViewDebug::emitTypeInformation() { 669 if (TypeTable.empty()) 670 return; 671 672 // Start the .debug$T or .debug$P section with 0x4. 673 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 674 emitCodeViewMagicVersion(); 675 676 TypeTableCollection Table(TypeTable.records()); 677 TypeVisitorCallbackPipeline Pipeline; 678 679 // To emit type record using Codeview MCStreamer adapter 680 CVMCAdapter CVMCOS(OS, Table); 681 TypeRecordMapping typeMapping(CVMCOS); 682 Pipeline.addCallbackToPipeline(typeMapping); 683 684 Optional<TypeIndex> B = Table.getFirst(); 685 while (B) { 686 // This will fail if the record data is invalid. 687 CVType Record = Table.getType(*B); 688 689 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 690 691 if (E) { 692 logAllUnhandledErrors(std::move(E), errs(), "error: "); 693 llvm_unreachable("produced malformed type record"); 694 } 695 696 B = Table.getNext(*B); 697 } 698 } 699 700 void CodeViewDebug::emitTypeGlobalHashes() { 701 if (TypeTable.empty()) 702 return; 703 704 // Start the .debug$H section with the version and hash algorithm, currently 705 // hardcoded to version 0, SHA1. 706 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 707 708 OS.emitValueToAlignment(4); 709 OS.AddComment("Magic"); 710 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 711 OS.AddComment("Section Version"); 712 OS.emitInt16(0); 713 OS.AddComment("Hash Algorithm"); 714 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 715 716 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 717 for (const auto &GHR : TypeTable.hashes()) { 718 if (OS.isVerboseAsm()) { 719 // Emit an EOL-comment describing which TypeIndex this hash corresponds 720 // to, as well as the stringified SHA1 hash. 721 SmallString<32> Comment; 722 raw_svector_ostream CommentOS(Comment); 723 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 724 OS.AddComment(Comment); 725 ++TI; 726 } 727 assert(GHR.Hash.size() == 8); 728 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 729 GHR.Hash.size()); 730 OS.emitBinaryData(S); 731 } 732 } 733 734 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 735 switch (DWLang) { 736 case dwarf::DW_LANG_C: 737 case dwarf::DW_LANG_C89: 738 case dwarf::DW_LANG_C99: 739 case dwarf::DW_LANG_C11: 740 case dwarf::DW_LANG_ObjC: 741 return SourceLanguage::C; 742 case dwarf::DW_LANG_C_plus_plus: 743 case dwarf::DW_LANG_C_plus_plus_03: 744 case dwarf::DW_LANG_C_plus_plus_11: 745 case dwarf::DW_LANG_C_plus_plus_14: 746 return SourceLanguage::Cpp; 747 case dwarf::DW_LANG_Fortran77: 748 case dwarf::DW_LANG_Fortran90: 749 case dwarf::DW_LANG_Fortran03: 750 case dwarf::DW_LANG_Fortran08: 751 return SourceLanguage::Fortran; 752 case dwarf::DW_LANG_Pascal83: 753 return SourceLanguage::Pascal; 754 case dwarf::DW_LANG_Cobol74: 755 case dwarf::DW_LANG_Cobol85: 756 return SourceLanguage::Cobol; 757 case dwarf::DW_LANG_Java: 758 return SourceLanguage::Java; 759 case dwarf::DW_LANG_D: 760 return SourceLanguage::D; 761 case dwarf::DW_LANG_Swift: 762 return SourceLanguage::Swift; 763 default: 764 // There's no CodeView representation for this language, and CV doesn't 765 // have an "unknown" option for the language field, so we'll use MASM, 766 // as it's very low level. 767 return SourceLanguage::Masm; 768 } 769 } 770 771 namespace { 772 struct Version { 773 int Part[4]; 774 }; 775 } // end anonymous namespace 776 777 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 778 // the version number. 779 static Version parseVersion(StringRef Name) { 780 Version V = {{0}}; 781 int N = 0; 782 for (const char C : Name) { 783 if (isdigit(C)) { 784 V.Part[N] *= 10; 785 V.Part[N] += C - '0'; 786 } else if (C == '.') { 787 ++N; 788 if (N >= 4) 789 return V; 790 } else if (N > 0) 791 return V; 792 } 793 return V; 794 } 795 796 void CodeViewDebug::emitCompilerInformation() { 797 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 798 uint32_t Flags = 0; 799 800 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 801 const MDNode *Node = *CUs->operands().begin(); 802 const auto *CU = cast<DICompileUnit>(Node); 803 804 // The low byte of the flags indicates the source language. 805 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 806 // TODO: Figure out which other flags need to be set. 807 808 OS.AddComment("Flags and language"); 809 OS.emitInt32(Flags); 810 811 OS.AddComment("CPUType"); 812 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 813 814 StringRef CompilerVersion = CU->getProducer(); 815 Version FrontVer = parseVersion(CompilerVersion); 816 OS.AddComment("Frontend version"); 817 for (int N : FrontVer.Part) 818 OS.emitInt16(N); 819 820 // Some Microsoft tools, like Binscope, expect a backend version number of at 821 // least 8.something, so we'll coerce the LLVM version into a form that 822 // guarantees it'll be big enough without really lying about the version. 823 int Major = 1000 * LLVM_VERSION_MAJOR + 824 10 * LLVM_VERSION_MINOR + 825 LLVM_VERSION_PATCH; 826 // Clamp it for builds that use unusually large version numbers. 827 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 828 Version BackVer = {{ Major, 0, 0, 0 }}; 829 OS.AddComment("Backend version"); 830 for (int N : BackVer.Part) 831 OS.emitInt16(N); 832 833 OS.AddComment("Null-terminated compiler version string"); 834 emitNullTerminatedSymbolName(OS, CompilerVersion); 835 836 endSymbolRecord(CompilerEnd); 837 } 838 839 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 840 StringRef S) { 841 StringIdRecord SIR(TypeIndex(0x0), S); 842 return TypeTable.writeLeafType(SIR); 843 } 844 845 void CodeViewDebug::emitBuildInfo() { 846 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 847 // build info. The known prefix is: 848 // - Absolute path of current directory 849 // - Compiler path 850 // - Main source file path, relative to CWD or absolute 851 // - Type server PDB file 852 // - Canonical compiler command line 853 // If frontend and backend compilation are separated (think llc or LTO), it's 854 // not clear if the compiler path should refer to the executable for the 855 // frontend or the backend. Leave it blank for now. 856 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 857 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 858 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 859 const auto *CU = cast<DICompileUnit>(Node); 860 const DIFile *MainSourceFile = CU->getFile(); 861 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 862 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 863 BuildInfoArgs[BuildInfoRecord::SourceFile] = 864 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 865 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 866 // we implement /Zi type servers. 867 BuildInfoRecord BIR(BuildInfoArgs); 868 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 869 870 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 871 // from the module symbols into the type stream. 872 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 873 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 874 OS.AddComment("LF_BUILDINFO index"); 875 OS.emitInt32(BuildInfoIndex.getIndex()); 876 endSymbolRecord(BIEnd); 877 endCVSubsection(BISubsecEnd); 878 } 879 880 void CodeViewDebug::emitInlineeLinesSubsection() { 881 if (InlinedSubprograms.empty()) 882 return; 883 884 OS.AddComment("Inlinee lines subsection"); 885 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 886 887 // We emit the checksum info for files. This is used by debuggers to 888 // determine if a pdb matches the source before loading it. Visual Studio, 889 // for instance, will display a warning that the breakpoints are not valid if 890 // the pdb does not match the source. 891 OS.AddComment("Inlinee lines signature"); 892 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 893 894 for (const DISubprogram *SP : InlinedSubprograms) { 895 assert(TypeIndices.count({SP, nullptr})); 896 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 897 898 OS.AddBlankLine(); 899 unsigned FileId = maybeRecordFile(SP->getFile()); 900 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 901 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 902 OS.AddBlankLine(); 903 OS.AddComment("Type index of inlined function"); 904 OS.emitInt32(InlineeIdx.getIndex()); 905 OS.AddComment("Offset into filechecksum table"); 906 OS.emitCVFileChecksumOffsetDirective(FileId); 907 OS.AddComment("Starting line number"); 908 OS.emitInt32(SP->getLine()); 909 } 910 911 endCVSubsection(InlineEnd); 912 } 913 914 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 915 const DILocation *InlinedAt, 916 const InlineSite &Site) { 917 assert(TypeIndices.count({Site.Inlinee, nullptr})); 918 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 919 920 // SymbolRecord 921 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 922 923 OS.AddComment("PtrParent"); 924 OS.emitInt32(0); 925 OS.AddComment("PtrEnd"); 926 OS.emitInt32(0); 927 OS.AddComment("Inlinee type index"); 928 OS.emitInt32(InlineeIdx.getIndex()); 929 930 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 931 unsigned StartLineNum = Site.Inlinee->getLine(); 932 933 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 934 FI.Begin, FI.End); 935 936 endSymbolRecord(InlineEnd); 937 938 emitLocalVariableList(FI, Site.InlinedLocals); 939 940 // Recurse on child inlined call sites before closing the scope. 941 for (const DILocation *ChildSite : Site.ChildSites) { 942 auto I = FI.InlineSites.find(ChildSite); 943 assert(I != FI.InlineSites.end() && 944 "child site not in function inline site map"); 945 emitInlinedCallSite(FI, ChildSite, I->second); 946 } 947 948 // Close the scope. 949 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 950 } 951 952 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 953 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 954 // comdat key. A section may be comdat because of -ffunction-sections or 955 // because it is comdat in the IR. 956 MCSectionCOFF *GVSec = 957 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 958 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 959 960 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 961 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 962 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 963 964 OS.SwitchSection(DebugSec); 965 966 // Emit the magic version number if this is the first time we've switched to 967 // this section. 968 if (ComdatDebugSections.insert(DebugSec).second) 969 emitCodeViewMagicVersion(); 970 } 971 972 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 973 // The only supported thunk ordinal is currently the standard type. 974 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 975 FunctionInfo &FI, 976 const MCSymbol *Fn) { 977 std::string FuncName = 978 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 979 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 980 981 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 982 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 983 984 // Emit S_THUNK32 985 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 986 OS.AddComment("PtrParent"); 987 OS.emitInt32(0); 988 OS.AddComment("PtrEnd"); 989 OS.emitInt32(0); 990 OS.AddComment("PtrNext"); 991 OS.emitInt32(0); 992 OS.AddComment("Thunk section relative address"); 993 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 994 OS.AddComment("Thunk section index"); 995 OS.EmitCOFFSectionIndex(Fn); 996 OS.AddComment("Code size"); 997 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 998 OS.AddComment("Ordinal"); 999 OS.emitInt8(unsigned(ordinal)); 1000 OS.AddComment("Function name"); 1001 emitNullTerminatedSymbolName(OS, FuncName); 1002 // Additional fields specific to the thunk ordinal would go here. 1003 endSymbolRecord(ThunkRecordEnd); 1004 1005 // Local variables/inlined routines are purposely omitted here. The point of 1006 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 1007 1008 // Emit S_PROC_ID_END 1009 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1010 1011 endCVSubsection(SymbolsEnd); 1012 } 1013 1014 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 1015 FunctionInfo &FI) { 1016 // For each function there is a separate subsection which holds the PC to 1017 // file:line table. 1018 const MCSymbol *Fn = Asm->getSymbol(GV); 1019 assert(Fn); 1020 1021 // Switch to the to a comdat section, if appropriate. 1022 switchToDebugSectionForSymbol(Fn); 1023 1024 std::string FuncName; 1025 auto *SP = GV->getSubprogram(); 1026 assert(SP); 1027 setCurrentSubprogram(SP); 1028 1029 if (SP->isThunk()) { 1030 emitDebugInfoForThunk(GV, FI, Fn); 1031 return; 1032 } 1033 1034 // If we have a display name, build the fully qualified name by walking the 1035 // chain of scopes. 1036 if (!SP->getName().empty()) 1037 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1038 1039 // If our DISubprogram name is empty, use the mangled name. 1040 if (FuncName.empty()) 1041 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1042 1043 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1044 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1045 OS.EmitCVFPOData(Fn); 1046 1047 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1048 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1049 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1050 { 1051 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1052 : SymbolKind::S_GPROC32_ID; 1053 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1054 1055 // These fields are filled in by tools like CVPACK which run after the fact. 1056 OS.AddComment("PtrParent"); 1057 OS.emitInt32(0); 1058 OS.AddComment("PtrEnd"); 1059 OS.emitInt32(0); 1060 OS.AddComment("PtrNext"); 1061 OS.emitInt32(0); 1062 // This is the important bit that tells the debugger where the function 1063 // code is located and what's its size: 1064 OS.AddComment("Code size"); 1065 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1066 OS.AddComment("Offset after prologue"); 1067 OS.emitInt32(0); 1068 OS.AddComment("Offset before epilogue"); 1069 OS.emitInt32(0); 1070 OS.AddComment("Function type index"); 1071 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1072 OS.AddComment("Function section relative address"); 1073 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1074 OS.AddComment("Function section index"); 1075 OS.EmitCOFFSectionIndex(Fn); 1076 OS.AddComment("Flags"); 1077 OS.emitInt8(0); 1078 // Emit the function display name as a null-terminated string. 1079 OS.AddComment("Function name"); 1080 // Truncate the name so we won't overflow the record length field. 1081 emitNullTerminatedSymbolName(OS, FuncName); 1082 endSymbolRecord(ProcRecordEnd); 1083 1084 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1085 // Subtract out the CSR size since MSVC excludes that and we include it. 1086 OS.AddComment("FrameSize"); 1087 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1088 OS.AddComment("Padding"); 1089 OS.emitInt32(0); 1090 OS.AddComment("Offset of padding"); 1091 OS.emitInt32(0); 1092 OS.AddComment("Bytes of callee saved registers"); 1093 OS.emitInt32(FI.CSRSize); 1094 OS.AddComment("Exception handler offset"); 1095 OS.emitInt32(0); 1096 OS.AddComment("Exception handler section"); 1097 OS.emitInt16(0); 1098 OS.AddComment("Flags (defines frame register)"); 1099 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1100 endSymbolRecord(FrameProcEnd); 1101 1102 emitLocalVariableList(FI, FI.Locals); 1103 emitGlobalVariableList(FI.Globals); 1104 emitLexicalBlockList(FI.ChildBlocks, FI); 1105 1106 // Emit inlined call site information. Only emit functions inlined directly 1107 // into the parent function. We'll emit the other sites recursively as part 1108 // of their parent inline site. 1109 for (const DILocation *InlinedAt : FI.ChildSites) { 1110 auto I = FI.InlineSites.find(InlinedAt); 1111 assert(I != FI.InlineSites.end() && 1112 "child site not in function inline site map"); 1113 emitInlinedCallSite(FI, InlinedAt, I->second); 1114 } 1115 1116 for (auto Annot : FI.Annotations) { 1117 MCSymbol *Label = Annot.first; 1118 MDTuple *Strs = cast<MDTuple>(Annot.second); 1119 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1120 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1121 // FIXME: Make sure we don't overflow the max record size. 1122 OS.EmitCOFFSectionIndex(Label); 1123 OS.emitInt16(Strs->getNumOperands()); 1124 for (Metadata *MD : Strs->operands()) { 1125 // MDStrings are null terminated, so we can do EmitBytes and get the 1126 // nice .asciz directive. 1127 StringRef Str = cast<MDString>(MD)->getString(); 1128 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1129 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1130 } 1131 endSymbolRecord(AnnotEnd); 1132 } 1133 1134 for (auto HeapAllocSite : FI.HeapAllocSites) { 1135 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1136 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1137 const DIType *DITy = std::get<2>(HeapAllocSite); 1138 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1139 OS.AddComment("Call site offset"); 1140 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1141 OS.AddComment("Call site section index"); 1142 OS.EmitCOFFSectionIndex(BeginLabel); 1143 OS.AddComment("Call instruction length"); 1144 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1145 OS.AddComment("Type index"); 1146 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1147 endSymbolRecord(HeapAllocEnd); 1148 } 1149 1150 if (SP != nullptr) 1151 emitDebugInfoForUDTs(LocalUDTs); 1152 1153 // We're done with this function. 1154 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1155 } 1156 endCVSubsection(SymbolsEnd); 1157 1158 // We have an assembler directive that takes care of the whole line table. 1159 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1160 } 1161 1162 CodeViewDebug::LocalVarDefRange 1163 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1164 LocalVarDefRange DR; 1165 DR.InMemory = -1; 1166 DR.DataOffset = Offset; 1167 assert(DR.DataOffset == Offset && "truncation"); 1168 DR.IsSubfield = 0; 1169 DR.StructOffset = 0; 1170 DR.CVRegister = CVRegister; 1171 return DR; 1172 } 1173 1174 void CodeViewDebug::collectVariableInfoFromMFTable( 1175 DenseSet<InlinedEntity> &Processed) { 1176 const MachineFunction &MF = *Asm->MF; 1177 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1178 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1179 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1180 1181 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1182 if (!VI.Var) 1183 continue; 1184 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1185 "Expected inlined-at fields to agree"); 1186 1187 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1188 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1189 1190 // If variable scope is not found then skip this variable. 1191 if (!Scope) 1192 continue; 1193 1194 // If the variable has an attached offset expression, extract it. 1195 // FIXME: Try to handle DW_OP_deref as well. 1196 int64_t ExprOffset = 0; 1197 bool Deref = false; 1198 if (VI.Expr) { 1199 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1200 if (VI.Expr->getNumElements() == 1 && 1201 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1202 Deref = true; 1203 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1204 continue; 1205 } 1206 1207 // Get the frame register used and the offset. 1208 Register FrameReg; 1209 StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1210 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1211 1212 assert(!FrameOffset.getScalable() && 1213 "Frame offsets with a scalable component are not supported"); 1214 1215 // Calculate the label ranges. 1216 LocalVarDefRange DefRange = 1217 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); 1218 1219 for (const InsnRange &Range : Scope->getRanges()) { 1220 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1221 const MCSymbol *End = getLabelAfterInsn(Range.second); 1222 End = End ? End : Asm->getFunctionEnd(); 1223 DefRange.Ranges.emplace_back(Begin, End); 1224 } 1225 1226 LocalVariable Var; 1227 Var.DIVar = VI.Var; 1228 Var.DefRanges.emplace_back(std::move(DefRange)); 1229 if (Deref) 1230 Var.UseReferenceType = true; 1231 1232 recordLocalVariable(std::move(Var), Scope); 1233 } 1234 } 1235 1236 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1237 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1238 } 1239 1240 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1241 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1242 } 1243 1244 void CodeViewDebug::calculateRanges( 1245 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1246 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1247 1248 // Calculate the definition ranges. 1249 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1250 const auto &Entry = *I; 1251 if (!Entry.isDbgValue()) 1252 continue; 1253 const MachineInstr *DVInst = Entry.getInstr(); 1254 assert(DVInst->isDebugValue() && "Invalid History entry"); 1255 // FIXME: Find a way to represent constant variables, since they are 1256 // relatively common. 1257 Optional<DbgVariableLocation> Location = 1258 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1259 if (!Location) 1260 continue; 1261 1262 // CodeView can only express variables in register and variables in memory 1263 // at a constant offset from a register. However, for variables passed 1264 // indirectly by pointer, it is common for that pointer to be spilled to a 1265 // stack location. For the special case of one offseted load followed by a 1266 // zero offset load (a pointer spilled to the stack), we change the type of 1267 // the local variable from a value type to a reference type. This tricks the 1268 // debugger into doing the load for us. 1269 if (Var.UseReferenceType) { 1270 // We're using a reference type. Drop the last zero offset load. 1271 if (canUseReferenceType(*Location)) 1272 Location->LoadChain.pop_back(); 1273 else 1274 continue; 1275 } else if (needsReferenceType(*Location)) { 1276 // This location can't be expressed without switching to a reference type. 1277 // Start over using that. 1278 Var.UseReferenceType = true; 1279 Var.DefRanges.clear(); 1280 calculateRanges(Var, Entries); 1281 return; 1282 } 1283 1284 // We can only handle a register or an offseted load of a register. 1285 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1286 continue; 1287 { 1288 LocalVarDefRange DR; 1289 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1290 DR.InMemory = !Location->LoadChain.empty(); 1291 DR.DataOffset = 1292 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1293 if (Location->FragmentInfo) { 1294 DR.IsSubfield = true; 1295 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1296 } else { 1297 DR.IsSubfield = false; 1298 DR.StructOffset = 0; 1299 } 1300 1301 if (Var.DefRanges.empty() || 1302 Var.DefRanges.back().isDifferentLocation(DR)) { 1303 Var.DefRanges.emplace_back(std::move(DR)); 1304 } 1305 } 1306 1307 // Compute the label range. 1308 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1309 const MCSymbol *End; 1310 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1311 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1312 End = EndingEntry.isDbgValue() 1313 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1314 : getLabelAfterInsn(EndingEntry.getInstr()); 1315 } else 1316 End = Asm->getFunctionEnd(); 1317 1318 // If the last range end is our begin, just extend the last range. 1319 // Otherwise make a new range. 1320 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1321 Var.DefRanges.back().Ranges; 1322 if (!R.empty() && R.back().second == Begin) 1323 R.back().second = End; 1324 else 1325 R.emplace_back(Begin, End); 1326 1327 // FIXME: Do more range combining. 1328 } 1329 } 1330 1331 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1332 DenseSet<InlinedEntity> Processed; 1333 // Grab the variable info that was squirreled away in the MMI side-table. 1334 collectVariableInfoFromMFTable(Processed); 1335 1336 for (const auto &I : DbgValues) { 1337 InlinedEntity IV = I.first; 1338 if (Processed.count(IV)) 1339 continue; 1340 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1341 const DILocation *InlinedAt = IV.second; 1342 1343 // Instruction ranges, specifying where IV is accessible. 1344 const auto &Entries = I.second; 1345 1346 LexicalScope *Scope = nullptr; 1347 if (InlinedAt) 1348 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1349 else 1350 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1351 // If variable scope is not found then skip this variable. 1352 if (!Scope) 1353 continue; 1354 1355 LocalVariable Var; 1356 Var.DIVar = DIVar; 1357 1358 calculateRanges(Var, Entries); 1359 recordLocalVariable(std::move(Var), Scope); 1360 } 1361 } 1362 1363 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1364 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1365 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1366 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1367 const Function &GV = MF->getFunction(); 1368 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1369 assert(Insertion.second && "function already has info"); 1370 CurFn = Insertion.first->second.get(); 1371 CurFn->FuncId = NextFuncId++; 1372 CurFn->Begin = Asm->getFunctionBegin(); 1373 1374 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1375 // callee-saved registers were used. For targets that don't use a PUSH 1376 // instruction (AArch64), this will be zero. 1377 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1378 CurFn->FrameSize = MFI.getStackSize(); 1379 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1380 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1381 1382 // For this function S_FRAMEPROC record, figure out which codeview register 1383 // will be the frame pointer. 1384 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1385 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1386 if (CurFn->FrameSize > 0) { 1387 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1388 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1389 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1390 } else { 1391 // If there is an FP, parameters are always relative to it. 1392 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1393 if (CurFn->HasStackRealignment) { 1394 // If the stack needs realignment, locals are relative to SP or VFRAME. 1395 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1396 } else { 1397 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1398 // other stack adjustments. 1399 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1400 } 1401 } 1402 } 1403 1404 // Compute other frame procedure options. 1405 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1406 if (MFI.hasVarSizedObjects()) 1407 FPO |= FrameProcedureOptions::HasAlloca; 1408 if (MF->exposesReturnsTwice()) 1409 FPO |= FrameProcedureOptions::HasSetJmp; 1410 // FIXME: Set HasLongJmp if we ever track that info. 1411 if (MF->hasInlineAsm()) 1412 FPO |= FrameProcedureOptions::HasInlineAssembly; 1413 if (GV.hasPersonalityFn()) { 1414 if (isAsynchronousEHPersonality( 1415 classifyEHPersonality(GV.getPersonalityFn()))) 1416 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1417 else 1418 FPO |= FrameProcedureOptions::HasExceptionHandling; 1419 } 1420 if (GV.hasFnAttribute(Attribute::InlineHint)) 1421 FPO |= FrameProcedureOptions::MarkedInline; 1422 if (GV.hasFnAttribute(Attribute::Naked)) 1423 FPO |= FrameProcedureOptions::Naked; 1424 if (MFI.hasStackProtectorIndex()) 1425 FPO |= FrameProcedureOptions::SecurityChecks; 1426 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1427 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1428 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1429 !GV.hasOptSize() && !GV.hasOptNone()) 1430 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1431 // FIXME: Set GuardCfg when it is implemented. 1432 CurFn->FrameProcOpts = FPO; 1433 1434 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1435 1436 // Find the end of the function prolog. First known non-DBG_VALUE and 1437 // non-frame setup location marks the beginning of the function body. 1438 // FIXME: is there a simpler a way to do this? Can we just search 1439 // for the first instruction of the function, not the last of the prolog? 1440 DebugLoc PrologEndLoc; 1441 bool EmptyPrologue = true; 1442 for (const auto &MBB : *MF) { 1443 for (const auto &MI : MBB) { 1444 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1445 MI.getDebugLoc()) { 1446 PrologEndLoc = MI.getDebugLoc(); 1447 break; 1448 } else if (!MI.isMetaInstruction()) { 1449 EmptyPrologue = false; 1450 } 1451 } 1452 } 1453 1454 // Record beginning of function if we have a non-empty prologue. 1455 if (PrologEndLoc && !EmptyPrologue) { 1456 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1457 maybeRecordLocation(FnStartDL, MF); 1458 } 1459 1460 // Find heap alloc sites and emit labels around them. 1461 for (const auto &MBB : *MF) { 1462 for (const auto &MI : MBB) { 1463 if (MI.getHeapAllocMarker()) { 1464 requestLabelBeforeInsn(&MI); 1465 requestLabelAfterInsn(&MI); 1466 } 1467 } 1468 } 1469 } 1470 1471 static bool shouldEmitUdt(const DIType *T) { 1472 if (!T) 1473 return false; 1474 1475 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1476 if (T->getTag() == dwarf::DW_TAG_typedef) { 1477 if (DIScope *Scope = T->getScope()) { 1478 switch (Scope->getTag()) { 1479 case dwarf::DW_TAG_structure_type: 1480 case dwarf::DW_TAG_class_type: 1481 case dwarf::DW_TAG_union_type: 1482 return false; 1483 } 1484 } 1485 } 1486 1487 while (true) { 1488 if (!T || T->isForwardDecl()) 1489 return false; 1490 1491 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1492 if (!DT) 1493 return true; 1494 T = DT->getBaseType(); 1495 } 1496 return true; 1497 } 1498 1499 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1500 // Don't record empty UDTs. 1501 if (Ty->getName().empty()) 1502 return; 1503 if (!shouldEmitUdt(Ty)) 1504 return; 1505 1506 SmallVector<StringRef, 5> ParentScopeNames; 1507 const DISubprogram *ClosestSubprogram = 1508 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1509 1510 std::string FullyQualifiedName = 1511 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1512 1513 if (ClosestSubprogram == nullptr) { 1514 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1515 } else if (ClosestSubprogram == CurrentSubprogram) { 1516 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1517 } 1518 1519 // TODO: What if the ClosestSubprogram is neither null or the current 1520 // subprogram? Currently, the UDT just gets dropped on the floor. 1521 // 1522 // The current behavior is not desirable. To get maximal fidelity, we would 1523 // need to perform all type translation before beginning emission of .debug$S 1524 // and then make LocalUDTs a member of FunctionInfo 1525 } 1526 1527 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1528 // Generic dispatch for lowering an unknown type. 1529 switch (Ty->getTag()) { 1530 case dwarf::DW_TAG_array_type: 1531 return lowerTypeArray(cast<DICompositeType>(Ty)); 1532 case dwarf::DW_TAG_typedef: 1533 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1534 case dwarf::DW_TAG_base_type: 1535 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1536 case dwarf::DW_TAG_pointer_type: 1537 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1538 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1539 LLVM_FALLTHROUGH; 1540 case dwarf::DW_TAG_reference_type: 1541 case dwarf::DW_TAG_rvalue_reference_type: 1542 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1543 case dwarf::DW_TAG_ptr_to_member_type: 1544 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1545 case dwarf::DW_TAG_restrict_type: 1546 case dwarf::DW_TAG_const_type: 1547 case dwarf::DW_TAG_volatile_type: 1548 // TODO: add support for DW_TAG_atomic_type here 1549 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1550 case dwarf::DW_TAG_subroutine_type: 1551 if (ClassTy) { 1552 // The member function type of a member function pointer has no 1553 // ThisAdjustment. 1554 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1555 /*ThisAdjustment=*/0, 1556 /*IsStaticMethod=*/false); 1557 } 1558 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1559 case dwarf::DW_TAG_enumeration_type: 1560 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1561 case dwarf::DW_TAG_class_type: 1562 case dwarf::DW_TAG_structure_type: 1563 return lowerTypeClass(cast<DICompositeType>(Ty)); 1564 case dwarf::DW_TAG_union_type: 1565 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1566 case dwarf::DW_TAG_unspecified_type: 1567 if (Ty->getName() == "decltype(nullptr)") 1568 return TypeIndex::NullptrT(); 1569 return TypeIndex::None(); 1570 default: 1571 // Use the null type index. 1572 return TypeIndex(); 1573 } 1574 } 1575 1576 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1577 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1578 StringRef TypeName = Ty->getName(); 1579 1580 addToUDTs(Ty); 1581 1582 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1583 TypeName == "HRESULT") 1584 return TypeIndex(SimpleTypeKind::HResult); 1585 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1586 TypeName == "wchar_t") 1587 return TypeIndex(SimpleTypeKind::WideCharacter); 1588 1589 return UnderlyingTypeIndex; 1590 } 1591 1592 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1593 const DIType *ElementType = Ty->getBaseType(); 1594 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1595 // IndexType is size_t, which depends on the bitness of the target. 1596 TypeIndex IndexType = getPointerSizeInBytes() == 8 1597 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1598 : TypeIndex(SimpleTypeKind::UInt32Long); 1599 1600 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1601 1602 // Add subranges to array type. 1603 DINodeArray Elements = Ty->getElements(); 1604 for (int i = Elements.size() - 1; i >= 0; --i) { 1605 const DINode *Element = Elements[i]; 1606 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1607 1608 const DISubrange *Subrange = cast<DISubrange>(Element); 1609 int64_t Count = -1; 1610 // Calculate the count if either LowerBound is absent or is zero and 1611 // either of Count or UpperBound are constant. 1612 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1613 if (!Subrange->getRawLowerBound() || (LI && (LI->getSExtValue() == 0))) { 1614 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1615 Count = CI->getSExtValue(); 1616 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt*>()) 1617 Count = UI->getSExtValue() + 1; // LowerBound is zero 1618 } 1619 1620 // Forward declarations of arrays without a size and VLAs use a count of -1. 1621 // Emit a count of zero in these cases to match what MSVC does for arrays 1622 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1623 // should do for them even if we could distinguish them. 1624 if (Count == -1) 1625 Count = 0; 1626 1627 // Update the element size and element type index for subsequent subranges. 1628 ElementSize *= Count; 1629 1630 // If this is the outermost array, use the size from the array. It will be 1631 // more accurate if we had a VLA or an incomplete element type size. 1632 uint64_t ArraySize = 1633 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1634 1635 StringRef Name = (i == 0) ? Ty->getName() : ""; 1636 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1637 ElementTypeIndex = TypeTable.writeLeafType(AR); 1638 } 1639 1640 return ElementTypeIndex; 1641 } 1642 1643 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1644 TypeIndex Index; 1645 dwarf::TypeKind Kind; 1646 uint32_t ByteSize; 1647 1648 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1649 ByteSize = Ty->getSizeInBits() / 8; 1650 1651 SimpleTypeKind STK = SimpleTypeKind::None; 1652 switch (Kind) { 1653 case dwarf::DW_ATE_address: 1654 // FIXME: Translate 1655 break; 1656 case dwarf::DW_ATE_boolean: 1657 switch (ByteSize) { 1658 case 1: STK = SimpleTypeKind::Boolean8; break; 1659 case 2: STK = SimpleTypeKind::Boolean16; break; 1660 case 4: STK = SimpleTypeKind::Boolean32; break; 1661 case 8: STK = SimpleTypeKind::Boolean64; break; 1662 case 16: STK = SimpleTypeKind::Boolean128; break; 1663 } 1664 break; 1665 case dwarf::DW_ATE_complex_float: 1666 switch (ByteSize) { 1667 case 2: STK = SimpleTypeKind::Complex16; break; 1668 case 4: STK = SimpleTypeKind::Complex32; break; 1669 case 8: STK = SimpleTypeKind::Complex64; break; 1670 case 10: STK = SimpleTypeKind::Complex80; break; 1671 case 16: STK = SimpleTypeKind::Complex128; break; 1672 } 1673 break; 1674 case dwarf::DW_ATE_float: 1675 switch (ByteSize) { 1676 case 2: STK = SimpleTypeKind::Float16; break; 1677 case 4: STK = SimpleTypeKind::Float32; break; 1678 case 6: STK = SimpleTypeKind::Float48; break; 1679 case 8: STK = SimpleTypeKind::Float64; break; 1680 case 10: STK = SimpleTypeKind::Float80; break; 1681 case 16: STK = SimpleTypeKind::Float128; break; 1682 } 1683 break; 1684 case dwarf::DW_ATE_signed: 1685 switch (ByteSize) { 1686 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1687 case 2: STK = SimpleTypeKind::Int16Short; break; 1688 case 4: STK = SimpleTypeKind::Int32; break; 1689 case 8: STK = SimpleTypeKind::Int64Quad; break; 1690 case 16: STK = SimpleTypeKind::Int128Oct; break; 1691 } 1692 break; 1693 case dwarf::DW_ATE_unsigned: 1694 switch (ByteSize) { 1695 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1696 case 2: STK = SimpleTypeKind::UInt16Short; break; 1697 case 4: STK = SimpleTypeKind::UInt32; break; 1698 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1699 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1700 } 1701 break; 1702 case dwarf::DW_ATE_UTF: 1703 switch (ByteSize) { 1704 case 2: STK = SimpleTypeKind::Character16; break; 1705 case 4: STK = SimpleTypeKind::Character32; break; 1706 } 1707 break; 1708 case dwarf::DW_ATE_signed_char: 1709 if (ByteSize == 1) 1710 STK = SimpleTypeKind::SignedCharacter; 1711 break; 1712 case dwarf::DW_ATE_unsigned_char: 1713 if (ByteSize == 1) 1714 STK = SimpleTypeKind::UnsignedCharacter; 1715 break; 1716 default: 1717 break; 1718 } 1719 1720 // Apply some fixups based on the source-level type name. 1721 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1722 STK = SimpleTypeKind::Int32Long; 1723 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1724 STK = SimpleTypeKind::UInt32Long; 1725 if (STK == SimpleTypeKind::UInt16Short && 1726 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1727 STK = SimpleTypeKind::WideCharacter; 1728 if ((STK == SimpleTypeKind::SignedCharacter || 1729 STK == SimpleTypeKind::UnsignedCharacter) && 1730 Ty->getName() == "char") 1731 STK = SimpleTypeKind::NarrowCharacter; 1732 1733 return TypeIndex(STK); 1734 } 1735 1736 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1737 PointerOptions PO) { 1738 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1739 1740 // Pointers to simple types without any options can use SimpleTypeMode, rather 1741 // than having a dedicated pointer type record. 1742 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1743 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1744 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1745 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1746 ? SimpleTypeMode::NearPointer64 1747 : SimpleTypeMode::NearPointer32; 1748 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1749 } 1750 1751 PointerKind PK = 1752 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1753 PointerMode PM = PointerMode::Pointer; 1754 switch (Ty->getTag()) { 1755 default: llvm_unreachable("not a pointer tag type"); 1756 case dwarf::DW_TAG_pointer_type: 1757 PM = PointerMode::Pointer; 1758 break; 1759 case dwarf::DW_TAG_reference_type: 1760 PM = PointerMode::LValueReference; 1761 break; 1762 case dwarf::DW_TAG_rvalue_reference_type: 1763 PM = PointerMode::RValueReference; 1764 break; 1765 } 1766 1767 if (Ty->isObjectPointer()) 1768 PO |= PointerOptions::Const; 1769 1770 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1771 return TypeTable.writeLeafType(PR); 1772 } 1773 1774 static PointerToMemberRepresentation 1775 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1776 // SizeInBytes being zero generally implies that the member pointer type was 1777 // incomplete, which can happen if it is part of a function prototype. In this 1778 // case, use the unknown model instead of the general model. 1779 if (IsPMF) { 1780 switch (Flags & DINode::FlagPtrToMemberRep) { 1781 case 0: 1782 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1783 : PointerToMemberRepresentation::GeneralFunction; 1784 case DINode::FlagSingleInheritance: 1785 return PointerToMemberRepresentation::SingleInheritanceFunction; 1786 case DINode::FlagMultipleInheritance: 1787 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1788 case DINode::FlagVirtualInheritance: 1789 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1790 } 1791 } else { 1792 switch (Flags & DINode::FlagPtrToMemberRep) { 1793 case 0: 1794 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1795 : PointerToMemberRepresentation::GeneralData; 1796 case DINode::FlagSingleInheritance: 1797 return PointerToMemberRepresentation::SingleInheritanceData; 1798 case DINode::FlagMultipleInheritance: 1799 return PointerToMemberRepresentation::MultipleInheritanceData; 1800 case DINode::FlagVirtualInheritance: 1801 return PointerToMemberRepresentation::VirtualInheritanceData; 1802 } 1803 } 1804 llvm_unreachable("invalid ptr to member representation"); 1805 } 1806 1807 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1808 PointerOptions PO) { 1809 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1810 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1811 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1812 TypeIndex PointeeTI = 1813 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1814 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1815 : PointerKind::Near32; 1816 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1817 : PointerMode::PointerToDataMember; 1818 1819 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1820 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1821 MemberPointerInfo MPI( 1822 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1823 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1824 return TypeTable.writeLeafType(PR); 1825 } 1826 1827 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1828 /// have a translation, use the NearC convention. 1829 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1830 switch (DwarfCC) { 1831 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1832 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1833 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1834 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1835 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1836 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1837 } 1838 return CallingConvention::NearC; 1839 } 1840 1841 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1842 ModifierOptions Mods = ModifierOptions::None; 1843 PointerOptions PO = PointerOptions::None; 1844 bool IsModifier = true; 1845 const DIType *BaseTy = Ty; 1846 while (IsModifier && BaseTy) { 1847 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1848 switch (BaseTy->getTag()) { 1849 case dwarf::DW_TAG_const_type: 1850 Mods |= ModifierOptions::Const; 1851 PO |= PointerOptions::Const; 1852 break; 1853 case dwarf::DW_TAG_volatile_type: 1854 Mods |= ModifierOptions::Volatile; 1855 PO |= PointerOptions::Volatile; 1856 break; 1857 case dwarf::DW_TAG_restrict_type: 1858 // Only pointer types be marked with __restrict. There is no known flag 1859 // for __restrict in LF_MODIFIER records. 1860 PO |= PointerOptions::Restrict; 1861 break; 1862 default: 1863 IsModifier = false; 1864 break; 1865 } 1866 if (IsModifier) 1867 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1868 } 1869 1870 // Check if the inner type will use an LF_POINTER record. If so, the 1871 // qualifiers will go in the LF_POINTER record. This comes up for types like 1872 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1873 // char *'. 1874 if (BaseTy) { 1875 switch (BaseTy->getTag()) { 1876 case dwarf::DW_TAG_pointer_type: 1877 case dwarf::DW_TAG_reference_type: 1878 case dwarf::DW_TAG_rvalue_reference_type: 1879 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1880 case dwarf::DW_TAG_ptr_to_member_type: 1881 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1882 default: 1883 break; 1884 } 1885 } 1886 1887 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1888 1889 // Return the base type index if there aren't any modifiers. For example, the 1890 // metadata could contain restrict wrappers around non-pointer types. 1891 if (Mods == ModifierOptions::None) 1892 return ModifiedTI; 1893 1894 ModifierRecord MR(ModifiedTI, Mods); 1895 return TypeTable.writeLeafType(MR); 1896 } 1897 1898 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1899 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1900 for (const DIType *ArgType : Ty->getTypeArray()) 1901 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1902 1903 // MSVC uses type none for variadic argument. 1904 if (ReturnAndArgTypeIndices.size() > 1 && 1905 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1906 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1907 } 1908 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1909 ArrayRef<TypeIndex> ArgTypeIndices = None; 1910 if (!ReturnAndArgTypeIndices.empty()) { 1911 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1912 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1913 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1914 } 1915 1916 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1917 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1918 1919 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1920 1921 FunctionOptions FO = getFunctionOptions(Ty); 1922 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1923 ArgListIndex); 1924 return TypeTable.writeLeafType(Procedure); 1925 } 1926 1927 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1928 const DIType *ClassTy, 1929 int ThisAdjustment, 1930 bool IsStaticMethod, 1931 FunctionOptions FO) { 1932 // Lower the containing class type. 1933 TypeIndex ClassType = getTypeIndex(ClassTy); 1934 1935 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1936 1937 unsigned Index = 0; 1938 SmallVector<TypeIndex, 8> ArgTypeIndices; 1939 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1940 if (ReturnAndArgs.size() > Index) { 1941 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1942 } 1943 1944 // If the first argument is a pointer type and this isn't a static method, 1945 // treat it as the special 'this' parameter, which is encoded separately from 1946 // the arguments. 1947 TypeIndex ThisTypeIndex; 1948 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1949 if (const DIDerivedType *PtrTy = 1950 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1951 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1952 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1953 Index++; 1954 } 1955 } 1956 } 1957 1958 while (Index < ReturnAndArgs.size()) 1959 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1960 1961 // MSVC uses type none for variadic argument. 1962 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1963 ArgTypeIndices.back() = TypeIndex::None(); 1964 1965 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1966 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1967 1968 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1969 1970 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1971 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1972 return TypeTable.writeLeafType(MFR); 1973 } 1974 1975 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1976 unsigned VSlotCount = 1977 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1978 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1979 1980 VFTableShapeRecord VFTSR(Slots); 1981 return TypeTable.writeLeafType(VFTSR); 1982 } 1983 1984 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1985 switch (Flags & DINode::FlagAccessibility) { 1986 case DINode::FlagPrivate: return MemberAccess::Private; 1987 case DINode::FlagPublic: return MemberAccess::Public; 1988 case DINode::FlagProtected: return MemberAccess::Protected; 1989 case 0: 1990 // If there was no explicit access control, provide the default for the tag. 1991 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1992 : MemberAccess::Public; 1993 } 1994 llvm_unreachable("access flags are exclusive"); 1995 } 1996 1997 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1998 if (SP->isArtificial()) 1999 return MethodOptions::CompilerGenerated; 2000 2001 // FIXME: Handle other MethodOptions. 2002 2003 return MethodOptions::None; 2004 } 2005 2006 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 2007 bool Introduced) { 2008 if (SP->getFlags() & DINode::FlagStaticMember) 2009 return MethodKind::Static; 2010 2011 switch (SP->getVirtuality()) { 2012 case dwarf::DW_VIRTUALITY_none: 2013 break; 2014 case dwarf::DW_VIRTUALITY_virtual: 2015 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 2016 case dwarf::DW_VIRTUALITY_pure_virtual: 2017 return Introduced ? MethodKind::PureIntroducingVirtual 2018 : MethodKind::PureVirtual; 2019 default: 2020 llvm_unreachable("unhandled virtuality case"); 2021 } 2022 2023 return MethodKind::Vanilla; 2024 } 2025 2026 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2027 switch (Ty->getTag()) { 2028 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 2029 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 2030 } 2031 llvm_unreachable("unexpected tag"); 2032 } 2033 2034 /// Return ClassOptions that should be present on both the forward declaration 2035 /// and the defintion of a tag type. 2036 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2037 ClassOptions CO = ClassOptions::None; 2038 2039 // MSVC always sets this flag, even for local types. Clang doesn't always 2040 // appear to give every type a linkage name, which may be problematic for us. 2041 // FIXME: Investigate the consequences of not following them here. 2042 if (!Ty->getIdentifier().empty()) 2043 CO |= ClassOptions::HasUniqueName; 2044 2045 // Put the Nested flag on a type if it appears immediately inside a tag type. 2046 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2047 // here. That flag is only set on definitions, and not forward declarations. 2048 const DIScope *ImmediateScope = Ty->getScope(); 2049 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2050 CO |= ClassOptions::Nested; 2051 2052 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2053 // type only when it has an immediate function scope. Clang never puts enums 2054 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2055 // always in function, class, or file scopes. 2056 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2057 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2058 CO |= ClassOptions::Scoped; 2059 } else { 2060 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2061 Scope = Scope->getScope()) { 2062 if (isa<DISubprogram>(Scope)) { 2063 CO |= ClassOptions::Scoped; 2064 break; 2065 } 2066 } 2067 } 2068 2069 return CO; 2070 } 2071 2072 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2073 switch (Ty->getTag()) { 2074 case dwarf::DW_TAG_class_type: 2075 case dwarf::DW_TAG_structure_type: 2076 case dwarf::DW_TAG_union_type: 2077 case dwarf::DW_TAG_enumeration_type: 2078 break; 2079 default: 2080 return; 2081 } 2082 2083 if (const auto *File = Ty->getFile()) { 2084 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2085 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2086 2087 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2088 TypeTable.writeLeafType(USLR); 2089 } 2090 } 2091 2092 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2093 ClassOptions CO = getCommonClassOptions(Ty); 2094 TypeIndex FTI; 2095 unsigned EnumeratorCount = 0; 2096 2097 if (Ty->isForwardDecl()) { 2098 CO |= ClassOptions::ForwardReference; 2099 } else { 2100 ContinuationRecordBuilder ContinuationBuilder; 2101 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2102 for (const DINode *Element : Ty->getElements()) { 2103 // We assume that the frontend provides all members in source declaration 2104 // order, which is what MSVC does. 2105 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2106 EnumeratorRecord ER(MemberAccess::Public, 2107 APSInt(Enumerator->getValue(), true), 2108 Enumerator->getName()); 2109 ContinuationBuilder.writeMemberType(ER); 2110 EnumeratorCount++; 2111 } 2112 } 2113 FTI = TypeTable.insertRecord(ContinuationBuilder); 2114 } 2115 2116 std::string FullName = getFullyQualifiedName(Ty); 2117 2118 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2119 getTypeIndex(Ty->getBaseType())); 2120 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2121 2122 addUDTSrcLine(Ty, EnumTI); 2123 2124 return EnumTI; 2125 } 2126 2127 //===----------------------------------------------------------------------===// 2128 // ClassInfo 2129 //===----------------------------------------------------------------------===// 2130 2131 struct llvm::ClassInfo { 2132 struct MemberInfo { 2133 const DIDerivedType *MemberTypeNode; 2134 uint64_t BaseOffset; 2135 }; 2136 // [MemberInfo] 2137 using MemberList = std::vector<MemberInfo>; 2138 2139 using MethodsList = TinyPtrVector<const DISubprogram *>; 2140 // MethodName -> MethodsList 2141 using MethodsMap = MapVector<MDString *, MethodsList>; 2142 2143 /// Base classes. 2144 std::vector<const DIDerivedType *> Inheritance; 2145 2146 /// Direct members. 2147 MemberList Members; 2148 // Direct overloaded methods gathered by name. 2149 MethodsMap Methods; 2150 2151 TypeIndex VShapeTI; 2152 2153 std::vector<const DIType *> NestedTypes; 2154 }; 2155 2156 void CodeViewDebug::clear() { 2157 assert(CurFn == nullptr); 2158 FileIdMap.clear(); 2159 FnDebugInfo.clear(); 2160 FileToFilepathMap.clear(); 2161 LocalUDTs.clear(); 2162 GlobalUDTs.clear(); 2163 TypeIndices.clear(); 2164 CompleteTypeIndices.clear(); 2165 ScopeGlobals.clear(); 2166 } 2167 2168 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2169 const DIDerivedType *DDTy) { 2170 if (!DDTy->getName().empty()) { 2171 Info.Members.push_back({DDTy, 0}); 2172 2173 // Collect static const data members with values. 2174 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2175 DINode::FlagStaticMember) { 2176 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) || 2177 isa<ConstantFP>(DDTy->getConstant()))) 2178 StaticConstMembers.push_back(DDTy); 2179 } 2180 2181 return; 2182 } 2183 2184 // An unnamed member may represent a nested struct or union. Attempt to 2185 // interpret the unnamed member as a DICompositeType possibly wrapped in 2186 // qualifier types. Add all the indirect fields to the current record if that 2187 // succeeds, and drop the member if that fails. 2188 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2189 uint64_t Offset = DDTy->getOffsetInBits(); 2190 const DIType *Ty = DDTy->getBaseType(); 2191 bool FullyResolved = false; 2192 while (!FullyResolved) { 2193 switch (Ty->getTag()) { 2194 case dwarf::DW_TAG_const_type: 2195 case dwarf::DW_TAG_volatile_type: 2196 // FIXME: we should apply the qualifier types to the indirect fields 2197 // rather than dropping them. 2198 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2199 break; 2200 default: 2201 FullyResolved = true; 2202 break; 2203 } 2204 } 2205 2206 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2207 if (!DCTy) 2208 return; 2209 2210 ClassInfo NestedInfo = collectClassInfo(DCTy); 2211 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2212 Info.Members.push_back( 2213 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2214 } 2215 2216 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2217 ClassInfo Info; 2218 // Add elements to structure type. 2219 DINodeArray Elements = Ty->getElements(); 2220 for (auto *Element : Elements) { 2221 // We assume that the frontend provides all members in source declaration 2222 // order, which is what MSVC does. 2223 if (!Element) 2224 continue; 2225 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2226 Info.Methods[SP->getRawName()].push_back(SP); 2227 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2228 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2229 collectMemberInfo(Info, DDTy); 2230 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2231 Info.Inheritance.push_back(DDTy); 2232 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2233 DDTy->getName() == "__vtbl_ptr_type") { 2234 Info.VShapeTI = getTypeIndex(DDTy); 2235 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2236 Info.NestedTypes.push_back(DDTy); 2237 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2238 // Ignore friend members. It appears that MSVC emitted info about 2239 // friends in the past, but modern versions do not. 2240 } 2241 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2242 Info.NestedTypes.push_back(Composite); 2243 } 2244 // Skip other unrecognized kinds of elements. 2245 } 2246 return Info; 2247 } 2248 2249 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2250 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2251 // if a complete type should be emitted instead of a forward reference. 2252 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2253 !Ty->isForwardDecl(); 2254 } 2255 2256 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2257 // Emit the complete type for unnamed structs. C++ classes with methods 2258 // which have a circular reference back to the class type are expected to 2259 // be named by the front-end and should not be "unnamed". C unnamed 2260 // structs should not have circular references. 2261 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2262 // If this unnamed complete type is already in the process of being defined 2263 // then the description of the type is malformed and cannot be emitted 2264 // into CodeView correctly so report a fatal error. 2265 auto I = CompleteTypeIndices.find(Ty); 2266 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2267 report_fatal_error("cannot debug circular reference to unnamed type"); 2268 return getCompleteTypeIndex(Ty); 2269 } 2270 2271 // First, construct the forward decl. Don't look into Ty to compute the 2272 // forward decl options, since it might not be available in all TUs. 2273 TypeRecordKind Kind = getRecordKind(Ty); 2274 ClassOptions CO = 2275 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2276 std::string FullName = getFullyQualifiedName(Ty); 2277 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2278 FullName, Ty->getIdentifier()); 2279 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2280 if (!Ty->isForwardDecl()) 2281 DeferredCompleteTypes.push_back(Ty); 2282 return FwdDeclTI; 2283 } 2284 2285 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2286 // Construct the field list and complete type record. 2287 TypeRecordKind Kind = getRecordKind(Ty); 2288 ClassOptions CO = getCommonClassOptions(Ty); 2289 TypeIndex FieldTI; 2290 TypeIndex VShapeTI; 2291 unsigned FieldCount; 2292 bool ContainsNestedClass; 2293 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2294 lowerRecordFieldList(Ty); 2295 2296 if (ContainsNestedClass) 2297 CO |= ClassOptions::ContainsNestedClass; 2298 2299 // MSVC appears to set this flag by searching any destructor or method with 2300 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2301 // the members, however special member functions are not yet emitted into 2302 // debug information. For now checking a class's non-triviality seems enough. 2303 // FIXME: not true for a nested unnamed struct. 2304 if (isNonTrivial(Ty)) 2305 CO |= ClassOptions::HasConstructorOrDestructor; 2306 2307 std::string FullName = getFullyQualifiedName(Ty); 2308 2309 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2310 2311 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2312 SizeInBytes, FullName, Ty->getIdentifier()); 2313 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2314 2315 addUDTSrcLine(Ty, ClassTI); 2316 2317 addToUDTs(Ty); 2318 2319 return ClassTI; 2320 } 2321 2322 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2323 // Emit the complete type for unnamed unions. 2324 if (shouldAlwaysEmitCompleteClassType(Ty)) 2325 return getCompleteTypeIndex(Ty); 2326 2327 ClassOptions CO = 2328 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2329 std::string FullName = getFullyQualifiedName(Ty); 2330 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2331 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2332 if (!Ty->isForwardDecl()) 2333 DeferredCompleteTypes.push_back(Ty); 2334 return FwdDeclTI; 2335 } 2336 2337 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2338 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2339 TypeIndex FieldTI; 2340 unsigned FieldCount; 2341 bool ContainsNestedClass; 2342 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2343 lowerRecordFieldList(Ty); 2344 2345 if (ContainsNestedClass) 2346 CO |= ClassOptions::ContainsNestedClass; 2347 2348 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2349 std::string FullName = getFullyQualifiedName(Ty); 2350 2351 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2352 Ty->getIdentifier()); 2353 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2354 2355 addUDTSrcLine(Ty, UnionTI); 2356 2357 addToUDTs(Ty); 2358 2359 return UnionTI; 2360 } 2361 2362 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2363 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2364 // Manually count members. MSVC appears to count everything that generates a 2365 // field list record. Each individual overload in a method overload group 2366 // contributes to this count, even though the overload group is a single field 2367 // list record. 2368 unsigned MemberCount = 0; 2369 ClassInfo Info = collectClassInfo(Ty); 2370 ContinuationRecordBuilder ContinuationBuilder; 2371 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2372 2373 // Create base classes. 2374 for (const DIDerivedType *I : Info.Inheritance) { 2375 if (I->getFlags() & DINode::FlagVirtual) { 2376 // Virtual base. 2377 unsigned VBPtrOffset = I->getVBPtrOffset(); 2378 // FIXME: Despite the accessor name, the offset is really in bytes. 2379 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2380 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2381 ? TypeRecordKind::IndirectVirtualBaseClass 2382 : TypeRecordKind::VirtualBaseClass; 2383 VirtualBaseClassRecord VBCR( 2384 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2385 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2386 VBTableIndex); 2387 2388 ContinuationBuilder.writeMemberType(VBCR); 2389 MemberCount++; 2390 } else { 2391 assert(I->getOffsetInBits() % 8 == 0 && 2392 "bases must be on byte boundaries"); 2393 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2394 getTypeIndex(I->getBaseType()), 2395 I->getOffsetInBits() / 8); 2396 ContinuationBuilder.writeMemberType(BCR); 2397 MemberCount++; 2398 } 2399 } 2400 2401 // Create members. 2402 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2403 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2404 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2405 StringRef MemberName = Member->getName(); 2406 MemberAccess Access = 2407 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2408 2409 if (Member->isStaticMember()) { 2410 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2411 ContinuationBuilder.writeMemberType(SDMR); 2412 MemberCount++; 2413 continue; 2414 } 2415 2416 // Virtual function pointer member. 2417 if ((Member->getFlags() & DINode::FlagArtificial) && 2418 Member->getName().startswith("_vptr$")) { 2419 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2420 ContinuationBuilder.writeMemberType(VFPR); 2421 MemberCount++; 2422 continue; 2423 } 2424 2425 // Data member. 2426 uint64_t MemberOffsetInBits = 2427 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2428 if (Member->isBitField()) { 2429 uint64_t StartBitOffset = MemberOffsetInBits; 2430 if (const auto *CI = 2431 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2432 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2433 } 2434 StartBitOffset -= MemberOffsetInBits; 2435 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2436 StartBitOffset); 2437 MemberBaseType = TypeTable.writeLeafType(BFR); 2438 } 2439 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2440 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2441 MemberName); 2442 ContinuationBuilder.writeMemberType(DMR); 2443 MemberCount++; 2444 } 2445 2446 // Create methods 2447 for (auto &MethodItr : Info.Methods) { 2448 StringRef Name = MethodItr.first->getString(); 2449 2450 std::vector<OneMethodRecord> Methods; 2451 for (const DISubprogram *SP : MethodItr.second) { 2452 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2453 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2454 2455 unsigned VFTableOffset = -1; 2456 if (Introduced) 2457 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2458 2459 Methods.push_back(OneMethodRecord( 2460 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2461 translateMethodKindFlags(SP, Introduced), 2462 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2463 MemberCount++; 2464 } 2465 assert(!Methods.empty() && "Empty methods map entry"); 2466 if (Methods.size() == 1) 2467 ContinuationBuilder.writeMemberType(Methods[0]); 2468 else { 2469 // FIXME: Make this use its own ContinuationBuilder so that 2470 // MethodOverloadList can be split correctly. 2471 MethodOverloadListRecord MOLR(Methods); 2472 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2473 2474 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2475 ContinuationBuilder.writeMemberType(OMR); 2476 } 2477 } 2478 2479 // Create nested classes. 2480 for (const DIType *Nested : Info.NestedTypes) { 2481 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2482 ContinuationBuilder.writeMemberType(R); 2483 MemberCount++; 2484 } 2485 2486 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2487 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2488 !Info.NestedTypes.empty()); 2489 } 2490 2491 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2492 if (!VBPType.getIndex()) { 2493 // Make a 'const int *' type. 2494 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2495 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2496 2497 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2498 : PointerKind::Near32; 2499 PointerMode PM = PointerMode::Pointer; 2500 PointerOptions PO = PointerOptions::None; 2501 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2502 VBPType = TypeTable.writeLeafType(PR); 2503 } 2504 2505 return VBPType; 2506 } 2507 2508 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2509 // The null DIType is the void type. Don't try to hash it. 2510 if (!Ty) 2511 return TypeIndex::Void(); 2512 2513 // Check if we've already translated this type. Don't try to do a 2514 // get-or-create style insertion that caches the hash lookup across the 2515 // lowerType call. It will update the TypeIndices map. 2516 auto I = TypeIndices.find({Ty, ClassTy}); 2517 if (I != TypeIndices.end()) 2518 return I->second; 2519 2520 TypeLoweringScope S(*this); 2521 TypeIndex TI = lowerType(Ty, ClassTy); 2522 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2523 } 2524 2525 codeview::TypeIndex 2526 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2527 const DISubroutineType *SubroutineTy) { 2528 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2529 "this type must be a pointer type"); 2530 2531 PointerOptions Options = PointerOptions::None; 2532 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2533 Options = PointerOptions::LValueRefThisPointer; 2534 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2535 Options = PointerOptions::RValueRefThisPointer; 2536 2537 // Check if we've already translated this type. If there is no ref qualifier 2538 // on the function then we look up this pointer type with no associated class 2539 // so that the TypeIndex for the this pointer can be shared with the type 2540 // index for other pointers to this class type. If there is a ref qualifier 2541 // then we lookup the pointer using the subroutine as the parent type. 2542 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2543 if (I != TypeIndices.end()) 2544 return I->second; 2545 2546 TypeLoweringScope S(*this); 2547 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2548 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2549 } 2550 2551 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2552 PointerRecord PR(getTypeIndex(Ty), 2553 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2554 : PointerKind::Near32, 2555 PointerMode::LValueReference, PointerOptions::None, 2556 Ty->getSizeInBits() / 8); 2557 return TypeTable.writeLeafType(PR); 2558 } 2559 2560 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2561 // The null DIType is the void type. Don't try to hash it. 2562 if (!Ty) 2563 return TypeIndex::Void(); 2564 2565 // Look through typedefs when getting the complete type index. Call 2566 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2567 // emitted only once. 2568 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2569 (void)getTypeIndex(Ty); 2570 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2571 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2572 2573 // If this is a non-record type, the complete type index is the same as the 2574 // normal type index. Just call getTypeIndex. 2575 switch (Ty->getTag()) { 2576 case dwarf::DW_TAG_class_type: 2577 case dwarf::DW_TAG_structure_type: 2578 case dwarf::DW_TAG_union_type: 2579 break; 2580 default: 2581 return getTypeIndex(Ty); 2582 } 2583 2584 const auto *CTy = cast<DICompositeType>(Ty); 2585 2586 TypeLoweringScope S(*this); 2587 2588 // Make sure the forward declaration is emitted first. It's unclear if this 2589 // is necessary, but MSVC does it, and we should follow suit until we can show 2590 // otherwise. 2591 // We only emit a forward declaration for named types. 2592 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2593 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2594 2595 // Just use the forward decl if we don't have complete type info. This 2596 // might happen if the frontend is using modules and expects the complete 2597 // definition to be emitted elsewhere. 2598 if (CTy->isForwardDecl()) 2599 return FwdDeclTI; 2600 } 2601 2602 // Check if we've already translated the complete record type. 2603 // Insert the type with a null TypeIndex to signify that the type is currently 2604 // being lowered. 2605 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2606 if (!InsertResult.second) 2607 return InsertResult.first->second; 2608 2609 TypeIndex TI; 2610 switch (CTy->getTag()) { 2611 case dwarf::DW_TAG_class_type: 2612 case dwarf::DW_TAG_structure_type: 2613 TI = lowerCompleteTypeClass(CTy); 2614 break; 2615 case dwarf::DW_TAG_union_type: 2616 TI = lowerCompleteTypeUnion(CTy); 2617 break; 2618 default: 2619 llvm_unreachable("not a record"); 2620 } 2621 2622 // Update the type index associated with this CompositeType. This cannot 2623 // use the 'InsertResult' iterator above because it is potentially 2624 // invalidated by map insertions which can occur while lowering the class 2625 // type above. 2626 CompleteTypeIndices[CTy] = TI; 2627 return TI; 2628 } 2629 2630 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2631 /// and do this until fixpoint, as each complete record type typically 2632 /// references 2633 /// many other record types. 2634 void CodeViewDebug::emitDeferredCompleteTypes() { 2635 SmallVector<const DICompositeType *, 4> TypesToEmit; 2636 while (!DeferredCompleteTypes.empty()) { 2637 std::swap(DeferredCompleteTypes, TypesToEmit); 2638 for (const DICompositeType *RecordTy : TypesToEmit) 2639 getCompleteTypeIndex(RecordTy); 2640 TypesToEmit.clear(); 2641 } 2642 } 2643 2644 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2645 ArrayRef<LocalVariable> Locals) { 2646 // Get the sorted list of parameters and emit them first. 2647 SmallVector<const LocalVariable *, 6> Params; 2648 for (const LocalVariable &L : Locals) 2649 if (L.DIVar->isParameter()) 2650 Params.push_back(&L); 2651 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2652 return L->DIVar->getArg() < R->DIVar->getArg(); 2653 }); 2654 for (const LocalVariable *L : Params) 2655 emitLocalVariable(FI, *L); 2656 2657 // Next emit all non-parameters in the order that we found them. 2658 for (const LocalVariable &L : Locals) 2659 if (!L.DIVar->isParameter()) 2660 emitLocalVariable(FI, L); 2661 } 2662 2663 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2664 const LocalVariable &Var) { 2665 // LocalSym record, see SymbolRecord.h for more info. 2666 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2667 2668 LocalSymFlags Flags = LocalSymFlags::None; 2669 if (Var.DIVar->isParameter()) 2670 Flags |= LocalSymFlags::IsParameter; 2671 if (Var.DefRanges.empty()) 2672 Flags |= LocalSymFlags::IsOptimizedOut; 2673 2674 OS.AddComment("TypeIndex"); 2675 TypeIndex TI = Var.UseReferenceType 2676 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2677 : getCompleteTypeIndex(Var.DIVar->getType()); 2678 OS.emitInt32(TI.getIndex()); 2679 OS.AddComment("Flags"); 2680 OS.emitInt16(static_cast<uint16_t>(Flags)); 2681 // Truncate the name so we won't overflow the record length field. 2682 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2683 endSymbolRecord(LocalEnd); 2684 2685 // Calculate the on disk prefix of the appropriate def range record. The 2686 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2687 // should be big enough to hold all forms without memory allocation. 2688 SmallString<20> BytePrefix; 2689 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2690 BytePrefix.clear(); 2691 if (DefRange.InMemory) { 2692 int Offset = DefRange.DataOffset; 2693 unsigned Reg = DefRange.CVRegister; 2694 2695 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2696 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2697 // instead. In frames without stack realignment, $T0 will be the CFA. 2698 if (RegisterId(Reg) == RegisterId::ESP) { 2699 Reg = unsigned(RegisterId::VFRAME); 2700 Offset += FI.OffsetAdjustment; 2701 } 2702 2703 // If we can use the chosen frame pointer for the frame and this isn't a 2704 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2705 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2706 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2707 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2708 (bool(Flags & LocalSymFlags::IsParameter) 2709 ? (EncFP == FI.EncodedParamFramePtrReg) 2710 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2711 DefRangeFramePointerRelHeader DRHdr; 2712 DRHdr.Offset = Offset; 2713 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2714 } else { 2715 uint16_t RegRelFlags = 0; 2716 if (DefRange.IsSubfield) { 2717 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2718 (DefRange.StructOffset 2719 << DefRangeRegisterRelSym::OffsetInParentShift); 2720 } 2721 DefRangeRegisterRelHeader DRHdr; 2722 DRHdr.Register = Reg; 2723 DRHdr.Flags = RegRelFlags; 2724 DRHdr.BasePointerOffset = Offset; 2725 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2726 } 2727 } else { 2728 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2729 if (DefRange.IsSubfield) { 2730 DefRangeSubfieldRegisterHeader DRHdr; 2731 DRHdr.Register = DefRange.CVRegister; 2732 DRHdr.MayHaveNoName = 0; 2733 DRHdr.OffsetInParent = DefRange.StructOffset; 2734 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2735 } else { 2736 DefRangeRegisterHeader DRHdr; 2737 DRHdr.Register = DefRange.CVRegister; 2738 DRHdr.MayHaveNoName = 0; 2739 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2740 } 2741 } 2742 } 2743 } 2744 2745 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2746 const FunctionInfo& FI) { 2747 for (LexicalBlock *Block : Blocks) 2748 emitLexicalBlock(*Block, FI); 2749 } 2750 2751 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2752 /// lexical block scope. 2753 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2754 const FunctionInfo& FI) { 2755 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2756 OS.AddComment("PtrParent"); 2757 OS.emitInt32(0); // PtrParent 2758 OS.AddComment("PtrEnd"); 2759 OS.emitInt32(0); // PtrEnd 2760 OS.AddComment("Code size"); 2761 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2762 OS.AddComment("Function section relative address"); 2763 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2764 OS.AddComment("Function section index"); 2765 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2766 OS.AddComment("Lexical block name"); 2767 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2768 endSymbolRecord(RecordEnd); 2769 2770 // Emit variables local to this lexical block. 2771 emitLocalVariableList(FI, Block.Locals); 2772 emitGlobalVariableList(Block.Globals); 2773 2774 // Emit lexical blocks contained within this block. 2775 emitLexicalBlockList(Block.Children, FI); 2776 2777 // Close the lexical block scope. 2778 emitEndSymbolRecord(SymbolKind::S_END); 2779 } 2780 2781 /// Convenience routine for collecting lexical block information for a list 2782 /// of lexical scopes. 2783 void CodeViewDebug::collectLexicalBlockInfo( 2784 SmallVectorImpl<LexicalScope *> &Scopes, 2785 SmallVectorImpl<LexicalBlock *> &Blocks, 2786 SmallVectorImpl<LocalVariable> &Locals, 2787 SmallVectorImpl<CVGlobalVariable> &Globals) { 2788 for (LexicalScope *Scope : Scopes) 2789 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2790 } 2791 2792 /// Populate the lexical blocks and local variable lists of the parent with 2793 /// information about the specified lexical scope. 2794 void CodeViewDebug::collectLexicalBlockInfo( 2795 LexicalScope &Scope, 2796 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2797 SmallVectorImpl<LocalVariable> &ParentLocals, 2798 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2799 if (Scope.isAbstractScope()) 2800 return; 2801 2802 // Gather information about the lexical scope including local variables, 2803 // global variables, and address ranges. 2804 bool IgnoreScope = false; 2805 auto LI = ScopeVariables.find(&Scope); 2806 SmallVectorImpl<LocalVariable> *Locals = 2807 LI != ScopeVariables.end() ? &LI->second : nullptr; 2808 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2809 SmallVectorImpl<CVGlobalVariable> *Globals = 2810 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2811 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2812 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2813 2814 // Ignore lexical scopes which do not contain variables. 2815 if (!Locals && !Globals) 2816 IgnoreScope = true; 2817 2818 // Ignore lexical scopes which are not lexical blocks. 2819 if (!DILB) 2820 IgnoreScope = true; 2821 2822 // Ignore scopes which have too many address ranges to represent in the 2823 // current CodeView format or do not have a valid address range. 2824 // 2825 // For lexical scopes with multiple address ranges you may be tempted to 2826 // construct a single range covering every instruction where the block is 2827 // live and everything in between. Unfortunately, Visual Studio only 2828 // displays variables from the first matching lexical block scope. If the 2829 // first lexical block contains exception handling code or cold code which 2830 // is moved to the bottom of the routine creating a single range covering 2831 // nearly the entire routine, then it will hide all other lexical blocks 2832 // and the variables they contain. 2833 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2834 IgnoreScope = true; 2835 2836 if (IgnoreScope) { 2837 // This scope can be safely ignored and eliminating it will reduce the 2838 // size of the debug information. Be sure to collect any variable and scope 2839 // information from the this scope or any of its children and collapse them 2840 // into the parent scope. 2841 if (Locals) 2842 ParentLocals.append(Locals->begin(), Locals->end()); 2843 if (Globals) 2844 ParentGlobals.append(Globals->begin(), Globals->end()); 2845 collectLexicalBlockInfo(Scope.getChildren(), 2846 ParentBlocks, 2847 ParentLocals, 2848 ParentGlobals); 2849 return; 2850 } 2851 2852 // Create a new CodeView lexical block for this lexical scope. If we've 2853 // seen this DILexicalBlock before then the scope tree is malformed and 2854 // we can handle this gracefully by not processing it a second time. 2855 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2856 if (!BlockInsertion.second) 2857 return; 2858 2859 // Create a lexical block containing the variables and collect the the 2860 // lexical block information for the children. 2861 const InsnRange &Range = Ranges.front(); 2862 assert(Range.first && Range.second); 2863 LexicalBlock &Block = BlockInsertion.first->second; 2864 Block.Begin = getLabelBeforeInsn(Range.first); 2865 Block.End = getLabelAfterInsn(Range.second); 2866 assert(Block.Begin && "missing label for scope begin"); 2867 assert(Block.End && "missing label for scope end"); 2868 Block.Name = DILB->getName(); 2869 if (Locals) 2870 Block.Locals = std::move(*Locals); 2871 if (Globals) 2872 Block.Globals = std::move(*Globals); 2873 ParentBlocks.push_back(&Block); 2874 collectLexicalBlockInfo(Scope.getChildren(), 2875 Block.Children, 2876 Block.Locals, 2877 Block.Globals); 2878 } 2879 2880 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2881 const Function &GV = MF->getFunction(); 2882 assert(FnDebugInfo.count(&GV)); 2883 assert(CurFn == FnDebugInfo[&GV].get()); 2884 2885 collectVariableInfo(GV.getSubprogram()); 2886 2887 // Build the lexical block structure to emit for this routine. 2888 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2889 collectLexicalBlockInfo(*CFS, 2890 CurFn->ChildBlocks, 2891 CurFn->Locals, 2892 CurFn->Globals); 2893 2894 // Clear the scope and variable information from the map which will not be 2895 // valid after we have finished processing this routine. This also prepares 2896 // the map for the subsequent routine. 2897 ScopeVariables.clear(); 2898 2899 // Don't emit anything if we don't have any line tables. 2900 // Thunks are compiler-generated and probably won't have source correlation. 2901 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2902 FnDebugInfo.erase(&GV); 2903 CurFn = nullptr; 2904 return; 2905 } 2906 2907 // Find heap alloc sites and add to list. 2908 for (const auto &MBB : *MF) { 2909 for (const auto &MI : MBB) { 2910 if (MDNode *MD = MI.getHeapAllocMarker()) { 2911 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2912 getLabelAfterInsn(&MI), 2913 dyn_cast<DIType>(MD))); 2914 } 2915 } 2916 } 2917 2918 CurFn->Annotations = MF->getCodeViewAnnotations(); 2919 2920 CurFn->End = Asm->getFunctionEnd(); 2921 2922 CurFn = nullptr; 2923 } 2924 2925 // Usable locations are valid with non-zero line numbers. A line number of zero 2926 // corresponds to optimized code that doesn't have a distinct source location. 2927 // In this case, we try to use the previous or next source location depending on 2928 // the context. 2929 static bool isUsableDebugLoc(DebugLoc DL) { 2930 return DL && DL.getLine() != 0; 2931 } 2932 2933 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2934 DebugHandlerBase::beginInstruction(MI); 2935 2936 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2937 if (!Asm || !CurFn || MI->isDebugInstr() || 2938 MI->getFlag(MachineInstr::FrameSetup)) 2939 return; 2940 2941 // If the first instruction of a new MBB has no location, find the first 2942 // instruction with a location and use that. 2943 DebugLoc DL = MI->getDebugLoc(); 2944 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2945 for (const auto &NextMI : *MI->getParent()) { 2946 if (NextMI.isDebugInstr()) 2947 continue; 2948 DL = NextMI.getDebugLoc(); 2949 if (isUsableDebugLoc(DL)) 2950 break; 2951 } 2952 // FIXME: Handle the case where the BB has no valid locations. This would 2953 // probably require doing a real dataflow analysis. 2954 } 2955 PrevInstBB = MI->getParent(); 2956 2957 // If we still don't have a debug location, don't record a location. 2958 if (!isUsableDebugLoc(DL)) 2959 return; 2960 2961 maybeRecordLocation(DL, Asm->MF); 2962 } 2963 2964 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2965 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2966 *EndLabel = MMI->getContext().createTempSymbol(); 2967 OS.emitInt32(unsigned(Kind)); 2968 OS.AddComment("Subsection size"); 2969 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2970 OS.emitLabel(BeginLabel); 2971 return EndLabel; 2972 } 2973 2974 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2975 OS.emitLabel(EndLabel); 2976 // Every subsection must be aligned to a 4-byte boundary. 2977 OS.emitValueToAlignment(4); 2978 } 2979 2980 static StringRef getSymbolName(SymbolKind SymKind) { 2981 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2982 if (EE.Value == SymKind) 2983 return EE.Name; 2984 return ""; 2985 } 2986 2987 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2988 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2989 *EndLabel = MMI->getContext().createTempSymbol(); 2990 OS.AddComment("Record length"); 2991 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2992 OS.emitLabel(BeginLabel); 2993 if (OS.isVerboseAsm()) 2994 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2995 OS.emitInt16(unsigned(SymKind)); 2996 return EndLabel; 2997 } 2998 2999 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 3000 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 3001 // an extra copy of every symbol record in LLD. This increases object file 3002 // size by less than 1% in the clang build, and is compatible with the Visual 3003 // C++ linker. 3004 OS.emitValueToAlignment(4); 3005 OS.emitLabel(SymEnd); 3006 } 3007 3008 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 3009 OS.AddComment("Record length"); 3010 OS.emitInt16(2); 3011 if (OS.isVerboseAsm()) 3012 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 3013 OS.emitInt16(uint16_t(EndKind)); // Record Kind 3014 } 3015 3016 void CodeViewDebug::emitDebugInfoForUDTs( 3017 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 3018 #ifndef NDEBUG 3019 size_t OriginalSize = UDTs.size(); 3020 #endif 3021 for (const auto &UDT : UDTs) { 3022 const DIType *T = UDT.second; 3023 assert(shouldEmitUdt(T)); 3024 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 3025 OS.AddComment("Type"); 3026 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3027 assert(OriginalSize == UDTs.size() && 3028 "getCompleteTypeIndex found new UDTs!"); 3029 emitNullTerminatedSymbolName(OS, UDT.first); 3030 endSymbolRecord(UDTRecordEnd); 3031 } 3032 } 3033 3034 void CodeViewDebug::collectGlobalVariableInfo() { 3035 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3036 GlobalMap; 3037 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3038 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3039 GV.getDebugInfo(GVEs); 3040 for (const auto *GVE : GVEs) 3041 GlobalMap[GVE] = &GV; 3042 } 3043 3044 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3045 for (const MDNode *Node : CUs->operands()) { 3046 const auto *CU = cast<DICompileUnit>(Node); 3047 for (const auto *GVE : CU->getGlobalVariables()) { 3048 const DIGlobalVariable *DIGV = GVE->getVariable(); 3049 const DIExpression *DIE = GVE->getExpression(); 3050 3051 // Emit constant global variables in a global symbol section. 3052 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3053 CVGlobalVariable CVGV = {DIGV, DIE}; 3054 GlobalVariables.emplace_back(std::move(CVGV)); 3055 } 3056 3057 const auto *GV = GlobalMap.lookup(GVE); 3058 if (!GV || GV->isDeclarationForLinker()) 3059 continue; 3060 3061 DIScope *Scope = DIGV->getScope(); 3062 SmallVector<CVGlobalVariable, 1> *VariableList; 3063 if (Scope && isa<DILocalScope>(Scope)) { 3064 // Locate a global variable list for this scope, creating one if 3065 // necessary. 3066 auto Insertion = ScopeGlobals.insert( 3067 {Scope, std::unique_ptr<GlobalVariableList>()}); 3068 if (Insertion.second) 3069 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3070 VariableList = Insertion.first->second.get(); 3071 } else if (GV->hasComdat()) 3072 // Emit this global variable into a COMDAT section. 3073 VariableList = &ComdatVariables; 3074 else 3075 // Emit this global variable in a single global symbol section. 3076 VariableList = &GlobalVariables; 3077 CVGlobalVariable CVGV = {DIGV, GV}; 3078 VariableList->emplace_back(std::move(CVGV)); 3079 } 3080 } 3081 } 3082 3083 void CodeViewDebug::collectDebugInfoForGlobals() { 3084 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3085 const DIGlobalVariable *DIGV = CVGV.DIGV; 3086 const DIScope *Scope = DIGV->getScope(); 3087 getCompleteTypeIndex(DIGV->getType()); 3088 getFullyQualifiedName(Scope, DIGV->getName()); 3089 } 3090 3091 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3092 const DIGlobalVariable *DIGV = CVGV.DIGV; 3093 const DIScope *Scope = DIGV->getScope(); 3094 getCompleteTypeIndex(DIGV->getType()); 3095 getFullyQualifiedName(Scope, DIGV->getName()); 3096 } 3097 } 3098 3099 void CodeViewDebug::emitDebugInfoForGlobals() { 3100 // First, emit all globals that are not in a comdat in a single symbol 3101 // substream. MSVC doesn't like it if the substream is empty, so only open 3102 // it if we have at least one global to emit. 3103 switchToDebugSectionForSymbol(nullptr); 3104 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3105 OS.AddComment("Symbol subsection for globals"); 3106 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3107 emitGlobalVariableList(GlobalVariables); 3108 emitStaticConstMemberList(); 3109 endCVSubsection(EndLabel); 3110 } 3111 3112 // Second, emit each global that is in a comdat into its own .debug$S 3113 // section along with its own symbol substream. 3114 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3115 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3116 MCSymbol *GVSym = Asm->getSymbol(GV); 3117 OS.AddComment("Symbol subsection for " + 3118 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3119 switchToDebugSectionForSymbol(GVSym); 3120 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3121 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3122 emitDebugInfoForGlobal(CVGV); 3123 endCVSubsection(EndLabel); 3124 } 3125 } 3126 3127 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3128 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3129 for (const MDNode *Node : CUs->operands()) { 3130 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3131 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3132 getTypeIndex(RT); 3133 // FIXME: Add to global/local DTU list. 3134 } 3135 } 3136 } 3137 } 3138 3139 // Emit each global variable in the specified array. 3140 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3141 for (const CVGlobalVariable &CVGV : Globals) { 3142 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3143 emitDebugInfoForGlobal(CVGV); 3144 } 3145 } 3146 3147 void CodeViewDebug::emitStaticConstMemberList() { 3148 for (const DIDerivedType *DTy : StaticConstMembers) { 3149 const DIScope *Scope = DTy->getScope(); 3150 3151 APSInt Value; 3152 if (const ConstantInt *CI = 3153 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3154 Value = APSInt(CI->getValue(), 3155 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3156 else if (const ConstantFP *CFP = 3157 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3158 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3159 else 3160 llvm_unreachable("cannot emit a constant without a value"); 3161 3162 std::string QualifiedName = getFullyQualifiedName(Scope, DTy->getName()); 3163 3164 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3165 OS.AddComment("Type"); 3166 OS.emitInt32(getTypeIndex(DTy->getBaseType()).getIndex()); 3167 OS.AddComment("Value"); 3168 3169 // Encoded integers shouldn't need more than 10 bytes. 3170 uint8_t Data[10]; 3171 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3172 CodeViewRecordIO IO(Writer); 3173 cantFail(IO.mapEncodedInteger(Value)); 3174 StringRef SRef((char *)Data, Writer.getOffset()); 3175 OS.emitBinaryData(SRef); 3176 3177 OS.AddComment("Name"); 3178 emitNullTerminatedSymbolName(OS, QualifiedName); 3179 endSymbolRecord(SConstantEnd); 3180 } 3181 } 3182 3183 static bool isFloatDIType(const DIType *Ty) { 3184 if (isa<DICompositeType>(Ty)) 3185 return false; 3186 3187 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3188 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3189 if (T == dwarf::DW_TAG_pointer_type || 3190 T == dwarf::DW_TAG_ptr_to_member_type || 3191 T == dwarf::DW_TAG_reference_type || 3192 T == dwarf::DW_TAG_rvalue_reference_type) 3193 return false; 3194 assert(DTy->getBaseType() && "Expected valid base type"); 3195 return isFloatDIType(DTy->getBaseType()); 3196 } 3197 3198 auto *BTy = cast<DIBasicType>(Ty); 3199 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3200 } 3201 3202 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3203 const DIGlobalVariable *DIGV = CVGV.DIGV; 3204 3205 const DIScope *Scope = DIGV->getScope(); 3206 // For static data members, get the scope from the declaration. 3207 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3208 DIGV->getRawStaticDataMemberDeclaration())) 3209 Scope = MemberDecl->getScope(); 3210 std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName()); 3211 3212 if (const GlobalVariable *GV = 3213 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3214 // DataSym record, see SymbolRecord.h for more info. Thread local data 3215 // happens to have the same format as global data. 3216 MCSymbol *GVSym = Asm->getSymbol(GV); 3217 SymbolKind DataSym = GV->isThreadLocal() 3218 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3219 : SymbolKind::S_GTHREAD32) 3220 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3221 : SymbolKind::S_GDATA32); 3222 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3223 OS.AddComment("Type"); 3224 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3225 OS.AddComment("DataOffset"); 3226 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3227 OS.AddComment("Segment"); 3228 OS.EmitCOFFSectionIndex(GVSym); 3229 OS.AddComment("Name"); 3230 const unsigned LengthOfDataRecord = 12; 3231 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3232 endSymbolRecord(DataEnd); 3233 } else { 3234 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3235 assert(DIE->isConstant() && 3236 "Global constant variables must contain a constant expression."); 3237 3238 // Use unsigned for floats. 3239 bool isUnsigned = isFloatDIType(DIGV->getType()) 3240 ? true 3241 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3242 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3243 3244 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3245 OS.AddComment("Type"); 3246 OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex()); 3247 OS.AddComment("Value"); 3248 3249 // Encoded integers shouldn't need more than 10 bytes. 3250 uint8_t data[10]; 3251 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3252 CodeViewRecordIO IO(Writer); 3253 cantFail(IO.mapEncodedInteger(Value)); 3254 StringRef SRef((char *)data, Writer.getOffset()); 3255 OS.emitBinaryData(SRef); 3256 3257 OS.AddComment("Name"); 3258 emitNullTerminatedSymbolName(OS, QualifiedName); 3259 endSymbolRecord(SConstantEnd); 3260 } 3261 } 3262