xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision b5af11dfa3474363ff04494ad6cfb18ef8d067b5)
1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CodeView.h"
17 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
18 #include "llvm/DebugInfo/CodeView/Line.h"
19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
20 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
21 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
22 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCSectionCOFF.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/Support/COFF.h"
28 #include "llvm/Support/ScopedPrinter.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include "llvm/Target/TargetSubtargetInfo.h"
32 
33 using namespace llvm;
34 using namespace llvm::codeview;
35 
36 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
37     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
38   // If module doesn't have named metadata anchors or COFF debug section
39   // is not available, skip any debug info related stuff.
40   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
41       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
42     Asm = nullptr;
43     return;
44   }
45 
46   // Tell MMI that we have debug info.
47   MMI->setDebugInfoAvailability(true);
48 }
49 
50 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
51   std::string &Filepath = FileToFilepathMap[File];
52   if (!Filepath.empty())
53     return Filepath;
54 
55   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
56 
57   // Clang emits directory and relative filename info into the IR, but CodeView
58   // operates on full paths.  We could change Clang to emit full paths too, but
59   // that would increase the IR size and probably not needed for other users.
60   // For now, just concatenate and canonicalize the path here.
61   if (Filename.find(':') == 1)
62     Filepath = Filename;
63   else
64     Filepath = (Dir + "\\" + Filename).str();
65 
66   // Canonicalize the path.  We have to do it textually because we may no longer
67   // have access the file in the filesystem.
68   // First, replace all slashes with backslashes.
69   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
70 
71   // Remove all "\.\" with "\".
72   size_t Cursor = 0;
73   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
74     Filepath.erase(Cursor, 2);
75 
76   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
77   // path should be well-formatted, e.g. start with a drive letter, etc.
78   Cursor = 0;
79   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
80     // Something's wrong if the path starts with "\..\", abort.
81     if (Cursor == 0)
82       break;
83 
84     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
85     if (PrevSlash == std::string::npos)
86       // Something's wrong, abort.
87       break;
88 
89     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
90     // The next ".." might be following the one we've just erased.
91     Cursor = PrevSlash;
92   }
93 
94   // Remove all duplicate backslashes.
95   Cursor = 0;
96   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
97     Filepath.erase(Cursor, 1);
98 
99   return Filepath;
100 }
101 
102 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
103   unsigned NextId = FileIdMap.size() + 1;
104   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
105   if (Insertion.second) {
106     // We have to compute the full filepath and emit a .cv_file directive.
107     StringRef FullPath = getFullFilepath(F);
108     NextId = OS.EmitCVFileDirective(NextId, FullPath);
109     assert(NextId == FileIdMap.size() && ".cv_file directive failed");
110   }
111   return Insertion.first->second;
112 }
113 
114 CodeViewDebug::InlineSite &
115 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
116                              const DISubprogram *Inlinee) {
117   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
118   InlineSite *Site = &SiteInsertion.first->second;
119   if (SiteInsertion.second) {
120     Site->SiteFuncId = NextFuncId++;
121     Site->Inlinee = Inlinee;
122     InlinedSubprograms.insert(Inlinee);
123     getFuncIdForSubprogram(Inlinee);
124   }
125   return *Site;
126 }
127 
128 static const DISubprogram *getQualifiedNameComponents(
129     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
130   const DISubprogram *ClosestSubprogram = nullptr;
131   while (Scope != nullptr) {
132     if (ClosestSubprogram == nullptr)
133       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
134     StringRef ScopeName = Scope->getName();
135     if (!ScopeName.empty())
136       QualifiedNameComponents.push_back(ScopeName);
137     Scope = Scope->getScope().resolve();
138   }
139   return ClosestSubprogram;
140 }
141 
142 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
143                                     StringRef TypeName) {
144   std::string FullyQualifiedName;
145   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
146     FullyQualifiedName.append(QualifiedNameComponent);
147     FullyQualifiedName.append("::");
148   }
149   FullyQualifiedName.append(TypeName);
150   return FullyQualifiedName;
151 }
152 
153 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
154   SmallVector<StringRef, 5> QualifiedNameComponents;
155   getQualifiedNameComponents(Scope, QualifiedNameComponents);
156   return getQualifiedName(QualifiedNameComponents, Name);
157 }
158 
159 struct CodeViewDebug::TypeLoweringScope {
160   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
161   ~TypeLoweringScope() {
162     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
163     // inner TypeLoweringScopes don't attempt to emit deferred types.
164     if (CVD.TypeEmissionLevel == 1)
165       CVD.emitDeferredCompleteTypes();
166     --CVD.TypeEmissionLevel;
167   }
168   CodeViewDebug &CVD;
169 };
170 
171 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
172   // No scope means global scope and that uses the zero index.
173   if (!Scope || isa<DIFile>(Scope))
174     return TypeIndex();
175 
176   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
177 
178   // Check if we've already translated this scope.
179   auto I = TypeIndices.find({Scope, nullptr});
180   if (I != TypeIndices.end())
181     return I->second;
182 
183   // Build the fully qualified name of the scope.
184   std::string ScopeName =
185       getFullyQualifiedName(Scope->getScope().resolve(), Scope->getName());
186   TypeIndex TI =
187       TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName));
188   return recordTypeIndexForDINode(Scope, TI);
189 }
190 
191 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
192   // It's possible to ask for the FuncId of a function which doesn't have a
193   // subprogram: inlining a function with debug info into a function with none.
194   if (!SP)
195     return TypeIndex::None();
196 
197   // Check if we've already translated this subprogram.
198   auto I = TypeIndices.find({SP, nullptr});
199   if (I != TypeIndices.end())
200     return I->second;
201 
202   // The display name includes function template arguments. Drop them to match
203   // MSVC.
204   StringRef DisplayName = SP->getDisplayName().split('<').first;
205 
206   const DIScope *Scope = SP->getScope().resolve();
207   TypeIndex TI;
208   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
209     // If the scope is a DICompositeType, then this must be a method. Member
210     // function types take some special handling, and require access to the
211     // subprogram.
212     TypeIndex ClassType = getTypeIndex(Class);
213     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
214                                DisplayName);
215     TI = TypeTable.writeMemberFuncId(MFuncId);
216   } else {
217     // Otherwise, this must be a free function.
218     TypeIndex ParentScope = getScopeIndex(Scope);
219     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
220     TI = TypeTable.writeFuncId(FuncId);
221   }
222 
223   return recordTypeIndexForDINode(SP, TI);
224 }
225 
226 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
227                                                const DICompositeType *Class) {
228   // Always use the method declaration as the key for the function type. The
229   // method declaration contains the this adjustment.
230   if (SP->getDeclaration())
231     SP = SP->getDeclaration();
232   assert(!SP->getDeclaration() && "should use declaration as key");
233 
234   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
235   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
236   auto I = TypeIndices.find({SP, Class});
237   if (I != TypeIndices.end())
238     return I->second;
239 
240   // Make sure complete type info for the class is emitted *after* the member
241   // function type, as the complete class type is likely to reference this
242   // member function type.
243   TypeLoweringScope S(*this);
244   TypeIndex TI =
245       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
246   return recordTypeIndexForDINode(SP, TI, Class);
247 }
248 
249 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI,
250                                              const DIType *ClassTy) {
251   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
252   (void)InsertResult;
253   assert(InsertResult.second && "DINode was already assigned a type index");
254   return TI;
255 }
256 
257 unsigned CodeViewDebug::getPointerSizeInBytes() {
258   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
259 }
260 
261 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
262                                         const DILocation *InlinedAt) {
263   if (InlinedAt) {
264     // This variable was inlined. Associate it with the InlineSite.
265     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
266     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
267     Site.InlinedLocals.emplace_back(Var);
268   } else {
269     // This variable goes in the main ProcSym.
270     CurFn->Locals.emplace_back(Var);
271   }
272 }
273 
274 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
275                                const DILocation *Loc) {
276   auto B = Locs.begin(), E = Locs.end();
277   if (std::find(B, E, Loc) == E)
278     Locs.push_back(Loc);
279 }
280 
281 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
282                                         const MachineFunction *MF) {
283   // Skip this instruction if it has the same location as the previous one.
284   if (DL == CurFn->LastLoc)
285     return;
286 
287   const DIScope *Scope = DL.get()->getScope();
288   if (!Scope)
289     return;
290 
291   // Skip this line if it is longer than the maximum we can record.
292   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
293   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
294       LI.isNeverStepInto())
295     return;
296 
297   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
298   if (CI.getStartColumn() != DL.getCol())
299     return;
300 
301   if (!CurFn->HaveLineInfo)
302     CurFn->HaveLineInfo = true;
303   unsigned FileId = 0;
304   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
305     FileId = CurFn->LastFileId;
306   else
307     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
308   CurFn->LastLoc = DL;
309 
310   unsigned FuncId = CurFn->FuncId;
311   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
312     const DILocation *Loc = DL.get();
313 
314     // If this location was actually inlined from somewhere else, give it the ID
315     // of the inline call site.
316     FuncId =
317         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
318 
319     // Ensure we have links in the tree of inline call sites.
320     bool FirstLoc = true;
321     while ((SiteLoc = Loc->getInlinedAt())) {
322       InlineSite &Site =
323           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
324       if (!FirstLoc)
325         addLocIfNotPresent(Site.ChildSites, Loc);
326       FirstLoc = false;
327       Loc = SiteLoc;
328     }
329     addLocIfNotPresent(CurFn->ChildSites, Loc);
330   }
331 
332   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
333                         /*PrologueEnd=*/false,
334                         /*IsStmt=*/false, DL->getFilename());
335 }
336 
337 void CodeViewDebug::emitCodeViewMagicVersion() {
338   OS.EmitValueToAlignment(4);
339   OS.AddComment("Debug section magic");
340   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
341 }
342 
343 void CodeViewDebug::endModule() {
344   if (!Asm || !MMI->hasDebugInfo())
345     return;
346 
347   assert(Asm != nullptr);
348 
349   // The COFF .debug$S section consists of several subsections, each starting
350   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
351   // of the payload followed by the payload itself.  The subsections are 4-byte
352   // aligned.
353 
354   // Use the generic .debug$S section, and make a subsection for all the inlined
355   // subprograms.
356   switchToDebugSectionForSymbol(nullptr);
357   emitInlineeLinesSubsection();
358 
359   // Emit per-function debug information.
360   for (auto &P : FnDebugInfo)
361     if (!P.first->isDeclarationForLinker())
362       emitDebugInfoForFunction(P.first, P.second);
363 
364   // Emit global variable debug information.
365   setCurrentSubprogram(nullptr);
366   emitDebugInfoForGlobals();
367 
368   // Emit retained types.
369   emitDebugInfoForRetainedTypes();
370 
371   // Switch back to the generic .debug$S section after potentially processing
372   // comdat symbol sections.
373   switchToDebugSectionForSymbol(nullptr);
374 
375   // Emit UDT records for any types used by global variables.
376   if (!GlobalUDTs.empty()) {
377     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
378     emitDebugInfoForUDTs(GlobalUDTs);
379     endCVSubsection(SymbolsEnd);
380   }
381 
382   // This subsection holds a file index to offset in string table table.
383   OS.AddComment("File index to string table offset subsection");
384   OS.EmitCVFileChecksumsDirective();
385 
386   // This subsection holds the string table.
387   OS.AddComment("String table");
388   OS.EmitCVStringTableDirective();
389 
390   // Emit type information last, so that any types we translate while emitting
391   // function info are included.
392   emitTypeInformation();
393 
394   clear();
395 }
396 
397 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
398   // Microsoft's linker seems to have trouble with symbol names longer than
399   // 0xffd8 bytes.
400   S = S.substr(0, 0xffd8);
401   SmallString<32> NullTerminatedString(S);
402   NullTerminatedString.push_back('\0');
403   OS.EmitBytes(NullTerminatedString);
404 }
405 
406 void CodeViewDebug::emitTypeInformation() {
407   // Do nothing if we have no debug info or if no non-trivial types were emitted
408   // to TypeTable during codegen.
409   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
410   if (!CU_Nodes)
411     return;
412   if (TypeTable.empty())
413     return;
414 
415   // Start the .debug$T section with 0x4.
416   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
417   emitCodeViewMagicVersion();
418 
419   SmallString<8> CommentPrefix;
420   if (OS.isVerboseAsm()) {
421     CommentPrefix += '\t';
422     CommentPrefix += Asm->MAI->getCommentString();
423     CommentPrefix += ' ';
424   }
425 
426   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
427   TypeTable.ForEachRecord(
428       [&](TypeIndex Index, StringRef Record) {
429         if (OS.isVerboseAsm()) {
430           // Emit a block comment describing the type record for readability.
431           SmallString<512> CommentBlock;
432           raw_svector_ostream CommentOS(CommentBlock);
433           ScopedPrinter SP(CommentOS);
434           SP.setPrefix(CommentPrefix);
435           CVTD.setPrinter(&SP);
436           Error EC = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
437           assert(!EC && "produced malformed type record");
438           consumeError(std::move(EC));
439           // emitRawComment will insert its own tab and comment string before
440           // the first line, so strip off our first one. It also prints its own
441           // newline.
442           OS.emitRawComment(
443               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
444         }
445         OS.EmitBinaryData(Record);
446       });
447 }
448 
449 void CodeViewDebug::emitInlineeLinesSubsection() {
450   if (InlinedSubprograms.empty())
451     return;
452 
453   OS.AddComment("Inlinee lines subsection");
454   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
455 
456   // We don't provide any extra file info.
457   // FIXME: Find out if debuggers use this info.
458   OS.AddComment("Inlinee lines signature");
459   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
460 
461   for (const DISubprogram *SP : InlinedSubprograms) {
462     assert(TypeIndices.count({SP, nullptr}));
463     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
464 
465     OS.AddBlankLine();
466     unsigned FileId = maybeRecordFile(SP->getFile());
467     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
468                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
469     OS.AddBlankLine();
470     // The filechecksum table uses 8 byte entries for now, and file ids start at
471     // 1.
472     unsigned FileOffset = (FileId - 1) * 8;
473     OS.AddComment("Type index of inlined function");
474     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
475     OS.AddComment("Offset into filechecksum table");
476     OS.EmitIntValue(FileOffset, 4);
477     OS.AddComment("Starting line number");
478     OS.EmitIntValue(SP->getLine(), 4);
479   }
480 
481   endCVSubsection(InlineEnd);
482 }
483 
484 void CodeViewDebug::collectInlineSiteChildren(
485     SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
486     const InlineSite &Site) {
487   for (const DILocation *ChildSiteLoc : Site.ChildSites) {
488     auto I = FI.InlineSites.find(ChildSiteLoc);
489     const InlineSite &ChildSite = I->second;
490     Children.push_back(ChildSite.SiteFuncId);
491     collectInlineSiteChildren(Children, FI, ChildSite);
492   }
493 }
494 
495 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
496                                         const DILocation *InlinedAt,
497                                         const InlineSite &Site) {
498   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
499            *InlineEnd = MMI->getContext().createTempSymbol();
500 
501   assert(TypeIndices.count({Site.Inlinee, nullptr}));
502   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
503 
504   // SymbolRecord
505   OS.AddComment("Record length");
506   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
507   OS.EmitLabel(InlineBegin);
508   OS.AddComment("Record kind: S_INLINESITE");
509   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
510 
511   OS.AddComment("PtrParent");
512   OS.EmitIntValue(0, 4);
513   OS.AddComment("PtrEnd");
514   OS.EmitIntValue(0, 4);
515   OS.AddComment("Inlinee type index");
516   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
517 
518   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
519   unsigned StartLineNum = Site.Inlinee->getLine();
520   SmallVector<unsigned, 3> SecondaryFuncIds;
521   collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
522 
523   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
524                                     FI.Begin, FI.End, SecondaryFuncIds);
525 
526   OS.EmitLabel(InlineEnd);
527 
528   emitLocalVariableList(Site.InlinedLocals);
529 
530   // Recurse on child inlined call sites before closing the scope.
531   for (const DILocation *ChildSite : Site.ChildSites) {
532     auto I = FI.InlineSites.find(ChildSite);
533     assert(I != FI.InlineSites.end() &&
534            "child site not in function inline site map");
535     emitInlinedCallSite(FI, ChildSite, I->second);
536   }
537 
538   // Close the scope.
539   OS.AddComment("Record length");
540   OS.EmitIntValue(2, 2);                                  // RecordLength
541   OS.AddComment("Record kind: S_INLINESITE_END");
542   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
543 }
544 
545 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
546   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
547   // comdat key. A section may be comdat because of -ffunction-sections or
548   // because it is comdat in the IR.
549   MCSectionCOFF *GVSec =
550       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
551   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
552 
553   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
554       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
555   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
556 
557   OS.SwitchSection(DebugSec);
558 
559   // Emit the magic version number if this is the first time we've switched to
560   // this section.
561   if (ComdatDebugSections.insert(DebugSec).second)
562     emitCodeViewMagicVersion();
563 }
564 
565 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
566                                              FunctionInfo &FI) {
567   // For each function there is a separate subsection
568   // which holds the PC to file:line table.
569   const MCSymbol *Fn = Asm->getSymbol(GV);
570   assert(Fn);
571 
572   // Switch to the to a comdat section, if appropriate.
573   switchToDebugSectionForSymbol(Fn);
574 
575   std::string FuncName;
576   auto *SP = GV->getSubprogram();
577   setCurrentSubprogram(SP);
578 
579   // If we have a display name, build the fully qualified name by walking the
580   // chain of scopes.
581   if (SP != nullptr && !SP->getDisplayName().empty())
582     FuncName =
583         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
584 
585   // If our DISubprogram name is empty, use the mangled name.
586   if (FuncName.empty())
587     FuncName = GlobalValue::getRealLinkageName(GV->getName());
588 
589   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
590   OS.AddComment("Symbol subsection for " + Twine(FuncName));
591   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
592   {
593     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
594              *ProcRecordEnd = MMI->getContext().createTempSymbol();
595     OS.AddComment("Record length");
596     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
597     OS.EmitLabel(ProcRecordBegin);
598 
599     OS.AddComment("Record kind: S_GPROC32_ID");
600     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
601 
602     // These fields are filled in by tools like CVPACK which run after the fact.
603     OS.AddComment("PtrParent");
604     OS.EmitIntValue(0, 4);
605     OS.AddComment("PtrEnd");
606     OS.EmitIntValue(0, 4);
607     OS.AddComment("PtrNext");
608     OS.EmitIntValue(0, 4);
609     // This is the important bit that tells the debugger where the function
610     // code is located and what's its size:
611     OS.AddComment("Code size");
612     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
613     OS.AddComment("Offset after prologue");
614     OS.EmitIntValue(0, 4);
615     OS.AddComment("Offset before epilogue");
616     OS.EmitIntValue(0, 4);
617     OS.AddComment("Function type index");
618     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
619     OS.AddComment("Function section relative address");
620     OS.EmitCOFFSecRel32(Fn);
621     OS.AddComment("Function section index");
622     OS.EmitCOFFSectionIndex(Fn);
623     OS.AddComment("Flags");
624     OS.EmitIntValue(0, 1);
625     // Emit the function display name as a null-terminated string.
626     OS.AddComment("Function name");
627     // Truncate the name so we won't overflow the record length field.
628     emitNullTerminatedSymbolName(OS, FuncName);
629     OS.EmitLabel(ProcRecordEnd);
630 
631     emitLocalVariableList(FI.Locals);
632 
633     // Emit inlined call site information. Only emit functions inlined directly
634     // into the parent function. We'll emit the other sites recursively as part
635     // of their parent inline site.
636     for (const DILocation *InlinedAt : FI.ChildSites) {
637       auto I = FI.InlineSites.find(InlinedAt);
638       assert(I != FI.InlineSites.end() &&
639              "child site not in function inline site map");
640       emitInlinedCallSite(FI, InlinedAt, I->second);
641     }
642 
643     if (SP != nullptr)
644       emitDebugInfoForUDTs(LocalUDTs);
645 
646     // We're done with this function.
647     OS.AddComment("Record length");
648     OS.EmitIntValue(0x0002, 2);
649     OS.AddComment("Record kind: S_PROC_ID_END");
650     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
651   }
652   endCVSubsection(SymbolsEnd);
653 
654   // We have an assembler directive that takes care of the whole line table.
655   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
656 }
657 
658 CodeViewDebug::LocalVarDefRange
659 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
660   LocalVarDefRange DR;
661   DR.InMemory = -1;
662   DR.DataOffset = Offset;
663   assert(DR.DataOffset == Offset && "truncation");
664   DR.StructOffset = 0;
665   DR.CVRegister = CVRegister;
666   return DR;
667 }
668 
669 CodeViewDebug::LocalVarDefRange
670 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
671   LocalVarDefRange DR;
672   DR.InMemory = 0;
673   DR.DataOffset = 0;
674   DR.StructOffset = 0;
675   DR.CVRegister = CVRegister;
676   return DR;
677 }
678 
679 void CodeViewDebug::collectVariableInfoFromMMITable(
680     DenseSet<InlinedVariable> &Processed) {
681   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
682   const TargetFrameLowering *TFI = TSI.getFrameLowering();
683   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
684 
685   for (const MachineModuleInfo::VariableDbgInfo &VI :
686        MMI->getVariableDbgInfo()) {
687     if (!VI.Var)
688       continue;
689     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
690            "Expected inlined-at fields to agree");
691 
692     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
693     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
694 
695     // If variable scope is not found then skip this variable.
696     if (!Scope)
697       continue;
698 
699     // Get the frame register used and the offset.
700     unsigned FrameReg = 0;
701     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
702     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
703 
704     // Calculate the label ranges.
705     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
706     for (const InsnRange &Range : Scope->getRanges()) {
707       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
708       const MCSymbol *End = getLabelAfterInsn(Range.second);
709       End = End ? End : Asm->getFunctionEnd();
710       DefRange.Ranges.emplace_back(Begin, End);
711     }
712 
713     LocalVariable Var;
714     Var.DIVar = VI.Var;
715     Var.DefRanges.emplace_back(std::move(DefRange));
716     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
717   }
718 }
719 
720 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
721   DenseSet<InlinedVariable> Processed;
722   // Grab the variable info that was squirreled away in the MMI side-table.
723   collectVariableInfoFromMMITable(Processed);
724 
725   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
726 
727   for (const auto &I : DbgValues) {
728     InlinedVariable IV = I.first;
729     if (Processed.count(IV))
730       continue;
731     const DILocalVariable *DIVar = IV.first;
732     const DILocation *InlinedAt = IV.second;
733 
734     // Instruction ranges, specifying where IV is accessible.
735     const auto &Ranges = I.second;
736 
737     LexicalScope *Scope = nullptr;
738     if (InlinedAt)
739       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
740     else
741       Scope = LScopes.findLexicalScope(DIVar->getScope());
742     // If variable scope is not found then skip this variable.
743     if (!Scope)
744       continue;
745 
746     LocalVariable Var;
747     Var.DIVar = DIVar;
748 
749     // Calculate the definition ranges.
750     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
751       const InsnRange &Range = *I;
752       const MachineInstr *DVInst = Range.first;
753       assert(DVInst->isDebugValue() && "Invalid History entry");
754       const DIExpression *DIExpr = DVInst->getDebugExpression();
755 
756       // Bail if there is a complex DWARF expression for now.
757       if (DIExpr && DIExpr->getNumElements() > 0)
758         continue;
759 
760       // Bail if operand 0 is not a valid register. This means the variable is a
761       // simple constant, or is described by a complex expression.
762       // FIXME: Find a way to represent constant variables, since they are
763       // relatively common.
764       unsigned Reg =
765           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
766       if (Reg == 0)
767         continue;
768 
769       // Handle the two cases we can handle: indirect in memory and in register.
770       bool IsIndirect = DVInst->getOperand(1).isImm();
771       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
772       {
773         LocalVarDefRange DefRange;
774         if (IsIndirect) {
775           int64_t Offset = DVInst->getOperand(1).getImm();
776           DefRange = createDefRangeMem(CVReg, Offset);
777         } else {
778           DefRange = createDefRangeReg(CVReg);
779         }
780         if (Var.DefRanges.empty() ||
781             Var.DefRanges.back().isDifferentLocation(DefRange)) {
782           Var.DefRanges.emplace_back(std::move(DefRange));
783         }
784       }
785 
786       // Compute the label range.
787       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
788       const MCSymbol *End = getLabelAfterInsn(Range.second);
789       if (!End) {
790         if (std::next(I) != E)
791           End = getLabelBeforeInsn(std::next(I)->first);
792         else
793           End = Asm->getFunctionEnd();
794       }
795 
796       // If the last range end is our begin, just extend the last range.
797       // Otherwise make a new range.
798       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
799           Var.DefRanges.back().Ranges;
800       if (!Ranges.empty() && Ranges.back().second == Begin)
801         Ranges.back().second = End;
802       else
803         Ranges.emplace_back(Begin, End);
804 
805       // FIXME: Do more range combining.
806     }
807 
808     recordLocalVariable(std::move(Var), InlinedAt);
809   }
810 }
811 
812 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
813   assert(!CurFn && "Can't process two functions at once!");
814 
815   if (!Asm || !MMI->hasDebugInfo())
816     return;
817 
818   DebugHandlerBase::beginFunction(MF);
819 
820   const Function *GV = MF->getFunction();
821   assert(FnDebugInfo.count(GV) == false);
822   CurFn = &FnDebugInfo[GV];
823   CurFn->FuncId = NextFuncId++;
824   CurFn->Begin = Asm->getFunctionBegin();
825 
826   // Find the end of the function prolog.  First known non-DBG_VALUE and
827   // non-frame setup location marks the beginning of the function body.
828   // FIXME: is there a simpler a way to do this? Can we just search
829   // for the first instruction of the function, not the last of the prolog?
830   DebugLoc PrologEndLoc;
831   bool EmptyPrologue = true;
832   for (const auto &MBB : *MF) {
833     for (const auto &MI : MBB) {
834       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
835           MI.getDebugLoc()) {
836         PrologEndLoc = MI.getDebugLoc();
837         break;
838       } else if (!MI.isDebugValue()) {
839         EmptyPrologue = false;
840       }
841     }
842   }
843 
844   // Record beginning of function if we have a non-empty prologue.
845   if (PrologEndLoc && !EmptyPrologue) {
846     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
847     maybeRecordLocation(FnStartDL, MF);
848   }
849 }
850 
851 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
852   SmallVector<StringRef, 5> QualifiedNameComponents;
853   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
854       Ty->getScope().resolve(), QualifiedNameComponents);
855 
856   std::string FullyQualifiedName =
857       getQualifiedName(QualifiedNameComponents, Ty->getName());
858 
859   if (ClosestSubprogram == nullptr)
860     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
861   else if (ClosestSubprogram == CurrentSubprogram)
862     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
863 
864   // TODO: What if the ClosestSubprogram is neither null or the current
865   // subprogram?  Currently, the UDT just gets dropped on the floor.
866   //
867   // The current behavior is not desirable.  To get maximal fidelity, we would
868   // need to perform all type translation before beginning emission of .debug$S
869   // and then make LocalUDTs a member of FunctionInfo
870 }
871 
872 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
873   // Generic dispatch for lowering an unknown type.
874   switch (Ty->getTag()) {
875   case dwarf::DW_TAG_array_type:
876     return lowerTypeArray(cast<DICompositeType>(Ty));
877   case dwarf::DW_TAG_typedef:
878     return lowerTypeAlias(cast<DIDerivedType>(Ty));
879   case dwarf::DW_TAG_base_type:
880     return lowerTypeBasic(cast<DIBasicType>(Ty));
881   case dwarf::DW_TAG_pointer_type:
882   case dwarf::DW_TAG_reference_type:
883   case dwarf::DW_TAG_rvalue_reference_type:
884     return lowerTypePointer(cast<DIDerivedType>(Ty));
885   case dwarf::DW_TAG_ptr_to_member_type:
886     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
887   case dwarf::DW_TAG_const_type:
888   case dwarf::DW_TAG_volatile_type:
889     return lowerTypeModifier(cast<DIDerivedType>(Ty));
890   case dwarf::DW_TAG_subroutine_type:
891     if (ClassTy) {
892       // The member function type of a member function pointer has no
893       // ThisAdjustment.
894       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
895                                      /*ThisAdjustment=*/0);
896     }
897     return lowerTypeFunction(cast<DISubroutineType>(Ty));
898   case dwarf::DW_TAG_enumeration_type:
899     return lowerTypeEnum(cast<DICompositeType>(Ty));
900   case dwarf::DW_TAG_class_type:
901   case dwarf::DW_TAG_structure_type:
902     return lowerTypeClass(cast<DICompositeType>(Ty));
903   case dwarf::DW_TAG_union_type:
904     return lowerTypeUnion(cast<DICompositeType>(Ty));
905   default:
906     // Use the null type index.
907     return TypeIndex();
908   }
909 }
910 
911 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
912   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
913   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
914   StringRef TypeName = Ty->getName();
915 
916   addToUDTs(Ty, UnderlyingTypeIndex);
917 
918   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
919       TypeName == "HRESULT")
920     return TypeIndex(SimpleTypeKind::HResult);
921   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
922       TypeName == "wchar_t")
923     return TypeIndex(SimpleTypeKind::WideCharacter);
924 
925   return UnderlyingTypeIndex;
926 }
927 
928 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
929   DITypeRef ElementTypeRef = Ty->getBaseType();
930   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
931   // IndexType is size_t, which depends on the bitness of the target.
932   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
933                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
934                             : TypeIndex(SimpleTypeKind::UInt32Long);
935   uint64_t Size = Ty->getSizeInBits() / 8;
936   ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName());
937   return TypeTable.writeArray(Record);
938 }
939 
940 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
941   TypeIndex Index;
942   dwarf::TypeKind Kind;
943   uint32_t ByteSize;
944 
945   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
946   ByteSize = Ty->getSizeInBits() / 8;
947 
948   SimpleTypeKind STK = SimpleTypeKind::None;
949   switch (Kind) {
950   case dwarf::DW_ATE_address:
951     // FIXME: Translate
952     break;
953   case dwarf::DW_ATE_boolean:
954     switch (ByteSize) {
955     case 1:  STK = SimpleTypeKind::Boolean8;   break;
956     case 2:  STK = SimpleTypeKind::Boolean16;  break;
957     case 4:  STK = SimpleTypeKind::Boolean32;  break;
958     case 8:  STK = SimpleTypeKind::Boolean64;  break;
959     case 16: STK = SimpleTypeKind::Boolean128; break;
960     }
961     break;
962   case dwarf::DW_ATE_complex_float:
963     switch (ByteSize) {
964     case 2:  STK = SimpleTypeKind::Complex16;  break;
965     case 4:  STK = SimpleTypeKind::Complex32;  break;
966     case 8:  STK = SimpleTypeKind::Complex64;  break;
967     case 10: STK = SimpleTypeKind::Complex80;  break;
968     case 16: STK = SimpleTypeKind::Complex128; break;
969     }
970     break;
971   case dwarf::DW_ATE_float:
972     switch (ByteSize) {
973     case 2:  STK = SimpleTypeKind::Float16;  break;
974     case 4:  STK = SimpleTypeKind::Float32;  break;
975     case 6:  STK = SimpleTypeKind::Float48;  break;
976     case 8:  STK = SimpleTypeKind::Float64;  break;
977     case 10: STK = SimpleTypeKind::Float80;  break;
978     case 16: STK = SimpleTypeKind::Float128; break;
979     }
980     break;
981   case dwarf::DW_ATE_signed:
982     switch (ByteSize) {
983     case 1:  STK = SimpleTypeKind::SByte;      break;
984     case 2:  STK = SimpleTypeKind::Int16Short; break;
985     case 4:  STK = SimpleTypeKind::Int32;      break;
986     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
987     case 16: STK = SimpleTypeKind::Int128Oct;  break;
988     }
989     break;
990   case dwarf::DW_ATE_unsigned:
991     switch (ByteSize) {
992     case 1:  STK = SimpleTypeKind::Byte;        break;
993     case 2:  STK = SimpleTypeKind::UInt16Short; break;
994     case 4:  STK = SimpleTypeKind::UInt32;      break;
995     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
996     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
997     }
998     break;
999   case dwarf::DW_ATE_UTF:
1000     switch (ByteSize) {
1001     case 2: STK = SimpleTypeKind::Character16; break;
1002     case 4: STK = SimpleTypeKind::Character32; break;
1003     }
1004     break;
1005   case dwarf::DW_ATE_signed_char:
1006     if (ByteSize == 1)
1007       STK = SimpleTypeKind::SignedCharacter;
1008     break;
1009   case dwarf::DW_ATE_unsigned_char:
1010     if (ByteSize == 1)
1011       STK = SimpleTypeKind::UnsignedCharacter;
1012     break;
1013   default:
1014     break;
1015   }
1016 
1017   // Apply some fixups based on the source-level type name.
1018   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1019     STK = SimpleTypeKind::Int32Long;
1020   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1021     STK = SimpleTypeKind::UInt32Long;
1022   if (STK == SimpleTypeKind::UInt16Short &&
1023       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1024     STK = SimpleTypeKind::WideCharacter;
1025   if ((STK == SimpleTypeKind::SignedCharacter ||
1026        STK == SimpleTypeKind::UnsignedCharacter) &&
1027       Ty->getName() == "char")
1028     STK = SimpleTypeKind::NarrowCharacter;
1029 
1030   return TypeIndex(STK);
1031 }
1032 
1033 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1034   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1035 
1036   // While processing the type being pointed to it is possible we already
1037   // created this pointer type.  If so, we check here and return the existing
1038   // pointer type.
1039   auto I = TypeIndices.find({Ty, nullptr});
1040   if (I != TypeIndices.end())
1041     return I->second;
1042 
1043   // Pointers to simple types can use SimpleTypeMode, rather than having a
1044   // dedicated pointer type record.
1045   if (PointeeTI.isSimple() &&
1046       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1047       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1048     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1049                               ? SimpleTypeMode::NearPointer64
1050                               : SimpleTypeMode::NearPointer32;
1051     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1052   }
1053 
1054   PointerKind PK =
1055       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1056   PointerMode PM = PointerMode::Pointer;
1057   switch (Ty->getTag()) {
1058   default: llvm_unreachable("not a pointer tag type");
1059   case dwarf::DW_TAG_pointer_type:
1060     PM = PointerMode::Pointer;
1061     break;
1062   case dwarf::DW_TAG_reference_type:
1063     PM = PointerMode::LValueReference;
1064     break;
1065   case dwarf::DW_TAG_rvalue_reference_type:
1066     PM = PointerMode::RValueReference;
1067     break;
1068   }
1069   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1070   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1071   // do.
1072   PointerOptions PO = PointerOptions::None;
1073   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1074   return TypeTable.writePointer(PR);
1075 }
1076 
1077 static PointerToMemberRepresentation
1078 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1079   // SizeInBytes being zero generally implies that the member pointer type was
1080   // incomplete, which can happen if it is part of a function prototype. In this
1081   // case, use the unknown model instead of the general model.
1082   if (IsPMF) {
1083     switch (Flags & DINode::FlagPtrToMemberRep) {
1084     case 0:
1085       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1086                               : PointerToMemberRepresentation::GeneralFunction;
1087     case DINode::FlagSingleInheritance:
1088       return PointerToMemberRepresentation::SingleInheritanceFunction;
1089     case DINode::FlagMultipleInheritance:
1090       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1091     case DINode::FlagVirtualInheritance:
1092       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1093     }
1094   } else {
1095     switch (Flags & DINode::FlagPtrToMemberRep) {
1096     case 0:
1097       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1098                               : PointerToMemberRepresentation::GeneralData;
1099     case DINode::FlagSingleInheritance:
1100       return PointerToMemberRepresentation::SingleInheritanceData;
1101     case DINode::FlagMultipleInheritance:
1102       return PointerToMemberRepresentation::MultipleInheritanceData;
1103     case DINode::FlagVirtualInheritance:
1104       return PointerToMemberRepresentation::VirtualInheritanceData;
1105     }
1106   }
1107   llvm_unreachable("invalid ptr to member representation");
1108 }
1109 
1110 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1111   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1112   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1113   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1114   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1115                                                    : PointerKind::Near32;
1116   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1117   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1118                          : PointerMode::PointerToDataMember;
1119   PointerOptions PO = PointerOptions::None; // FIXME
1120   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1121   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1122   MemberPointerInfo MPI(
1123       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1124   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1125   return TypeTable.writePointer(PR);
1126 }
1127 
1128 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1129 /// have a translation, use the NearC convention.
1130 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1131   switch (DwarfCC) {
1132   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1133   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1134   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1135   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1136   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1137   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1138   }
1139   return CallingConvention::NearC;
1140 }
1141 
1142 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1143   ModifierOptions Mods = ModifierOptions::None;
1144   bool IsModifier = true;
1145   const DIType *BaseTy = Ty;
1146   while (IsModifier && BaseTy) {
1147     // FIXME: Need to add DWARF tag for __unaligned.
1148     switch (BaseTy->getTag()) {
1149     case dwarf::DW_TAG_const_type:
1150       Mods |= ModifierOptions::Const;
1151       break;
1152     case dwarf::DW_TAG_volatile_type:
1153       Mods |= ModifierOptions::Volatile;
1154       break;
1155     default:
1156       IsModifier = false;
1157       break;
1158     }
1159     if (IsModifier)
1160       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1161   }
1162   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1163 
1164   // While processing the type being pointed to, it is possible we already
1165   // created this modifier type.  If so, we check here and return the existing
1166   // modifier type.
1167   auto I = TypeIndices.find({Ty, nullptr});
1168   if (I != TypeIndices.end())
1169     return I->second;
1170 
1171   ModifierRecord MR(ModifiedTI, Mods);
1172   return TypeTable.writeModifier(MR);
1173 }
1174 
1175 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1176   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1177   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1178     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1179 
1180   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1181   ArrayRef<TypeIndex> ArgTypeIndices = None;
1182   if (!ReturnAndArgTypeIndices.empty()) {
1183     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1184     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1185     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1186   }
1187 
1188   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1189   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1190 
1191   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1192 
1193   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1194                             ArgTypeIndices.size(), ArgListIndex);
1195   return TypeTable.writeProcedure(Procedure);
1196 }
1197 
1198 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1199                                                  const DIType *ClassTy,
1200                                                  int ThisAdjustment) {
1201   // Lower the containing class type.
1202   TypeIndex ClassType = getTypeIndex(ClassTy);
1203 
1204   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1205   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1206     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1207 
1208   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1209   ArrayRef<TypeIndex> ArgTypeIndices = None;
1210   if (!ReturnAndArgTypeIndices.empty()) {
1211     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1212     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1213     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1214   }
1215   TypeIndex ThisTypeIndex = TypeIndex::Void();
1216   if (!ArgTypeIndices.empty()) {
1217     ThisTypeIndex = ArgTypeIndices.front();
1218     ArgTypeIndices = ArgTypeIndices.drop_front();
1219   }
1220 
1221   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1222   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1223 
1224   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1225 
1226   // TODO: Need to use the correct values for:
1227   //       FunctionOptions
1228   //       ThisPointerAdjustment.
1229   TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord(
1230       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1231       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1232 
1233   return TI;
1234 }
1235 
1236 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1237   switch (Flags & DINode::FlagAccessibility) {
1238   case DINode::FlagPrivate:   return MemberAccess::Private;
1239   case DINode::FlagPublic:    return MemberAccess::Public;
1240   case DINode::FlagProtected: return MemberAccess::Protected;
1241   case 0:
1242     // If there was no explicit access control, provide the default for the tag.
1243     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1244                                                  : MemberAccess::Public;
1245   }
1246   llvm_unreachable("access flags are exclusive");
1247 }
1248 
1249 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1250   if (SP->isArtificial())
1251     return MethodOptions::CompilerGenerated;
1252 
1253   // FIXME: Handle other MethodOptions.
1254 
1255   return MethodOptions::None;
1256 }
1257 
1258 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1259                                            bool Introduced) {
1260   switch (SP->getVirtuality()) {
1261   case dwarf::DW_VIRTUALITY_none:
1262     break;
1263   case dwarf::DW_VIRTUALITY_virtual:
1264     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1265   case dwarf::DW_VIRTUALITY_pure_virtual:
1266     return Introduced ? MethodKind::PureIntroducingVirtual
1267                       : MethodKind::PureVirtual;
1268   default:
1269     llvm_unreachable("unhandled virtuality case");
1270   }
1271 
1272   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1273 
1274   return MethodKind::Vanilla;
1275 }
1276 
1277 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1278   switch (Ty->getTag()) {
1279   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1280   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1281   }
1282   llvm_unreachable("unexpected tag");
1283 }
1284 
1285 /// Return the HasUniqueName option if it should be present in ClassOptions, or
1286 /// None otherwise.
1287 static ClassOptions getRecordUniqueNameOption(const DICompositeType *Ty) {
1288   // MSVC always sets this flag now, even for local types. Clang doesn't always
1289   // appear to give every type a linkage name, which may be problematic for us.
1290   // FIXME: Investigate the consequences of not following them here.
1291   return !Ty->getIdentifier().empty() ? ClassOptions::HasUniqueName
1292                                       : ClassOptions::None;
1293 }
1294 
1295 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1296   ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty);
1297   TypeIndex FTI;
1298   unsigned EnumeratorCount = 0;
1299 
1300   if (Ty->isForwardDecl()) {
1301     CO |= ClassOptions::ForwardReference;
1302   } else {
1303     FieldListRecordBuilder Fields;
1304     for (const DINode *Element : Ty->getElements()) {
1305       // We assume that the frontend provides all members in source declaration
1306       // order, which is what MSVC does.
1307       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1308         Fields.writeEnumerator(EnumeratorRecord(
1309             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1310             Enumerator->getName()));
1311         EnumeratorCount++;
1312       }
1313     }
1314     FTI = TypeTable.writeFieldList(Fields);
1315   }
1316 
1317   std::string FullName =
1318       getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName());
1319 
1320   return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1321                                         Ty->getIdentifier(),
1322                                         getTypeIndex(Ty->getBaseType())));
1323 }
1324 
1325 //===----------------------------------------------------------------------===//
1326 // ClassInfo
1327 //===----------------------------------------------------------------------===//
1328 
1329 struct llvm::ClassInfo {
1330   struct MemberInfo {
1331     const DIDerivedType *MemberTypeNode;
1332     unsigned BaseOffset;
1333   };
1334   // [MemberInfo]
1335   typedef std::vector<MemberInfo> MemberList;
1336 
1337   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1338   // MethodName -> MethodsList
1339   typedef MapVector<MDString *, MethodsList> MethodsMap;
1340 
1341   /// Base classes.
1342   std::vector<const DIDerivedType *> Inheritance;
1343 
1344   /// Direct members.
1345   MemberList Members;
1346   // Direct overloaded methods gathered by name.
1347   MethodsMap Methods;
1348 };
1349 
1350 void CodeViewDebug::clear() {
1351   assert(CurFn == nullptr);
1352   FileIdMap.clear();
1353   FnDebugInfo.clear();
1354   FileToFilepathMap.clear();
1355   LocalUDTs.clear();
1356   GlobalUDTs.clear();
1357   TypeIndices.clear();
1358   CompleteTypeIndices.clear();
1359 }
1360 
1361 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1362                                       const DIDerivedType *DDTy) {
1363   if (!DDTy->getName().empty()) {
1364     Info.Members.push_back({DDTy, 0});
1365     return;
1366   }
1367   // An unnamed member must represent a nested struct or union. Add all the
1368   // indirect fields to the current record.
1369   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1370   unsigned Offset = DDTy->getOffsetInBits() / 8;
1371   const DIType *Ty = DDTy->getBaseType().resolve();
1372   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1373   ClassInfo NestedInfo = collectClassInfo(DCTy);
1374   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1375     Info.Members.push_back(
1376         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1377 }
1378 
1379 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1380   ClassInfo Info;
1381   // Add elements to structure type.
1382   DINodeArray Elements = Ty->getElements();
1383   for (auto *Element : Elements) {
1384     // We assume that the frontend provides all members in source declaration
1385     // order, which is what MSVC does.
1386     if (!Element)
1387       continue;
1388     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1389       Info.Methods[SP->getRawName()].push_back(SP);
1390     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1391       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1392         collectMemberInfo(Info, DDTy);
1393       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1394         Info.Inheritance.push_back(DDTy);
1395       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1396         // Ignore friend members. It appears that MSVC emitted info about
1397         // friends in the past, but modern versions do not.
1398       }
1399       // FIXME: Get Clang to emit function virtual table here and handle it.
1400       // FIXME: Get clang to emit nested types here and do something with
1401       // them.
1402     }
1403     // Skip other unrecognized kinds of elements.
1404   }
1405   return Info;
1406 }
1407 
1408 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1409   // First, construct the forward decl.  Don't look into Ty to compute the
1410   // forward decl options, since it might not be available in all TUs.
1411   TypeRecordKind Kind = getRecordKind(Ty);
1412   ClassOptions CO =
1413       ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty);
1414   std::string FullName =
1415       getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName());
1416   TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord(
1417       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1418       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1419   if (!Ty->isForwardDecl())
1420     DeferredCompleteTypes.push_back(Ty);
1421   return FwdDeclTI;
1422 }
1423 
1424 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1425   // Construct the field list and complete type record.
1426   TypeRecordKind Kind = getRecordKind(Ty);
1427   // FIXME: Other ClassOptions, like ContainsNestedClass and NestedClass.
1428   ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty);
1429   TypeIndex FieldTI;
1430   TypeIndex VShapeTI;
1431   unsigned FieldCount;
1432   std::tie(FieldTI, VShapeTI, FieldCount) = lowerRecordFieldList(Ty);
1433 
1434   std::string FullName =
1435       getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName());
1436 
1437   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1438 
1439   TypeIndex ClassTI = TypeTable.writeClass(ClassRecord(
1440       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1441       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1442 
1443   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1444       ClassTI, TypeTable.writeStringId(StringIdRecord(
1445                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1446       Ty->getLine()));
1447 
1448   addToUDTs(Ty, ClassTI);
1449 
1450   return ClassTI;
1451 }
1452 
1453 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1454   ClassOptions CO =
1455       ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty);
1456   std::string FullName =
1457       getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName());
1458   TypeIndex FwdDeclTI =
1459       TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0,
1460                                        FullName, Ty->getIdentifier()));
1461   if (!Ty->isForwardDecl())
1462     DeferredCompleteTypes.push_back(Ty);
1463   return FwdDeclTI;
1464 }
1465 
1466 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1467   ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty);
1468   TypeIndex FieldTI;
1469   unsigned FieldCount;
1470   std::tie(FieldTI, std::ignore, FieldCount) = lowerRecordFieldList(Ty);
1471   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1472   std::string FullName =
1473       getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName());
1474 
1475   TypeIndex UnionTI = TypeTable.writeUnion(
1476       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1477                   Ty->getIdentifier()));
1478 
1479   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1480       UnionTI, TypeTable.writeStringId(StringIdRecord(
1481                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1482       Ty->getLine()));
1483 
1484   addToUDTs(Ty, UnionTI);
1485 
1486   return UnionTI;
1487 }
1488 
1489 std::tuple<TypeIndex, TypeIndex, unsigned>
1490 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1491   // Manually count members. MSVC appears to count everything that generates a
1492   // field list record. Each individual overload in a method overload group
1493   // contributes to this count, even though the overload group is a single field
1494   // list record.
1495   unsigned MemberCount = 0;
1496   ClassInfo Info = collectClassInfo(Ty);
1497   FieldListRecordBuilder Fields;
1498 
1499   // Create base classes.
1500   for (const DIDerivedType *I : Info.Inheritance) {
1501     if (I->getFlags() & DINode::FlagVirtual) {
1502       // Virtual base.
1503       // FIXME: Emit VBPtrOffset when the frontend provides it.
1504       unsigned VBPtrOffset = 0;
1505       // FIXME: Despite the accessor name, the offset is really in bytes.
1506       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1507       Fields.writeVirtualBaseClass(VirtualBaseClassRecord(
1508           translateAccessFlags(Ty->getTag(), I->getFlags()),
1509           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1510           VBTableIndex));
1511     } else {
1512       assert(I->getOffsetInBits() % 8 == 0 &&
1513              "bases must be on byte boundaries");
1514       Fields.writeBaseClass(BaseClassRecord(
1515           translateAccessFlags(Ty->getTag(), I->getFlags()),
1516           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1517     }
1518   }
1519 
1520   // Create members.
1521   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1522     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1523     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1524     StringRef MemberName = Member->getName();
1525     MemberAccess Access =
1526         translateAccessFlags(Ty->getTag(), Member->getFlags());
1527 
1528     if (Member->isStaticMember()) {
1529       Fields.writeStaticDataMember(
1530           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1531       MemberCount++;
1532       continue;
1533     }
1534 
1535     // Data member.
1536     uint64_t MemberOffsetInBits = Member->getOffsetInBits();
1537     if (Member->isBitField()) {
1538       uint64_t StartBitOffset = MemberOffsetInBits;
1539       if (const auto *CI =
1540               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1541         MemberOffsetInBits = CI->getZExtValue();
1542       }
1543       StartBitOffset -= MemberOffsetInBits;
1544       MemberBaseType = TypeTable.writeBitField(BitFieldRecord(
1545           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1546     }
1547     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1548     Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType,
1549                                             MemberOffsetInBytes, MemberName));
1550     MemberCount++;
1551   }
1552 
1553   // Create methods
1554   for (auto &MethodItr : Info.Methods) {
1555     StringRef Name = MethodItr.first->getString();
1556 
1557     std::vector<OneMethodRecord> Methods;
1558     for (const DISubprogram *SP : MethodItr.second) {
1559       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1560       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1561 
1562       unsigned VFTableOffset = -1;
1563       if (Introduced)
1564         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1565 
1566       Methods.push_back(
1567           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1568                           translateMethodOptionFlags(SP),
1569                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1570                           VFTableOffset, Name));
1571       MemberCount++;
1572     }
1573     assert(Methods.size() > 0 && "Empty methods map entry");
1574     if (Methods.size() == 1)
1575       Fields.writeOneMethod(Methods[0]);
1576     else {
1577       TypeIndex MethodList =
1578           TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods));
1579       Fields.writeOverloadedMethod(
1580           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1581     }
1582   }
1583   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1584   return std::make_tuple(FieldTI, TypeIndex(), MemberCount);
1585 }
1586 
1587 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1588   if (!VBPType.getIndex()) {
1589     // Make a 'const int *' type.
1590     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1591     TypeIndex ModifiedTI = TypeTable.writeModifier(MR);
1592 
1593     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1594                                                   : PointerKind::Near32;
1595     PointerMode PM = PointerMode::Pointer;
1596     PointerOptions PO = PointerOptions::None;
1597     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1598 
1599     VBPType = TypeTable.writePointer(PR);
1600   }
1601 
1602   return VBPType;
1603 }
1604 
1605 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1606   const DIType *Ty = TypeRef.resolve();
1607   const DIType *ClassTy = ClassTyRef.resolve();
1608 
1609   // The null DIType is the void type. Don't try to hash it.
1610   if (!Ty)
1611     return TypeIndex::Void();
1612 
1613   // Check if we've already translated this type. Don't try to do a
1614   // get-or-create style insertion that caches the hash lookup across the
1615   // lowerType call. It will update the TypeIndices map.
1616   auto I = TypeIndices.find({Ty, ClassTy});
1617   if (I != TypeIndices.end())
1618     return I->second;
1619 
1620   TypeLoweringScope S(*this);
1621   TypeIndex TI = lowerType(Ty, ClassTy);
1622   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1623 }
1624 
1625 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1626   const DIType *Ty = TypeRef.resolve();
1627 
1628   // The null DIType is the void type. Don't try to hash it.
1629   if (!Ty)
1630     return TypeIndex::Void();
1631 
1632   // If this is a non-record type, the complete type index is the same as the
1633   // normal type index. Just call getTypeIndex.
1634   switch (Ty->getTag()) {
1635   case dwarf::DW_TAG_class_type:
1636   case dwarf::DW_TAG_structure_type:
1637   case dwarf::DW_TAG_union_type:
1638     break;
1639   default:
1640     return getTypeIndex(Ty);
1641   }
1642 
1643   // Check if we've already translated the complete record type.  Lowering a
1644   // complete type should never trigger lowering another complete type, so we
1645   // can reuse the hash table lookup result.
1646   const auto *CTy = cast<DICompositeType>(Ty);
1647   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1648   if (!InsertResult.second)
1649     return InsertResult.first->second;
1650 
1651   TypeLoweringScope S(*this);
1652 
1653   // Make sure the forward declaration is emitted first. It's unclear if this
1654   // is necessary, but MSVC does it, and we should follow suit until we can show
1655   // otherwise.
1656   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1657 
1658   // Just use the forward decl if we don't have complete type info. This might
1659   // happen if the frontend is using modules and expects the complete definition
1660   // to be emitted elsewhere.
1661   if (CTy->isForwardDecl())
1662     return FwdDeclTI;
1663 
1664   TypeIndex TI;
1665   switch (CTy->getTag()) {
1666   case dwarf::DW_TAG_class_type:
1667   case dwarf::DW_TAG_structure_type:
1668     TI = lowerCompleteTypeClass(CTy);
1669     break;
1670   case dwarf::DW_TAG_union_type:
1671     TI = lowerCompleteTypeUnion(CTy);
1672     break;
1673   default:
1674     llvm_unreachable("not a record");
1675   }
1676 
1677   InsertResult.first->second = TI;
1678   return TI;
1679 }
1680 
1681 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1682 /// and do this until fixpoint, as each complete record type typically references
1683 /// many other record types.
1684 void CodeViewDebug::emitDeferredCompleteTypes() {
1685   SmallVector<const DICompositeType *, 4> TypesToEmit;
1686   while (!DeferredCompleteTypes.empty()) {
1687     std::swap(DeferredCompleteTypes, TypesToEmit);
1688     for (const DICompositeType *RecordTy : TypesToEmit)
1689       getCompleteTypeIndex(RecordTy);
1690     TypesToEmit.clear();
1691   }
1692 }
1693 
1694 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1695   // Get the sorted list of parameters and emit them first.
1696   SmallVector<const LocalVariable *, 6> Params;
1697   for (const LocalVariable &L : Locals)
1698     if (L.DIVar->isParameter())
1699       Params.push_back(&L);
1700   std::sort(Params.begin(), Params.end(),
1701             [](const LocalVariable *L, const LocalVariable *R) {
1702               return L->DIVar->getArg() < R->DIVar->getArg();
1703             });
1704   for (const LocalVariable *L : Params)
1705     emitLocalVariable(*L);
1706 
1707   // Next emit all non-parameters in the order that we found them.
1708   for (const LocalVariable &L : Locals)
1709     if (!L.DIVar->isParameter())
1710       emitLocalVariable(L);
1711 }
1712 
1713 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1714   // LocalSym record, see SymbolRecord.h for more info.
1715   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1716            *LocalEnd = MMI->getContext().createTempSymbol();
1717   OS.AddComment("Record length");
1718   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1719   OS.EmitLabel(LocalBegin);
1720 
1721   OS.AddComment("Record kind: S_LOCAL");
1722   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1723 
1724   LocalSymFlags Flags = LocalSymFlags::None;
1725   if (Var.DIVar->isParameter())
1726     Flags |= LocalSymFlags::IsParameter;
1727   if (Var.DefRanges.empty())
1728     Flags |= LocalSymFlags::IsOptimizedOut;
1729 
1730   OS.AddComment("TypeIndex");
1731   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1732   OS.EmitIntValue(TI.getIndex(), 4);
1733   OS.AddComment("Flags");
1734   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1735   // Truncate the name so we won't overflow the record length field.
1736   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1737   OS.EmitLabel(LocalEnd);
1738 
1739   // Calculate the on disk prefix of the appropriate def range record. The
1740   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1741   // should be big enough to hold all forms without memory allocation.
1742   SmallString<20> BytePrefix;
1743   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1744     BytePrefix.clear();
1745     // FIXME: Handle bitpieces.
1746     if (DefRange.StructOffset != 0)
1747       continue;
1748 
1749     if (DefRange.InMemory) {
1750       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1751                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1752       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1753       BytePrefix +=
1754           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1755       BytePrefix +=
1756           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1757                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1758     } else {
1759       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1760       // Unclear what matters here.
1761       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1762                               ArrayRef<LocalVariableAddrGap>());
1763       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1764       BytePrefix +=
1765           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1766       BytePrefix +=
1767           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1768                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1769     }
1770     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1771   }
1772 }
1773 
1774 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1775   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1776     return;
1777 
1778   const Function *GV = MF->getFunction();
1779   assert(FnDebugInfo.count(GV));
1780   assert(CurFn == &FnDebugInfo[GV]);
1781 
1782   collectVariableInfo(GV->getSubprogram());
1783 
1784   DebugHandlerBase::endFunction(MF);
1785 
1786   // Don't emit anything if we don't have any line tables.
1787   if (!CurFn->HaveLineInfo) {
1788     FnDebugInfo.erase(GV);
1789     CurFn = nullptr;
1790     return;
1791   }
1792 
1793   CurFn->End = Asm->getFunctionEnd();
1794 
1795   CurFn = nullptr;
1796 }
1797 
1798 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1799   DebugHandlerBase::beginInstruction(MI);
1800 
1801   // Ignore DBG_VALUE locations and function prologue.
1802   if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup))
1803     return;
1804   DebugLoc DL = MI->getDebugLoc();
1805   if (DL == PrevInstLoc || !DL)
1806     return;
1807   maybeRecordLocation(DL, Asm->MF);
1808 }
1809 
1810 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1811   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1812            *EndLabel = MMI->getContext().createTempSymbol();
1813   OS.EmitIntValue(unsigned(Kind), 4);
1814   OS.AddComment("Subsection size");
1815   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1816   OS.EmitLabel(BeginLabel);
1817   return EndLabel;
1818 }
1819 
1820 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1821   OS.EmitLabel(EndLabel);
1822   // Every subsection must be aligned to a 4-byte boundary.
1823   OS.EmitValueToAlignment(4);
1824 }
1825 
1826 void CodeViewDebug::emitDebugInfoForUDTs(
1827     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1828   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1829     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1830              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1831     OS.AddComment("Record length");
1832     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1833     OS.EmitLabel(UDTRecordBegin);
1834 
1835     OS.AddComment("Record kind: S_UDT");
1836     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1837 
1838     OS.AddComment("Type");
1839     OS.EmitIntValue(UDT.second.getIndex(), 4);
1840 
1841     emitNullTerminatedSymbolName(OS, UDT.first);
1842     OS.EmitLabel(UDTRecordEnd);
1843   }
1844 }
1845 
1846 void CodeViewDebug::emitDebugInfoForGlobals() {
1847   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1848   for (const MDNode *Node : CUs->operands()) {
1849     const auto *CU = cast<DICompileUnit>(Node);
1850 
1851     // First, emit all globals that are not in a comdat in a single symbol
1852     // substream. MSVC doesn't like it if the substream is empty, so only open
1853     // it if we have at least one global to emit.
1854     switchToDebugSectionForSymbol(nullptr);
1855     MCSymbol *EndLabel = nullptr;
1856     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1857       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1858         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
1859           if (!EndLabel) {
1860             OS.AddComment("Symbol subsection for globals");
1861             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
1862           }
1863           emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
1864         }
1865       }
1866     }
1867     if (EndLabel)
1868       endCVSubsection(EndLabel);
1869 
1870     // Second, emit each global that is in a comdat into its own .debug$S
1871     // section along with its own symbol substream.
1872     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1873       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1874         if (GV->hasComdat()) {
1875           MCSymbol *GVSym = Asm->getSymbol(GV);
1876           OS.AddComment("Symbol subsection for " +
1877                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
1878           switchToDebugSectionForSymbol(GVSym);
1879           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
1880           emitDebugInfoForGlobal(G, GVSym);
1881           endCVSubsection(EndLabel);
1882         }
1883       }
1884     }
1885   }
1886 }
1887 
1888 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
1889   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1890   for (const MDNode *Node : CUs->operands()) {
1891     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
1892       if (DIType *RT = dyn_cast<DIType>(Ty)) {
1893         getTypeIndex(RT);
1894         // FIXME: Add to global/local DTU list.
1895       }
1896     }
1897   }
1898 }
1899 
1900 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
1901                                            MCSymbol *GVSym) {
1902   // DataSym record, see SymbolRecord.h for more info.
1903   // FIXME: Thread local data, etc
1904   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
1905            *DataEnd = MMI->getContext().createTempSymbol();
1906   OS.AddComment("Record length");
1907   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
1908   OS.EmitLabel(DataBegin);
1909   OS.AddComment("Record kind: S_GDATA32");
1910   OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
1911   OS.AddComment("Type");
1912   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
1913   OS.AddComment("DataOffset");
1914   OS.EmitCOFFSecRel32(GVSym);
1915   OS.AddComment("Segment");
1916   OS.EmitCOFFSectionIndex(GVSym);
1917   OS.AddComment("Name");
1918   emitNullTerminatedSymbolName(OS, DIGV->getName());
1919   OS.EmitLabel(DataEnd);
1920 }
1921