1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CodeView.h" 17 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 18 #include "llvm/DebugInfo/CodeView/Line.h" 19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 20 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 21 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 22 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCSectionCOFF.h" 25 #include "llvm/MC/MCSymbol.h" 26 #include "llvm/Support/COFF.h" 27 #include "llvm/Support/ScopedPrinter.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetRegisterInfo.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 32 using namespace llvm; 33 using namespace llvm::codeview; 34 35 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 36 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 37 // If module doesn't have named metadata anchors or COFF debug section 38 // is not available, skip any debug info related stuff. 39 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 40 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 41 Asm = nullptr; 42 return; 43 } 44 45 // Tell MMI that we have debug info. 46 MMI->setDebugInfoAvailability(true); 47 } 48 49 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 50 std::string &Filepath = FileToFilepathMap[File]; 51 if (!Filepath.empty()) 52 return Filepath; 53 54 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 55 56 // Clang emits directory and relative filename info into the IR, but CodeView 57 // operates on full paths. We could change Clang to emit full paths too, but 58 // that would increase the IR size and probably not needed for other users. 59 // For now, just concatenate and canonicalize the path here. 60 if (Filename.find(':') == 1) 61 Filepath = Filename; 62 else 63 Filepath = (Dir + "\\" + Filename).str(); 64 65 // Canonicalize the path. We have to do it textually because we may no longer 66 // have access the file in the filesystem. 67 // First, replace all slashes with backslashes. 68 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 69 70 // Remove all "\.\" with "\". 71 size_t Cursor = 0; 72 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 73 Filepath.erase(Cursor, 2); 74 75 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 76 // path should be well-formatted, e.g. start with a drive letter, etc. 77 Cursor = 0; 78 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 79 // Something's wrong if the path starts with "\..\", abort. 80 if (Cursor == 0) 81 break; 82 83 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 84 if (PrevSlash == std::string::npos) 85 // Something's wrong, abort. 86 break; 87 88 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 89 // The next ".." might be following the one we've just erased. 90 Cursor = PrevSlash; 91 } 92 93 // Remove all duplicate backslashes. 94 Cursor = 0; 95 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 96 Filepath.erase(Cursor, 1); 97 98 return Filepath; 99 } 100 101 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 102 unsigned NextId = FileIdMap.size() + 1; 103 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 104 if (Insertion.second) { 105 // We have to compute the full filepath and emit a .cv_file directive. 106 StringRef FullPath = getFullFilepath(F); 107 NextId = OS.EmitCVFileDirective(NextId, FullPath); 108 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 109 } 110 return Insertion.first->second; 111 } 112 113 CodeViewDebug::InlineSite & 114 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 115 const DISubprogram *Inlinee) { 116 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 117 InlineSite *Site = &SiteInsertion.first->second; 118 if (SiteInsertion.second) { 119 Site->SiteFuncId = NextFuncId++; 120 Site->Inlinee = Inlinee; 121 InlinedSubprograms.insert(Inlinee); 122 getFuncIdForSubprogram(Inlinee); 123 } 124 return *Site; 125 } 126 127 static const DISubprogram *getQualifiedNameComponents( 128 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 129 const DISubprogram *ClosestSubprogram = nullptr; 130 while (Scope != nullptr) { 131 if (ClosestSubprogram == nullptr) 132 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 133 StringRef ScopeName = Scope->getName(); 134 if (!ScopeName.empty()) 135 QualifiedNameComponents.push_back(ScopeName); 136 Scope = Scope->getScope().resolve(); 137 } 138 return ClosestSubprogram; 139 } 140 141 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 142 StringRef TypeName) { 143 std::string FullyQualifiedName; 144 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 145 FullyQualifiedName.append(QualifiedNameComponent); 146 FullyQualifiedName.append("::"); 147 } 148 FullyQualifiedName.append(TypeName); 149 return FullyQualifiedName; 150 } 151 152 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 153 SmallVector<StringRef, 5> QualifiedNameComponents; 154 getQualifiedNameComponents(Scope, QualifiedNameComponents); 155 return getQualifiedName(QualifiedNameComponents, Name); 156 } 157 158 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 159 // No scope means global scope and that uses the zero index. 160 if (!Scope || isa<DIFile>(Scope)) 161 return TypeIndex(); 162 163 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 164 165 // Check if we've already translated this scope. 166 auto I = TypeIndices.find({Scope, nullptr}); 167 if (I != TypeIndices.end()) 168 return I->second; 169 170 // Build the fully qualified name of the scope. 171 std::string ScopeName = 172 getFullyQualifiedName(Scope->getScope().resolve(), Scope->getName()); 173 TypeIndex TI = 174 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 175 return recordTypeIndexForDINode(Scope, TI); 176 } 177 178 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 179 // It's possible to ask for the FuncId of a function which doesn't have a 180 // subprogram: inlining a function with debug info into a function with none. 181 if (!SP) 182 return TypeIndex::None(); 183 184 // Check if we've already translated this subprogram. 185 auto I = TypeIndices.find({SP, nullptr}); 186 if (I != TypeIndices.end()) 187 return I->second; 188 189 // The display name includes function template arguments. Drop them to match 190 // MSVC. 191 StringRef DisplayName = SP->getDisplayName().split('<').first; 192 193 const DIScope *Scope = SP->getScope().resolve(); 194 TypeIndex TI; 195 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 196 // If the scope is a DICompositeType, then this must be a method. Member 197 // function types take some special handling, and require access to the 198 // subprogram. 199 TypeIndex ClassType = getTypeIndex(Class); 200 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 201 DisplayName); 202 TI = TypeTable.writeMemberFuncId(MFuncId); 203 } else { 204 // Otherwise, this must be a free function. 205 TypeIndex ParentScope = getScopeIndex(Scope); 206 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 207 TI = TypeTable.writeFuncId(FuncId); 208 } 209 210 return recordTypeIndexForDINode(SP, TI); 211 } 212 213 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 214 const DICompositeType *Class) { 215 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 216 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 217 auto I = TypeIndices.find({SP, nullptr}); 218 if (I != TypeIndices.end()) 219 return I->second; 220 221 // FIXME: Get the ThisAdjustment off of SP when it is available. 222 TypeIndex TI = 223 lowerTypeMemberFunction(SP->getType(), Class, /*ThisAdjustment=*/0); 224 225 return recordTypeIndexForDINode(SP, TI, Class); 226 } 227 228 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, 229 const DIType *ClassTy) { 230 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 231 (void)InsertResult; 232 assert(InsertResult.second && "DINode was already assigned a type index"); 233 return TI; 234 } 235 236 unsigned CodeViewDebug::getPointerSizeInBytes() { 237 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 238 } 239 240 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 241 const DILocation *InlinedAt) { 242 if (InlinedAt) { 243 // This variable was inlined. Associate it with the InlineSite. 244 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 245 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 246 Site.InlinedLocals.emplace_back(Var); 247 } else { 248 // This variable goes in the main ProcSym. 249 CurFn->Locals.emplace_back(Var); 250 } 251 } 252 253 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 254 const DILocation *Loc) { 255 auto B = Locs.begin(), E = Locs.end(); 256 if (std::find(B, E, Loc) == E) 257 Locs.push_back(Loc); 258 } 259 260 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 261 const MachineFunction *MF) { 262 // Skip this instruction if it has the same location as the previous one. 263 if (DL == CurFn->LastLoc) 264 return; 265 266 const DIScope *Scope = DL.get()->getScope(); 267 if (!Scope) 268 return; 269 270 // Skip this line if it is longer than the maximum we can record. 271 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 272 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 273 LI.isNeverStepInto()) 274 return; 275 276 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 277 if (CI.getStartColumn() != DL.getCol()) 278 return; 279 280 if (!CurFn->HaveLineInfo) 281 CurFn->HaveLineInfo = true; 282 unsigned FileId = 0; 283 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 284 FileId = CurFn->LastFileId; 285 else 286 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 287 CurFn->LastLoc = DL; 288 289 unsigned FuncId = CurFn->FuncId; 290 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 291 const DILocation *Loc = DL.get(); 292 293 // If this location was actually inlined from somewhere else, give it the ID 294 // of the inline call site. 295 FuncId = 296 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 297 298 // Ensure we have links in the tree of inline call sites. 299 bool FirstLoc = true; 300 while ((SiteLoc = Loc->getInlinedAt())) { 301 InlineSite &Site = 302 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 303 if (!FirstLoc) 304 addLocIfNotPresent(Site.ChildSites, Loc); 305 FirstLoc = false; 306 Loc = SiteLoc; 307 } 308 addLocIfNotPresent(CurFn->ChildSites, Loc); 309 } 310 311 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 312 /*PrologueEnd=*/false, 313 /*IsStmt=*/false, DL->getFilename()); 314 } 315 316 void CodeViewDebug::emitCodeViewMagicVersion() { 317 OS.EmitValueToAlignment(4); 318 OS.AddComment("Debug section magic"); 319 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 320 } 321 322 void CodeViewDebug::endModule() { 323 if (!Asm || !MMI->hasDebugInfo()) 324 return; 325 326 assert(Asm != nullptr); 327 328 // The COFF .debug$S section consists of several subsections, each starting 329 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 330 // of the payload followed by the payload itself. The subsections are 4-byte 331 // aligned. 332 333 // Use the generic .debug$S section, and make a subsection for all the inlined 334 // subprograms. 335 switchToDebugSectionForSymbol(nullptr); 336 emitInlineeLinesSubsection(); 337 338 // Emit per-function debug information. 339 for (auto &P : FnDebugInfo) 340 if (!P.first->isDeclarationForLinker()) 341 emitDebugInfoForFunction(P.first, P.second); 342 343 // Emit global variable debug information. 344 setCurrentSubprogram(nullptr); 345 emitDebugInfoForGlobals(); 346 347 // Emit retained types. 348 emitDebugInfoForRetainedTypes(); 349 350 // Switch back to the generic .debug$S section after potentially processing 351 // comdat symbol sections. 352 switchToDebugSectionForSymbol(nullptr); 353 354 // Emit UDT records for any types used by global variables. 355 if (!GlobalUDTs.empty()) { 356 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 357 emitDebugInfoForUDTs(GlobalUDTs); 358 endCVSubsection(SymbolsEnd); 359 } 360 361 // This subsection holds a file index to offset in string table table. 362 OS.AddComment("File index to string table offset subsection"); 363 OS.EmitCVFileChecksumsDirective(); 364 365 // This subsection holds the string table. 366 OS.AddComment("String table"); 367 OS.EmitCVStringTableDirective(); 368 369 // Emit type information last, so that any types we translate while emitting 370 // function info are included. 371 emitTypeInformation(); 372 373 clear(); 374 } 375 376 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 377 // Microsoft's linker seems to have trouble with symbol names longer than 378 // 0xffd8 bytes. 379 S = S.substr(0, 0xffd8); 380 SmallString<32> NullTerminatedString(S); 381 NullTerminatedString.push_back('\0'); 382 OS.EmitBytes(NullTerminatedString); 383 } 384 385 void CodeViewDebug::emitTypeInformation() { 386 // Do nothing if we have no debug info or if no non-trivial types were emitted 387 // to TypeTable during codegen. 388 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 389 if (!CU_Nodes) 390 return; 391 if (TypeTable.empty()) 392 return; 393 394 // Start the .debug$T section with 0x4. 395 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 396 emitCodeViewMagicVersion(); 397 398 SmallString<8> CommentPrefix; 399 if (OS.isVerboseAsm()) { 400 CommentPrefix += '\t'; 401 CommentPrefix += Asm->MAI->getCommentString(); 402 CommentPrefix += ' '; 403 } 404 405 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 406 TypeTable.ForEachRecord( 407 [&](TypeIndex Index, StringRef Record) { 408 if (OS.isVerboseAsm()) { 409 // Emit a block comment describing the type record for readability. 410 SmallString<512> CommentBlock; 411 raw_svector_ostream CommentOS(CommentBlock); 412 ScopedPrinter SP(CommentOS); 413 SP.setPrefix(CommentPrefix); 414 CVTD.setPrinter(&SP); 415 Error EC = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 416 assert(!EC && "produced malformed type record"); 417 consumeError(std::move(EC)); 418 // emitRawComment will insert its own tab and comment string before 419 // the first line, so strip off our first one. It also prints its own 420 // newline. 421 OS.emitRawComment( 422 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 423 } 424 OS.EmitBinaryData(Record); 425 }); 426 } 427 428 void CodeViewDebug::emitInlineeLinesSubsection() { 429 if (InlinedSubprograms.empty()) 430 return; 431 432 OS.AddComment("Inlinee lines subsection"); 433 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 434 435 // We don't provide any extra file info. 436 // FIXME: Find out if debuggers use this info. 437 OS.AddComment("Inlinee lines signature"); 438 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 439 440 for (const DISubprogram *SP : InlinedSubprograms) { 441 assert(TypeIndices.count({SP, nullptr})); 442 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 443 444 OS.AddBlankLine(); 445 unsigned FileId = maybeRecordFile(SP->getFile()); 446 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 447 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 448 OS.AddBlankLine(); 449 // The filechecksum table uses 8 byte entries for now, and file ids start at 450 // 1. 451 unsigned FileOffset = (FileId - 1) * 8; 452 OS.AddComment("Type index of inlined function"); 453 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 454 OS.AddComment("Offset into filechecksum table"); 455 OS.EmitIntValue(FileOffset, 4); 456 OS.AddComment("Starting line number"); 457 OS.EmitIntValue(SP->getLine(), 4); 458 } 459 460 endCVSubsection(InlineEnd); 461 } 462 463 void CodeViewDebug::collectInlineSiteChildren( 464 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 465 const InlineSite &Site) { 466 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 467 auto I = FI.InlineSites.find(ChildSiteLoc); 468 const InlineSite &ChildSite = I->second; 469 Children.push_back(ChildSite.SiteFuncId); 470 collectInlineSiteChildren(Children, FI, ChildSite); 471 } 472 } 473 474 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 475 const DILocation *InlinedAt, 476 const InlineSite &Site) { 477 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 478 *InlineEnd = MMI->getContext().createTempSymbol(); 479 480 assert(TypeIndices.count({Site.Inlinee, nullptr})); 481 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 482 483 // SymbolRecord 484 OS.AddComment("Record length"); 485 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 486 OS.EmitLabel(InlineBegin); 487 OS.AddComment("Record kind: S_INLINESITE"); 488 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 489 490 OS.AddComment("PtrParent"); 491 OS.EmitIntValue(0, 4); 492 OS.AddComment("PtrEnd"); 493 OS.EmitIntValue(0, 4); 494 OS.AddComment("Inlinee type index"); 495 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 496 497 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 498 unsigned StartLineNum = Site.Inlinee->getLine(); 499 SmallVector<unsigned, 3> SecondaryFuncIds; 500 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 501 502 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 503 FI.Begin, FI.End, SecondaryFuncIds); 504 505 OS.EmitLabel(InlineEnd); 506 507 for (const LocalVariable &Var : Site.InlinedLocals) 508 emitLocalVariable(Var); 509 510 // Recurse on child inlined call sites before closing the scope. 511 for (const DILocation *ChildSite : Site.ChildSites) { 512 auto I = FI.InlineSites.find(ChildSite); 513 assert(I != FI.InlineSites.end() && 514 "child site not in function inline site map"); 515 emitInlinedCallSite(FI, ChildSite, I->second); 516 } 517 518 // Close the scope. 519 OS.AddComment("Record length"); 520 OS.EmitIntValue(2, 2); // RecordLength 521 OS.AddComment("Record kind: S_INLINESITE_END"); 522 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 523 } 524 525 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 526 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 527 // comdat key. A section may be comdat because of -ffunction-sections or 528 // because it is comdat in the IR. 529 MCSectionCOFF *GVSec = 530 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 531 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 532 533 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 534 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 535 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 536 537 OS.SwitchSection(DebugSec); 538 539 // Emit the magic version number if this is the first time we've switched to 540 // this section. 541 if (ComdatDebugSections.insert(DebugSec).second) 542 emitCodeViewMagicVersion(); 543 } 544 545 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 546 FunctionInfo &FI) { 547 // For each function there is a separate subsection 548 // which holds the PC to file:line table. 549 const MCSymbol *Fn = Asm->getSymbol(GV); 550 assert(Fn); 551 552 // Switch to the to a comdat section, if appropriate. 553 switchToDebugSectionForSymbol(Fn); 554 555 std::string FuncName; 556 auto *SP = GV->getSubprogram(); 557 setCurrentSubprogram(SP); 558 559 // If we have a display name, build the fully qualified name by walking the 560 // chain of scopes. 561 if (SP != nullptr && !SP->getDisplayName().empty()) 562 FuncName = 563 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 564 565 // If our DISubprogram name is empty, use the mangled name. 566 if (FuncName.empty()) 567 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 568 569 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 570 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 571 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 572 { 573 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 574 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 575 OS.AddComment("Record length"); 576 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 577 OS.EmitLabel(ProcRecordBegin); 578 579 OS.AddComment("Record kind: S_GPROC32_ID"); 580 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 581 582 // These fields are filled in by tools like CVPACK which run after the fact. 583 OS.AddComment("PtrParent"); 584 OS.EmitIntValue(0, 4); 585 OS.AddComment("PtrEnd"); 586 OS.EmitIntValue(0, 4); 587 OS.AddComment("PtrNext"); 588 OS.EmitIntValue(0, 4); 589 // This is the important bit that tells the debugger where the function 590 // code is located and what's its size: 591 OS.AddComment("Code size"); 592 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 593 OS.AddComment("Offset after prologue"); 594 OS.EmitIntValue(0, 4); 595 OS.AddComment("Offset before epilogue"); 596 OS.EmitIntValue(0, 4); 597 OS.AddComment("Function type index"); 598 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 599 OS.AddComment("Function section relative address"); 600 OS.EmitCOFFSecRel32(Fn); 601 OS.AddComment("Function section index"); 602 OS.EmitCOFFSectionIndex(Fn); 603 OS.AddComment("Flags"); 604 OS.EmitIntValue(0, 1); 605 // Emit the function display name as a null-terminated string. 606 OS.AddComment("Function name"); 607 // Truncate the name so we won't overflow the record length field. 608 emitNullTerminatedSymbolName(OS, FuncName); 609 OS.EmitLabel(ProcRecordEnd); 610 611 for (const LocalVariable &Var : FI.Locals) 612 emitLocalVariable(Var); 613 614 // Emit inlined call site information. Only emit functions inlined directly 615 // into the parent function. We'll emit the other sites recursively as part 616 // of their parent inline site. 617 for (const DILocation *InlinedAt : FI.ChildSites) { 618 auto I = FI.InlineSites.find(InlinedAt); 619 assert(I != FI.InlineSites.end() && 620 "child site not in function inline site map"); 621 emitInlinedCallSite(FI, InlinedAt, I->second); 622 } 623 624 if (SP != nullptr) 625 emitDebugInfoForUDTs(LocalUDTs); 626 627 // We're done with this function. 628 OS.AddComment("Record length"); 629 OS.EmitIntValue(0x0002, 2); 630 OS.AddComment("Record kind: S_PROC_ID_END"); 631 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 632 } 633 endCVSubsection(SymbolsEnd); 634 635 // We have an assembler directive that takes care of the whole line table. 636 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 637 } 638 639 CodeViewDebug::LocalVarDefRange 640 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 641 LocalVarDefRange DR; 642 DR.InMemory = -1; 643 DR.DataOffset = Offset; 644 assert(DR.DataOffset == Offset && "truncation"); 645 DR.StructOffset = 0; 646 DR.CVRegister = CVRegister; 647 return DR; 648 } 649 650 CodeViewDebug::LocalVarDefRange 651 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 652 LocalVarDefRange DR; 653 DR.InMemory = 0; 654 DR.DataOffset = 0; 655 DR.StructOffset = 0; 656 DR.CVRegister = CVRegister; 657 return DR; 658 } 659 660 void CodeViewDebug::collectVariableInfoFromMMITable( 661 DenseSet<InlinedVariable> &Processed) { 662 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 663 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 664 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 665 666 for (const MachineModuleInfo::VariableDbgInfo &VI : 667 MMI->getVariableDbgInfo()) { 668 if (!VI.Var) 669 continue; 670 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 671 "Expected inlined-at fields to agree"); 672 673 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 674 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 675 676 // If variable scope is not found then skip this variable. 677 if (!Scope) 678 continue; 679 680 // Get the frame register used and the offset. 681 unsigned FrameReg = 0; 682 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 683 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 684 685 // Calculate the label ranges. 686 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 687 for (const InsnRange &Range : Scope->getRanges()) { 688 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 689 const MCSymbol *End = getLabelAfterInsn(Range.second); 690 End = End ? End : Asm->getFunctionEnd(); 691 DefRange.Ranges.emplace_back(Begin, End); 692 } 693 694 LocalVariable Var; 695 Var.DIVar = VI.Var; 696 Var.DefRanges.emplace_back(std::move(DefRange)); 697 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 698 } 699 } 700 701 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 702 DenseSet<InlinedVariable> Processed; 703 // Grab the variable info that was squirreled away in the MMI side-table. 704 collectVariableInfoFromMMITable(Processed); 705 706 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 707 708 for (const auto &I : DbgValues) { 709 InlinedVariable IV = I.first; 710 if (Processed.count(IV)) 711 continue; 712 const DILocalVariable *DIVar = IV.first; 713 const DILocation *InlinedAt = IV.second; 714 715 // Instruction ranges, specifying where IV is accessible. 716 const auto &Ranges = I.second; 717 718 LexicalScope *Scope = nullptr; 719 if (InlinedAt) 720 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 721 else 722 Scope = LScopes.findLexicalScope(DIVar->getScope()); 723 // If variable scope is not found then skip this variable. 724 if (!Scope) 725 continue; 726 727 LocalVariable Var; 728 Var.DIVar = DIVar; 729 730 // Calculate the definition ranges. 731 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 732 const InsnRange &Range = *I; 733 const MachineInstr *DVInst = Range.first; 734 assert(DVInst->isDebugValue() && "Invalid History entry"); 735 const DIExpression *DIExpr = DVInst->getDebugExpression(); 736 737 // Bail if there is a complex DWARF expression for now. 738 if (DIExpr && DIExpr->getNumElements() > 0) 739 continue; 740 741 // Bail if operand 0 is not a valid register. This means the variable is a 742 // simple constant, or is described by a complex expression. 743 // FIXME: Find a way to represent constant variables, since they are 744 // relatively common. 745 unsigned Reg = 746 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 747 if (Reg == 0) 748 continue; 749 750 // Handle the two cases we can handle: indirect in memory and in register. 751 bool IsIndirect = DVInst->getOperand(1).isImm(); 752 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 753 { 754 LocalVarDefRange DefRange; 755 if (IsIndirect) { 756 int64_t Offset = DVInst->getOperand(1).getImm(); 757 DefRange = createDefRangeMem(CVReg, Offset); 758 } else { 759 DefRange = createDefRangeReg(CVReg); 760 } 761 if (Var.DefRanges.empty() || 762 Var.DefRanges.back().isDifferentLocation(DefRange)) { 763 Var.DefRanges.emplace_back(std::move(DefRange)); 764 } 765 } 766 767 // Compute the label range. 768 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 769 const MCSymbol *End = getLabelAfterInsn(Range.second); 770 if (!End) { 771 if (std::next(I) != E) 772 End = getLabelBeforeInsn(std::next(I)->first); 773 else 774 End = Asm->getFunctionEnd(); 775 } 776 777 // If the last range end is our begin, just extend the last range. 778 // Otherwise make a new range. 779 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 780 Var.DefRanges.back().Ranges; 781 if (!Ranges.empty() && Ranges.back().second == Begin) 782 Ranges.back().second = End; 783 else 784 Ranges.emplace_back(Begin, End); 785 786 // FIXME: Do more range combining. 787 } 788 789 recordLocalVariable(std::move(Var), InlinedAt); 790 } 791 } 792 793 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 794 assert(!CurFn && "Can't process two functions at once!"); 795 796 if (!Asm || !MMI->hasDebugInfo()) 797 return; 798 799 DebugHandlerBase::beginFunction(MF); 800 801 const Function *GV = MF->getFunction(); 802 assert(FnDebugInfo.count(GV) == false); 803 CurFn = &FnDebugInfo[GV]; 804 CurFn->FuncId = NextFuncId++; 805 CurFn->Begin = Asm->getFunctionBegin(); 806 807 // Find the end of the function prolog. First known non-DBG_VALUE and 808 // non-frame setup location marks the beginning of the function body. 809 // FIXME: is there a simpler a way to do this? Can we just search 810 // for the first instruction of the function, not the last of the prolog? 811 DebugLoc PrologEndLoc; 812 bool EmptyPrologue = true; 813 for (const auto &MBB : *MF) { 814 for (const auto &MI : MBB) { 815 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 816 MI.getDebugLoc()) { 817 PrologEndLoc = MI.getDebugLoc(); 818 break; 819 } else if (!MI.isDebugValue()) { 820 EmptyPrologue = false; 821 } 822 } 823 } 824 825 // Record beginning of function if we have a non-empty prologue. 826 if (PrologEndLoc && !EmptyPrologue) { 827 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 828 maybeRecordLocation(FnStartDL, MF); 829 } 830 } 831 832 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 833 // Generic dispatch for lowering an unknown type. 834 switch (Ty->getTag()) { 835 case dwarf::DW_TAG_array_type: 836 return lowerTypeArray(cast<DICompositeType>(Ty)); 837 case dwarf::DW_TAG_typedef: 838 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 839 case dwarf::DW_TAG_base_type: 840 return lowerTypeBasic(cast<DIBasicType>(Ty)); 841 case dwarf::DW_TAG_pointer_type: 842 case dwarf::DW_TAG_reference_type: 843 case dwarf::DW_TAG_rvalue_reference_type: 844 return lowerTypePointer(cast<DIDerivedType>(Ty)); 845 case dwarf::DW_TAG_ptr_to_member_type: 846 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 847 case dwarf::DW_TAG_const_type: 848 case dwarf::DW_TAG_volatile_type: 849 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 850 case dwarf::DW_TAG_subroutine_type: 851 if (ClassTy) { 852 // The member function type of a member function pointer has no 853 // ThisAdjustment. 854 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 855 /*ThisAdjustment=*/0); 856 } 857 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 858 case dwarf::DW_TAG_enumeration_type: 859 return lowerTypeEnum(cast<DICompositeType>(Ty)); 860 case dwarf::DW_TAG_class_type: 861 case dwarf::DW_TAG_structure_type: 862 return lowerTypeClass(cast<DICompositeType>(Ty)); 863 case dwarf::DW_TAG_union_type: 864 return lowerTypeUnion(cast<DICompositeType>(Ty)); 865 default: 866 // Use the null type index. 867 return TypeIndex(); 868 } 869 } 870 871 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 872 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 873 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 874 StringRef TypeName = Ty->getName(); 875 876 SmallVector<StringRef, 5> QualifiedNameComponents; 877 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 878 Ty->getScope().resolve(), QualifiedNameComponents); 879 880 if (ClosestSubprogram == nullptr) { 881 std::string FullyQualifiedName = 882 getQualifiedName(QualifiedNameComponents, TypeName); 883 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), UnderlyingTypeIndex); 884 } else if (ClosestSubprogram == CurrentSubprogram) { 885 std::string FullyQualifiedName = 886 getQualifiedName(QualifiedNameComponents, TypeName); 887 LocalUDTs.emplace_back(std::move(FullyQualifiedName), UnderlyingTypeIndex); 888 } 889 // TODO: What if the ClosestSubprogram is neither null or the current 890 // subprogram? Currently, the UDT just gets dropped on the floor. 891 // 892 // The current behavior is not desirable. To get maximal fidelity, we would 893 // need to perform all type translation before beginning emission of .debug$S 894 // and then make LocalUDTs a member of FunctionInfo 895 896 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 897 TypeName == "HRESULT") 898 return TypeIndex(SimpleTypeKind::HResult); 899 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 900 TypeName == "wchar_t") 901 return TypeIndex(SimpleTypeKind::WideCharacter); 902 return UnderlyingTypeIndex; 903 } 904 905 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 906 DITypeRef ElementTypeRef = Ty->getBaseType(); 907 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 908 // IndexType is size_t, which depends on the bitness of the target. 909 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 910 ? TypeIndex(SimpleTypeKind::UInt64Quad) 911 : TypeIndex(SimpleTypeKind::UInt32Long); 912 uint64_t Size = Ty->getSizeInBits() / 8; 913 ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName()); 914 return TypeTable.writeArray(Record); 915 } 916 917 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 918 TypeIndex Index; 919 dwarf::TypeKind Kind; 920 uint32_t ByteSize; 921 922 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 923 ByteSize = Ty->getSizeInBits() / 8; 924 925 SimpleTypeKind STK = SimpleTypeKind::None; 926 switch (Kind) { 927 case dwarf::DW_ATE_address: 928 // FIXME: Translate 929 break; 930 case dwarf::DW_ATE_boolean: 931 switch (ByteSize) { 932 case 1: STK = SimpleTypeKind::Boolean8; break; 933 case 2: STK = SimpleTypeKind::Boolean16; break; 934 case 4: STK = SimpleTypeKind::Boolean32; break; 935 case 8: STK = SimpleTypeKind::Boolean64; break; 936 case 16: STK = SimpleTypeKind::Boolean128; break; 937 } 938 break; 939 case dwarf::DW_ATE_complex_float: 940 switch (ByteSize) { 941 case 2: STK = SimpleTypeKind::Complex16; break; 942 case 4: STK = SimpleTypeKind::Complex32; break; 943 case 8: STK = SimpleTypeKind::Complex64; break; 944 case 10: STK = SimpleTypeKind::Complex80; break; 945 case 16: STK = SimpleTypeKind::Complex128; break; 946 } 947 break; 948 case dwarf::DW_ATE_float: 949 switch (ByteSize) { 950 case 2: STK = SimpleTypeKind::Float16; break; 951 case 4: STK = SimpleTypeKind::Float32; break; 952 case 6: STK = SimpleTypeKind::Float48; break; 953 case 8: STK = SimpleTypeKind::Float64; break; 954 case 10: STK = SimpleTypeKind::Float80; break; 955 case 16: STK = SimpleTypeKind::Float128; break; 956 } 957 break; 958 case dwarf::DW_ATE_signed: 959 switch (ByteSize) { 960 case 1: STK = SimpleTypeKind::SByte; break; 961 case 2: STK = SimpleTypeKind::Int16Short; break; 962 case 4: STK = SimpleTypeKind::Int32; break; 963 case 8: STK = SimpleTypeKind::Int64Quad; break; 964 case 16: STK = SimpleTypeKind::Int128Oct; break; 965 } 966 break; 967 case dwarf::DW_ATE_unsigned: 968 switch (ByteSize) { 969 case 1: STK = SimpleTypeKind::Byte; break; 970 case 2: STK = SimpleTypeKind::UInt16Short; break; 971 case 4: STK = SimpleTypeKind::UInt32; break; 972 case 8: STK = SimpleTypeKind::UInt64Quad; break; 973 case 16: STK = SimpleTypeKind::UInt128Oct; break; 974 } 975 break; 976 case dwarf::DW_ATE_UTF: 977 switch (ByteSize) { 978 case 2: STK = SimpleTypeKind::Character16; break; 979 case 4: STK = SimpleTypeKind::Character32; break; 980 } 981 break; 982 case dwarf::DW_ATE_signed_char: 983 if (ByteSize == 1) 984 STK = SimpleTypeKind::SignedCharacter; 985 break; 986 case dwarf::DW_ATE_unsigned_char: 987 if (ByteSize == 1) 988 STK = SimpleTypeKind::UnsignedCharacter; 989 break; 990 default: 991 break; 992 } 993 994 // Apply some fixups based on the source-level type name. 995 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 996 STK = SimpleTypeKind::Int32Long; 997 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 998 STK = SimpleTypeKind::UInt32Long; 999 if (STK == SimpleTypeKind::UInt16Short && 1000 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1001 STK = SimpleTypeKind::WideCharacter; 1002 if ((STK == SimpleTypeKind::SignedCharacter || 1003 STK == SimpleTypeKind::UnsignedCharacter) && 1004 Ty->getName() == "char") 1005 STK = SimpleTypeKind::NarrowCharacter; 1006 1007 return TypeIndex(STK); 1008 } 1009 1010 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1011 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1012 1013 // While processing the type being pointed to it is possible we already 1014 // created this pointer type. If so, we check here and return the existing 1015 // pointer type. 1016 auto I = TypeIndices.find({Ty, nullptr}); 1017 if (I != TypeIndices.end()) 1018 return I->second; 1019 1020 // Pointers to simple types can use SimpleTypeMode, rather than having a 1021 // dedicated pointer type record. 1022 if (PointeeTI.isSimple() && 1023 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1024 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1025 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1026 ? SimpleTypeMode::NearPointer64 1027 : SimpleTypeMode::NearPointer32; 1028 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1029 } 1030 1031 PointerKind PK = 1032 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1033 PointerMode PM = PointerMode::Pointer; 1034 switch (Ty->getTag()) { 1035 default: llvm_unreachable("not a pointer tag type"); 1036 case dwarf::DW_TAG_pointer_type: 1037 PM = PointerMode::Pointer; 1038 break; 1039 case dwarf::DW_TAG_reference_type: 1040 PM = PointerMode::LValueReference; 1041 break; 1042 case dwarf::DW_TAG_rvalue_reference_type: 1043 PM = PointerMode::RValueReference; 1044 break; 1045 } 1046 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1047 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1048 // do. 1049 PointerOptions PO = PointerOptions::None; 1050 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1051 return TypeTable.writePointer(PR); 1052 } 1053 1054 static PointerToMemberRepresentation 1055 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1056 // SizeInBytes being zero generally implies that the member pointer type was 1057 // incomplete, which can happen if it is part of a function prototype. In this 1058 // case, use the unknown model instead of the general model. 1059 if (IsPMF) { 1060 switch (Flags & DINode::FlagPtrToMemberRep) { 1061 case 0: 1062 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1063 : PointerToMemberRepresentation::GeneralFunction; 1064 case DINode::FlagSingleInheritance: 1065 return PointerToMemberRepresentation::SingleInheritanceFunction; 1066 case DINode::FlagMultipleInheritance: 1067 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1068 case DINode::FlagVirtualInheritance: 1069 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1070 } 1071 } else { 1072 switch (Flags & DINode::FlagPtrToMemberRep) { 1073 case 0: 1074 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1075 : PointerToMemberRepresentation::GeneralData; 1076 case DINode::FlagSingleInheritance: 1077 return PointerToMemberRepresentation::SingleInheritanceData; 1078 case DINode::FlagMultipleInheritance: 1079 return PointerToMemberRepresentation::MultipleInheritanceData; 1080 case DINode::FlagVirtualInheritance: 1081 return PointerToMemberRepresentation::VirtualInheritanceData; 1082 } 1083 } 1084 llvm_unreachable("invalid ptr to member representation"); 1085 } 1086 1087 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1088 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1089 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1090 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1091 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1092 : PointerKind::Near32; 1093 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1094 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1095 : PointerMode::PointerToDataMember; 1096 PointerOptions PO = PointerOptions::None; // FIXME 1097 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1098 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1099 MemberPointerInfo MPI( 1100 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1101 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1102 return TypeTable.writePointer(PR); 1103 } 1104 1105 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1106 /// have a translation, use the NearC convention. 1107 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1108 switch (DwarfCC) { 1109 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1110 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1111 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1112 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1113 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1114 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1115 } 1116 return CallingConvention::NearC; 1117 } 1118 1119 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1120 ModifierOptions Mods = ModifierOptions::None; 1121 bool IsModifier = true; 1122 const DIType *BaseTy = Ty; 1123 while (IsModifier && BaseTy) { 1124 // FIXME: Need to add DWARF tag for __unaligned. 1125 switch (BaseTy->getTag()) { 1126 case dwarf::DW_TAG_const_type: 1127 Mods |= ModifierOptions::Const; 1128 break; 1129 case dwarf::DW_TAG_volatile_type: 1130 Mods |= ModifierOptions::Volatile; 1131 break; 1132 default: 1133 IsModifier = false; 1134 break; 1135 } 1136 if (IsModifier) 1137 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1138 } 1139 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1140 1141 // While processing the type being pointed to, it is possible we already 1142 // created this modifier type. If so, we check here and return the existing 1143 // modifier type. 1144 auto I = TypeIndices.find({Ty, nullptr}); 1145 if (I != TypeIndices.end()) 1146 return I->second; 1147 1148 ModifierRecord MR(ModifiedTI, Mods); 1149 return TypeTable.writeModifier(MR); 1150 } 1151 1152 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1153 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1154 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1155 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1156 1157 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1158 ArrayRef<TypeIndex> ArgTypeIndices = None; 1159 if (!ReturnAndArgTypeIndices.empty()) { 1160 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1161 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1162 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1163 } 1164 1165 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1166 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1167 1168 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1169 1170 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1171 ArgTypeIndices.size(), ArgListIndex); 1172 return TypeTable.writeProcedure(Procedure); 1173 } 1174 1175 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1176 const DIType *ClassTy, 1177 int ThisAdjustment) { 1178 // Lower the containing class type. 1179 TypeIndex ClassType = getTypeIndex(ClassTy); 1180 1181 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1182 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1183 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1184 1185 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1186 ArrayRef<TypeIndex> ArgTypeIndices = None; 1187 if (!ReturnAndArgTypeIndices.empty()) { 1188 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1189 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1190 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1191 } 1192 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1193 if (!ArgTypeIndices.empty()) { 1194 ThisTypeIndex = ArgTypeIndices.front(); 1195 ArgTypeIndices = ArgTypeIndices.drop_front(); 1196 } 1197 1198 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1199 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1200 1201 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1202 1203 // TODO: Need to use the correct values for: 1204 // FunctionOptions 1205 // ThisPointerAdjustment. 1206 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1207 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1208 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1209 1210 return TI; 1211 } 1212 1213 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1214 switch (Flags & DINode::FlagAccessibility) { 1215 case DINode::FlagPrivate: return MemberAccess::Private; 1216 case DINode::FlagPublic: return MemberAccess::Public; 1217 case DINode::FlagProtected: return MemberAccess::Protected; 1218 case 0: 1219 // If there was no explicit access control, provide the default for the tag. 1220 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1221 : MemberAccess::Public; 1222 } 1223 llvm_unreachable("access flags are exclusive"); 1224 } 1225 1226 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1227 if (SP->isArtificial()) 1228 return MethodOptions::CompilerGenerated; 1229 1230 // FIXME: Handle other MethodOptions. 1231 1232 return MethodOptions::None; 1233 } 1234 1235 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1236 bool Introduced) { 1237 switch (SP->getVirtuality()) { 1238 case dwarf::DW_VIRTUALITY_none: 1239 break; 1240 case dwarf::DW_VIRTUALITY_virtual: 1241 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1242 case dwarf::DW_VIRTUALITY_pure_virtual: 1243 return Introduced ? MethodKind::PureIntroducingVirtual 1244 : MethodKind::PureVirtual; 1245 default: 1246 llvm_unreachable("unhandled virtuality case"); 1247 } 1248 1249 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1250 1251 return MethodKind::Vanilla; 1252 } 1253 1254 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1255 switch (Ty->getTag()) { 1256 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1257 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1258 } 1259 llvm_unreachable("unexpected tag"); 1260 } 1261 1262 /// Return the HasUniqueName option if it should be present in ClassOptions, or 1263 /// None otherwise. 1264 static ClassOptions getRecordUniqueNameOption(const DICompositeType *Ty) { 1265 // MSVC always sets this flag now, even for local types. Clang doesn't always 1266 // appear to give every type a linkage name, which may be problematic for us. 1267 // FIXME: Investigate the consequences of not following them here. 1268 return !Ty->getIdentifier().empty() ? ClassOptions::HasUniqueName 1269 : ClassOptions::None; 1270 } 1271 1272 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1273 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1274 TypeIndex FTI; 1275 unsigned EnumeratorCount = 0; 1276 1277 if (Ty->isForwardDecl()) { 1278 CO |= ClassOptions::ForwardReference; 1279 } else { 1280 FieldListRecordBuilder Fields; 1281 for (const DINode *Element : Ty->getElements()) { 1282 // We assume that the frontend provides all members in source declaration 1283 // order, which is what MSVC does. 1284 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1285 Fields.writeEnumerator(EnumeratorRecord( 1286 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1287 Enumerator->getName())); 1288 EnumeratorCount++; 1289 } 1290 } 1291 FTI = TypeTable.writeFieldList(Fields); 1292 } 1293 1294 std::string FullName = 1295 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1296 1297 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1298 Ty->getIdentifier(), 1299 getTypeIndex(Ty->getBaseType()))); 1300 } 1301 1302 //===----------------------------------------------------------------------===// 1303 // ClassInfo 1304 //===----------------------------------------------------------------------===// 1305 1306 struct llvm::ClassInfo { 1307 struct MemberInfo { 1308 const DIDerivedType *MemberTypeNode; 1309 unsigned BaseOffset; 1310 }; 1311 // [MemberInfo] 1312 typedef std::vector<MemberInfo> MemberList; 1313 1314 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1315 // MethodName -> MethodsList 1316 typedef MapVector<MDString *, MethodsList> MethodsMap; 1317 1318 /// Direct members. 1319 MemberList Members; 1320 // Direct overloaded methods gathered by name. 1321 MethodsMap Methods; 1322 }; 1323 1324 void CodeViewDebug::clear() { 1325 assert(CurFn == nullptr); 1326 FileIdMap.clear(); 1327 FnDebugInfo.clear(); 1328 FileToFilepathMap.clear(); 1329 LocalUDTs.clear(); 1330 GlobalUDTs.clear(); 1331 TypeIndices.clear(); 1332 CompleteTypeIndices.clear(); 1333 } 1334 1335 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1336 const DIDerivedType *DDTy) { 1337 if (!DDTy->getName().empty()) { 1338 Info.Members.push_back({DDTy, 0}); 1339 return; 1340 } 1341 // An unnamed member must represent a nested struct or union. Add all the 1342 // indirect fields to the current record. 1343 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1344 unsigned Offset = DDTy->getOffsetInBits() / 8; 1345 const DIType *Ty = DDTy->getBaseType().resolve(); 1346 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1347 ClassInfo NestedInfo = collectClassInfo(DCTy); 1348 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1349 Info.Members.push_back( 1350 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1351 } 1352 1353 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1354 ClassInfo Info; 1355 // Add elements to structure type. 1356 DINodeArray Elements = Ty->getElements(); 1357 for (auto *Element : Elements) { 1358 // We assume that the frontend provides all members in source declaration 1359 // order, which is what MSVC does. 1360 if (!Element) 1361 continue; 1362 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1363 Info.Methods[SP->getRawName()].push_back(SP); 1364 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1365 if (DDTy->getTag() == dwarf::DW_TAG_member) 1366 collectMemberInfo(Info, DDTy); 1367 else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1368 // FIXME: collect class info from inheritance. 1369 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1370 // Ignore friend members. It appears that MSVC emitted info about 1371 // friends in the past, but modern versions do not. 1372 } 1373 // FIXME: Get Clang to emit function virtual table here and handle it. 1374 // FIXME: Get clang to emit nested types here and do something with 1375 // them. 1376 } 1377 // Skip other unrecognized kinds of elements. 1378 } 1379 return Info; 1380 } 1381 1382 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1383 // First, construct the forward decl. Don't look into Ty to compute the 1384 // forward decl options, since it might not be available in all TUs. 1385 TypeRecordKind Kind = getRecordKind(Ty); 1386 ClassOptions CO = 1387 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1388 std::string FullName = 1389 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1390 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1391 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1392 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1393 if (!Ty->isForwardDecl()) 1394 DeferredCompleteTypes.push_back(Ty); 1395 return FwdDeclTI; 1396 } 1397 1398 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1399 // Construct the field list and complete type record. 1400 TypeRecordKind Kind = getRecordKind(Ty); 1401 // FIXME: Other ClassOptions, like ContainsNestedClass and NestedClass. 1402 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1403 TypeIndex FieldTI; 1404 TypeIndex VShapeTI; 1405 unsigned FieldCount; 1406 std::tie(FieldTI, VShapeTI, FieldCount) = lowerRecordFieldList(Ty); 1407 1408 std::string FullName = 1409 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1410 1411 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1412 1413 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord( 1414 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1415 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1416 1417 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1418 ClassTI, TypeTable.writeStringId(StringIdRecord( 1419 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1420 Ty->getLine())); 1421 1422 return ClassTI; 1423 } 1424 1425 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1426 ClassOptions CO = 1427 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1428 std::string FullName = 1429 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1430 TypeIndex FwdDeclTI = 1431 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1432 FullName, Ty->getIdentifier())); 1433 if (!Ty->isForwardDecl()) 1434 DeferredCompleteTypes.push_back(Ty); 1435 return FwdDeclTI; 1436 } 1437 1438 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1439 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1440 TypeIndex FieldTI; 1441 unsigned FieldCount; 1442 std::tie(FieldTI, std::ignore, FieldCount) = lowerRecordFieldList(Ty); 1443 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1444 std::string FullName = 1445 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1446 1447 TypeIndex UnionTI = TypeTable.writeUnion( 1448 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1449 Ty->getIdentifier())); 1450 1451 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1452 UnionTI, TypeTable.writeStringId(StringIdRecord( 1453 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1454 Ty->getLine())); 1455 1456 return UnionTI; 1457 } 1458 1459 std::tuple<TypeIndex, TypeIndex, unsigned> 1460 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1461 // Manually count members. MSVC appears to count everything that generates a 1462 // field list record. Each individual overload in a method overload group 1463 // contributes to this count, even though the overload group is a single field 1464 // list record. 1465 unsigned MemberCount = 0; 1466 ClassInfo Info = collectClassInfo(Ty); 1467 FieldListRecordBuilder Fields; 1468 1469 // Create members. 1470 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1471 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1472 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1473 1474 if (Member->isStaticMember()) { 1475 Fields.writeStaticDataMember(StaticDataMemberRecord( 1476 translateAccessFlags(Ty->getTag(), Member->getFlags()), 1477 MemberBaseType, Member->getName())); 1478 MemberCount++; 1479 continue; 1480 } 1481 1482 uint64_t OffsetInBytes = MemberInfo.BaseOffset; 1483 1484 // FIXME: Handle bitfield type memeber. 1485 OffsetInBytes += Member->getOffsetInBits() / 8; 1486 1487 Fields.writeDataMember( 1488 DataMemberRecord(translateAccessFlags(Ty->getTag(), Member->getFlags()), 1489 MemberBaseType, OffsetInBytes, Member->getName())); 1490 MemberCount++; 1491 } 1492 1493 // Create methods 1494 for (auto &MethodItr : Info.Methods) { 1495 StringRef Name = MethodItr.first->getString(); 1496 1497 std::vector<OneMethodRecord> Methods; 1498 for (const DISubprogram *SP : MethodItr.second) { 1499 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1500 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1501 1502 unsigned VFTableOffset = -1; 1503 if (Introduced) 1504 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1505 1506 Methods.push_back( 1507 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1508 translateMethodOptionFlags(SP), 1509 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1510 VFTableOffset, Name)); 1511 MemberCount++; 1512 } 1513 assert(Methods.size() > 0 && "Empty methods map entry"); 1514 if (Methods.size() == 1) 1515 Fields.writeOneMethod(Methods[0]); 1516 else { 1517 TypeIndex MethodList = 1518 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1519 Fields.writeOverloadedMethod( 1520 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1521 } 1522 } 1523 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1524 return std::make_tuple(FieldTI, TypeIndex(), MemberCount); 1525 } 1526 1527 struct CodeViewDebug::TypeLoweringScope { 1528 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 1529 ~TypeLoweringScope() { 1530 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 1531 // inner TypeLoweringScopes don't attempt to emit deferred types. 1532 if (CVD.TypeEmissionLevel == 1) 1533 CVD.emitDeferredCompleteTypes(); 1534 --CVD.TypeEmissionLevel; 1535 } 1536 CodeViewDebug &CVD; 1537 }; 1538 1539 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1540 const DIType *Ty = TypeRef.resolve(); 1541 const DIType *ClassTy = ClassTyRef.resolve(); 1542 1543 // The null DIType is the void type. Don't try to hash it. 1544 if (!Ty) 1545 return TypeIndex::Void(); 1546 1547 // Check if we've already translated this type. Don't try to do a 1548 // get-or-create style insertion that caches the hash lookup across the 1549 // lowerType call. It will update the TypeIndices map. 1550 auto I = TypeIndices.find({Ty, ClassTy}); 1551 if (I != TypeIndices.end()) 1552 return I->second; 1553 1554 TypeIndex TI; 1555 { 1556 TypeLoweringScope S(*this); 1557 TI = lowerType(Ty, ClassTy); 1558 recordTypeIndexForDINode(Ty, TI, ClassTy); 1559 } 1560 1561 return TI; 1562 } 1563 1564 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1565 const DIType *Ty = TypeRef.resolve(); 1566 1567 // The null DIType is the void type. Don't try to hash it. 1568 if (!Ty) 1569 return TypeIndex::Void(); 1570 1571 // If this is a non-record type, the complete type index is the same as the 1572 // normal type index. Just call getTypeIndex. 1573 switch (Ty->getTag()) { 1574 case dwarf::DW_TAG_class_type: 1575 case dwarf::DW_TAG_structure_type: 1576 case dwarf::DW_TAG_union_type: 1577 break; 1578 default: 1579 return getTypeIndex(Ty); 1580 } 1581 1582 // Check if we've already translated the complete record type. Lowering a 1583 // complete type should never trigger lowering another complete type, so we 1584 // can reuse the hash table lookup result. 1585 const auto *CTy = cast<DICompositeType>(Ty); 1586 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1587 if (!InsertResult.second) 1588 return InsertResult.first->second; 1589 1590 TypeLoweringScope S(*this); 1591 1592 // Make sure the forward declaration is emitted first. It's unclear if this 1593 // is necessary, but MSVC does it, and we should follow suit until we can show 1594 // otherwise. 1595 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1596 1597 // Just use the forward decl if we don't have complete type info. This might 1598 // happen if the frontend is using modules and expects the complete definition 1599 // to be emitted elsewhere. 1600 if (CTy->isForwardDecl()) 1601 return FwdDeclTI; 1602 1603 TypeIndex TI; 1604 switch (CTy->getTag()) { 1605 case dwarf::DW_TAG_class_type: 1606 case dwarf::DW_TAG_structure_type: 1607 TI = lowerCompleteTypeClass(CTy); 1608 break; 1609 case dwarf::DW_TAG_union_type: 1610 TI = lowerCompleteTypeUnion(CTy); 1611 break; 1612 default: 1613 llvm_unreachable("not a record"); 1614 } 1615 1616 InsertResult.first->second = TI; 1617 return TI; 1618 } 1619 1620 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1621 /// and do this until fixpoint, as each complete record type typically references 1622 /// many other record types. 1623 void CodeViewDebug::emitDeferredCompleteTypes() { 1624 SmallVector<const DICompositeType *, 4> TypesToEmit; 1625 while (!DeferredCompleteTypes.empty()) { 1626 std::swap(DeferredCompleteTypes, TypesToEmit); 1627 for (const DICompositeType *RecordTy : TypesToEmit) 1628 getCompleteTypeIndex(RecordTy); 1629 TypesToEmit.clear(); 1630 } 1631 } 1632 1633 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1634 // LocalSym record, see SymbolRecord.h for more info. 1635 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1636 *LocalEnd = MMI->getContext().createTempSymbol(); 1637 OS.AddComment("Record length"); 1638 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1639 OS.EmitLabel(LocalBegin); 1640 1641 OS.AddComment("Record kind: S_LOCAL"); 1642 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1643 1644 LocalSymFlags Flags = LocalSymFlags::None; 1645 if (Var.DIVar->isParameter()) 1646 Flags |= LocalSymFlags::IsParameter; 1647 if (Var.DefRanges.empty()) 1648 Flags |= LocalSymFlags::IsOptimizedOut; 1649 1650 OS.AddComment("TypeIndex"); 1651 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1652 OS.EmitIntValue(TI.getIndex(), 4); 1653 OS.AddComment("Flags"); 1654 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1655 // Truncate the name so we won't overflow the record length field. 1656 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1657 OS.EmitLabel(LocalEnd); 1658 1659 // Calculate the on disk prefix of the appropriate def range record. The 1660 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1661 // should be big enough to hold all forms without memory allocation. 1662 SmallString<20> BytePrefix; 1663 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1664 BytePrefix.clear(); 1665 // FIXME: Handle bitpieces. 1666 if (DefRange.StructOffset != 0) 1667 continue; 1668 1669 if (DefRange.InMemory) { 1670 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1671 0, 0, ArrayRef<LocalVariableAddrGap>()); 1672 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1673 BytePrefix += 1674 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1675 BytePrefix += 1676 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1677 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1678 } else { 1679 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1680 // Unclear what matters here. 1681 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1682 ArrayRef<LocalVariableAddrGap>()); 1683 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1684 BytePrefix += 1685 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1686 BytePrefix += 1687 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1688 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1689 } 1690 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1691 } 1692 } 1693 1694 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1695 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1696 return; 1697 1698 const Function *GV = MF->getFunction(); 1699 assert(FnDebugInfo.count(GV)); 1700 assert(CurFn == &FnDebugInfo[GV]); 1701 1702 collectVariableInfo(GV->getSubprogram()); 1703 1704 DebugHandlerBase::endFunction(MF); 1705 1706 // Don't emit anything if we don't have any line tables. 1707 if (!CurFn->HaveLineInfo) { 1708 FnDebugInfo.erase(GV); 1709 CurFn = nullptr; 1710 return; 1711 } 1712 1713 CurFn->End = Asm->getFunctionEnd(); 1714 1715 CurFn = nullptr; 1716 } 1717 1718 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1719 DebugHandlerBase::beginInstruction(MI); 1720 1721 // Ignore DBG_VALUE locations and function prologue. 1722 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1723 return; 1724 DebugLoc DL = MI->getDebugLoc(); 1725 if (DL == PrevInstLoc || !DL) 1726 return; 1727 maybeRecordLocation(DL, Asm->MF); 1728 } 1729 1730 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1731 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1732 *EndLabel = MMI->getContext().createTempSymbol(); 1733 OS.EmitIntValue(unsigned(Kind), 4); 1734 OS.AddComment("Subsection size"); 1735 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1736 OS.EmitLabel(BeginLabel); 1737 return EndLabel; 1738 } 1739 1740 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1741 OS.EmitLabel(EndLabel); 1742 // Every subsection must be aligned to a 4-byte boundary. 1743 OS.EmitValueToAlignment(4); 1744 } 1745 1746 void CodeViewDebug::emitDebugInfoForUDTs( 1747 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1748 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1749 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1750 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1751 OS.AddComment("Record length"); 1752 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1753 OS.EmitLabel(UDTRecordBegin); 1754 1755 OS.AddComment("Record kind: S_UDT"); 1756 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1757 1758 OS.AddComment("Type"); 1759 OS.EmitIntValue(UDT.second.getIndex(), 4); 1760 1761 emitNullTerminatedSymbolName(OS, UDT.first); 1762 OS.EmitLabel(UDTRecordEnd); 1763 } 1764 } 1765 1766 void CodeViewDebug::emitDebugInfoForGlobals() { 1767 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1768 for (const MDNode *Node : CUs->operands()) { 1769 const auto *CU = cast<DICompileUnit>(Node); 1770 1771 // First, emit all globals that are not in a comdat in a single symbol 1772 // substream. MSVC doesn't like it if the substream is empty, so only open 1773 // it if we have at least one global to emit. 1774 switchToDebugSectionForSymbol(nullptr); 1775 MCSymbol *EndLabel = nullptr; 1776 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1777 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1778 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1779 if (!EndLabel) { 1780 OS.AddComment("Symbol subsection for globals"); 1781 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1782 } 1783 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1784 } 1785 } 1786 } 1787 if (EndLabel) 1788 endCVSubsection(EndLabel); 1789 1790 // Second, emit each global that is in a comdat into its own .debug$S 1791 // section along with its own symbol substream. 1792 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1793 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1794 if (GV->hasComdat()) { 1795 MCSymbol *GVSym = Asm->getSymbol(GV); 1796 OS.AddComment("Symbol subsection for " + 1797 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 1798 switchToDebugSectionForSymbol(GVSym); 1799 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1800 emitDebugInfoForGlobal(G, GVSym); 1801 endCVSubsection(EndLabel); 1802 } 1803 } 1804 } 1805 } 1806 } 1807 1808 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 1809 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1810 for (const MDNode *Node : CUs->operands()) { 1811 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 1812 if (DIType *RT = dyn_cast<DIType>(Ty)) { 1813 getTypeIndex(RT); 1814 // FIXME: Add to global/local DTU list. 1815 } 1816 } 1817 } 1818 } 1819 1820 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 1821 MCSymbol *GVSym) { 1822 // DataSym record, see SymbolRecord.h for more info. 1823 // FIXME: Thread local data, etc 1824 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 1825 *DataEnd = MMI->getContext().createTempSymbol(); 1826 OS.AddComment("Record length"); 1827 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 1828 OS.EmitLabel(DataBegin); 1829 OS.AddComment("Record kind: S_GDATA32"); 1830 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 1831 OS.AddComment("Type"); 1832 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 1833 OS.AddComment("DataOffset"); 1834 OS.EmitCOFFSecRel32(GVSym); 1835 OS.AddComment("Segment"); 1836 OS.EmitCOFFSectionIndex(GVSym); 1837 OS.AddComment("Name"); 1838 emitNullTerminatedSymbolName(OS, DIGV->getName()); 1839 OS.EmitLabel(DataEnd); 1840 } 1841