xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision add59ecb34e3003311b7e2318b16a0ef10c76d79)
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/EnumTables.h"
48 #include "llvm/DebugInfo/CodeView/Line.h"
49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
51 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
52 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/GlobalVariable.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCContext.h"
66 #include "llvm/MC/MCSectionCOFF.h"
67 #include "llvm/MC/MCStreamer.h"
68 #include "llvm/MC/MCSymbol.h"
69 #include "llvm/Support/BinaryByteStream.h"
70 #include "llvm/Support/BinaryStreamReader.h"
71 #include "llvm/Support/BinaryStreamWriter.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Endian.h"
76 #include "llvm/Support/Error.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/FormatVariadic.h"
79 #include "llvm/Support/Path.h"
80 #include "llvm/Support/Program.h"
81 #include "llvm/Support/SMLoc.h"
82 #include "llvm/Support/ScopedPrinter.h"
83 #include "llvm/Target/TargetLoweringObjectFile.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cctype>
88 #include <cstddef>
89 #include <cstdint>
90 #include <iterator>
91 #include <limits>
92 #include <string>
93 #include <utility>
94 #include <vector>
95 
96 using namespace llvm;
97 using namespace llvm::codeview;
98 
99 namespace {
100 class CVMCAdapter : public CodeViewRecordStreamer {
101 public:
102   CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
103       : OS(&OS), TypeTable(TypeTable) {}
104 
105   void emitBytes(StringRef Data) { OS->emitBytes(Data); }
106 
107   void emitIntValue(uint64_t Value, unsigned Size) {
108     OS->emitIntValueInHex(Value, Size);
109   }
110 
111   void emitBinaryData(StringRef Data) { OS->emitBinaryData(Data); }
112 
113   void AddComment(const Twine &T) { OS->AddComment(T); }
114 
115   void AddRawComment(const Twine &T) { OS->emitRawComment(T); }
116 
117   bool isVerboseAsm() { return OS->isVerboseAsm(); }
118 
119   std::string getTypeName(TypeIndex TI) {
120     std::string TypeName;
121     if (!TI.isNoneType()) {
122       if (TI.isSimple())
123         TypeName = std::string(TypeIndex::simpleTypeName(TI));
124       else
125         TypeName = std::string(TypeTable.getTypeName(TI));
126     }
127     return TypeName;
128   }
129 
130 private:
131   MCStreamer *OS = nullptr;
132   TypeCollection &TypeTable;
133 };
134 } // namespace
135 
136 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
137   switch (Type) {
138   case Triple::ArchType::x86:
139     return CPUType::Pentium3;
140   case Triple::ArchType::x86_64:
141     return CPUType::X64;
142   case Triple::ArchType::thumb:
143     return CPUType::Thumb;
144   case Triple::ArchType::aarch64:
145     return CPUType::ARM64;
146   default:
147     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
148   }
149 }
150 
151 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
152     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
153   // If module doesn't have named metadata anchors or COFF debug section
154   // is not available, skip any debug info related stuff.
155   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
156       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
157     Asm = nullptr;
158     MMI->setDebugInfoAvailability(false);
159     return;
160   }
161   // Tell MMI that we have debug info.
162   MMI->setDebugInfoAvailability(true);
163 
164   TheCPU =
165       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
166 
167   collectGlobalVariableInfo();
168 
169   // Check if we should emit type record hashes.
170   ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
171       MMI->getModule()->getModuleFlag("CodeViewGHash"));
172   EmitDebugGlobalHashes = GH && !GH->isZero();
173 }
174 
175 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
176   std::string &Filepath = FileToFilepathMap[File];
177   if (!Filepath.empty())
178     return Filepath;
179 
180   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
181 
182   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
183   // it textually because one of the path components could be a symlink.
184   if (Dir.startswith("/") || Filename.startswith("/")) {
185     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
186       return Filename;
187     Filepath = std::string(Dir);
188     if (Dir.back() != '/')
189       Filepath += '/';
190     Filepath += Filename;
191     return Filepath;
192   }
193 
194   // Clang emits directory and relative filename info into the IR, but CodeView
195   // operates on full paths.  We could change Clang to emit full paths too, but
196   // that would increase the IR size and probably not needed for other users.
197   // For now, just concatenate and canonicalize the path here.
198   if (Filename.find(':') == 1)
199     Filepath = std::string(Filename);
200   else
201     Filepath = (Dir + "\\" + Filename).str();
202 
203   // Canonicalize the path.  We have to do it textually because we may no longer
204   // have access the file in the filesystem.
205   // First, replace all slashes with backslashes.
206   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
207 
208   // Remove all "\.\" with "\".
209   size_t Cursor = 0;
210   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
211     Filepath.erase(Cursor, 2);
212 
213   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
214   // path should be well-formatted, e.g. start with a drive letter, etc.
215   Cursor = 0;
216   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
217     // Something's wrong if the path starts with "\..\", abort.
218     if (Cursor == 0)
219       break;
220 
221     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
222     if (PrevSlash == std::string::npos)
223       // Something's wrong, abort.
224       break;
225 
226     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
227     // The next ".." might be following the one we've just erased.
228     Cursor = PrevSlash;
229   }
230 
231   // Remove all duplicate backslashes.
232   Cursor = 0;
233   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
234     Filepath.erase(Cursor, 1);
235 
236   return Filepath;
237 }
238 
239 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
240   StringRef FullPath = getFullFilepath(F);
241   unsigned NextId = FileIdMap.size() + 1;
242   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
243   if (Insertion.second) {
244     // We have to compute the full filepath and emit a .cv_file directive.
245     ArrayRef<uint8_t> ChecksumAsBytes;
246     FileChecksumKind CSKind = FileChecksumKind::None;
247     if (F->getChecksum()) {
248       std::string Checksum = fromHex(F->getChecksum()->Value);
249       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
250       memcpy(CKMem, Checksum.data(), Checksum.size());
251       ChecksumAsBytes = ArrayRef<uint8_t>(
252           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
253       switch (F->getChecksum()->Kind) {
254       case DIFile::CSK_MD5:
255         CSKind = FileChecksumKind::MD5;
256         break;
257       case DIFile::CSK_SHA1:
258         CSKind = FileChecksumKind::SHA1;
259         break;
260       case DIFile::CSK_SHA256:
261         CSKind = FileChecksumKind::SHA256;
262         break;
263       }
264     }
265     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
266                                           static_cast<unsigned>(CSKind));
267     (void)Success;
268     assert(Success && ".cv_file directive failed");
269   }
270   return Insertion.first->second;
271 }
272 
273 CodeViewDebug::InlineSite &
274 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
275                              const DISubprogram *Inlinee) {
276   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
277   InlineSite *Site = &SiteInsertion.first->second;
278   if (SiteInsertion.second) {
279     unsigned ParentFuncId = CurFn->FuncId;
280     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
281       ParentFuncId =
282           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
283               .SiteFuncId;
284 
285     Site->SiteFuncId = NextFuncId++;
286     OS.EmitCVInlineSiteIdDirective(
287         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
288         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
289     Site->Inlinee = Inlinee;
290     InlinedSubprograms.insert(Inlinee);
291     getFuncIdForSubprogram(Inlinee);
292   }
293   return *Site;
294 }
295 
296 static StringRef getPrettyScopeName(const DIScope *Scope) {
297   StringRef ScopeName = Scope->getName();
298   if (!ScopeName.empty())
299     return ScopeName;
300 
301   switch (Scope->getTag()) {
302   case dwarf::DW_TAG_enumeration_type:
303   case dwarf::DW_TAG_class_type:
304   case dwarf::DW_TAG_structure_type:
305   case dwarf::DW_TAG_union_type:
306     return "<unnamed-tag>";
307   case dwarf::DW_TAG_namespace:
308     return "`anonymous namespace'";
309   }
310 
311   return StringRef();
312 }
313 
314 const DISubprogram *CodeViewDebug::collectParentScopeNames(
315     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
316   const DISubprogram *ClosestSubprogram = nullptr;
317   while (Scope != nullptr) {
318     if (ClosestSubprogram == nullptr)
319       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
320 
321     // If a type appears in a scope chain, make sure it gets emitted. The
322     // frontend will be responsible for deciding if this should be a forward
323     // declaration or a complete type.
324     if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
325       DeferredCompleteTypes.push_back(Ty);
326 
327     StringRef ScopeName = getPrettyScopeName(Scope);
328     if (!ScopeName.empty())
329       QualifiedNameComponents.push_back(ScopeName);
330     Scope = Scope->getScope();
331   }
332   return ClosestSubprogram;
333 }
334 
335 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
336                                     StringRef TypeName) {
337   std::string FullyQualifiedName;
338   for (StringRef QualifiedNameComponent :
339        llvm::reverse(QualifiedNameComponents)) {
340     FullyQualifiedName.append(std::string(QualifiedNameComponent));
341     FullyQualifiedName.append("::");
342   }
343   FullyQualifiedName.append(std::string(TypeName));
344   return FullyQualifiedName;
345 }
346 
347 struct CodeViewDebug::TypeLoweringScope {
348   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
349   ~TypeLoweringScope() {
350     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
351     // inner TypeLoweringScopes don't attempt to emit deferred types.
352     if (CVD.TypeEmissionLevel == 1)
353       CVD.emitDeferredCompleteTypes();
354     --CVD.TypeEmissionLevel;
355   }
356   CodeViewDebug &CVD;
357 };
358 
359 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
360                                                  StringRef Name) {
361   // Ensure types in the scope chain are emitted as soon as possible.
362   // This can create otherwise a situation where S_UDTs are emitted while
363   // looping in emitDebugInfoForUDTs.
364   TypeLoweringScope S(*this);
365   SmallVector<StringRef, 5> QualifiedNameComponents;
366   collectParentScopeNames(Scope, QualifiedNameComponents);
367   return formatNestedName(QualifiedNameComponents, Name);
368 }
369 
370 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
371   const DIScope *Scope = Ty->getScope();
372   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
373 }
374 
375 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
376   // No scope means global scope and that uses the zero index.
377   if (!Scope || isa<DIFile>(Scope))
378     return TypeIndex();
379 
380   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
381 
382   // Check if we've already translated this scope.
383   auto I = TypeIndices.find({Scope, nullptr});
384   if (I != TypeIndices.end())
385     return I->second;
386 
387   // Build the fully qualified name of the scope.
388   std::string ScopeName = getFullyQualifiedName(Scope);
389   StringIdRecord SID(TypeIndex(), ScopeName);
390   auto TI = TypeTable.writeLeafType(SID);
391   return recordTypeIndexForDINode(Scope, TI);
392 }
393 
394 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
395   assert(SP);
396 
397   // Check if we've already translated this subprogram.
398   auto I = TypeIndices.find({SP, nullptr});
399   if (I != TypeIndices.end())
400     return I->second;
401 
402   // The display name includes function template arguments. Drop them to match
403   // MSVC.
404   StringRef DisplayName = SP->getName().split('<').first;
405 
406   const DIScope *Scope = SP->getScope();
407   TypeIndex TI;
408   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
409     // If the scope is a DICompositeType, then this must be a method. Member
410     // function types take some special handling, and require access to the
411     // subprogram.
412     TypeIndex ClassType = getTypeIndex(Class);
413     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
414                                DisplayName);
415     TI = TypeTable.writeLeafType(MFuncId);
416   } else {
417     // Otherwise, this must be a free function.
418     TypeIndex ParentScope = getScopeIndex(Scope);
419     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
420     TI = TypeTable.writeLeafType(FuncId);
421   }
422 
423   return recordTypeIndexForDINode(SP, TI);
424 }
425 
426 static bool isNonTrivial(const DICompositeType *DCTy) {
427   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
428 }
429 
430 static FunctionOptions
431 getFunctionOptions(const DISubroutineType *Ty,
432                    const DICompositeType *ClassTy = nullptr,
433                    StringRef SPName = StringRef("")) {
434   FunctionOptions FO = FunctionOptions::None;
435   const DIType *ReturnTy = nullptr;
436   if (auto TypeArray = Ty->getTypeArray()) {
437     if (TypeArray.size())
438       ReturnTy = TypeArray[0];
439   }
440 
441   // Add CxxReturnUdt option to functions that return nontrivial record types
442   // or methods that return record types.
443   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
444     if (isNonTrivial(ReturnDCTy) || ClassTy)
445       FO |= FunctionOptions::CxxReturnUdt;
446 
447   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
448   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
449     FO |= FunctionOptions::Constructor;
450 
451   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
452 
453   }
454   return FO;
455 }
456 
457 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
458                                                const DICompositeType *Class) {
459   // Always use the method declaration as the key for the function type. The
460   // method declaration contains the this adjustment.
461   if (SP->getDeclaration())
462     SP = SP->getDeclaration();
463   assert(!SP->getDeclaration() && "should use declaration as key");
464 
465   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
466   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
467   auto I = TypeIndices.find({SP, Class});
468   if (I != TypeIndices.end())
469     return I->second;
470 
471   // Make sure complete type info for the class is emitted *after* the member
472   // function type, as the complete class type is likely to reference this
473   // member function type.
474   TypeLoweringScope S(*this);
475   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
476 
477   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
478   TypeIndex TI = lowerTypeMemberFunction(
479       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
480   return recordTypeIndexForDINode(SP, TI, Class);
481 }
482 
483 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
484                                                   TypeIndex TI,
485                                                   const DIType *ClassTy) {
486   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
487   (void)InsertResult;
488   assert(InsertResult.second && "DINode was already assigned a type index");
489   return TI;
490 }
491 
492 unsigned CodeViewDebug::getPointerSizeInBytes() {
493   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
494 }
495 
496 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
497                                         const LexicalScope *LS) {
498   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
499     // This variable was inlined. Associate it with the InlineSite.
500     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
501     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
502     Site.InlinedLocals.emplace_back(Var);
503   } else {
504     // This variable goes into the corresponding lexical scope.
505     ScopeVariables[LS].emplace_back(Var);
506   }
507 }
508 
509 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
510                                const DILocation *Loc) {
511   auto B = Locs.begin(), E = Locs.end();
512   if (std::find(B, E, Loc) == E)
513     Locs.push_back(Loc);
514 }
515 
516 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
517                                         const MachineFunction *MF) {
518   // Skip this instruction if it has the same location as the previous one.
519   if (!DL || DL == PrevInstLoc)
520     return;
521 
522   const DIScope *Scope = DL.get()->getScope();
523   if (!Scope)
524     return;
525 
526   // Skip this line if it is longer than the maximum we can record.
527   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
528   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
529       LI.isNeverStepInto())
530     return;
531 
532   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
533   if (CI.getStartColumn() != DL.getCol())
534     return;
535 
536   if (!CurFn->HaveLineInfo)
537     CurFn->HaveLineInfo = true;
538   unsigned FileId = 0;
539   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
540     FileId = CurFn->LastFileId;
541   else
542     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
543   PrevInstLoc = DL;
544 
545   unsigned FuncId = CurFn->FuncId;
546   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
547     const DILocation *Loc = DL.get();
548 
549     // If this location was actually inlined from somewhere else, give it the ID
550     // of the inline call site.
551     FuncId =
552         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
553 
554     // Ensure we have links in the tree of inline call sites.
555     bool FirstLoc = true;
556     while ((SiteLoc = Loc->getInlinedAt())) {
557       InlineSite &Site =
558           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
559       if (!FirstLoc)
560         addLocIfNotPresent(Site.ChildSites, Loc);
561       FirstLoc = false;
562       Loc = SiteLoc;
563     }
564     addLocIfNotPresent(CurFn->ChildSites, Loc);
565   }
566 
567   OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
568                         /*PrologueEnd=*/false, /*IsStmt=*/false,
569                         DL->getFilename(), SMLoc());
570 }
571 
572 void CodeViewDebug::emitCodeViewMagicVersion() {
573   OS.emitValueToAlignment(4);
574   OS.AddComment("Debug section magic");
575   OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
576 }
577 
578 void CodeViewDebug::endModule() {
579   if (!Asm || !MMI->hasDebugInfo())
580     return;
581 
582   assert(Asm != nullptr);
583 
584   // The COFF .debug$S section consists of several subsections, each starting
585   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
586   // of the payload followed by the payload itself.  The subsections are 4-byte
587   // aligned.
588 
589   // Use the generic .debug$S section, and make a subsection for all the inlined
590   // subprograms.
591   switchToDebugSectionForSymbol(nullptr);
592 
593   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
594   emitCompilerInformation();
595   endCVSubsection(CompilerInfo);
596 
597   emitInlineeLinesSubsection();
598 
599   // Emit per-function debug information.
600   for (auto &P : FnDebugInfo)
601     if (!P.first->isDeclarationForLinker())
602       emitDebugInfoForFunction(P.first, *P.second);
603 
604   // Emit global variable debug information.
605   setCurrentSubprogram(nullptr);
606   emitDebugInfoForGlobals();
607 
608   // Emit retained types.
609   emitDebugInfoForRetainedTypes();
610 
611   // Switch back to the generic .debug$S section after potentially processing
612   // comdat symbol sections.
613   switchToDebugSectionForSymbol(nullptr);
614 
615   // Emit UDT records for any types used by global variables.
616   if (!GlobalUDTs.empty()) {
617     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
618     emitDebugInfoForUDTs(GlobalUDTs);
619     endCVSubsection(SymbolsEnd);
620   }
621 
622   // This subsection holds a file index to offset in string table table.
623   OS.AddComment("File index to string table offset subsection");
624   OS.emitCVFileChecksumsDirective();
625 
626   // This subsection holds the string table.
627   OS.AddComment("String table");
628   OS.emitCVStringTableDirective();
629 
630   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
631   // subsection in the generic .debug$S section at the end. There is no
632   // particular reason for this ordering other than to match MSVC.
633   emitBuildInfo();
634 
635   // Emit type information and hashes last, so that any types we translate while
636   // emitting function info are included.
637   emitTypeInformation();
638 
639   if (EmitDebugGlobalHashes)
640     emitTypeGlobalHashes();
641 
642   clear();
643 }
644 
645 static void
646 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
647                              unsigned MaxFixedRecordLength = 0xF00) {
648   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
649   // after a fixed length portion of the record. The fixed length portion should
650   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
651   // overall record size is less than the maximum allowed.
652   SmallString<32> NullTerminatedString(
653       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
654   NullTerminatedString.push_back('\0');
655   OS.emitBytes(NullTerminatedString);
656 }
657 
658 void CodeViewDebug::emitTypeInformation() {
659   if (TypeTable.empty())
660     return;
661 
662   // Start the .debug$T or .debug$P section with 0x4.
663   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
664   emitCodeViewMagicVersion();
665 
666   TypeTableCollection Table(TypeTable.records());
667   TypeVisitorCallbackPipeline Pipeline;
668 
669   // To emit type record using Codeview MCStreamer adapter
670   CVMCAdapter CVMCOS(OS, Table);
671   TypeRecordMapping typeMapping(CVMCOS);
672   Pipeline.addCallbackToPipeline(typeMapping);
673 
674   Optional<TypeIndex> B = Table.getFirst();
675   while (B) {
676     // This will fail if the record data is invalid.
677     CVType Record = Table.getType(*B);
678 
679     Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
680 
681     if (E) {
682       logAllUnhandledErrors(std::move(E), errs(), "error: ");
683       llvm_unreachable("produced malformed type record");
684     }
685 
686     B = Table.getNext(*B);
687   }
688 }
689 
690 void CodeViewDebug::emitTypeGlobalHashes() {
691   if (TypeTable.empty())
692     return;
693 
694   // Start the .debug$H section with the version and hash algorithm, currently
695   // hardcoded to version 0, SHA1.
696   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
697 
698   OS.emitValueToAlignment(4);
699   OS.AddComment("Magic");
700   OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
701   OS.AddComment("Section Version");
702   OS.emitInt16(0);
703   OS.AddComment("Hash Algorithm");
704   OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8));
705 
706   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
707   for (const auto &GHR : TypeTable.hashes()) {
708     if (OS.isVerboseAsm()) {
709       // Emit an EOL-comment describing which TypeIndex this hash corresponds
710       // to, as well as the stringified SHA1 hash.
711       SmallString<32> Comment;
712       raw_svector_ostream CommentOS(Comment);
713       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
714       OS.AddComment(Comment);
715       ++TI;
716     }
717     assert(GHR.Hash.size() == 8);
718     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
719                 GHR.Hash.size());
720     OS.emitBinaryData(S);
721   }
722 }
723 
724 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
725   switch (DWLang) {
726   case dwarf::DW_LANG_C:
727   case dwarf::DW_LANG_C89:
728   case dwarf::DW_LANG_C99:
729   case dwarf::DW_LANG_C11:
730   case dwarf::DW_LANG_ObjC:
731     return SourceLanguage::C;
732   case dwarf::DW_LANG_C_plus_plus:
733   case dwarf::DW_LANG_C_plus_plus_03:
734   case dwarf::DW_LANG_C_plus_plus_11:
735   case dwarf::DW_LANG_C_plus_plus_14:
736     return SourceLanguage::Cpp;
737   case dwarf::DW_LANG_Fortran77:
738   case dwarf::DW_LANG_Fortran90:
739   case dwarf::DW_LANG_Fortran03:
740   case dwarf::DW_LANG_Fortran08:
741     return SourceLanguage::Fortran;
742   case dwarf::DW_LANG_Pascal83:
743     return SourceLanguage::Pascal;
744   case dwarf::DW_LANG_Cobol74:
745   case dwarf::DW_LANG_Cobol85:
746     return SourceLanguage::Cobol;
747   case dwarf::DW_LANG_Java:
748     return SourceLanguage::Java;
749   case dwarf::DW_LANG_D:
750     return SourceLanguage::D;
751   case dwarf::DW_LANG_Swift:
752     return SourceLanguage::Swift;
753   default:
754     // There's no CodeView representation for this language, and CV doesn't
755     // have an "unknown" option for the language field, so we'll use MASM,
756     // as it's very low level.
757     return SourceLanguage::Masm;
758   }
759 }
760 
761 namespace {
762 struct Version {
763   int Part[4];
764 };
765 } // end anonymous namespace
766 
767 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
768 // the version number.
769 static Version parseVersion(StringRef Name) {
770   Version V = {{0}};
771   int N = 0;
772   for (const char C : Name) {
773     if (isdigit(C)) {
774       V.Part[N] *= 10;
775       V.Part[N] += C - '0';
776     } else if (C == '.') {
777       ++N;
778       if (N >= 4)
779         return V;
780     } else if (N > 0)
781       return V;
782   }
783   return V;
784 }
785 
786 void CodeViewDebug::emitCompilerInformation() {
787   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
788   uint32_t Flags = 0;
789 
790   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
791   const MDNode *Node = *CUs->operands().begin();
792   const auto *CU = cast<DICompileUnit>(Node);
793 
794   // The low byte of the flags indicates the source language.
795   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
796   // TODO:  Figure out which other flags need to be set.
797 
798   OS.AddComment("Flags and language");
799   OS.emitInt32(Flags);
800 
801   OS.AddComment("CPUType");
802   OS.emitInt16(static_cast<uint64_t>(TheCPU));
803 
804   StringRef CompilerVersion = CU->getProducer();
805   Version FrontVer = parseVersion(CompilerVersion);
806   OS.AddComment("Frontend version");
807   for (int N = 0; N < 4; ++N)
808     OS.emitInt16(FrontVer.Part[N]);
809 
810   // Some Microsoft tools, like Binscope, expect a backend version number of at
811   // least 8.something, so we'll coerce the LLVM version into a form that
812   // guarantees it'll be big enough without really lying about the version.
813   int Major = 1000 * LLVM_VERSION_MAJOR +
814               10 * LLVM_VERSION_MINOR +
815               LLVM_VERSION_PATCH;
816   // Clamp it for builds that use unusually large version numbers.
817   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
818   Version BackVer = {{ Major, 0, 0, 0 }};
819   OS.AddComment("Backend version");
820   for (int N = 0; N < 4; ++N)
821     OS.emitInt16(BackVer.Part[N]);
822 
823   OS.AddComment("Null-terminated compiler version string");
824   emitNullTerminatedSymbolName(OS, CompilerVersion);
825 
826   endSymbolRecord(CompilerEnd);
827 }
828 
829 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
830                                     StringRef S) {
831   StringIdRecord SIR(TypeIndex(0x0), S);
832   return TypeTable.writeLeafType(SIR);
833 }
834 
835 static std::string flattenCommandLine(ArrayRef<const char *> Args,
836                                       StringRef MainFilename) {
837   std::string FlatCmdLine;
838   raw_string_ostream OS(FlatCmdLine);
839   StringRef LastArg;
840   for (StringRef Arg : Args) {
841     if (Arg.empty())
842       continue;
843     // The command-line shall not contain the file to compile.
844     if (Arg == MainFilename && LastArg != "-main-file-name")
845       continue;
846     // Also remove the output file.
847     if (Arg == "-o" || LastArg == "-o") {
848       LastArg = Arg;
849       continue;
850     }
851     if (!LastArg.empty())
852       OS << " ";
853     llvm::sys::printArg(OS, Arg, /*Quote=*/true);
854     LastArg = Arg;
855   }
856   OS.flush();
857   return FlatCmdLine;
858 }
859 
860 void CodeViewDebug::emitBuildInfo() {
861   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
862   // build info. The known prefix is:
863   // - Absolute path of current directory
864   // - Compiler path
865   // - Main source file path, relative to CWD or absolute
866   // - Type server PDB file
867   // - Canonical compiler command line
868   // If frontend and backend compilation are separated (think llc or LTO), it's
869   // not clear if the compiler path should refer to the executable for the
870   // frontend or the backend. Leave it blank for now.
871   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
872   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
873   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
874   const auto *CU = cast<DICompileUnit>(Node);
875   const DIFile *MainSourceFile = CU->getFile();
876   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
877       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
878   BuildInfoArgs[BuildInfoRecord::SourceFile] =
879       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
880   // FIXME: PDB is intentionally blank unless we implement /Zi type servers.
881   BuildInfoArgs[BuildInfoRecord::TypeServerPDB] =
882       getStringIdTypeIdx(TypeTable, "");
883   if (Asm->TM.Options.MCOptions.Argv0 != nullptr) {
884     BuildInfoArgs[BuildInfoRecord::BuildTool] =
885         getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0);
886     BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx(
887         TypeTable, flattenCommandLine(Asm->TM.Options.MCOptions.CommandLineArgs,
888                                       MainSourceFile->getFilename()));
889   }
890   BuildInfoRecord BIR(BuildInfoArgs);
891   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
892 
893   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
894   // from the module symbols into the type stream.
895   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
896   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
897   OS.AddComment("LF_BUILDINFO index");
898   OS.emitInt32(BuildInfoIndex.getIndex());
899   endSymbolRecord(BIEnd);
900   endCVSubsection(BISubsecEnd);
901 }
902 
903 void CodeViewDebug::emitInlineeLinesSubsection() {
904   if (InlinedSubprograms.empty())
905     return;
906 
907   OS.AddComment("Inlinee lines subsection");
908   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
909 
910   // We emit the checksum info for files.  This is used by debuggers to
911   // determine if a pdb matches the source before loading it.  Visual Studio,
912   // for instance, will display a warning that the breakpoints are not valid if
913   // the pdb does not match the source.
914   OS.AddComment("Inlinee lines signature");
915   OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
916 
917   for (const DISubprogram *SP : InlinedSubprograms) {
918     assert(TypeIndices.count({SP, nullptr}));
919     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
920 
921     OS.AddBlankLine();
922     unsigned FileId = maybeRecordFile(SP->getFile());
923     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
924                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
925     OS.AddBlankLine();
926     OS.AddComment("Type index of inlined function");
927     OS.emitInt32(InlineeIdx.getIndex());
928     OS.AddComment("Offset into filechecksum table");
929     OS.emitCVFileChecksumOffsetDirective(FileId);
930     OS.AddComment("Starting line number");
931     OS.emitInt32(SP->getLine());
932   }
933 
934   endCVSubsection(InlineEnd);
935 }
936 
937 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
938                                         const DILocation *InlinedAt,
939                                         const InlineSite &Site) {
940   assert(TypeIndices.count({Site.Inlinee, nullptr}));
941   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
942 
943   // SymbolRecord
944   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
945 
946   OS.AddComment("PtrParent");
947   OS.emitInt32(0);
948   OS.AddComment("PtrEnd");
949   OS.emitInt32(0);
950   OS.AddComment("Inlinee type index");
951   OS.emitInt32(InlineeIdx.getIndex());
952 
953   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
954   unsigned StartLineNum = Site.Inlinee->getLine();
955 
956   OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
957                                     FI.Begin, FI.End);
958 
959   endSymbolRecord(InlineEnd);
960 
961   emitLocalVariableList(FI, Site.InlinedLocals);
962 
963   // Recurse on child inlined call sites before closing the scope.
964   for (const DILocation *ChildSite : Site.ChildSites) {
965     auto I = FI.InlineSites.find(ChildSite);
966     assert(I != FI.InlineSites.end() &&
967            "child site not in function inline site map");
968     emitInlinedCallSite(FI, ChildSite, I->second);
969   }
970 
971   // Close the scope.
972   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
973 }
974 
975 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
976   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
977   // comdat key. A section may be comdat because of -ffunction-sections or
978   // because it is comdat in the IR.
979   MCSectionCOFF *GVSec =
980       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
981   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
982 
983   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
984       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
985   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
986 
987   OS.SwitchSection(DebugSec);
988 
989   // Emit the magic version number if this is the first time we've switched to
990   // this section.
991   if (ComdatDebugSections.insert(DebugSec).second)
992     emitCodeViewMagicVersion();
993 }
994 
995 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
996 // The only supported thunk ordinal is currently the standard type.
997 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
998                                           FunctionInfo &FI,
999                                           const MCSymbol *Fn) {
1000   std::string FuncName =
1001       std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1002   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
1003 
1004   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1005   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1006 
1007   // Emit S_THUNK32
1008   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
1009   OS.AddComment("PtrParent");
1010   OS.emitInt32(0);
1011   OS.AddComment("PtrEnd");
1012   OS.emitInt32(0);
1013   OS.AddComment("PtrNext");
1014   OS.emitInt32(0);
1015   OS.AddComment("Thunk section relative address");
1016   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1017   OS.AddComment("Thunk section index");
1018   OS.EmitCOFFSectionIndex(Fn);
1019   OS.AddComment("Code size");
1020   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1021   OS.AddComment("Ordinal");
1022   OS.emitInt8(unsigned(ordinal));
1023   OS.AddComment("Function name");
1024   emitNullTerminatedSymbolName(OS, FuncName);
1025   // Additional fields specific to the thunk ordinal would go here.
1026   endSymbolRecord(ThunkRecordEnd);
1027 
1028   // Local variables/inlined routines are purposely omitted here.  The point of
1029   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1030 
1031   // Emit S_PROC_ID_END
1032   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1033 
1034   endCVSubsection(SymbolsEnd);
1035 }
1036 
1037 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1038                                              FunctionInfo &FI) {
1039   // For each function there is a separate subsection which holds the PC to
1040   // file:line table.
1041   const MCSymbol *Fn = Asm->getSymbol(GV);
1042   assert(Fn);
1043 
1044   // Switch to the to a comdat section, if appropriate.
1045   switchToDebugSectionForSymbol(Fn);
1046 
1047   std::string FuncName;
1048   auto *SP = GV->getSubprogram();
1049   assert(SP);
1050   setCurrentSubprogram(SP);
1051 
1052   if (SP->isThunk()) {
1053     emitDebugInfoForThunk(GV, FI, Fn);
1054     return;
1055   }
1056 
1057   // If we have a display name, build the fully qualified name by walking the
1058   // chain of scopes.
1059   if (!SP->getName().empty())
1060     FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1061 
1062   // If our DISubprogram name is empty, use the mangled name.
1063   if (FuncName.empty())
1064     FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1065 
1066   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1067   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1068     OS.EmitCVFPOData(Fn);
1069 
1070   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1071   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1072   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1073   {
1074     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1075                                                 : SymbolKind::S_GPROC32_ID;
1076     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1077 
1078     // These fields are filled in by tools like CVPACK which run after the fact.
1079     OS.AddComment("PtrParent");
1080     OS.emitInt32(0);
1081     OS.AddComment("PtrEnd");
1082     OS.emitInt32(0);
1083     OS.AddComment("PtrNext");
1084     OS.emitInt32(0);
1085     // This is the important bit that tells the debugger where the function
1086     // code is located and what's its size:
1087     OS.AddComment("Code size");
1088     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1089     OS.AddComment("Offset after prologue");
1090     OS.emitInt32(0);
1091     OS.AddComment("Offset before epilogue");
1092     OS.emitInt32(0);
1093     OS.AddComment("Function type index");
1094     OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1095     OS.AddComment("Function section relative address");
1096     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1097     OS.AddComment("Function section index");
1098     OS.EmitCOFFSectionIndex(Fn);
1099     OS.AddComment("Flags");
1100     OS.emitInt8(0);
1101     // Emit the function display name as a null-terminated string.
1102     OS.AddComment("Function name");
1103     // Truncate the name so we won't overflow the record length field.
1104     emitNullTerminatedSymbolName(OS, FuncName);
1105     endSymbolRecord(ProcRecordEnd);
1106 
1107     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1108     // Subtract out the CSR size since MSVC excludes that and we include it.
1109     OS.AddComment("FrameSize");
1110     OS.emitInt32(FI.FrameSize - FI.CSRSize);
1111     OS.AddComment("Padding");
1112     OS.emitInt32(0);
1113     OS.AddComment("Offset of padding");
1114     OS.emitInt32(0);
1115     OS.AddComment("Bytes of callee saved registers");
1116     OS.emitInt32(FI.CSRSize);
1117     OS.AddComment("Exception handler offset");
1118     OS.emitInt32(0);
1119     OS.AddComment("Exception handler section");
1120     OS.emitInt16(0);
1121     OS.AddComment("Flags (defines frame register)");
1122     OS.emitInt32(uint32_t(FI.FrameProcOpts));
1123     endSymbolRecord(FrameProcEnd);
1124 
1125     emitLocalVariableList(FI, FI.Locals);
1126     emitGlobalVariableList(FI.Globals);
1127     emitLexicalBlockList(FI.ChildBlocks, FI);
1128 
1129     // Emit inlined call site information. Only emit functions inlined directly
1130     // into the parent function. We'll emit the other sites recursively as part
1131     // of their parent inline site.
1132     for (const DILocation *InlinedAt : FI.ChildSites) {
1133       auto I = FI.InlineSites.find(InlinedAt);
1134       assert(I != FI.InlineSites.end() &&
1135              "child site not in function inline site map");
1136       emitInlinedCallSite(FI, InlinedAt, I->second);
1137     }
1138 
1139     for (auto Annot : FI.Annotations) {
1140       MCSymbol *Label = Annot.first;
1141       MDTuple *Strs = cast<MDTuple>(Annot.second);
1142       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1143       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1144       // FIXME: Make sure we don't overflow the max record size.
1145       OS.EmitCOFFSectionIndex(Label);
1146       OS.emitInt16(Strs->getNumOperands());
1147       for (Metadata *MD : Strs->operands()) {
1148         // MDStrings are null terminated, so we can do EmitBytes and get the
1149         // nice .asciz directive.
1150         StringRef Str = cast<MDString>(MD)->getString();
1151         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1152         OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1153       }
1154       endSymbolRecord(AnnotEnd);
1155     }
1156 
1157     for (auto HeapAllocSite : FI.HeapAllocSites) {
1158       const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1159       const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1160       const DIType *DITy = std::get<2>(HeapAllocSite);
1161       MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1162       OS.AddComment("Call site offset");
1163       OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1164       OS.AddComment("Call site section index");
1165       OS.EmitCOFFSectionIndex(BeginLabel);
1166       OS.AddComment("Call instruction length");
1167       OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1168       OS.AddComment("Type index");
1169       OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1170       endSymbolRecord(HeapAllocEnd);
1171     }
1172 
1173     if (SP != nullptr)
1174       emitDebugInfoForUDTs(LocalUDTs);
1175 
1176     // We're done with this function.
1177     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1178   }
1179   endCVSubsection(SymbolsEnd);
1180 
1181   // We have an assembler directive that takes care of the whole line table.
1182   OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1183 }
1184 
1185 CodeViewDebug::LocalVarDefRange
1186 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1187   LocalVarDefRange DR;
1188   DR.InMemory = -1;
1189   DR.DataOffset = Offset;
1190   assert(DR.DataOffset == Offset && "truncation");
1191   DR.IsSubfield = 0;
1192   DR.StructOffset = 0;
1193   DR.CVRegister = CVRegister;
1194   return DR;
1195 }
1196 
1197 void CodeViewDebug::collectVariableInfoFromMFTable(
1198     DenseSet<InlinedEntity> &Processed) {
1199   const MachineFunction &MF = *Asm->MF;
1200   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1201   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1202   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1203 
1204   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1205     if (!VI.Var)
1206       continue;
1207     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1208            "Expected inlined-at fields to agree");
1209 
1210     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1211     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1212 
1213     // If variable scope is not found then skip this variable.
1214     if (!Scope)
1215       continue;
1216 
1217     // If the variable has an attached offset expression, extract it.
1218     // FIXME: Try to handle DW_OP_deref as well.
1219     int64_t ExprOffset = 0;
1220     bool Deref = false;
1221     if (VI.Expr) {
1222       // If there is one DW_OP_deref element, use offset of 0 and keep going.
1223       if (VI.Expr->getNumElements() == 1 &&
1224           VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1225         Deref = true;
1226       else if (!VI.Expr->extractIfOffset(ExprOffset))
1227         continue;
1228     }
1229 
1230     // Get the frame register used and the offset.
1231     Register FrameReg;
1232     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1233     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1234 
1235     // Calculate the label ranges.
1236     LocalVarDefRange DefRange =
1237         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1238 
1239     for (const InsnRange &Range : Scope->getRanges()) {
1240       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1241       const MCSymbol *End = getLabelAfterInsn(Range.second);
1242       End = End ? End : Asm->getFunctionEnd();
1243       DefRange.Ranges.emplace_back(Begin, End);
1244     }
1245 
1246     LocalVariable Var;
1247     Var.DIVar = VI.Var;
1248     Var.DefRanges.emplace_back(std::move(DefRange));
1249     if (Deref)
1250       Var.UseReferenceType = true;
1251 
1252     recordLocalVariable(std::move(Var), Scope);
1253   }
1254 }
1255 
1256 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1257   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1258 }
1259 
1260 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1261   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1262 }
1263 
1264 void CodeViewDebug::calculateRanges(
1265     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1266   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1267 
1268   // Calculate the definition ranges.
1269   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1270     const auto &Entry = *I;
1271     if (!Entry.isDbgValue())
1272       continue;
1273     const MachineInstr *DVInst = Entry.getInstr();
1274     assert(DVInst->isDebugValue() && "Invalid History entry");
1275     // FIXME: Find a way to represent constant variables, since they are
1276     // relatively common.
1277     Optional<DbgVariableLocation> Location =
1278         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1279     if (!Location)
1280       continue;
1281 
1282     // CodeView can only express variables in register and variables in memory
1283     // at a constant offset from a register. However, for variables passed
1284     // indirectly by pointer, it is common for that pointer to be spilled to a
1285     // stack location. For the special case of one offseted load followed by a
1286     // zero offset load (a pointer spilled to the stack), we change the type of
1287     // the local variable from a value type to a reference type. This tricks the
1288     // debugger into doing the load for us.
1289     if (Var.UseReferenceType) {
1290       // We're using a reference type. Drop the last zero offset load.
1291       if (canUseReferenceType(*Location))
1292         Location->LoadChain.pop_back();
1293       else
1294         continue;
1295     } else if (needsReferenceType(*Location)) {
1296       // This location can't be expressed without switching to a reference type.
1297       // Start over using that.
1298       Var.UseReferenceType = true;
1299       Var.DefRanges.clear();
1300       calculateRanges(Var, Entries);
1301       return;
1302     }
1303 
1304     // We can only handle a register or an offseted load of a register.
1305     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1306       continue;
1307     {
1308       LocalVarDefRange DR;
1309       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1310       DR.InMemory = !Location->LoadChain.empty();
1311       DR.DataOffset =
1312           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1313       if (Location->FragmentInfo) {
1314         DR.IsSubfield = true;
1315         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1316       } else {
1317         DR.IsSubfield = false;
1318         DR.StructOffset = 0;
1319       }
1320 
1321       if (Var.DefRanges.empty() ||
1322           Var.DefRanges.back().isDifferentLocation(DR)) {
1323         Var.DefRanges.emplace_back(std::move(DR));
1324       }
1325     }
1326 
1327     // Compute the label range.
1328     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1329     const MCSymbol *End;
1330     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1331       auto &EndingEntry = Entries[Entry.getEndIndex()];
1332       End = EndingEntry.isDbgValue()
1333                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1334                 : getLabelAfterInsn(EndingEntry.getInstr());
1335     } else
1336       End = Asm->getFunctionEnd();
1337 
1338     // If the last range end is our begin, just extend the last range.
1339     // Otherwise make a new range.
1340     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1341         Var.DefRanges.back().Ranges;
1342     if (!R.empty() && R.back().second == Begin)
1343       R.back().second = End;
1344     else
1345       R.emplace_back(Begin, End);
1346 
1347     // FIXME: Do more range combining.
1348   }
1349 }
1350 
1351 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1352   DenseSet<InlinedEntity> Processed;
1353   // Grab the variable info that was squirreled away in the MMI side-table.
1354   collectVariableInfoFromMFTable(Processed);
1355 
1356   for (const auto &I : DbgValues) {
1357     InlinedEntity IV = I.first;
1358     if (Processed.count(IV))
1359       continue;
1360     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1361     const DILocation *InlinedAt = IV.second;
1362 
1363     // Instruction ranges, specifying where IV is accessible.
1364     const auto &Entries = I.second;
1365 
1366     LexicalScope *Scope = nullptr;
1367     if (InlinedAt)
1368       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1369     else
1370       Scope = LScopes.findLexicalScope(DIVar->getScope());
1371     // If variable scope is not found then skip this variable.
1372     if (!Scope)
1373       continue;
1374 
1375     LocalVariable Var;
1376     Var.DIVar = DIVar;
1377 
1378     calculateRanges(Var, Entries);
1379     recordLocalVariable(std::move(Var), Scope);
1380   }
1381 }
1382 
1383 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1384   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1385   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1386   const MachineFrameInfo &MFI = MF->getFrameInfo();
1387   const Function &GV = MF->getFunction();
1388   auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1389   assert(Insertion.second && "function already has info");
1390   CurFn = Insertion.first->second.get();
1391   CurFn->FuncId = NextFuncId++;
1392   CurFn->Begin = Asm->getFunctionBegin();
1393 
1394   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1395   // callee-saved registers were used. For targets that don't use a PUSH
1396   // instruction (AArch64), this will be zero.
1397   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1398   CurFn->FrameSize = MFI.getStackSize();
1399   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1400   CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1401 
1402   // For this function S_FRAMEPROC record, figure out which codeview register
1403   // will be the frame pointer.
1404   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1405   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1406   if (CurFn->FrameSize > 0) {
1407     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1408       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1409       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1410     } else {
1411       // If there is an FP, parameters are always relative to it.
1412       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1413       if (CurFn->HasStackRealignment) {
1414         // If the stack needs realignment, locals are relative to SP or VFRAME.
1415         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1416       } else {
1417         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1418         // other stack adjustments.
1419         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1420       }
1421     }
1422   }
1423 
1424   // Compute other frame procedure options.
1425   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1426   if (MFI.hasVarSizedObjects())
1427     FPO |= FrameProcedureOptions::HasAlloca;
1428   if (MF->exposesReturnsTwice())
1429     FPO |= FrameProcedureOptions::HasSetJmp;
1430   // FIXME: Set HasLongJmp if we ever track that info.
1431   if (MF->hasInlineAsm())
1432     FPO |= FrameProcedureOptions::HasInlineAssembly;
1433   if (GV.hasPersonalityFn()) {
1434     if (isAsynchronousEHPersonality(
1435             classifyEHPersonality(GV.getPersonalityFn())))
1436       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1437     else
1438       FPO |= FrameProcedureOptions::HasExceptionHandling;
1439   }
1440   if (GV.hasFnAttribute(Attribute::InlineHint))
1441     FPO |= FrameProcedureOptions::MarkedInline;
1442   if (GV.hasFnAttribute(Attribute::Naked))
1443     FPO |= FrameProcedureOptions::Naked;
1444   if (MFI.hasStackProtectorIndex())
1445     FPO |= FrameProcedureOptions::SecurityChecks;
1446   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1447   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1448   if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1449       !GV.hasOptSize() && !GV.hasOptNone())
1450     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1451   // FIXME: Set GuardCfg when it is implemented.
1452   CurFn->FrameProcOpts = FPO;
1453 
1454   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1455 
1456   // Find the end of the function prolog.  First known non-DBG_VALUE and
1457   // non-frame setup location marks the beginning of the function body.
1458   // FIXME: is there a simpler a way to do this? Can we just search
1459   // for the first instruction of the function, not the last of the prolog?
1460   DebugLoc PrologEndLoc;
1461   bool EmptyPrologue = true;
1462   for (const auto &MBB : *MF) {
1463     for (const auto &MI : MBB) {
1464       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1465           MI.getDebugLoc()) {
1466         PrologEndLoc = MI.getDebugLoc();
1467         break;
1468       } else if (!MI.isMetaInstruction()) {
1469         EmptyPrologue = false;
1470       }
1471     }
1472   }
1473 
1474   // Record beginning of function if we have a non-empty prologue.
1475   if (PrologEndLoc && !EmptyPrologue) {
1476     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1477     maybeRecordLocation(FnStartDL, MF);
1478   }
1479 
1480   // Find heap alloc sites and emit labels around them.
1481   for (const auto &MBB : *MF) {
1482     for (const auto &MI : MBB) {
1483       if (MI.getHeapAllocMarker()) {
1484         requestLabelBeforeInsn(&MI);
1485         requestLabelAfterInsn(&MI);
1486       }
1487     }
1488   }
1489 }
1490 
1491 static bool shouldEmitUdt(const DIType *T) {
1492   if (!T)
1493     return false;
1494 
1495   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1496   if (T->getTag() == dwarf::DW_TAG_typedef) {
1497     if (DIScope *Scope = T->getScope()) {
1498       switch (Scope->getTag()) {
1499       case dwarf::DW_TAG_structure_type:
1500       case dwarf::DW_TAG_class_type:
1501       case dwarf::DW_TAG_union_type:
1502         return false;
1503       }
1504     }
1505   }
1506 
1507   while (true) {
1508     if (!T || T->isForwardDecl())
1509       return false;
1510 
1511     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1512     if (!DT)
1513       return true;
1514     T = DT->getBaseType();
1515   }
1516   return true;
1517 }
1518 
1519 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1520   // Don't record empty UDTs.
1521   if (Ty->getName().empty())
1522     return;
1523   if (!shouldEmitUdt(Ty))
1524     return;
1525 
1526   SmallVector<StringRef, 5> ParentScopeNames;
1527   const DISubprogram *ClosestSubprogram =
1528       collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1529 
1530   std::string FullyQualifiedName =
1531       formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1532 
1533   if (ClosestSubprogram == nullptr) {
1534     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1535   } else if (ClosestSubprogram == CurrentSubprogram) {
1536     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1537   }
1538 
1539   // TODO: What if the ClosestSubprogram is neither null or the current
1540   // subprogram?  Currently, the UDT just gets dropped on the floor.
1541   //
1542   // The current behavior is not desirable.  To get maximal fidelity, we would
1543   // need to perform all type translation before beginning emission of .debug$S
1544   // and then make LocalUDTs a member of FunctionInfo
1545 }
1546 
1547 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1548   // Generic dispatch for lowering an unknown type.
1549   switch (Ty->getTag()) {
1550   case dwarf::DW_TAG_array_type:
1551     return lowerTypeArray(cast<DICompositeType>(Ty));
1552   case dwarf::DW_TAG_typedef:
1553     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1554   case dwarf::DW_TAG_base_type:
1555     return lowerTypeBasic(cast<DIBasicType>(Ty));
1556   case dwarf::DW_TAG_pointer_type:
1557     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1558       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1559     LLVM_FALLTHROUGH;
1560   case dwarf::DW_TAG_reference_type:
1561   case dwarf::DW_TAG_rvalue_reference_type:
1562     return lowerTypePointer(cast<DIDerivedType>(Ty));
1563   case dwarf::DW_TAG_ptr_to_member_type:
1564     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1565   case dwarf::DW_TAG_restrict_type:
1566   case dwarf::DW_TAG_const_type:
1567   case dwarf::DW_TAG_volatile_type:
1568   // TODO: add support for DW_TAG_atomic_type here
1569     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1570   case dwarf::DW_TAG_subroutine_type:
1571     if (ClassTy) {
1572       // The member function type of a member function pointer has no
1573       // ThisAdjustment.
1574       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1575                                      /*ThisAdjustment=*/0,
1576                                      /*IsStaticMethod=*/false);
1577     }
1578     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1579   case dwarf::DW_TAG_enumeration_type:
1580     return lowerTypeEnum(cast<DICompositeType>(Ty));
1581   case dwarf::DW_TAG_class_type:
1582   case dwarf::DW_TAG_structure_type:
1583     return lowerTypeClass(cast<DICompositeType>(Ty));
1584   case dwarf::DW_TAG_union_type:
1585     return lowerTypeUnion(cast<DICompositeType>(Ty));
1586   case dwarf::DW_TAG_unspecified_type:
1587     if (Ty->getName() == "decltype(nullptr)")
1588       return TypeIndex::NullptrT();
1589     return TypeIndex::None();
1590   default:
1591     // Use the null type index.
1592     return TypeIndex();
1593   }
1594 }
1595 
1596 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1597   TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1598   StringRef TypeName = Ty->getName();
1599 
1600   addToUDTs(Ty);
1601 
1602   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1603       TypeName == "HRESULT")
1604     return TypeIndex(SimpleTypeKind::HResult);
1605   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1606       TypeName == "wchar_t")
1607     return TypeIndex(SimpleTypeKind::WideCharacter);
1608 
1609   return UnderlyingTypeIndex;
1610 }
1611 
1612 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1613   const DIType *ElementType = Ty->getBaseType();
1614   TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1615   // IndexType is size_t, which depends on the bitness of the target.
1616   TypeIndex IndexType = getPointerSizeInBytes() == 8
1617                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1618                             : TypeIndex(SimpleTypeKind::UInt32Long);
1619 
1620   uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1621 
1622   // Add subranges to array type.
1623   DINodeArray Elements = Ty->getElements();
1624   for (int i = Elements.size() - 1; i >= 0; --i) {
1625     const DINode *Element = Elements[i];
1626     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1627 
1628     const DISubrange *Subrange = cast<DISubrange>(Element);
1629     assert(!Subrange->getRawLowerBound() &&
1630            "codeview doesn't support subranges with lower bounds");
1631     int64_t Count = -1;
1632     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1633       Count = CI->getSExtValue();
1634 
1635     // Forward declarations of arrays without a size and VLAs use a count of -1.
1636     // Emit a count of zero in these cases to match what MSVC does for arrays
1637     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1638     // should do for them even if we could distinguish them.
1639     if (Count == -1)
1640       Count = 0;
1641 
1642     // Update the element size and element type index for subsequent subranges.
1643     ElementSize *= Count;
1644 
1645     // If this is the outermost array, use the size from the array. It will be
1646     // more accurate if we had a VLA or an incomplete element type size.
1647     uint64_t ArraySize =
1648         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1649 
1650     StringRef Name = (i == 0) ? Ty->getName() : "";
1651     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1652     ElementTypeIndex = TypeTable.writeLeafType(AR);
1653   }
1654 
1655   return ElementTypeIndex;
1656 }
1657 
1658 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1659   TypeIndex Index;
1660   dwarf::TypeKind Kind;
1661   uint32_t ByteSize;
1662 
1663   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1664   ByteSize = Ty->getSizeInBits() / 8;
1665 
1666   SimpleTypeKind STK = SimpleTypeKind::None;
1667   switch (Kind) {
1668   case dwarf::DW_ATE_address:
1669     // FIXME: Translate
1670     break;
1671   case dwarf::DW_ATE_boolean:
1672     switch (ByteSize) {
1673     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1674     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1675     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1676     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1677     case 16: STK = SimpleTypeKind::Boolean128; break;
1678     }
1679     break;
1680   case dwarf::DW_ATE_complex_float:
1681     switch (ByteSize) {
1682     case 2:  STK = SimpleTypeKind::Complex16;  break;
1683     case 4:  STK = SimpleTypeKind::Complex32;  break;
1684     case 8:  STK = SimpleTypeKind::Complex64;  break;
1685     case 10: STK = SimpleTypeKind::Complex80;  break;
1686     case 16: STK = SimpleTypeKind::Complex128; break;
1687     }
1688     break;
1689   case dwarf::DW_ATE_float:
1690     switch (ByteSize) {
1691     case 2:  STK = SimpleTypeKind::Float16;  break;
1692     case 4:  STK = SimpleTypeKind::Float32;  break;
1693     case 6:  STK = SimpleTypeKind::Float48;  break;
1694     case 8:  STK = SimpleTypeKind::Float64;  break;
1695     case 10: STK = SimpleTypeKind::Float80;  break;
1696     case 16: STK = SimpleTypeKind::Float128; break;
1697     }
1698     break;
1699   case dwarf::DW_ATE_signed:
1700     switch (ByteSize) {
1701     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1702     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1703     case 4:  STK = SimpleTypeKind::Int32;           break;
1704     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1705     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1706     }
1707     break;
1708   case dwarf::DW_ATE_unsigned:
1709     switch (ByteSize) {
1710     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1711     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1712     case 4:  STK = SimpleTypeKind::UInt32;            break;
1713     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1714     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1715     }
1716     break;
1717   case dwarf::DW_ATE_UTF:
1718     switch (ByteSize) {
1719     case 2: STK = SimpleTypeKind::Character16; break;
1720     case 4: STK = SimpleTypeKind::Character32; break;
1721     }
1722     break;
1723   case dwarf::DW_ATE_signed_char:
1724     if (ByteSize == 1)
1725       STK = SimpleTypeKind::SignedCharacter;
1726     break;
1727   case dwarf::DW_ATE_unsigned_char:
1728     if (ByteSize == 1)
1729       STK = SimpleTypeKind::UnsignedCharacter;
1730     break;
1731   default:
1732     break;
1733   }
1734 
1735   // Apply some fixups based on the source-level type name.
1736   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1737     STK = SimpleTypeKind::Int32Long;
1738   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1739     STK = SimpleTypeKind::UInt32Long;
1740   if (STK == SimpleTypeKind::UInt16Short &&
1741       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1742     STK = SimpleTypeKind::WideCharacter;
1743   if ((STK == SimpleTypeKind::SignedCharacter ||
1744        STK == SimpleTypeKind::UnsignedCharacter) &&
1745       Ty->getName() == "char")
1746     STK = SimpleTypeKind::NarrowCharacter;
1747 
1748   return TypeIndex(STK);
1749 }
1750 
1751 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1752                                           PointerOptions PO) {
1753   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1754 
1755   // Pointers to simple types without any options can use SimpleTypeMode, rather
1756   // than having a dedicated pointer type record.
1757   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1758       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1759       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1760     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1761                               ? SimpleTypeMode::NearPointer64
1762                               : SimpleTypeMode::NearPointer32;
1763     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1764   }
1765 
1766   PointerKind PK =
1767       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1768   PointerMode PM = PointerMode::Pointer;
1769   switch (Ty->getTag()) {
1770   default: llvm_unreachable("not a pointer tag type");
1771   case dwarf::DW_TAG_pointer_type:
1772     PM = PointerMode::Pointer;
1773     break;
1774   case dwarf::DW_TAG_reference_type:
1775     PM = PointerMode::LValueReference;
1776     break;
1777   case dwarf::DW_TAG_rvalue_reference_type:
1778     PM = PointerMode::RValueReference;
1779     break;
1780   }
1781 
1782   if (Ty->isObjectPointer())
1783     PO |= PointerOptions::Const;
1784 
1785   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1786   return TypeTable.writeLeafType(PR);
1787 }
1788 
1789 static PointerToMemberRepresentation
1790 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1791   // SizeInBytes being zero generally implies that the member pointer type was
1792   // incomplete, which can happen if it is part of a function prototype. In this
1793   // case, use the unknown model instead of the general model.
1794   if (IsPMF) {
1795     switch (Flags & DINode::FlagPtrToMemberRep) {
1796     case 0:
1797       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1798                               : PointerToMemberRepresentation::GeneralFunction;
1799     case DINode::FlagSingleInheritance:
1800       return PointerToMemberRepresentation::SingleInheritanceFunction;
1801     case DINode::FlagMultipleInheritance:
1802       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1803     case DINode::FlagVirtualInheritance:
1804       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1805     }
1806   } else {
1807     switch (Flags & DINode::FlagPtrToMemberRep) {
1808     case 0:
1809       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1810                               : PointerToMemberRepresentation::GeneralData;
1811     case DINode::FlagSingleInheritance:
1812       return PointerToMemberRepresentation::SingleInheritanceData;
1813     case DINode::FlagMultipleInheritance:
1814       return PointerToMemberRepresentation::MultipleInheritanceData;
1815     case DINode::FlagVirtualInheritance:
1816       return PointerToMemberRepresentation::VirtualInheritanceData;
1817     }
1818   }
1819   llvm_unreachable("invalid ptr to member representation");
1820 }
1821 
1822 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1823                                                 PointerOptions PO) {
1824   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1825   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1826   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1827   TypeIndex PointeeTI =
1828       getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1829   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1830                                                 : PointerKind::Near32;
1831   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1832                          : PointerMode::PointerToDataMember;
1833 
1834   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1835   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1836   MemberPointerInfo MPI(
1837       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1838   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1839   return TypeTable.writeLeafType(PR);
1840 }
1841 
1842 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1843 /// have a translation, use the NearC convention.
1844 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1845   switch (DwarfCC) {
1846   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1847   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1848   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1849   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1850   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1851   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1852   }
1853   return CallingConvention::NearC;
1854 }
1855 
1856 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1857   ModifierOptions Mods = ModifierOptions::None;
1858   PointerOptions PO = PointerOptions::None;
1859   bool IsModifier = true;
1860   const DIType *BaseTy = Ty;
1861   while (IsModifier && BaseTy) {
1862     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1863     switch (BaseTy->getTag()) {
1864     case dwarf::DW_TAG_const_type:
1865       Mods |= ModifierOptions::Const;
1866       PO |= PointerOptions::Const;
1867       break;
1868     case dwarf::DW_TAG_volatile_type:
1869       Mods |= ModifierOptions::Volatile;
1870       PO |= PointerOptions::Volatile;
1871       break;
1872     case dwarf::DW_TAG_restrict_type:
1873       // Only pointer types be marked with __restrict. There is no known flag
1874       // for __restrict in LF_MODIFIER records.
1875       PO |= PointerOptions::Restrict;
1876       break;
1877     default:
1878       IsModifier = false;
1879       break;
1880     }
1881     if (IsModifier)
1882       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1883   }
1884 
1885   // Check if the inner type will use an LF_POINTER record. If so, the
1886   // qualifiers will go in the LF_POINTER record. This comes up for types like
1887   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1888   // char *'.
1889   if (BaseTy) {
1890     switch (BaseTy->getTag()) {
1891     case dwarf::DW_TAG_pointer_type:
1892     case dwarf::DW_TAG_reference_type:
1893     case dwarf::DW_TAG_rvalue_reference_type:
1894       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1895     case dwarf::DW_TAG_ptr_to_member_type:
1896       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1897     default:
1898       break;
1899     }
1900   }
1901 
1902   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1903 
1904   // Return the base type index if there aren't any modifiers. For example, the
1905   // metadata could contain restrict wrappers around non-pointer types.
1906   if (Mods == ModifierOptions::None)
1907     return ModifiedTI;
1908 
1909   ModifierRecord MR(ModifiedTI, Mods);
1910   return TypeTable.writeLeafType(MR);
1911 }
1912 
1913 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1914   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1915   for (const DIType *ArgType : Ty->getTypeArray())
1916     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1917 
1918   // MSVC uses type none for variadic argument.
1919   if (ReturnAndArgTypeIndices.size() > 1 &&
1920       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1921     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1922   }
1923   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1924   ArrayRef<TypeIndex> ArgTypeIndices = None;
1925   if (!ReturnAndArgTypeIndices.empty()) {
1926     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1927     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1928     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1929   }
1930 
1931   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1932   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1933 
1934   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1935 
1936   FunctionOptions FO = getFunctionOptions(Ty);
1937   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1938                             ArgListIndex);
1939   return TypeTable.writeLeafType(Procedure);
1940 }
1941 
1942 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1943                                                  const DIType *ClassTy,
1944                                                  int ThisAdjustment,
1945                                                  bool IsStaticMethod,
1946                                                  FunctionOptions FO) {
1947   // Lower the containing class type.
1948   TypeIndex ClassType = getTypeIndex(ClassTy);
1949 
1950   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1951 
1952   unsigned Index = 0;
1953   SmallVector<TypeIndex, 8> ArgTypeIndices;
1954   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1955   if (ReturnAndArgs.size() > Index) {
1956     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1957   }
1958 
1959   // If the first argument is a pointer type and this isn't a static method,
1960   // treat it as the special 'this' parameter, which is encoded separately from
1961   // the arguments.
1962   TypeIndex ThisTypeIndex;
1963   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1964     if (const DIDerivedType *PtrTy =
1965             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
1966       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1967         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1968         Index++;
1969       }
1970     }
1971   }
1972 
1973   while (Index < ReturnAndArgs.size())
1974     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1975 
1976   // MSVC uses type none for variadic argument.
1977   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1978     ArgTypeIndices.back() = TypeIndex::None();
1979 
1980   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1981   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1982 
1983   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1984 
1985   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1986                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1987   return TypeTable.writeLeafType(MFR);
1988 }
1989 
1990 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1991   unsigned VSlotCount =
1992       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1993   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1994 
1995   VFTableShapeRecord VFTSR(Slots);
1996   return TypeTable.writeLeafType(VFTSR);
1997 }
1998 
1999 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
2000   switch (Flags & DINode::FlagAccessibility) {
2001   case DINode::FlagPrivate:   return MemberAccess::Private;
2002   case DINode::FlagPublic:    return MemberAccess::Public;
2003   case DINode::FlagProtected: return MemberAccess::Protected;
2004   case 0:
2005     // If there was no explicit access control, provide the default for the tag.
2006     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2007                                                  : MemberAccess::Public;
2008   }
2009   llvm_unreachable("access flags are exclusive");
2010 }
2011 
2012 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2013   if (SP->isArtificial())
2014     return MethodOptions::CompilerGenerated;
2015 
2016   // FIXME: Handle other MethodOptions.
2017 
2018   return MethodOptions::None;
2019 }
2020 
2021 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2022                                            bool Introduced) {
2023   if (SP->getFlags() & DINode::FlagStaticMember)
2024     return MethodKind::Static;
2025 
2026   switch (SP->getVirtuality()) {
2027   case dwarf::DW_VIRTUALITY_none:
2028     break;
2029   case dwarf::DW_VIRTUALITY_virtual:
2030     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2031   case dwarf::DW_VIRTUALITY_pure_virtual:
2032     return Introduced ? MethodKind::PureIntroducingVirtual
2033                       : MethodKind::PureVirtual;
2034   default:
2035     llvm_unreachable("unhandled virtuality case");
2036   }
2037 
2038   return MethodKind::Vanilla;
2039 }
2040 
2041 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2042   switch (Ty->getTag()) {
2043   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
2044   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
2045   }
2046   llvm_unreachable("unexpected tag");
2047 }
2048 
2049 /// Return ClassOptions that should be present on both the forward declaration
2050 /// and the defintion of a tag type.
2051 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2052   ClassOptions CO = ClassOptions::None;
2053 
2054   // MSVC always sets this flag, even for local types. Clang doesn't always
2055   // appear to give every type a linkage name, which may be problematic for us.
2056   // FIXME: Investigate the consequences of not following them here.
2057   if (!Ty->getIdentifier().empty())
2058     CO |= ClassOptions::HasUniqueName;
2059 
2060   // Put the Nested flag on a type if it appears immediately inside a tag type.
2061   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2062   // here. That flag is only set on definitions, and not forward declarations.
2063   const DIScope *ImmediateScope = Ty->getScope();
2064   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2065     CO |= ClassOptions::Nested;
2066 
2067   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2068   // type only when it has an immediate function scope. Clang never puts enums
2069   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2070   // always in function, class, or file scopes.
2071   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2072     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2073       CO |= ClassOptions::Scoped;
2074   } else {
2075     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2076          Scope = Scope->getScope()) {
2077       if (isa<DISubprogram>(Scope)) {
2078         CO |= ClassOptions::Scoped;
2079         break;
2080       }
2081     }
2082   }
2083 
2084   return CO;
2085 }
2086 
2087 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2088   switch (Ty->getTag()) {
2089   case dwarf::DW_TAG_class_type:
2090   case dwarf::DW_TAG_structure_type:
2091   case dwarf::DW_TAG_union_type:
2092   case dwarf::DW_TAG_enumeration_type:
2093     break;
2094   default:
2095     return;
2096   }
2097 
2098   if (const auto *File = Ty->getFile()) {
2099     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2100     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2101 
2102     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2103     TypeTable.writeLeafType(USLR);
2104   }
2105 }
2106 
2107 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2108   ClassOptions CO = getCommonClassOptions(Ty);
2109   TypeIndex FTI;
2110   unsigned EnumeratorCount = 0;
2111 
2112   if (Ty->isForwardDecl()) {
2113     CO |= ClassOptions::ForwardReference;
2114   } else {
2115     ContinuationRecordBuilder ContinuationBuilder;
2116     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2117     for (const DINode *Element : Ty->getElements()) {
2118       // We assume that the frontend provides all members in source declaration
2119       // order, which is what MSVC does.
2120       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2121         EnumeratorRecord ER(MemberAccess::Public,
2122                             APSInt(Enumerator->getValue(), true),
2123                             Enumerator->getName());
2124         ContinuationBuilder.writeMemberType(ER);
2125         EnumeratorCount++;
2126       }
2127     }
2128     FTI = TypeTable.insertRecord(ContinuationBuilder);
2129   }
2130 
2131   std::string FullName = getFullyQualifiedName(Ty);
2132 
2133   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2134                 getTypeIndex(Ty->getBaseType()));
2135   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2136 
2137   addUDTSrcLine(Ty, EnumTI);
2138 
2139   return EnumTI;
2140 }
2141 
2142 //===----------------------------------------------------------------------===//
2143 // ClassInfo
2144 //===----------------------------------------------------------------------===//
2145 
2146 struct llvm::ClassInfo {
2147   struct MemberInfo {
2148     const DIDerivedType *MemberTypeNode;
2149     uint64_t BaseOffset;
2150   };
2151   // [MemberInfo]
2152   using MemberList = std::vector<MemberInfo>;
2153 
2154   using MethodsList = TinyPtrVector<const DISubprogram *>;
2155   // MethodName -> MethodsList
2156   using MethodsMap = MapVector<MDString *, MethodsList>;
2157 
2158   /// Base classes.
2159   std::vector<const DIDerivedType *> Inheritance;
2160 
2161   /// Direct members.
2162   MemberList Members;
2163   // Direct overloaded methods gathered by name.
2164   MethodsMap Methods;
2165 
2166   TypeIndex VShapeTI;
2167 
2168   std::vector<const DIType *> NestedTypes;
2169 };
2170 
2171 void CodeViewDebug::clear() {
2172   assert(CurFn == nullptr);
2173   FileIdMap.clear();
2174   FnDebugInfo.clear();
2175   FileToFilepathMap.clear();
2176   LocalUDTs.clear();
2177   GlobalUDTs.clear();
2178   TypeIndices.clear();
2179   CompleteTypeIndices.clear();
2180   ScopeGlobals.clear();
2181 }
2182 
2183 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2184                                       const DIDerivedType *DDTy) {
2185   if (!DDTy->getName().empty()) {
2186     Info.Members.push_back({DDTy, 0});
2187     return;
2188   }
2189 
2190   // An unnamed member may represent a nested struct or union. Attempt to
2191   // interpret the unnamed member as a DICompositeType possibly wrapped in
2192   // qualifier types. Add all the indirect fields to the current record if that
2193   // succeeds, and drop the member if that fails.
2194   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2195   uint64_t Offset = DDTy->getOffsetInBits();
2196   const DIType *Ty = DDTy->getBaseType();
2197   bool FullyResolved = false;
2198   while (!FullyResolved) {
2199     switch (Ty->getTag()) {
2200     case dwarf::DW_TAG_const_type:
2201     case dwarf::DW_TAG_volatile_type:
2202       // FIXME: we should apply the qualifier types to the indirect fields
2203       // rather than dropping them.
2204       Ty = cast<DIDerivedType>(Ty)->getBaseType();
2205       break;
2206     default:
2207       FullyResolved = true;
2208       break;
2209     }
2210   }
2211 
2212   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2213   if (!DCTy)
2214     return;
2215 
2216   ClassInfo NestedInfo = collectClassInfo(DCTy);
2217   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2218     Info.Members.push_back(
2219         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2220 }
2221 
2222 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2223   ClassInfo Info;
2224   // Add elements to structure type.
2225   DINodeArray Elements = Ty->getElements();
2226   for (auto *Element : Elements) {
2227     // We assume that the frontend provides all members in source declaration
2228     // order, which is what MSVC does.
2229     if (!Element)
2230       continue;
2231     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2232       Info.Methods[SP->getRawName()].push_back(SP);
2233     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2234       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2235         collectMemberInfo(Info, DDTy);
2236       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2237         Info.Inheritance.push_back(DDTy);
2238       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2239                  DDTy->getName() == "__vtbl_ptr_type") {
2240         Info.VShapeTI = getTypeIndex(DDTy);
2241       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2242         Info.NestedTypes.push_back(DDTy);
2243       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2244         // Ignore friend members. It appears that MSVC emitted info about
2245         // friends in the past, but modern versions do not.
2246       }
2247     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2248       Info.NestedTypes.push_back(Composite);
2249     }
2250     // Skip other unrecognized kinds of elements.
2251   }
2252   return Info;
2253 }
2254 
2255 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2256   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2257   // if a complete type should be emitted instead of a forward reference.
2258   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2259       !Ty->isForwardDecl();
2260 }
2261 
2262 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2263   // Emit the complete type for unnamed structs.  C++ classes with methods
2264   // which have a circular reference back to the class type are expected to
2265   // be named by the front-end and should not be "unnamed".  C unnamed
2266   // structs should not have circular references.
2267   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2268     // If this unnamed complete type is already in the process of being defined
2269     // then the description of the type is malformed and cannot be emitted
2270     // into CodeView correctly so report a fatal error.
2271     auto I = CompleteTypeIndices.find(Ty);
2272     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2273       report_fatal_error("cannot debug circular reference to unnamed type");
2274     return getCompleteTypeIndex(Ty);
2275   }
2276 
2277   // First, construct the forward decl.  Don't look into Ty to compute the
2278   // forward decl options, since it might not be available in all TUs.
2279   TypeRecordKind Kind = getRecordKind(Ty);
2280   ClassOptions CO =
2281       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2282   std::string FullName = getFullyQualifiedName(Ty);
2283   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2284                  FullName, Ty->getIdentifier());
2285   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2286   if (!Ty->isForwardDecl())
2287     DeferredCompleteTypes.push_back(Ty);
2288   return FwdDeclTI;
2289 }
2290 
2291 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2292   // Construct the field list and complete type record.
2293   TypeRecordKind Kind = getRecordKind(Ty);
2294   ClassOptions CO = getCommonClassOptions(Ty);
2295   TypeIndex FieldTI;
2296   TypeIndex VShapeTI;
2297   unsigned FieldCount;
2298   bool ContainsNestedClass;
2299   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2300       lowerRecordFieldList(Ty);
2301 
2302   if (ContainsNestedClass)
2303     CO |= ClassOptions::ContainsNestedClass;
2304 
2305   // MSVC appears to set this flag by searching any destructor or method with
2306   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2307   // the members, however special member functions are not yet emitted into
2308   // debug information. For now checking a class's non-triviality seems enough.
2309   // FIXME: not true for a nested unnamed struct.
2310   if (isNonTrivial(Ty))
2311     CO |= ClassOptions::HasConstructorOrDestructor;
2312 
2313   std::string FullName = getFullyQualifiedName(Ty);
2314 
2315   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2316 
2317   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2318                  SizeInBytes, FullName, Ty->getIdentifier());
2319   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2320 
2321   addUDTSrcLine(Ty, ClassTI);
2322 
2323   addToUDTs(Ty);
2324 
2325   return ClassTI;
2326 }
2327 
2328 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2329   // Emit the complete type for unnamed unions.
2330   if (shouldAlwaysEmitCompleteClassType(Ty))
2331     return getCompleteTypeIndex(Ty);
2332 
2333   ClassOptions CO =
2334       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2335   std::string FullName = getFullyQualifiedName(Ty);
2336   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2337   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2338   if (!Ty->isForwardDecl())
2339     DeferredCompleteTypes.push_back(Ty);
2340   return FwdDeclTI;
2341 }
2342 
2343 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2344   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2345   TypeIndex FieldTI;
2346   unsigned FieldCount;
2347   bool ContainsNestedClass;
2348   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2349       lowerRecordFieldList(Ty);
2350 
2351   if (ContainsNestedClass)
2352     CO |= ClassOptions::ContainsNestedClass;
2353 
2354   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2355   std::string FullName = getFullyQualifiedName(Ty);
2356 
2357   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2358                  Ty->getIdentifier());
2359   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2360 
2361   addUDTSrcLine(Ty, UnionTI);
2362 
2363   addToUDTs(Ty);
2364 
2365   return UnionTI;
2366 }
2367 
2368 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2369 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2370   // Manually count members. MSVC appears to count everything that generates a
2371   // field list record. Each individual overload in a method overload group
2372   // contributes to this count, even though the overload group is a single field
2373   // list record.
2374   unsigned MemberCount = 0;
2375   ClassInfo Info = collectClassInfo(Ty);
2376   ContinuationRecordBuilder ContinuationBuilder;
2377   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2378 
2379   // Create base classes.
2380   for (const DIDerivedType *I : Info.Inheritance) {
2381     if (I->getFlags() & DINode::FlagVirtual) {
2382       // Virtual base.
2383       unsigned VBPtrOffset = I->getVBPtrOffset();
2384       // FIXME: Despite the accessor name, the offset is really in bytes.
2385       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2386       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2387                             ? TypeRecordKind::IndirectVirtualBaseClass
2388                             : TypeRecordKind::VirtualBaseClass;
2389       VirtualBaseClassRecord VBCR(
2390           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2391           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2392           VBTableIndex);
2393 
2394       ContinuationBuilder.writeMemberType(VBCR);
2395       MemberCount++;
2396     } else {
2397       assert(I->getOffsetInBits() % 8 == 0 &&
2398              "bases must be on byte boundaries");
2399       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2400                           getTypeIndex(I->getBaseType()),
2401                           I->getOffsetInBits() / 8);
2402       ContinuationBuilder.writeMemberType(BCR);
2403       MemberCount++;
2404     }
2405   }
2406 
2407   // Create members.
2408   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2409     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2410     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2411     StringRef MemberName = Member->getName();
2412     MemberAccess Access =
2413         translateAccessFlags(Ty->getTag(), Member->getFlags());
2414 
2415     if (Member->isStaticMember()) {
2416       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2417       ContinuationBuilder.writeMemberType(SDMR);
2418       MemberCount++;
2419       continue;
2420     }
2421 
2422     // Virtual function pointer member.
2423     if ((Member->getFlags() & DINode::FlagArtificial) &&
2424         Member->getName().startswith("_vptr$")) {
2425       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2426       ContinuationBuilder.writeMemberType(VFPR);
2427       MemberCount++;
2428       continue;
2429     }
2430 
2431     // Data member.
2432     uint64_t MemberOffsetInBits =
2433         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2434     if (Member->isBitField()) {
2435       uint64_t StartBitOffset = MemberOffsetInBits;
2436       if (const auto *CI =
2437               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2438         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2439       }
2440       StartBitOffset -= MemberOffsetInBits;
2441       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2442                          StartBitOffset);
2443       MemberBaseType = TypeTable.writeLeafType(BFR);
2444     }
2445     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2446     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2447                          MemberName);
2448     ContinuationBuilder.writeMemberType(DMR);
2449     MemberCount++;
2450   }
2451 
2452   // Create methods
2453   for (auto &MethodItr : Info.Methods) {
2454     StringRef Name = MethodItr.first->getString();
2455 
2456     std::vector<OneMethodRecord> Methods;
2457     for (const DISubprogram *SP : MethodItr.second) {
2458       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2459       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2460 
2461       unsigned VFTableOffset = -1;
2462       if (Introduced)
2463         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2464 
2465       Methods.push_back(OneMethodRecord(
2466           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2467           translateMethodKindFlags(SP, Introduced),
2468           translateMethodOptionFlags(SP), VFTableOffset, Name));
2469       MemberCount++;
2470     }
2471     assert(!Methods.empty() && "Empty methods map entry");
2472     if (Methods.size() == 1)
2473       ContinuationBuilder.writeMemberType(Methods[0]);
2474     else {
2475       // FIXME: Make this use its own ContinuationBuilder so that
2476       // MethodOverloadList can be split correctly.
2477       MethodOverloadListRecord MOLR(Methods);
2478       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2479 
2480       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2481       ContinuationBuilder.writeMemberType(OMR);
2482     }
2483   }
2484 
2485   // Create nested classes.
2486   for (const DIType *Nested : Info.NestedTypes) {
2487     NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2488     ContinuationBuilder.writeMemberType(R);
2489     MemberCount++;
2490   }
2491 
2492   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2493   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2494                          !Info.NestedTypes.empty());
2495 }
2496 
2497 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2498   if (!VBPType.getIndex()) {
2499     // Make a 'const int *' type.
2500     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2501     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2502 
2503     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2504                                                   : PointerKind::Near32;
2505     PointerMode PM = PointerMode::Pointer;
2506     PointerOptions PO = PointerOptions::None;
2507     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2508     VBPType = TypeTable.writeLeafType(PR);
2509   }
2510 
2511   return VBPType;
2512 }
2513 
2514 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2515   // The null DIType is the void type. Don't try to hash it.
2516   if (!Ty)
2517     return TypeIndex::Void();
2518 
2519   // Check if we've already translated this type. Don't try to do a
2520   // get-or-create style insertion that caches the hash lookup across the
2521   // lowerType call. It will update the TypeIndices map.
2522   auto I = TypeIndices.find({Ty, ClassTy});
2523   if (I != TypeIndices.end())
2524     return I->second;
2525 
2526   TypeLoweringScope S(*this);
2527   TypeIndex TI = lowerType(Ty, ClassTy);
2528   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2529 }
2530 
2531 codeview::TypeIndex
2532 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2533                                       const DISubroutineType *SubroutineTy) {
2534   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2535          "this type must be a pointer type");
2536 
2537   PointerOptions Options = PointerOptions::None;
2538   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2539     Options = PointerOptions::LValueRefThisPointer;
2540   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2541     Options = PointerOptions::RValueRefThisPointer;
2542 
2543   // Check if we've already translated this type.  If there is no ref qualifier
2544   // on the function then we look up this pointer type with no associated class
2545   // so that the TypeIndex for the this pointer can be shared with the type
2546   // index for other pointers to this class type.  If there is a ref qualifier
2547   // then we lookup the pointer using the subroutine as the parent type.
2548   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2549   if (I != TypeIndices.end())
2550     return I->second;
2551 
2552   TypeLoweringScope S(*this);
2553   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2554   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2555 }
2556 
2557 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2558   PointerRecord PR(getTypeIndex(Ty),
2559                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2560                                                 : PointerKind::Near32,
2561                    PointerMode::LValueReference, PointerOptions::None,
2562                    Ty->getSizeInBits() / 8);
2563   return TypeTable.writeLeafType(PR);
2564 }
2565 
2566 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2567   // The null DIType is the void type. Don't try to hash it.
2568   if (!Ty)
2569     return TypeIndex::Void();
2570 
2571   // Look through typedefs when getting the complete type index. Call
2572   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2573   // emitted only once.
2574   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2575     (void)getTypeIndex(Ty);
2576   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2577     Ty = cast<DIDerivedType>(Ty)->getBaseType();
2578 
2579   // If this is a non-record type, the complete type index is the same as the
2580   // normal type index. Just call getTypeIndex.
2581   switch (Ty->getTag()) {
2582   case dwarf::DW_TAG_class_type:
2583   case dwarf::DW_TAG_structure_type:
2584   case dwarf::DW_TAG_union_type:
2585     break;
2586   default:
2587     return getTypeIndex(Ty);
2588   }
2589 
2590   const auto *CTy = cast<DICompositeType>(Ty);
2591 
2592   TypeLoweringScope S(*this);
2593 
2594   // Make sure the forward declaration is emitted first. It's unclear if this
2595   // is necessary, but MSVC does it, and we should follow suit until we can show
2596   // otherwise.
2597   // We only emit a forward declaration for named types.
2598   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2599     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2600 
2601     // Just use the forward decl if we don't have complete type info. This
2602     // might happen if the frontend is using modules and expects the complete
2603     // definition to be emitted elsewhere.
2604     if (CTy->isForwardDecl())
2605       return FwdDeclTI;
2606   }
2607 
2608   // Check if we've already translated the complete record type.
2609   // Insert the type with a null TypeIndex to signify that the type is currently
2610   // being lowered.
2611   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2612   if (!InsertResult.second)
2613     return InsertResult.first->second;
2614 
2615   TypeIndex TI;
2616   switch (CTy->getTag()) {
2617   case dwarf::DW_TAG_class_type:
2618   case dwarf::DW_TAG_structure_type:
2619     TI = lowerCompleteTypeClass(CTy);
2620     break;
2621   case dwarf::DW_TAG_union_type:
2622     TI = lowerCompleteTypeUnion(CTy);
2623     break;
2624   default:
2625     llvm_unreachable("not a record");
2626   }
2627 
2628   // Update the type index associated with this CompositeType.  This cannot
2629   // use the 'InsertResult' iterator above because it is potentially
2630   // invalidated by map insertions which can occur while lowering the class
2631   // type above.
2632   CompleteTypeIndices[CTy] = TI;
2633   return TI;
2634 }
2635 
2636 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2637 /// and do this until fixpoint, as each complete record type typically
2638 /// references
2639 /// many other record types.
2640 void CodeViewDebug::emitDeferredCompleteTypes() {
2641   SmallVector<const DICompositeType *, 4> TypesToEmit;
2642   while (!DeferredCompleteTypes.empty()) {
2643     std::swap(DeferredCompleteTypes, TypesToEmit);
2644     for (const DICompositeType *RecordTy : TypesToEmit)
2645       getCompleteTypeIndex(RecordTy);
2646     TypesToEmit.clear();
2647   }
2648 }
2649 
2650 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2651                                           ArrayRef<LocalVariable> Locals) {
2652   // Get the sorted list of parameters and emit them first.
2653   SmallVector<const LocalVariable *, 6> Params;
2654   for (const LocalVariable &L : Locals)
2655     if (L.DIVar->isParameter())
2656       Params.push_back(&L);
2657   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2658     return L->DIVar->getArg() < R->DIVar->getArg();
2659   });
2660   for (const LocalVariable *L : Params)
2661     emitLocalVariable(FI, *L);
2662 
2663   // Next emit all non-parameters in the order that we found them.
2664   for (const LocalVariable &L : Locals)
2665     if (!L.DIVar->isParameter())
2666       emitLocalVariable(FI, L);
2667 }
2668 
2669 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2670                                       const LocalVariable &Var) {
2671   // LocalSym record, see SymbolRecord.h for more info.
2672   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2673 
2674   LocalSymFlags Flags = LocalSymFlags::None;
2675   if (Var.DIVar->isParameter())
2676     Flags |= LocalSymFlags::IsParameter;
2677   if (Var.DefRanges.empty())
2678     Flags |= LocalSymFlags::IsOptimizedOut;
2679 
2680   OS.AddComment("TypeIndex");
2681   TypeIndex TI = Var.UseReferenceType
2682                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2683                      : getCompleteTypeIndex(Var.DIVar->getType());
2684   OS.emitInt32(TI.getIndex());
2685   OS.AddComment("Flags");
2686   OS.emitInt16(static_cast<uint16_t>(Flags));
2687   // Truncate the name so we won't overflow the record length field.
2688   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2689   endSymbolRecord(LocalEnd);
2690 
2691   // Calculate the on disk prefix of the appropriate def range record. The
2692   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2693   // should be big enough to hold all forms without memory allocation.
2694   SmallString<20> BytePrefix;
2695   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2696     BytePrefix.clear();
2697     if (DefRange.InMemory) {
2698       int Offset = DefRange.DataOffset;
2699       unsigned Reg = DefRange.CVRegister;
2700 
2701       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2702       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2703       // instead. In frames without stack realignment, $T0 will be the CFA.
2704       if (RegisterId(Reg) == RegisterId::ESP) {
2705         Reg = unsigned(RegisterId::VFRAME);
2706         Offset += FI.OffsetAdjustment;
2707       }
2708 
2709       // If we can use the chosen frame pointer for the frame and this isn't a
2710       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2711       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2712       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2713       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2714           (bool(Flags & LocalSymFlags::IsParameter)
2715                ? (EncFP == FI.EncodedParamFramePtrReg)
2716                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2717         DefRangeFramePointerRelHeader DRHdr;
2718         DRHdr.Offset = Offset;
2719         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2720       } else {
2721         uint16_t RegRelFlags = 0;
2722         if (DefRange.IsSubfield) {
2723           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2724                         (DefRange.StructOffset
2725                          << DefRangeRegisterRelSym::OffsetInParentShift);
2726         }
2727         DefRangeRegisterRelHeader DRHdr;
2728         DRHdr.Register = Reg;
2729         DRHdr.Flags = RegRelFlags;
2730         DRHdr.BasePointerOffset = Offset;
2731         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2732       }
2733     } else {
2734       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2735       if (DefRange.IsSubfield) {
2736         DefRangeSubfieldRegisterHeader DRHdr;
2737         DRHdr.Register = DefRange.CVRegister;
2738         DRHdr.MayHaveNoName = 0;
2739         DRHdr.OffsetInParent = DefRange.StructOffset;
2740         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2741       } else {
2742         DefRangeRegisterHeader DRHdr;
2743         DRHdr.Register = DefRange.CVRegister;
2744         DRHdr.MayHaveNoName = 0;
2745         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2746       }
2747     }
2748   }
2749 }
2750 
2751 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2752                                          const FunctionInfo& FI) {
2753   for (LexicalBlock *Block : Blocks)
2754     emitLexicalBlock(*Block, FI);
2755 }
2756 
2757 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2758 /// lexical block scope.
2759 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2760                                      const FunctionInfo& FI) {
2761   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2762   OS.AddComment("PtrParent");
2763   OS.emitInt32(0); // PtrParent
2764   OS.AddComment("PtrEnd");
2765   OS.emitInt32(0); // PtrEnd
2766   OS.AddComment("Code size");
2767   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2768   OS.AddComment("Function section relative address");
2769   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2770   OS.AddComment("Function section index");
2771   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2772   OS.AddComment("Lexical block name");
2773   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2774   endSymbolRecord(RecordEnd);
2775 
2776   // Emit variables local to this lexical block.
2777   emitLocalVariableList(FI, Block.Locals);
2778   emitGlobalVariableList(Block.Globals);
2779 
2780   // Emit lexical blocks contained within this block.
2781   emitLexicalBlockList(Block.Children, FI);
2782 
2783   // Close the lexical block scope.
2784   emitEndSymbolRecord(SymbolKind::S_END);
2785 }
2786 
2787 /// Convenience routine for collecting lexical block information for a list
2788 /// of lexical scopes.
2789 void CodeViewDebug::collectLexicalBlockInfo(
2790         SmallVectorImpl<LexicalScope *> &Scopes,
2791         SmallVectorImpl<LexicalBlock *> &Blocks,
2792         SmallVectorImpl<LocalVariable> &Locals,
2793         SmallVectorImpl<CVGlobalVariable> &Globals) {
2794   for (LexicalScope *Scope : Scopes)
2795     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2796 }
2797 
2798 /// Populate the lexical blocks and local variable lists of the parent with
2799 /// information about the specified lexical scope.
2800 void CodeViewDebug::collectLexicalBlockInfo(
2801     LexicalScope &Scope,
2802     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2803     SmallVectorImpl<LocalVariable> &ParentLocals,
2804     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2805   if (Scope.isAbstractScope())
2806     return;
2807 
2808   // Gather information about the lexical scope including local variables,
2809   // global variables, and address ranges.
2810   bool IgnoreScope = false;
2811   auto LI = ScopeVariables.find(&Scope);
2812   SmallVectorImpl<LocalVariable> *Locals =
2813       LI != ScopeVariables.end() ? &LI->second : nullptr;
2814   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2815   SmallVectorImpl<CVGlobalVariable> *Globals =
2816       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2817   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2818   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2819 
2820   // Ignore lexical scopes which do not contain variables.
2821   if (!Locals && !Globals)
2822     IgnoreScope = true;
2823 
2824   // Ignore lexical scopes which are not lexical blocks.
2825   if (!DILB)
2826     IgnoreScope = true;
2827 
2828   // Ignore scopes which have too many address ranges to represent in the
2829   // current CodeView format or do not have a valid address range.
2830   //
2831   // For lexical scopes with multiple address ranges you may be tempted to
2832   // construct a single range covering every instruction where the block is
2833   // live and everything in between.  Unfortunately, Visual Studio only
2834   // displays variables from the first matching lexical block scope.  If the
2835   // first lexical block contains exception handling code or cold code which
2836   // is moved to the bottom of the routine creating a single range covering
2837   // nearly the entire routine, then it will hide all other lexical blocks
2838   // and the variables they contain.
2839   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2840     IgnoreScope = true;
2841 
2842   if (IgnoreScope) {
2843     // This scope can be safely ignored and eliminating it will reduce the
2844     // size of the debug information. Be sure to collect any variable and scope
2845     // information from the this scope or any of its children and collapse them
2846     // into the parent scope.
2847     if (Locals)
2848       ParentLocals.append(Locals->begin(), Locals->end());
2849     if (Globals)
2850       ParentGlobals.append(Globals->begin(), Globals->end());
2851     collectLexicalBlockInfo(Scope.getChildren(),
2852                             ParentBlocks,
2853                             ParentLocals,
2854                             ParentGlobals);
2855     return;
2856   }
2857 
2858   // Create a new CodeView lexical block for this lexical scope.  If we've
2859   // seen this DILexicalBlock before then the scope tree is malformed and
2860   // we can handle this gracefully by not processing it a second time.
2861   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2862   if (!BlockInsertion.second)
2863     return;
2864 
2865   // Create a lexical block containing the variables and collect the the
2866   // lexical block information for the children.
2867   const InsnRange &Range = Ranges.front();
2868   assert(Range.first && Range.second);
2869   LexicalBlock &Block = BlockInsertion.first->second;
2870   Block.Begin = getLabelBeforeInsn(Range.first);
2871   Block.End = getLabelAfterInsn(Range.second);
2872   assert(Block.Begin && "missing label for scope begin");
2873   assert(Block.End && "missing label for scope end");
2874   Block.Name = DILB->getName();
2875   if (Locals)
2876     Block.Locals = std::move(*Locals);
2877   if (Globals)
2878     Block.Globals = std::move(*Globals);
2879   ParentBlocks.push_back(&Block);
2880   collectLexicalBlockInfo(Scope.getChildren(),
2881                           Block.Children,
2882                           Block.Locals,
2883                           Block.Globals);
2884 }
2885 
2886 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2887   const Function &GV = MF->getFunction();
2888   assert(FnDebugInfo.count(&GV));
2889   assert(CurFn == FnDebugInfo[&GV].get());
2890 
2891   collectVariableInfo(GV.getSubprogram());
2892 
2893   // Build the lexical block structure to emit for this routine.
2894   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2895     collectLexicalBlockInfo(*CFS,
2896                             CurFn->ChildBlocks,
2897                             CurFn->Locals,
2898                             CurFn->Globals);
2899 
2900   // Clear the scope and variable information from the map which will not be
2901   // valid after we have finished processing this routine.  This also prepares
2902   // the map for the subsequent routine.
2903   ScopeVariables.clear();
2904 
2905   // Don't emit anything if we don't have any line tables.
2906   // Thunks are compiler-generated and probably won't have source correlation.
2907   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2908     FnDebugInfo.erase(&GV);
2909     CurFn = nullptr;
2910     return;
2911   }
2912 
2913   // Find heap alloc sites and add to list.
2914   for (const auto &MBB : *MF) {
2915     for (const auto &MI : MBB) {
2916       if (MDNode *MD = MI.getHeapAllocMarker()) {
2917         CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
2918                                                         getLabelAfterInsn(&MI),
2919                                                         dyn_cast<DIType>(MD)));
2920       }
2921     }
2922   }
2923 
2924   CurFn->Annotations = MF->getCodeViewAnnotations();
2925 
2926   CurFn->End = Asm->getFunctionEnd();
2927 
2928   CurFn = nullptr;
2929 }
2930 
2931 // Usable locations are valid with non-zero line numbers. A line number of zero
2932 // corresponds to optimized code that doesn't have a distinct source location.
2933 // In this case, we try to use the previous or next source location depending on
2934 // the context.
2935 static bool isUsableDebugLoc(DebugLoc DL) {
2936   return DL && DL.getLine() != 0;
2937 }
2938 
2939 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2940   DebugHandlerBase::beginInstruction(MI);
2941 
2942   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2943   if (!Asm || !CurFn || MI->isDebugInstr() ||
2944       MI->getFlag(MachineInstr::FrameSetup))
2945     return;
2946 
2947   // If the first instruction of a new MBB has no location, find the first
2948   // instruction with a location and use that.
2949   DebugLoc DL = MI->getDebugLoc();
2950   if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
2951     for (const auto &NextMI : *MI->getParent()) {
2952       if (NextMI.isDebugInstr())
2953         continue;
2954       DL = NextMI.getDebugLoc();
2955       if (isUsableDebugLoc(DL))
2956         break;
2957     }
2958     // FIXME: Handle the case where the BB has no valid locations. This would
2959     // probably require doing a real dataflow analysis.
2960   }
2961   PrevInstBB = MI->getParent();
2962 
2963   // If we still don't have a debug location, don't record a location.
2964   if (!isUsableDebugLoc(DL))
2965     return;
2966 
2967   maybeRecordLocation(DL, Asm->MF);
2968 }
2969 
2970 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2971   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2972            *EndLabel = MMI->getContext().createTempSymbol();
2973   OS.emitInt32(unsigned(Kind));
2974   OS.AddComment("Subsection size");
2975   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2976   OS.emitLabel(BeginLabel);
2977   return EndLabel;
2978 }
2979 
2980 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2981   OS.emitLabel(EndLabel);
2982   // Every subsection must be aligned to a 4-byte boundary.
2983   OS.emitValueToAlignment(4);
2984 }
2985 
2986 static StringRef getSymbolName(SymbolKind SymKind) {
2987   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2988     if (EE.Value == SymKind)
2989       return EE.Name;
2990   return "";
2991 }
2992 
2993 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
2994   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2995            *EndLabel = MMI->getContext().createTempSymbol();
2996   OS.AddComment("Record length");
2997   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
2998   OS.emitLabel(BeginLabel);
2999   if (OS.isVerboseAsm())
3000     OS.AddComment("Record kind: " + getSymbolName(SymKind));
3001   OS.emitInt16(unsigned(SymKind));
3002   return EndLabel;
3003 }
3004 
3005 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3006   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3007   // an extra copy of every symbol record in LLD. This increases object file
3008   // size by less than 1% in the clang build, and is compatible with the Visual
3009   // C++ linker.
3010   OS.emitValueToAlignment(4);
3011   OS.emitLabel(SymEnd);
3012 }
3013 
3014 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3015   OS.AddComment("Record length");
3016   OS.emitInt16(2);
3017   if (OS.isVerboseAsm())
3018     OS.AddComment("Record kind: " + getSymbolName(EndKind));
3019   OS.emitInt16(uint16_t(EndKind)); // Record Kind
3020 }
3021 
3022 void CodeViewDebug::emitDebugInfoForUDTs(
3023     const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3024 #ifndef NDEBUG
3025   size_t OriginalSize = UDTs.size();
3026 #endif
3027   for (const auto &UDT : UDTs) {
3028     const DIType *T = UDT.second;
3029     assert(shouldEmitUdt(T));
3030     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3031     OS.AddComment("Type");
3032     OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3033     assert(OriginalSize == UDTs.size() &&
3034            "getCompleteTypeIndex found new UDTs!");
3035     emitNullTerminatedSymbolName(OS, UDT.first);
3036     endSymbolRecord(UDTRecordEnd);
3037   }
3038 }
3039 
3040 void CodeViewDebug::collectGlobalVariableInfo() {
3041   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3042       GlobalMap;
3043   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3044     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3045     GV.getDebugInfo(GVEs);
3046     for (const auto *GVE : GVEs)
3047       GlobalMap[GVE] = &GV;
3048   }
3049 
3050   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3051   for (const MDNode *Node : CUs->operands()) {
3052     const auto *CU = cast<DICompileUnit>(Node);
3053     for (const auto *GVE : CU->getGlobalVariables()) {
3054       const DIGlobalVariable *DIGV = GVE->getVariable();
3055       const DIExpression *DIE = GVE->getExpression();
3056 
3057       // Emit constant global variables in a global symbol section.
3058       if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3059         CVGlobalVariable CVGV = {DIGV, DIE};
3060         GlobalVariables.emplace_back(std::move(CVGV));
3061       }
3062 
3063       const auto *GV = GlobalMap.lookup(GVE);
3064       if (!GV || GV->isDeclarationForLinker())
3065         continue;
3066 
3067       DIScope *Scope = DIGV->getScope();
3068       SmallVector<CVGlobalVariable, 1> *VariableList;
3069       if (Scope && isa<DILocalScope>(Scope)) {
3070         // Locate a global variable list for this scope, creating one if
3071         // necessary.
3072         auto Insertion = ScopeGlobals.insert(
3073             {Scope, std::unique_ptr<GlobalVariableList>()});
3074         if (Insertion.second)
3075           Insertion.first->second = std::make_unique<GlobalVariableList>();
3076         VariableList = Insertion.first->second.get();
3077       } else if (GV->hasComdat())
3078         // Emit this global variable into a COMDAT section.
3079         VariableList = &ComdatVariables;
3080       else
3081         // Emit this global variable in a single global symbol section.
3082         VariableList = &GlobalVariables;
3083       CVGlobalVariable CVGV = {DIGV, GV};
3084       VariableList->emplace_back(std::move(CVGV));
3085     }
3086   }
3087 }
3088 
3089 void CodeViewDebug::emitDebugInfoForGlobals() {
3090   // First, emit all globals that are not in a comdat in a single symbol
3091   // substream. MSVC doesn't like it if the substream is empty, so only open
3092   // it if we have at least one global to emit.
3093   switchToDebugSectionForSymbol(nullptr);
3094   if (!GlobalVariables.empty()) {
3095     OS.AddComment("Symbol subsection for globals");
3096     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3097     emitGlobalVariableList(GlobalVariables);
3098     endCVSubsection(EndLabel);
3099   }
3100 
3101   // Second, emit each global that is in a comdat into its own .debug$S
3102   // section along with its own symbol substream.
3103   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3104     const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3105     MCSymbol *GVSym = Asm->getSymbol(GV);
3106     OS.AddComment("Symbol subsection for " +
3107                   Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3108     switchToDebugSectionForSymbol(GVSym);
3109     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3110     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3111     emitDebugInfoForGlobal(CVGV);
3112     endCVSubsection(EndLabel);
3113   }
3114 }
3115 
3116 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3117   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3118   for (const MDNode *Node : CUs->operands()) {
3119     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3120       if (DIType *RT = dyn_cast<DIType>(Ty)) {
3121         getTypeIndex(RT);
3122         // FIXME: Add to global/local DTU list.
3123       }
3124     }
3125   }
3126 }
3127 
3128 // Emit each global variable in the specified array.
3129 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3130   for (const CVGlobalVariable &CVGV : Globals) {
3131     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3132     emitDebugInfoForGlobal(CVGV);
3133   }
3134 }
3135 
3136 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3137   const DIGlobalVariable *DIGV = CVGV.DIGV;
3138 
3139   const DIScope *Scope = DIGV->getScope();
3140   // For static data members, get the scope from the declaration.
3141   if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3142           DIGV->getRawStaticDataMemberDeclaration()))
3143     Scope = MemberDecl->getScope();
3144   std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName());
3145 
3146   if (const GlobalVariable *GV =
3147           CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3148     // DataSym record, see SymbolRecord.h for more info. Thread local data
3149     // happens to have the same format as global data.
3150     MCSymbol *GVSym = Asm->getSymbol(GV);
3151     SymbolKind DataSym = GV->isThreadLocal()
3152                              ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3153                                                       : SymbolKind::S_GTHREAD32)
3154                              : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3155                                                       : SymbolKind::S_GDATA32);
3156     MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3157     OS.AddComment("Type");
3158     OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3159     OS.AddComment("DataOffset");
3160     OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3161     OS.AddComment("Segment");
3162     OS.EmitCOFFSectionIndex(GVSym);
3163     OS.AddComment("Name");
3164     const unsigned LengthOfDataRecord = 12;
3165     emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3166     endSymbolRecord(DataEnd);
3167   } else {
3168     const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3169     assert(DIE->isConstant() &&
3170            "Global constant variables must contain a constant expression.");
3171     uint64_t Val = DIE->getElement(1);
3172 
3173     MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3174     OS.AddComment("Type");
3175     OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex());
3176     OS.AddComment("Value");
3177 
3178     // Encoded integers shouldn't need more than 10 bytes.
3179     uint8_t data[10];
3180     BinaryStreamWriter Writer(data, llvm::support::endianness::little);
3181     CodeViewRecordIO IO(Writer);
3182     cantFail(IO.mapEncodedInteger(Val));
3183     StringRef SRef((char *)data, Writer.getOffset());
3184     OS.emitBinaryData(SRef);
3185 
3186     OS.AddComment("Name");
3187     emitNullTerminatedSymbolName(OS, QualifiedName);
3188     endSymbolRecord(SConstantEnd);
3189   }
3190 }
3191