1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/TinyPtrVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/COFF.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/CodeGen/AsmPrinter.h" 23 #include "llvm/CodeGen/LexicalScopes.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 33 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 34 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 35 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 36 #include "llvm/DebugInfo/CodeView/EnumTables.h" 37 #include "llvm/DebugInfo/CodeView/Line.h" 38 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 39 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 40 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 41 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/MC/MCAsmInfo.h" 51 #include "llvm/MC/MCContext.h" 52 #include "llvm/MC/MCSectionCOFF.h" 53 #include "llvm/MC/MCStreamer.h" 54 #include "llvm/MC/MCSymbol.h" 55 #include "llvm/Support/BinaryStreamWriter.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/Error.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/FormatVariadic.h" 61 #include "llvm/Support/Path.h" 62 #include "llvm/Support/Program.h" 63 #include "llvm/Support/SMLoc.h" 64 #include "llvm/Support/ScopedPrinter.h" 65 #include "llvm/Target/TargetLoweringObjectFile.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include "llvm/TargetParser/Triple.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cctype> 71 #include <cstddef> 72 #include <iterator> 73 #include <limits> 74 75 using namespace llvm; 76 using namespace llvm::codeview; 77 78 namespace { 79 class CVMCAdapter : public CodeViewRecordStreamer { 80 public: 81 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 82 : OS(&OS), TypeTable(TypeTable) {} 83 84 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 85 86 void emitIntValue(uint64_t Value, unsigned Size) override { 87 OS->emitIntValueInHex(Value, Size); 88 } 89 90 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 91 92 void AddComment(const Twine &T) override { OS->AddComment(T); } 93 94 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 95 96 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 97 98 std::string getTypeName(TypeIndex TI) override { 99 std::string TypeName; 100 if (!TI.isNoneType()) { 101 if (TI.isSimple()) 102 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 103 else 104 TypeName = std::string(TypeTable.getTypeName(TI)); 105 } 106 return TypeName; 107 } 108 109 private: 110 MCStreamer *OS = nullptr; 111 TypeCollection &TypeTable; 112 }; 113 } // namespace 114 115 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 116 switch (Type) { 117 case Triple::ArchType::x86: 118 return CPUType::Pentium3; 119 case Triple::ArchType::x86_64: 120 return CPUType::X64; 121 case Triple::ArchType::thumb: 122 // LLVM currently doesn't support Windows CE and so thumb 123 // here is indiscriminately mapped to ARMNT specifically. 124 return CPUType::ARMNT; 125 case Triple::ArchType::aarch64: 126 return CPUType::ARM64; 127 default: 128 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 129 } 130 } 131 132 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 133 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} 134 135 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 136 std::string &Filepath = FileToFilepathMap[File]; 137 if (!Filepath.empty()) 138 return Filepath; 139 140 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 141 142 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 143 // it textually because one of the path components could be a symlink. 144 if (Dir.startswith("/") || Filename.startswith("/")) { 145 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 146 return Filename; 147 Filepath = std::string(Dir); 148 if (Dir.back() != '/') 149 Filepath += '/'; 150 Filepath += Filename; 151 return Filepath; 152 } 153 154 // Clang emits directory and relative filename info into the IR, but CodeView 155 // operates on full paths. We could change Clang to emit full paths too, but 156 // that would increase the IR size and probably not needed for other users. 157 // For now, just concatenate and canonicalize the path here. 158 if (Filename.find(':') == 1) 159 Filepath = std::string(Filename); 160 else 161 Filepath = (Dir + "\\" + Filename).str(); 162 163 // Canonicalize the path. We have to do it textually because we may no longer 164 // have access the file in the filesystem. 165 // First, replace all slashes with backslashes. 166 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 167 168 // Remove all "\.\" with "\". 169 size_t Cursor = 0; 170 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 171 Filepath.erase(Cursor, 2); 172 173 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 174 // path should be well-formatted, e.g. start with a drive letter, etc. 175 Cursor = 0; 176 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 177 // Something's wrong if the path starts with "\..\", abort. 178 if (Cursor == 0) 179 break; 180 181 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 182 if (PrevSlash == std::string::npos) 183 // Something's wrong, abort. 184 break; 185 186 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 187 // The next ".." might be following the one we've just erased. 188 Cursor = PrevSlash; 189 } 190 191 // Remove all duplicate backslashes. 192 Cursor = 0; 193 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 194 Filepath.erase(Cursor, 1); 195 196 return Filepath; 197 } 198 199 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 200 StringRef FullPath = getFullFilepath(F); 201 unsigned NextId = FileIdMap.size() + 1; 202 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 203 if (Insertion.second) { 204 // We have to compute the full filepath and emit a .cv_file directive. 205 ArrayRef<uint8_t> ChecksumAsBytes; 206 FileChecksumKind CSKind = FileChecksumKind::None; 207 if (F->getChecksum()) { 208 std::string Checksum = fromHex(F->getChecksum()->Value); 209 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 210 memcpy(CKMem, Checksum.data(), Checksum.size()); 211 ChecksumAsBytes = ArrayRef<uint8_t>( 212 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 213 switch (F->getChecksum()->Kind) { 214 case DIFile::CSK_MD5: 215 CSKind = FileChecksumKind::MD5; 216 break; 217 case DIFile::CSK_SHA1: 218 CSKind = FileChecksumKind::SHA1; 219 break; 220 case DIFile::CSK_SHA256: 221 CSKind = FileChecksumKind::SHA256; 222 break; 223 } 224 } 225 bool Success = OS.emitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 226 static_cast<unsigned>(CSKind)); 227 (void)Success; 228 assert(Success && ".cv_file directive failed"); 229 } 230 return Insertion.first->second; 231 } 232 233 CodeViewDebug::InlineSite & 234 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 235 const DISubprogram *Inlinee) { 236 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 237 InlineSite *Site = &SiteInsertion.first->second; 238 if (SiteInsertion.second) { 239 unsigned ParentFuncId = CurFn->FuncId; 240 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 241 ParentFuncId = 242 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 243 .SiteFuncId; 244 245 Site->SiteFuncId = NextFuncId++; 246 OS.emitCVInlineSiteIdDirective( 247 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 248 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 249 Site->Inlinee = Inlinee; 250 InlinedSubprograms.insert(Inlinee); 251 getFuncIdForSubprogram(Inlinee); 252 } 253 return *Site; 254 } 255 256 static StringRef getPrettyScopeName(const DIScope *Scope) { 257 StringRef ScopeName = Scope->getName(); 258 if (!ScopeName.empty()) 259 return ScopeName; 260 261 switch (Scope->getTag()) { 262 case dwarf::DW_TAG_enumeration_type: 263 case dwarf::DW_TAG_class_type: 264 case dwarf::DW_TAG_structure_type: 265 case dwarf::DW_TAG_union_type: 266 return "<unnamed-tag>"; 267 case dwarf::DW_TAG_namespace: 268 return "`anonymous namespace'"; 269 default: 270 return StringRef(); 271 } 272 } 273 274 const DISubprogram *CodeViewDebug::collectParentScopeNames( 275 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 276 const DISubprogram *ClosestSubprogram = nullptr; 277 while (Scope != nullptr) { 278 if (ClosestSubprogram == nullptr) 279 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 280 281 // If a type appears in a scope chain, make sure it gets emitted. The 282 // frontend will be responsible for deciding if this should be a forward 283 // declaration or a complete type. 284 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 285 DeferredCompleteTypes.push_back(Ty); 286 287 StringRef ScopeName = getPrettyScopeName(Scope); 288 if (!ScopeName.empty()) 289 QualifiedNameComponents.push_back(ScopeName); 290 Scope = Scope->getScope(); 291 } 292 return ClosestSubprogram; 293 } 294 295 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 296 StringRef TypeName) { 297 std::string FullyQualifiedName; 298 for (StringRef QualifiedNameComponent : 299 llvm::reverse(QualifiedNameComponents)) { 300 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 301 FullyQualifiedName.append("::"); 302 } 303 FullyQualifiedName.append(std::string(TypeName)); 304 return FullyQualifiedName; 305 } 306 307 struct CodeViewDebug::TypeLoweringScope { 308 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 309 ~TypeLoweringScope() { 310 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 311 // inner TypeLoweringScopes don't attempt to emit deferred types. 312 if (CVD.TypeEmissionLevel == 1) 313 CVD.emitDeferredCompleteTypes(); 314 --CVD.TypeEmissionLevel; 315 } 316 CodeViewDebug &CVD; 317 }; 318 319 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 320 StringRef Name) { 321 // Ensure types in the scope chain are emitted as soon as possible. 322 // This can create otherwise a situation where S_UDTs are emitted while 323 // looping in emitDebugInfoForUDTs. 324 TypeLoweringScope S(*this); 325 SmallVector<StringRef, 5> QualifiedNameComponents; 326 collectParentScopeNames(Scope, QualifiedNameComponents); 327 return formatNestedName(QualifiedNameComponents, Name); 328 } 329 330 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 331 const DIScope *Scope = Ty->getScope(); 332 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 333 } 334 335 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 336 // No scope means global scope and that uses the zero index. 337 // 338 // We also use zero index when the scope is a DISubprogram 339 // to suppress the emission of LF_STRING_ID for the function, 340 // which can trigger a link-time error with the linker in 341 // VS2019 version 16.11.2 or newer. 342 // Note, however, skipping the debug info emission for the DISubprogram 343 // is a temporary fix. The root issue here is that we need to figure out 344 // the proper way to encode a function nested in another function 345 // (as introduced by the Fortran 'contains' keyword) in CodeView. 346 if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope)) 347 return TypeIndex(); 348 349 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 350 351 // Check if we've already translated this scope. 352 auto I = TypeIndices.find({Scope, nullptr}); 353 if (I != TypeIndices.end()) 354 return I->second; 355 356 // Build the fully qualified name of the scope. 357 std::string ScopeName = getFullyQualifiedName(Scope); 358 StringIdRecord SID(TypeIndex(), ScopeName); 359 auto TI = TypeTable.writeLeafType(SID); 360 return recordTypeIndexForDINode(Scope, TI); 361 } 362 363 static StringRef removeTemplateArgs(StringRef Name) { 364 // Remove template args from the display name. Assume that the template args 365 // are the last thing in the name. 366 if (Name.empty() || Name.back() != '>') 367 return Name; 368 369 int OpenBrackets = 0; 370 for (int i = Name.size() - 1; i >= 0; --i) { 371 if (Name[i] == '>') 372 ++OpenBrackets; 373 else if (Name[i] == '<') { 374 --OpenBrackets; 375 if (OpenBrackets == 0) 376 return Name.substr(0, i); 377 } 378 } 379 return Name; 380 } 381 382 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 383 assert(SP); 384 385 // Check if we've already translated this subprogram. 386 auto I = TypeIndices.find({SP, nullptr}); 387 if (I != TypeIndices.end()) 388 return I->second; 389 390 // The display name includes function template arguments. Drop them to match 391 // MSVC. We need to have the template arguments in the DISubprogram name 392 // because they are used in other symbol records, such as S_GPROC32_IDs. 393 StringRef DisplayName = removeTemplateArgs(SP->getName()); 394 395 const DIScope *Scope = SP->getScope(); 396 TypeIndex TI; 397 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 398 // If the scope is a DICompositeType, then this must be a method. Member 399 // function types take some special handling, and require access to the 400 // subprogram. 401 TypeIndex ClassType = getTypeIndex(Class); 402 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 403 DisplayName); 404 TI = TypeTable.writeLeafType(MFuncId); 405 } else { 406 // Otherwise, this must be a free function. 407 TypeIndex ParentScope = getScopeIndex(Scope); 408 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 409 TI = TypeTable.writeLeafType(FuncId); 410 } 411 412 return recordTypeIndexForDINode(SP, TI); 413 } 414 415 static bool isNonTrivial(const DICompositeType *DCTy) { 416 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 417 } 418 419 static FunctionOptions 420 getFunctionOptions(const DISubroutineType *Ty, 421 const DICompositeType *ClassTy = nullptr, 422 StringRef SPName = StringRef("")) { 423 FunctionOptions FO = FunctionOptions::None; 424 const DIType *ReturnTy = nullptr; 425 if (auto TypeArray = Ty->getTypeArray()) { 426 if (TypeArray.size()) 427 ReturnTy = TypeArray[0]; 428 } 429 430 // Add CxxReturnUdt option to functions that return nontrivial record types 431 // or methods that return record types. 432 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 433 if (isNonTrivial(ReturnDCTy) || ClassTy) 434 FO |= FunctionOptions::CxxReturnUdt; 435 436 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 437 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 438 FO |= FunctionOptions::Constructor; 439 440 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 441 442 } 443 return FO; 444 } 445 446 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 447 const DICompositeType *Class) { 448 // Always use the method declaration as the key for the function type. The 449 // method declaration contains the this adjustment. 450 if (SP->getDeclaration()) 451 SP = SP->getDeclaration(); 452 assert(!SP->getDeclaration() && "should use declaration as key"); 453 454 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 455 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 456 auto I = TypeIndices.find({SP, Class}); 457 if (I != TypeIndices.end()) 458 return I->second; 459 460 // Make sure complete type info for the class is emitted *after* the member 461 // function type, as the complete class type is likely to reference this 462 // member function type. 463 TypeLoweringScope S(*this); 464 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 465 466 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 467 TypeIndex TI = lowerTypeMemberFunction( 468 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 469 return recordTypeIndexForDINode(SP, TI, Class); 470 } 471 472 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 473 TypeIndex TI, 474 const DIType *ClassTy) { 475 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 476 (void)InsertResult; 477 assert(InsertResult.second && "DINode was already assigned a type index"); 478 return TI; 479 } 480 481 unsigned CodeViewDebug::getPointerSizeInBytes() { 482 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 483 } 484 485 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 486 const LexicalScope *LS) { 487 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 488 // This variable was inlined. Associate it with the InlineSite. 489 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 490 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 491 Site.InlinedLocals.emplace_back(std::move(Var)); 492 } else { 493 // This variable goes into the corresponding lexical scope. 494 ScopeVariables[LS].emplace_back(std::move(Var)); 495 } 496 } 497 498 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 499 const DILocation *Loc) { 500 if (!llvm::is_contained(Locs, Loc)) 501 Locs.push_back(Loc); 502 } 503 504 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 505 const MachineFunction *MF) { 506 // Skip this instruction if it has the same location as the previous one. 507 if (!DL || DL == PrevInstLoc) 508 return; 509 510 const DIScope *Scope = DL->getScope(); 511 if (!Scope) 512 return; 513 514 // Skip this line if it is longer than the maximum we can record. 515 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 516 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 517 LI.isNeverStepInto()) 518 return; 519 520 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 521 if (CI.getStartColumn() != DL.getCol()) 522 return; 523 524 if (!CurFn->HaveLineInfo) 525 CurFn->HaveLineInfo = true; 526 unsigned FileId = 0; 527 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 528 FileId = CurFn->LastFileId; 529 else 530 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 531 PrevInstLoc = DL; 532 533 unsigned FuncId = CurFn->FuncId; 534 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 535 const DILocation *Loc = DL.get(); 536 537 // If this location was actually inlined from somewhere else, give it the ID 538 // of the inline call site. 539 FuncId = 540 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 541 542 // Ensure we have links in the tree of inline call sites. 543 bool FirstLoc = true; 544 while ((SiteLoc = Loc->getInlinedAt())) { 545 InlineSite &Site = 546 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 547 if (!FirstLoc) 548 addLocIfNotPresent(Site.ChildSites, Loc); 549 FirstLoc = false; 550 Loc = SiteLoc; 551 } 552 addLocIfNotPresent(CurFn->ChildSites, Loc); 553 } 554 555 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 556 /*PrologueEnd=*/false, /*IsStmt=*/false, 557 DL->getFilename(), SMLoc()); 558 } 559 560 void CodeViewDebug::emitCodeViewMagicVersion() { 561 OS.emitValueToAlignment(Align(4)); 562 OS.AddComment("Debug section magic"); 563 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 564 } 565 566 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 567 switch (DWLang) { 568 case dwarf::DW_LANG_C: 569 case dwarf::DW_LANG_C89: 570 case dwarf::DW_LANG_C99: 571 case dwarf::DW_LANG_C11: 572 return SourceLanguage::C; 573 case dwarf::DW_LANG_C_plus_plus: 574 case dwarf::DW_LANG_C_plus_plus_03: 575 case dwarf::DW_LANG_C_plus_plus_11: 576 case dwarf::DW_LANG_C_plus_plus_14: 577 return SourceLanguage::Cpp; 578 case dwarf::DW_LANG_Fortran77: 579 case dwarf::DW_LANG_Fortran90: 580 case dwarf::DW_LANG_Fortran95: 581 case dwarf::DW_LANG_Fortran03: 582 case dwarf::DW_LANG_Fortran08: 583 return SourceLanguage::Fortran; 584 case dwarf::DW_LANG_Pascal83: 585 return SourceLanguage::Pascal; 586 case dwarf::DW_LANG_Cobol74: 587 case dwarf::DW_LANG_Cobol85: 588 return SourceLanguage::Cobol; 589 case dwarf::DW_LANG_Java: 590 return SourceLanguage::Java; 591 case dwarf::DW_LANG_D: 592 return SourceLanguage::D; 593 case dwarf::DW_LANG_Swift: 594 return SourceLanguage::Swift; 595 case dwarf::DW_LANG_Rust: 596 return SourceLanguage::Rust; 597 case dwarf::DW_LANG_ObjC: 598 return SourceLanguage::ObjC; 599 case dwarf::DW_LANG_ObjC_plus_plus: 600 return SourceLanguage::ObjCpp; 601 default: 602 // There's no CodeView representation for this language, and CV doesn't 603 // have an "unknown" option for the language field, so we'll use MASM, 604 // as it's very low level. 605 return SourceLanguage::Masm; 606 } 607 } 608 609 void CodeViewDebug::beginModule(Module *M) { 610 // If module doesn't have named metadata anchors or COFF debug section 611 // is not available, skip any debug info related stuff. 612 if (!MMI->hasDebugInfo() || 613 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { 614 Asm = nullptr; 615 return; 616 } 617 618 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); 619 620 // Get the current source language. 621 const MDNode *Node = *M->debug_compile_units_begin(); 622 const auto *CU = cast<DICompileUnit>(Node); 623 624 CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage()); 625 626 collectGlobalVariableInfo(); 627 628 // Check if we should emit type record hashes. 629 ConstantInt *GH = 630 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); 631 EmitDebugGlobalHashes = GH && !GH->isZero(); 632 } 633 634 void CodeViewDebug::endModule() { 635 if (!Asm || !MMI->hasDebugInfo()) 636 return; 637 638 // The COFF .debug$S section consists of several subsections, each starting 639 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 640 // of the payload followed by the payload itself. The subsections are 4-byte 641 // aligned. 642 643 // Use the generic .debug$S section, and make a subsection for all the inlined 644 // subprograms. 645 switchToDebugSectionForSymbol(nullptr); 646 647 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 648 emitObjName(); 649 emitCompilerInformation(); 650 endCVSubsection(CompilerInfo); 651 652 emitInlineeLinesSubsection(); 653 654 // Emit per-function debug information. 655 for (auto &P : FnDebugInfo) 656 if (!P.first->isDeclarationForLinker()) 657 emitDebugInfoForFunction(P.first, *P.second); 658 659 // Get types used by globals without emitting anything. 660 // This is meant to collect all static const data members so they can be 661 // emitted as globals. 662 collectDebugInfoForGlobals(); 663 664 // Emit retained types. 665 emitDebugInfoForRetainedTypes(); 666 667 // Emit global variable debug information. 668 setCurrentSubprogram(nullptr); 669 emitDebugInfoForGlobals(); 670 671 // Switch back to the generic .debug$S section after potentially processing 672 // comdat symbol sections. 673 switchToDebugSectionForSymbol(nullptr); 674 675 // Emit UDT records for any types used by global variables. 676 if (!GlobalUDTs.empty()) { 677 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 678 emitDebugInfoForUDTs(GlobalUDTs); 679 endCVSubsection(SymbolsEnd); 680 } 681 682 // This subsection holds a file index to offset in string table table. 683 OS.AddComment("File index to string table offset subsection"); 684 OS.emitCVFileChecksumsDirective(); 685 686 // This subsection holds the string table. 687 OS.AddComment("String table"); 688 OS.emitCVStringTableDirective(); 689 690 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 691 // subsection in the generic .debug$S section at the end. There is no 692 // particular reason for this ordering other than to match MSVC. 693 emitBuildInfo(); 694 695 // Emit type information and hashes last, so that any types we translate while 696 // emitting function info are included. 697 emitTypeInformation(); 698 699 if (EmitDebugGlobalHashes) 700 emitTypeGlobalHashes(); 701 702 clear(); 703 } 704 705 static void 706 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 707 unsigned MaxFixedRecordLength = 0xF00) { 708 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 709 // after a fixed length portion of the record. The fixed length portion should 710 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 711 // overall record size is less than the maximum allowed. 712 SmallString<32> NullTerminatedString( 713 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 714 NullTerminatedString.push_back('\0'); 715 OS.emitBytes(NullTerminatedString); 716 } 717 718 void CodeViewDebug::emitTypeInformation() { 719 if (TypeTable.empty()) 720 return; 721 722 // Start the .debug$T or .debug$P section with 0x4. 723 OS.switchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 724 emitCodeViewMagicVersion(); 725 726 TypeTableCollection Table(TypeTable.records()); 727 TypeVisitorCallbackPipeline Pipeline; 728 729 // To emit type record using Codeview MCStreamer adapter 730 CVMCAdapter CVMCOS(OS, Table); 731 TypeRecordMapping typeMapping(CVMCOS); 732 Pipeline.addCallbackToPipeline(typeMapping); 733 734 std::optional<TypeIndex> B = Table.getFirst(); 735 while (B) { 736 // This will fail if the record data is invalid. 737 CVType Record = Table.getType(*B); 738 739 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 740 741 if (E) { 742 logAllUnhandledErrors(std::move(E), errs(), "error: "); 743 llvm_unreachable("produced malformed type record"); 744 } 745 746 B = Table.getNext(*B); 747 } 748 } 749 750 void CodeViewDebug::emitTypeGlobalHashes() { 751 if (TypeTable.empty()) 752 return; 753 754 // Start the .debug$H section with the version and hash algorithm, currently 755 // hardcoded to version 0, SHA1. 756 OS.switchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 757 758 OS.emitValueToAlignment(Align(4)); 759 OS.AddComment("Magic"); 760 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 761 OS.AddComment("Section Version"); 762 OS.emitInt16(0); 763 OS.AddComment("Hash Algorithm"); 764 OS.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3)); 765 766 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 767 for (const auto &GHR : TypeTable.hashes()) { 768 if (OS.isVerboseAsm()) { 769 // Emit an EOL-comment describing which TypeIndex this hash corresponds 770 // to, as well as the stringified SHA1 hash. 771 SmallString<32> Comment; 772 raw_svector_ostream CommentOS(Comment); 773 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 774 OS.AddComment(Comment); 775 ++TI; 776 } 777 assert(GHR.Hash.size() == 8); 778 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 779 GHR.Hash.size()); 780 OS.emitBinaryData(S); 781 } 782 } 783 784 void CodeViewDebug::emitObjName() { 785 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_OBJNAME); 786 787 StringRef PathRef(Asm->TM.Options.ObjectFilenameForDebug); 788 llvm::SmallString<256> PathStore(PathRef); 789 790 if (PathRef.empty() || PathRef == "-") { 791 // Don't emit the filename if we're writing to stdout or to /dev/null. 792 PathRef = {}; 793 } else { 794 PathRef = PathStore; 795 } 796 797 OS.AddComment("Signature"); 798 OS.emitIntValue(0, 4); 799 800 OS.AddComment("Object name"); 801 emitNullTerminatedSymbolName(OS, PathRef); 802 803 endSymbolRecord(CompilerEnd); 804 } 805 806 namespace { 807 struct Version { 808 int Part[4]; 809 }; 810 } // end anonymous namespace 811 812 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 813 // the version number. 814 static Version parseVersion(StringRef Name) { 815 Version V = {{0}}; 816 int N = 0; 817 for (const char C : Name) { 818 if (isdigit(C)) { 819 V.Part[N] *= 10; 820 V.Part[N] += C - '0'; 821 V.Part[N] = 822 std::min<int>(V.Part[N], std::numeric_limits<uint16_t>::max()); 823 } else if (C == '.') { 824 ++N; 825 if (N >= 4) 826 return V; 827 } else if (N > 0) 828 return V; 829 } 830 return V; 831 } 832 833 void CodeViewDebug::emitCompilerInformation() { 834 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 835 uint32_t Flags = 0; 836 837 // The low byte of the flags indicates the source language. 838 Flags = CurrentSourceLanguage; 839 // TODO: Figure out which other flags need to be set. 840 if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) { 841 Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO); 842 } 843 using ArchType = llvm::Triple::ArchType; 844 ArchType Arch = Triple(MMI->getModule()->getTargetTriple()).getArch(); 845 if (Asm->TM.Options.Hotpatch || Arch == ArchType::thumb || 846 Arch == ArchType::aarch64) { 847 Flags |= static_cast<uint32_t>(CompileSym3Flags::HotPatch); 848 } 849 850 OS.AddComment("Flags and language"); 851 OS.emitInt32(Flags); 852 853 OS.AddComment("CPUType"); 854 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 855 856 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 857 const MDNode *Node = *CUs->operands().begin(); 858 const auto *CU = cast<DICompileUnit>(Node); 859 860 StringRef CompilerVersion = CU->getProducer(); 861 Version FrontVer = parseVersion(CompilerVersion); 862 OS.AddComment("Frontend version"); 863 for (int N : FrontVer.Part) { 864 OS.emitInt16(N); 865 } 866 867 // Some Microsoft tools, like Binscope, expect a backend version number of at 868 // least 8.something, so we'll coerce the LLVM version into a form that 869 // guarantees it'll be big enough without really lying about the version. 870 int Major = 1000 * LLVM_VERSION_MAJOR + 871 10 * LLVM_VERSION_MINOR + 872 LLVM_VERSION_PATCH; 873 // Clamp it for builds that use unusually large version numbers. 874 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 875 Version BackVer = {{ Major, 0, 0, 0 }}; 876 OS.AddComment("Backend version"); 877 for (int N : BackVer.Part) 878 OS.emitInt16(N); 879 880 OS.AddComment("Null-terminated compiler version string"); 881 emitNullTerminatedSymbolName(OS, CompilerVersion); 882 883 endSymbolRecord(CompilerEnd); 884 } 885 886 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 887 StringRef S) { 888 StringIdRecord SIR(TypeIndex(0x0), S); 889 return TypeTable.writeLeafType(SIR); 890 } 891 892 static std::string flattenCommandLine(ArrayRef<std::string> Args, 893 StringRef MainFilename) { 894 std::string FlatCmdLine; 895 raw_string_ostream OS(FlatCmdLine); 896 bool PrintedOneArg = false; 897 if (!StringRef(Args[0]).contains("-cc1")) { 898 llvm::sys::printArg(OS, "-cc1", /*Quote=*/true); 899 PrintedOneArg = true; 900 } 901 for (unsigned i = 0; i < Args.size(); i++) { 902 StringRef Arg = Args[i]; 903 if (Arg.empty()) 904 continue; 905 if (Arg == "-main-file-name" || Arg == "-o") { 906 i++; // Skip this argument and next one. 907 continue; 908 } 909 if (Arg.startswith("-object-file-name") || Arg == MainFilename) 910 continue; 911 // Skip fmessage-length for reproduciability. 912 if (Arg.startswith("-fmessage-length")) 913 continue; 914 if (PrintedOneArg) 915 OS << " "; 916 llvm::sys::printArg(OS, Arg, /*Quote=*/true); 917 PrintedOneArg = true; 918 } 919 OS.flush(); 920 return FlatCmdLine; 921 } 922 923 void CodeViewDebug::emitBuildInfo() { 924 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 925 // build info. The known prefix is: 926 // - Absolute path of current directory 927 // - Compiler path 928 // - Main source file path, relative to CWD or absolute 929 // - Type server PDB file 930 // - Canonical compiler command line 931 // If frontend and backend compilation are separated (think llc or LTO), it's 932 // not clear if the compiler path should refer to the executable for the 933 // frontend or the backend. Leave it blank for now. 934 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 935 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 936 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 937 const auto *CU = cast<DICompileUnit>(Node); 938 const DIFile *MainSourceFile = CU->getFile(); 939 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 940 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 941 BuildInfoArgs[BuildInfoRecord::SourceFile] = 942 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 943 // FIXME: PDB is intentionally blank unless we implement /Zi type servers. 944 BuildInfoArgs[BuildInfoRecord::TypeServerPDB] = 945 getStringIdTypeIdx(TypeTable, ""); 946 if (Asm->TM.Options.MCOptions.Argv0 != nullptr) { 947 BuildInfoArgs[BuildInfoRecord::BuildTool] = 948 getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0); 949 BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx( 950 TypeTable, flattenCommandLine(Asm->TM.Options.MCOptions.CommandLineArgs, 951 MainSourceFile->getFilename())); 952 } 953 BuildInfoRecord BIR(BuildInfoArgs); 954 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 955 956 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 957 // from the module symbols into the type stream. 958 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 959 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 960 OS.AddComment("LF_BUILDINFO index"); 961 OS.emitInt32(BuildInfoIndex.getIndex()); 962 endSymbolRecord(BIEnd); 963 endCVSubsection(BISubsecEnd); 964 } 965 966 void CodeViewDebug::emitInlineeLinesSubsection() { 967 if (InlinedSubprograms.empty()) 968 return; 969 970 OS.AddComment("Inlinee lines subsection"); 971 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 972 973 // We emit the checksum info for files. This is used by debuggers to 974 // determine if a pdb matches the source before loading it. Visual Studio, 975 // for instance, will display a warning that the breakpoints are not valid if 976 // the pdb does not match the source. 977 OS.AddComment("Inlinee lines signature"); 978 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 979 980 for (const DISubprogram *SP : InlinedSubprograms) { 981 assert(TypeIndices.count({SP, nullptr})); 982 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 983 984 OS.addBlankLine(); 985 unsigned FileId = maybeRecordFile(SP->getFile()); 986 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 987 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 988 OS.addBlankLine(); 989 OS.AddComment("Type index of inlined function"); 990 OS.emitInt32(InlineeIdx.getIndex()); 991 OS.AddComment("Offset into filechecksum table"); 992 OS.emitCVFileChecksumOffsetDirective(FileId); 993 OS.AddComment("Starting line number"); 994 OS.emitInt32(SP->getLine()); 995 } 996 997 endCVSubsection(InlineEnd); 998 } 999 1000 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 1001 const DILocation *InlinedAt, 1002 const InlineSite &Site) { 1003 assert(TypeIndices.count({Site.Inlinee, nullptr})); 1004 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 1005 1006 // SymbolRecord 1007 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 1008 1009 OS.AddComment("PtrParent"); 1010 OS.emitInt32(0); 1011 OS.AddComment("PtrEnd"); 1012 OS.emitInt32(0); 1013 OS.AddComment("Inlinee type index"); 1014 OS.emitInt32(InlineeIdx.getIndex()); 1015 1016 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 1017 unsigned StartLineNum = Site.Inlinee->getLine(); 1018 1019 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 1020 FI.Begin, FI.End); 1021 1022 endSymbolRecord(InlineEnd); 1023 1024 emitLocalVariableList(FI, Site.InlinedLocals); 1025 1026 // Recurse on child inlined call sites before closing the scope. 1027 for (const DILocation *ChildSite : Site.ChildSites) { 1028 auto I = FI.InlineSites.find(ChildSite); 1029 assert(I != FI.InlineSites.end() && 1030 "child site not in function inline site map"); 1031 emitInlinedCallSite(FI, ChildSite, I->second); 1032 } 1033 1034 // Close the scope. 1035 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 1036 } 1037 1038 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 1039 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 1040 // comdat key. A section may be comdat because of -ffunction-sections or 1041 // because it is comdat in the IR. 1042 MCSectionCOFF *GVSec = 1043 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 1044 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 1045 1046 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 1047 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 1048 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 1049 1050 OS.switchSection(DebugSec); 1051 1052 // Emit the magic version number if this is the first time we've switched to 1053 // this section. 1054 if (ComdatDebugSections.insert(DebugSec).second) 1055 emitCodeViewMagicVersion(); 1056 } 1057 1058 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 1059 // The only supported thunk ordinal is currently the standard type. 1060 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 1061 FunctionInfo &FI, 1062 const MCSymbol *Fn) { 1063 std::string FuncName = 1064 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1065 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 1066 1067 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1068 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1069 1070 // Emit S_THUNK32 1071 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 1072 OS.AddComment("PtrParent"); 1073 OS.emitInt32(0); 1074 OS.AddComment("PtrEnd"); 1075 OS.emitInt32(0); 1076 OS.AddComment("PtrNext"); 1077 OS.emitInt32(0); 1078 OS.AddComment("Thunk section relative address"); 1079 OS.emitCOFFSecRel32(Fn, /*Offset=*/0); 1080 OS.AddComment("Thunk section index"); 1081 OS.emitCOFFSectionIndex(Fn); 1082 OS.AddComment("Code size"); 1083 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 1084 OS.AddComment("Ordinal"); 1085 OS.emitInt8(unsigned(ordinal)); 1086 OS.AddComment("Function name"); 1087 emitNullTerminatedSymbolName(OS, FuncName); 1088 // Additional fields specific to the thunk ordinal would go here. 1089 endSymbolRecord(ThunkRecordEnd); 1090 1091 // Local variables/inlined routines are purposely omitted here. The point of 1092 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 1093 1094 // Emit S_PROC_ID_END 1095 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1096 1097 endCVSubsection(SymbolsEnd); 1098 } 1099 1100 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 1101 FunctionInfo &FI) { 1102 // For each function there is a separate subsection which holds the PC to 1103 // file:line table. 1104 const MCSymbol *Fn = Asm->getSymbol(GV); 1105 assert(Fn); 1106 1107 // Switch to the to a comdat section, if appropriate. 1108 switchToDebugSectionForSymbol(Fn); 1109 1110 std::string FuncName; 1111 auto *SP = GV->getSubprogram(); 1112 assert(SP); 1113 setCurrentSubprogram(SP); 1114 1115 if (SP->isThunk()) { 1116 emitDebugInfoForThunk(GV, FI, Fn); 1117 return; 1118 } 1119 1120 // If we have a display name, build the fully qualified name by walking the 1121 // chain of scopes. 1122 if (!SP->getName().empty()) 1123 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1124 1125 // If our DISubprogram name is empty, use the mangled name. 1126 if (FuncName.empty()) 1127 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1128 1129 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1130 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1131 OS.emitCVFPOData(Fn); 1132 1133 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1134 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1135 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1136 { 1137 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1138 : SymbolKind::S_GPROC32_ID; 1139 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1140 1141 // These fields are filled in by tools like CVPACK which run after the fact. 1142 OS.AddComment("PtrParent"); 1143 OS.emitInt32(0); 1144 OS.AddComment("PtrEnd"); 1145 OS.emitInt32(0); 1146 OS.AddComment("PtrNext"); 1147 OS.emitInt32(0); 1148 // This is the important bit that tells the debugger where the function 1149 // code is located and what's its size: 1150 OS.AddComment("Code size"); 1151 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1152 OS.AddComment("Offset after prologue"); 1153 OS.emitInt32(0); 1154 OS.AddComment("Offset before epilogue"); 1155 OS.emitInt32(0); 1156 OS.AddComment("Function type index"); 1157 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1158 OS.AddComment("Function section relative address"); 1159 OS.emitCOFFSecRel32(Fn, /*Offset=*/0); 1160 OS.AddComment("Function section index"); 1161 OS.emitCOFFSectionIndex(Fn); 1162 OS.AddComment("Flags"); 1163 OS.emitInt8(0); 1164 // Emit the function display name as a null-terminated string. 1165 OS.AddComment("Function name"); 1166 // Truncate the name so we won't overflow the record length field. 1167 emitNullTerminatedSymbolName(OS, FuncName); 1168 endSymbolRecord(ProcRecordEnd); 1169 1170 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1171 // Subtract out the CSR size since MSVC excludes that and we include it. 1172 OS.AddComment("FrameSize"); 1173 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1174 OS.AddComment("Padding"); 1175 OS.emitInt32(0); 1176 OS.AddComment("Offset of padding"); 1177 OS.emitInt32(0); 1178 OS.AddComment("Bytes of callee saved registers"); 1179 OS.emitInt32(FI.CSRSize); 1180 OS.AddComment("Exception handler offset"); 1181 OS.emitInt32(0); 1182 OS.AddComment("Exception handler section"); 1183 OS.emitInt16(0); 1184 OS.AddComment("Flags (defines frame register)"); 1185 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1186 endSymbolRecord(FrameProcEnd); 1187 1188 emitLocalVariableList(FI, FI.Locals); 1189 emitGlobalVariableList(FI.Globals); 1190 emitLexicalBlockList(FI.ChildBlocks, FI); 1191 1192 // Emit inlined call site information. Only emit functions inlined directly 1193 // into the parent function. We'll emit the other sites recursively as part 1194 // of their parent inline site. 1195 for (const DILocation *InlinedAt : FI.ChildSites) { 1196 auto I = FI.InlineSites.find(InlinedAt); 1197 assert(I != FI.InlineSites.end() && 1198 "child site not in function inline site map"); 1199 emitInlinedCallSite(FI, InlinedAt, I->second); 1200 } 1201 1202 for (auto Annot : FI.Annotations) { 1203 MCSymbol *Label = Annot.first; 1204 MDTuple *Strs = cast<MDTuple>(Annot.second); 1205 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1206 OS.emitCOFFSecRel32(Label, /*Offset=*/0); 1207 // FIXME: Make sure we don't overflow the max record size. 1208 OS.emitCOFFSectionIndex(Label); 1209 OS.emitInt16(Strs->getNumOperands()); 1210 for (Metadata *MD : Strs->operands()) { 1211 // MDStrings are null terminated, so we can do EmitBytes and get the 1212 // nice .asciz directive. 1213 StringRef Str = cast<MDString>(MD)->getString(); 1214 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1215 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1216 } 1217 endSymbolRecord(AnnotEnd); 1218 } 1219 1220 for (auto HeapAllocSite : FI.HeapAllocSites) { 1221 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1222 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1223 const DIType *DITy = std::get<2>(HeapAllocSite); 1224 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1225 OS.AddComment("Call site offset"); 1226 OS.emitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1227 OS.AddComment("Call site section index"); 1228 OS.emitCOFFSectionIndex(BeginLabel); 1229 OS.AddComment("Call instruction length"); 1230 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1231 OS.AddComment("Type index"); 1232 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1233 endSymbolRecord(HeapAllocEnd); 1234 } 1235 1236 if (SP != nullptr) 1237 emitDebugInfoForUDTs(LocalUDTs); 1238 1239 // We're done with this function. 1240 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1241 } 1242 endCVSubsection(SymbolsEnd); 1243 1244 // We have an assembler directive that takes care of the whole line table. 1245 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1246 } 1247 1248 CodeViewDebug::LocalVarDef 1249 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1250 LocalVarDef DR; 1251 DR.InMemory = -1; 1252 DR.DataOffset = Offset; 1253 assert(DR.DataOffset == Offset && "truncation"); 1254 DR.IsSubfield = 0; 1255 DR.StructOffset = 0; 1256 DR.CVRegister = CVRegister; 1257 return DR; 1258 } 1259 1260 void CodeViewDebug::collectVariableInfoFromMFTable( 1261 DenseSet<InlinedEntity> &Processed) { 1262 const MachineFunction &MF = *Asm->MF; 1263 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1264 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1265 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1266 1267 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1268 if (!VI.Var) 1269 continue; 1270 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1271 "Expected inlined-at fields to agree"); 1272 1273 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1274 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1275 1276 // If variable scope is not found then skip this variable. 1277 if (!Scope) 1278 continue; 1279 1280 // If the variable has an attached offset expression, extract it. 1281 // FIXME: Try to handle DW_OP_deref as well. 1282 int64_t ExprOffset = 0; 1283 bool Deref = false; 1284 if (VI.Expr) { 1285 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1286 if (VI.Expr->getNumElements() == 1 && 1287 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1288 Deref = true; 1289 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1290 continue; 1291 } 1292 1293 // Get the frame register used and the offset. 1294 Register FrameReg; 1295 StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1296 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1297 1298 assert(!FrameOffset.getScalable() && 1299 "Frame offsets with a scalable component are not supported"); 1300 1301 // Calculate the label ranges. 1302 LocalVarDef DefRange = 1303 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); 1304 1305 LocalVariable Var; 1306 Var.DIVar = VI.Var; 1307 1308 for (const InsnRange &Range : Scope->getRanges()) { 1309 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1310 const MCSymbol *End = getLabelAfterInsn(Range.second); 1311 End = End ? End : Asm->getFunctionEnd(); 1312 Var.DefRanges[DefRange].emplace_back(Begin, End); 1313 } 1314 1315 if (Deref) 1316 Var.UseReferenceType = true; 1317 1318 recordLocalVariable(std::move(Var), Scope); 1319 } 1320 } 1321 1322 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1323 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1324 } 1325 1326 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1327 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1328 } 1329 1330 void CodeViewDebug::calculateRanges( 1331 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1332 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1333 1334 // Calculate the definition ranges. 1335 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1336 const auto &Entry = *I; 1337 if (!Entry.isDbgValue()) 1338 continue; 1339 const MachineInstr *DVInst = Entry.getInstr(); 1340 assert(DVInst->isDebugValue() && "Invalid History entry"); 1341 // FIXME: Find a way to represent constant variables, since they are 1342 // relatively common. 1343 std::optional<DbgVariableLocation> Location = 1344 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1345 if (!Location) 1346 { 1347 // When we don't have a location this is usually because LLVM has 1348 // transformed it into a constant and we only have an llvm.dbg.value. We 1349 // can't represent these well in CodeView since S_LOCAL only works on 1350 // registers and memory locations. Instead, we will pretend this to be a 1351 // constant value to at least have it show up in the debugger. 1352 auto Op = DVInst->getDebugOperand(0); 1353 if (Op.isImm()) 1354 Var.ConstantValue = APSInt(APInt(64, Op.getImm()), false); 1355 continue; 1356 } 1357 1358 // CodeView can only express variables in register and variables in memory 1359 // at a constant offset from a register. However, for variables passed 1360 // indirectly by pointer, it is common for that pointer to be spilled to a 1361 // stack location. For the special case of one offseted load followed by a 1362 // zero offset load (a pointer spilled to the stack), we change the type of 1363 // the local variable from a value type to a reference type. This tricks the 1364 // debugger into doing the load for us. 1365 if (Var.UseReferenceType) { 1366 // We're using a reference type. Drop the last zero offset load. 1367 if (canUseReferenceType(*Location)) 1368 Location->LoadChain.pop_back(); 1369 else 1370 continue; 1371 } else if (needsReferenceType(*Location)) { 1372 // This location can't be expressed without switching to a reference type. 1373 // Start over using that. 1374 Var.UseReferenceType = true; 1375 Var.DefRanges.clear(); 1376 calculateRanges(Var, Entries); 1377 return; 1378 } 1379 1380 // We can only handle a register or an offseted load of a register. 1381 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1382 continue; 1383 1384 LocalVarDef DR; 1385 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1386 DR.InMemory = !Location->LoadChain.empty(); 1387 DR.DataOffset = 1388 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1389 if (Location->FragmentInfo) { 1390 DR.IsSubfield = true; 1391 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1392 } else { 1393 DR.IsSubfield = false; 1394 DR.StructOffset = 0; 1395 } 1396 1397 // Compute the label range. 1398 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1399 const MCSymbol *End; 1400 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1401 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1402 End = EndingEntry.isDbgValue() 1403 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1404 : getLabelAfterInsn(EndingEntry.getInstr()); 1405 } else 1406 End = Asm->getFunctionEnd(); 1407 1408 // If the last range end is our begin, just extend the last range. 1409 // Otherwise make a new range. 1410 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1411 Var.DefRanges[DR]; 1412 if (!R.empty() && R.back().second == Begin) 1413 R.back().second = End; 1414 else 1415 R.emplace_back(Begin, End); 1416 1417 // FIXME: Do more range combining. 1418 } 1419 } 1420 1421 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1422 DenseSet<InlinedEntity> Processed; 1423 // Grab the variable info that was squirreled away in the MMI side-table. 1424 collectVariableInfoFromMFTable(Processed); 1425 1426 for (const auto &I : DbgValues) { 1427 InlinedEntity IV = I.first; 1428 if (Processed.count(IV)) 1429 continue; 1430 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1431 const DILocation *InlinedAt = IV.second; 1432 1433 // Instruction ranges, specifying where IV is accessible. 1434 const auto &Entries = I.second; 1435 1436 LexicalScope *Scope = nullptr; 1437 if (InlinedAt) 1438 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1439 else 1440 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1441 // If variable scope is not found then skip this variable. 1442 if (!Scope) 1443 continue; 1444 1445 LocalVariable Var; 1446 Var.DIVar = DIVar; 1447 1448 calculateRanges(Var, Entries); 1449 recordLocalVariable(std::move(Var), Scope); 1450 } 1451 } 1452 1453 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1454 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1455 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1456 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1457 const Function &GV = MF->getFunction(); 1458 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1459 assert(Insertion.second && "function already has info"); 1460 CurFn = Insertion.first->second.get(); 1461 CurFn->FuncId = NextFuncId++; 1462 CurFn->Begin = Asm->getFunctionBegin(); 1463 1464 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1465 // callee-saved registers were used. For targets that don't use a PUSH 1466 // instruction (AArch64), this will be zero. 1467 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1468 CurFn->FrameSize = MFI.getStackSize(); 1469 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1470 CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF); 1471 1472 // For this function S_FRAMEPROC record, figure out which codeview register 1473 // will be the frame pointer. 1474 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1475 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1476 if (CurFn->FrameSize > 0) { 1477 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1478 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1479 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1480 } else { 1481 // If there is an FP, parameters are always relative to it. 1482 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1483 if (CurFn->HasStackRealignment) { 1484 // If the stack needs realignment, locals are relative to SP or VFRAME. 1485 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1486 } else { 1487 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1488 // other stack adjustments. 1489 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1490 } 1491 } 1492 } 1493 1494 // Compute other frame procedure options. 1495 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1496 if (MFI.hasVarSizedObjects()) 1497 FPO |= FrameProcedureOptions::HasAlloca; 1498 if (MF->exposesReturnsTwice()) 1499 FPO |= FrameProcedureOptions::HasSetJmp; 1500 // FIXME: Set HasLongJmp if we ever track that info. 1501 if (MF->hasInlineAsm()) 1502 FPO |= FrameProcedureOptions::HasInlineAssembly; 1503 if (GV.hasPersonalityFn()) { 1504 if (isAsynchronousEHPersonality( 1505 classifyEHPersonality(GV.getPersonalityFn()))) 1506 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1507 else 1508 FPO |= FrameProcedureOptions::HasExceptionHandling; 1509 } 1510 if (GV.hasFnAttribute(Attribute::InlineHint)) 1511 FPO |= FrameProcedureOptions::MarkedInline; 1512 if (GV.hasFnAttribute(Attribute::Naked)) 1513 FPO |= FrameProcedureOptions::Naked; 1514 if (MFI.hasStackProtectorIndex()) { 1515 FPO |= FrameProcedureOptions::SecurityChecks; 1516 if (GV.hasFnAttribute(Attribute::StackProtectStrong) || 1517 GV.hasFnAttribute(Attribute::StackProtectReq)) { 1518 FPO |= FrameProcedureOptions::StrictSecurityChecks; 1519 } 1520 } else if (!GV.hasStackProtectorFnAttr()) { 1521 // __declspec(safebuffers) disables stack guards. 1522 FPO |= FrameProcedureOptions::SafeBuffers; 1523 } 1524 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1525 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1526 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1527 !GV.hasOptSize() && !GV.hasOptNone()) 1528 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1529 if (GV.hasProfileData()) { 1530 FPO |= FrameProcedureOptions::ValidProfileCounts; 1531 FPO |= FrameProcedureOptions::ProfileGuidedOptimization; 1532 } 1533 // FIXME: Set GuardCfg when it is implemented. 1534 CurFn->FrameProcOpts = FPO; 1535 1536 OS.emitCVFuncIdDirective(CurFn->FuncId); 1537 1538 // Find the end of the function prolog. First known non-DBG_VALUE and 1539 // non-frame setup location marks the beginning of the function body. 1540 // FIXME: is there a simpler a way to do this? Can we just search 1541 // for the first instruction of the function, not the last of the prolog? 1542 DebugLoc PrologEndLoc; 1543 bool EmptyPrologue = true; 1544 for (const auto &MBB : *MF) { 1545 for (const auto &MI : MBB) { 1546 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1547 MI.getDebugLoc()) { 1548 PrologEndLoc = MI.getDebugLoc(); 1549 break; 1550 } else if (!MI.isMetaInstruction()) { 1551 EmptyPrologue = false; 1552 } 1553 } 1554 } 1555 1556 // Record beginning of function if we have a non-empty prologue. 1557 if (PrologEndLoc && !EmptyPrologue) { 1558 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1559 maybeRecordLocation(FnStartDL, MF); 1560 } 1561 1562 // Find heap alloc sites and emit labels around them. 1563 for (const auto &MBB : *MF) { 1564 for (const auto &MI : MBB) { 1565 if (MI.getHeapAllocMarker()) { 1566 requestLabelBeforeInsn(&MI); 1567 requestLabelAfterInsn(&MI); 1568 } 1569 } 1570 } 1571 } 1572 1573 static bool shouldEmitUdt(const DIType *T) { 1574 if (!T) 1575 return false; 1576 1577 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1578 if (T->getTag() == dwarf::DW_TAG_typedef) { 1579 if (DIScope *Scope = T->getScope()) { 1580 switch (Scope->getTag()) { 1581 case dwarf::DW_TAG_structure_type: 1582 case dwarf::DW_TAG_class_type: 1583 case dwarf::DW_TAG_union_type: 1584 return false; 1585 default: 1586 // do nothing. 1587 ; 1588 } 1589 } 1590 } 1591 1592 while (true) { 1593 if (!T || T->isForwardDecl()) 1594 return false; 1595 1596 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1597 if (!DT) 1598 return true; 1599 T = DT->getBaseType(); 1600 } 1601 return true; 1602 } 1603 1604 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1605 // Don't record empty UDTs. 1606 if (Ty->getName().empty()) 1607 return; 1608 if (!shouldEmitUdt(Ty)) 1609 return; 1610 1611 SmallVector<StringRef, 5> ParentScopeNames; 1612 const DISubprogram *ClosestSubprogram = 1613 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1614 1615 std::string FullyQualifiedName = 1616 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1617 1618 if (ClosestSubprogram == nullptr) { 1619 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1620 } else if (ClosestSubprogram == CurrentSubprogram) { 1621 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1622 } 1623 1624 // TODO: What if the ClosestSubprogram is neither null or the current 1625 // subprogram? Currently, the UDT just gets dropped on the floor. 1626 // 1627 // The current behavior is not desirable. To get maximal fidelity, we would 1628 // need to perform all type translation before beginning emission of .debug$S 1629 // and then make LocalUDTs a member of FunctionInfo 1630 } 1631 1632 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1633 // Generic dispatch for lowering an unknown type. 1634 switch (Ty->getTag()) { 1635 case dwarf::DW_TAG_array_type: 1636 return lowerTypeArray(cast<DICompositeType>(Ty)); 1637 case dwarf::DW_TAG_typedef: 1638 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1639 case dwarf::DW_TAG_base_type: 1640 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1641 case dwarf::DW_TAG_pointer_type: 1642 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1643 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1644 [[fallthrough]]; 1645 case dwarf::DW_TAG_reference_type: 1646 case dwarf::DW_TAG_rvalue_reference_type: 1647 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1648 case dwarf::DW_TAG_ptr_to_member_type: 1649 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1650 case dwarf::DW_TAG_restrict_type: 1651 case dwarf::DW_TAG_const_type: 1652 case dwarf::DW_TAG_volatile_type: 1653 // TODO: add support for DW_TAG_atomic_type here 1654 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1655 case dwarf::DW_TAG_subroutine_type: 1656 if (ClassTy) { 1657 // The member function type of a member function pointer has no 1658 // ThisAdjustment. 1659 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1660 /*ThisAdjustment=*/0, 1661 /*IsStaticMethod=*/false); 1662 } 1663 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1664 case dwarf::DW_TAG_enumeration_type: 1665 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1666 case dwarf::DW_TAG_class_type: 1667 case dwarf::DW_TAG_structure_type: 1668 return lowerTypeClass(cast<DICompositeType>(Ty)); 1669 case dwarf::DW_TAG_union_type: 1670 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1671 case dwarf::DW_TAG_string_type: 1672 return lowerTypeString(cast<DIStringType>(Ty)); 1673 case dwarf::DW_TAG_unspecified_type: 1674 if (Ty->getName() == "decltype(nullptr)") 1675 return TypeIndex::NullptrT(); 1676 return TypeIndex::None(); 1677 default: 1678 // Use the null type index. 1679 return TypeIndex(); 1680 } 1681 } 1682 1683 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1684 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1685 StringRef TypeName = Ty->getName(); 1686 1687 addToUDTs(Ty); 1688 1689 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1690 TypeName == "HRESULT") 1691 return TypeIndex(SimpleTypeKind::HResult); 1692 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1693 TypeName == "wchar_t") 1694 return TypeIndex(SimpleTypeKind::WideCharacter); 1695 1696 return UnderlyingTypeIndex; 1697 } 1698 1699 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1700 const DIType *ElementType = Ty->getBaseType(); 1701 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1702 // IndexType is size_t, which depends on the bitness of the target. 1703 TypeIndex IndexType = getPointerSizeInBytes() == 8 1704 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1705 : TypeIndex(SimpleTypeKind::UInt32Long); 1706 1707 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1708 1709 // Add subranges to array type. 1710 DINodeArray Elements = Ty->getElements(); 1711 for (int i = Elements.size() - 1; i >= 0; --i) { 1712 const DINode *Element = Elements[i]; 1713 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1714 1715 const DISubrange *Subrange = cast<DISubrange>(Element); 1716 int64_t Count = -1; 1717 1718 // If Subrange has a Count field, use it. 1719 // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1), 1720 // where lowerbound is from the LowerBound field of the Subrange, 1721 // or the language default lowerbound if that field is unspecified. 1722 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt *>()) 1723 Count = CI->getSExtValue(); 1724 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt *>()) { 1725 // Fortran uses 1 as the default lowerbound; other languages use 0. 1726 int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0; 1727 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1728 Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound; 1729 Count = UI->getSExtValue() - Lowerbound + 1; 1730 } 1731 1732 // Forward declarations of arrays without a size and VLAs use a count of -1. 1733 // Emit a count of zero in these cases to match what MSVC does for arrays 1734 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1735 // should do for them even if we could distinguish them. 1736 if (Count == -1) 1737 Count = 0; 1738 1739 // Update the element size and element type index for subsequent subranges. 1740 ElementSize *= Count; 1741 1742 // If this is the outermost array, use the size from the array. It will be 1743 // more accurate if we had a VLA or an incomplete element type size. 1744 uint64_t ArraySize = 1745 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1746 1747 StringRef Name = (i == 0) ? Ty->getName() : ""; 1748 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1749 ElementTypeIndex = TypeTable.writeLeafType(AR); 1750 } 1751 1752 return ElementTypeIndex; 1753 } 1754 1755 // This function lowers a Fortran character type (DIStringType). 1756 // Note that it handles only the character*n variant (using SizeInBits 1757 // field in DIString to describe the type size) at the moment. 1758 // Other variants (leveraging the StringLength and StringLengthExp 1759 // fields in DIStringType) remain TBD. 1760 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) { 1761 TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter); 1762 uint64_t ArraySize = Ty->getSizeInBits() >> 3; 1763 StringRef Name = Ty->getName(); 1764 // IndexType is size_t, which depends on the bitness of the target. 1765 TypeIndex IndexType = getPointerSizeInBytes() == 8 1766 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1767 : TypeIndex(SimpleTypeKind::UInt32Long); 1768 1769 // Create a type of character array of ArraySize. 1770 ArrayRecord AR(CharType, IndexType, ArraySize, Name); 1771 1772 return TypeTable.writeLeafType(AR); 1773 } 1774 1775 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1776 TypeIndex Index; 1777 dwarf::TypeKind Kind; 1778 uint32_t ByteSize; 1779 1780 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1781 ByteSize = Ty->getSizeInBits() / 8; 1782 1783 SimpleTypeKind STK = SimpleTypeKind::None; 1784 switch (Kind) { 1785 case dwarf::DW_ATE_address: 1786 // FIXME: Translate 1787 break; 1788 case dwarf::DW_ATE_boolean: 1789 switch (ByteSize) { 1790 case 1: STK = SimpleTypeKind::Boolean8; break; 1791 case 2: STK = SimpleTypeKind::Boolean16; break; 1792 case 4: STK = SimpleTypeKind::Boolean32; break; 1793 case 8: STK = SimpleTypeKind::Boolean64; break; 1794 case 16: STK = SimpleTypeKind::Boolean128; break; 1795 } 1796 break; 1797 case dwarf::DW_ATE_complex_float: 1798 // The CodeView size for a complex represents the size of 1799 // an individual component. 1800 switch (ByteSize) { 1801 case 4: STK = SimpleTypeKind::Complex16; break; 1802 case 8: STK = SimpleTypeKind::Complex32; break; 1803 case 16: STK = SimpleTypeKind::Complex64; break; 1804 case 20: STK = SimpleTypeKind::Complex80; break; 1805 case 32: STK = SimpleTypeKind::Complex128; break; 1806 } 1807 break; 1808 case dwarf::DW_ATE_float: 1809 switch (ByteSize) { 1810 case 2: STK = SimpleTypeKind::Float16; break; 1811 case 4: STK = SimpleTypeKind::Float32; break; 1812 case 6: STK = SimpleTypeKind::Float48; break; 1813 case 8: STK = SimpleTypeKind::Float64; break; 1814 case 10: STK = SimpleTypeKind::Float80; break; 1815 case 16: STK = SimpleTypeKind::Float128; break; 1816 } 1817 break; 1818 case dwarf::DW_ATE_signed: 1819 switch (ByteSize) { 1820 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1821 case 2: STK = SimpleTypeKind::Int16Short; break; 1822 case 4: STK = SimpleTypeKind::Int32; break; 1823 case 8: STK = SimpleTypeKind::Int64Quad; break; 1824 case 16: STK = SimpleTypeKind::Int128Oct; break; 1825 } 1826 break; 1827 case dwarf::DW_ATE_unsigned: 1828 switch (ByteSize) { 1829 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1830 case 2: STK = SimpleTypeKind::UInt16Short; break; 1831 case 4: STK = SimpleTypeKind::UInt32; break; 1832 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1833 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1834 } 1835 break; 1836 case dwarf::DW_ATE_UTF: 1837 switch (ByteSize) { 1838 case 1: STK = SimpleTypeKind::Character8; break; 1839 case 2: STK = SimpleTypeKind::Character16; break; 1840 case 4: STK = SimpleTypeKind::Character32; break; 1841 } 1842 break; 1843 case dwarf::DW_ATE_signed_char: 1844 if (ByteSize == 1) 1845 STK = SimpleTypeKind::SignedCharacter; 1846 break; 1847 case dwarf::DW_ATE_unsigned_char: 1848 if (ByteSize == 1) 1849 STK = SimpleTypeKind::UnsignedCharacter; 1850 break; 1851 default: 1852 break; 1853 } 1854 1855 // Apply some fixups based on the source-level type name. 1856 // Include some amount of canonicalization from an old naming scheme Clang 1857 // used to use for integer types (in an outdated effort to be compatible with 1858 // GCC's debug info/GDB's behavior, which has since been addressed). 1859 if (STK == SimpleTypeKind::Int32 && 1860 (Ty->getName() == "long int" || Ty->getName() == "long")) 1861 STK = SimpleTypeKind::Int32Long; 1862 if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" || 1863 Ty->getName() == "unsigned long")) 1864 STK = SimpleTypeKind::UInt32Long; 1865 if (STK == SimpleTypeKind::UInt16Short && 1866 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1867 STK = SimpleTypeKind::WideCharacter; 1868 if ((STK == SimpleTypeKind::SignedCharacter || 1869 STK == SimpleTypeKind::UnsignedCharacter) && 1870 Ty->getName() == "char") 1871 STK = SimpleTypeKind::NarrowCharacter; 1872 1873 return TypeIndex(STK); 1874 } 1875 1876 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1877 PointerOptions PO) { 1878 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1879 1880 // Pointers to simple types without any options can use SimpleTypeMode, rather 1881 // than having a dedicated pointer type record. 1882 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1883 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1884 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1885 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1886 ? SimpleTypeMode::NearPointer64 1887 : SimpleTypeMode::NearPointer32; 1888 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1889 } 1890 1891 PointerKind PK = 1892 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1893 PointerMode PM = PointerMode::Pointer; 1894 switch (Ty->getTag()) { 1895 default: llvm_unreachable("not a pointer tag type"); 1896 case dwarf::DW_TAG_pointer_type: 1897 PM = PointerMode::Pointer; 1898 break; 1899 case dwarf::DW_TAG_reference_type: 1900 PM = PointerMode::LValueReference; 1901 break; 1902 case dwarf::DW_TAG_rvalue_reference_type: 1903 PM = PointerMode::RValueReference; 1904 break; 1905 } 1906 1907 if (Ty->isObjectPointer()) 1908 PO |= PointerOptions::Const; 1909 1910 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1911 return TypeTable.writeLeafType(PR); 1912 } 1913 1914 static PointerToMemberRepresentation 1915 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1916 // SizeInBytes being zero generally implies that the member pointer type was 1917 // incomplete, which can happen if it is part of a function prototype. In this 1918 // case, use the unknown model instead of the general model. 1919 if (IsPMF) { 1920 switch (Flags & DINode::FlagPtrToMemberRep) { 1921 case 0: 1922 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1923 : PointerToMemberRepresentation::GeneralFunction; 1924 case DINode::FlagSingleInheritance: 1925 return PointerToMemberRepresentation::SingleInheritanceFunction; 1926 case DINode::FlagMultipleInheritance: 1927 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1928 case DINode::FlagVirtualInheritance: 1929 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1930 } 1931 } else { 1932 switch (Flags & DINode::FlagPtrToMemberRep) { 1933 case 0: 1934 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1935 : PointerToMemberRepresentation::GeneralData; 1936 case DINode::FlagSingleInheritance: 1937 return PointerToMemberRepresentation::SingleInheritanceData; 1938 case DINode::FlagMultipleInheritance: 1939 return PointerToMemberRepresentation::MultipleInheritanceData; 1940 case DINode::FlagVirtualInheritance: 1941 return PointerToMemberRepresentation::VirtualInheritanceData; 1942 } 1943 } 1944 llvm_unreachable("invalid ptr to member representation"); 1945 } 1946 1947 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1948 PointerOptions PO) { 1949 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1950 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1951 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1952 TypeIndex PointeeTI = 1953 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1954 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1955 : PointerKind::Near32; 1956 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1957 : PointerMode::PointerToDataMember; 1958 1959 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1960 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1961 MemberPointerInfo MPI( 1962 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1963 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1964 return TypeTable.writeLeafType(PR); 1965 } 1966 1967 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1968 /// have a translation, use the NearC convention. 1969 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1970 switch (DwarfCC) { 1971 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1972 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1973 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1974 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1975 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1976 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1977 } 1978 return CallingConvention::NearC; 1979 } 1980 1981 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1982 ModifierOptions Mods = ModifierOptions::None; 1983 PointerOptions PO = PointerOptions::None; 1984 bool IsModifier = true; 1985 const DIType *BaseTy = Ty; 1986 while (IsModifier && BaseTy) { 1987 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1988 switch (BaseTy->getTag()) { 1989 case dwarf::DW_TAG_const_type: 1990 Mods |= ModifierOptions::Const; 1991 PO |= PointerOptions::Const; 1992 break; 1993 case dwarf::DW_TAG_volatile_type: 1994 Mods |= ModifierOptions::Volatile; 1995 PO |= PointerOptions::Volatile; 1996 break; 1997 case dwarf::DW_TAG_restrict_type: 1998 // Only pointer types be marked with __restrict. There is no known flag 1999 // for __restrict in LF_MODIFIER records. 2000 PO |= PointerOptions::Restrict; 2001 break; 2002 default: 2003 IsModifier = false; 2004 break; 2005 } 2006 if (IsModifier) 2007 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 2008 } 2009 2010 // Check if the inner type will use an LF_POINTER record. If so, the 2011 // qualifiers will go in the LF_POINTER record. This comes up for types like 2012 // 'int *const' and 'int *__restrict', not the more common cases like 'const 2013 // char *'. 2014 if (BaseTy) { 2015 switch (BaseTy->getTag()) { 2016 case dwarf::DW_TAG_pointer_type: 2017 case dwarf::DW_TAG_reference_type: 2018 case dwarf::DW_TAG_rvalue_reference_type: 2019 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 2020 case dwarf::DW_TAG_ptr_to_member_type: 2021 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 2022 default: 2023 break; 2024 } 2025 } 2026 2027 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 2028 2029 // Return the base type index if there aren't any modifiers. For example, the 2030 // metadata could contain restrict wrappers around non-pointer types. 2031 if (Mods == ModifierOptions::None) 2032 return ModifiedTI; 2033 2034 ModifierRecord MR(ModifiedTI, Mods); 2035 return TypeTable.writeLeafType(MR); 2036 } 2037 2038 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 2039 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 2040 for (const DIType *ArgType : Ty->getTypeArray()) 2041 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 2042 2043 // MSVC uses type none for variadic argument. 2044 if (ReturnAndArgTypeIndices.size() > 1 && 2045 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 2046 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 2047 } 2048 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 2049 ArrayRef<TypeIndex> ArgTypeIndices = std::nullopt; 2050 if (!ReturnAndArgTypeIndices.empty()) { 2051 auto ReturnAndArgTypesRef = ArrayRef(ReturnAndArgTypeIndices); 2052 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 2053 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 2054 } 2055 2056 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 2057 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 2058 2059 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 2060 2061 FunctionOptions FO = getFunctionOptions(Ty); 2062 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 2063 ArgListIndex); 2064 return TypeTable.writeLeafType(Procedure); 2065 } 2066 2067 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 2068 const DIType *ClassTy, 2069 int ThisAdjustment, 2070 bool IsStaticMethod, 2071 FunctionOptions FO) { 2072 // Lower the containing class type. 2073 TypeIndex ClassType = getTypeIndex(ClassTy); 2074 2075 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 2076 2077 unsigned Index = 0; 2078 SmallVector<TypeIndex, 8> ArgTypeIndices; 2079 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 2080 if (ReturnAndArgs.size() > Index) { 2081 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 2082 } 2083 2084 // If the first argument is a pointer type and this isn't a static method, 2085 // treat it as the special 'this' parameter, which is encoded separately from 2086 // the arguments. 2087 TypeIndex ThisTypeIndex; 2088 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 2089 if (const DIDerivedType *PtrTy = 2090 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 2091 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 2092 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 2093 Index++; 2094 } 2095 } 2096 } 2097 2098 while (Index < ReturnAndArgs.size()) 2099 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 2100 2101 // MSVC uses type none for variadic argument. 2102 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 2103 ArgTypeIndices.back() = TypeIndex::None(); 2104 2105 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 2106 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 2107 2108 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 2109 2110 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 2111 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 2112 return TypeTable.writeLeafType(MFR); 2113 } 2114 2115 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 2116 unsigned VSlotCount = 2117 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 2118 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 2119 2120 VFTableShapeRecord VFTSR(Slots); 2121 return TypeTable.writeLeafType(VFTSR); 2122 } 2123 2124 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 2125 switch (Flags & DINode::FlagAccessibility) { 2126 case DINode::FlagPrivate: return MemberAccess::Private; 2127 case DINode::FlagPublic: return MemberAccess::Public; 2128 case DINode::FlagProtected: return MemberAccess::Protected; 2129 case 0: 2130 // If there was no explicit access control, provide the default for the tag. 2131 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 2132 : MemberAccess::Public; 2133 } 2134 llvm_unreachable("access flags are exclusive"); 2135 } 2136 2137 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 2138 if (SP->isArtificial()) 2139 return MethodOptions::CompilerGenerated; 2140 2141 // FIXME: Handle other MethodOptions. 2142 2143 return MethodOptions::None; 2144 } 2145 2146 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 2147 bool Introduced) { 2148 if (SP->getFlags() & DINode::FlagStaticMember) 2149 return MethodKind::Static; 2150 2151 switch (SP->getVirtuality()) { 2152 case dwarf::DW_VIRTUALITY_none: 2153 break; 2154 case dwarf::DW_VIRTUALITY_virtual: 2155 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 2156 case dwarf::DW_VIRTUALITY_pure_virtual: 2157 return Introduced ? MethodKind::PureIntroducingVirtual 2158 : MethodKind::PureVirtual; 2159 default: 2160 llvm_unreachable("unhandled virtuality case"); 2161 } 2162 2163 return MethodKind::Vanilla; 2164 } 2165 2166 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2167 switch (Ty->getTag()) { 2168 case dwarf::DW_TAG_class_type: 2169 return TypeRecordKind::Class; 2170 case dwarf::DW_TAG_structure_type: 2171 return TypeRecordKind::Struct; 2172 default: 2173 llvm_unreachable("unexpected tag"); 2174 } 2175 } 2176 2177 /// Return ClassOptions that should be present on both the forward declaration 2178 /// and the defintion of a tag type. 2179 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2180 ClassOptions CO = ClassOptions::None; 2181 2182 // MSVC always sets this flag, even for local types. Clang doesn't always 2183 // appear to give every type a linkage name, which may be problematic for us. 2184 // FIXME: Investigate the consequences of not following them here. 2185 if (!Ty->getIdentifier().empty()) 2186 CO |= ClassOptions::HasUniqueName; 2187 2188 // Put the Nested flag on a type if it appears immediately inside a tag type. 2189 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2190 // here. That flag is only set on definitions, and not forward declarations. 2191 const DIScope *ImmediateScope = Ty->getScope(); 2192 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2193 CO |= ClassOptions::Nested; 2194 2195 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2196 // type only when it has an immediate function scope. Clang never puts enums 2197 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2198 // always in function, class, or file scopes. 2199 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2200 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2201 CO |= ClassOptions::Scoped; 2202 } else { 2203 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2204 Scope = Scope->getScope()) { 2205 if (isa<DISubprogram>(Scope)) { 2206 CO |= ClassOptions::Scoped; 2207 break; 2208 } 2209 } 2210 } 2211 2212 return CO; 2213 } 2214 2215 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2216 switch (Ty->getTag()) { 2217 case dwarf::DW_TAG_class_type: 2218 case dwarf::DW_TAG_structure_type: 2219 case dwarf::DW_TAG_union_type: 2220 case dwarf::DW_TAG_enumeration_type: 2221 break; 2222 default: 2223 return; 2224 } 2225 2226 if (const auto *File = Ty->getFile()) { 2227 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2228 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2229 2230 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2231 TypeTable.writeLeafType(USLR); 2232 } 2233 } 2234 2235 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2236 ClassOptions CO = getCommonClassOptions(Ty); 2237 TypeIndex FTI; 2238 unsigned EnumeratorCount = 0; 2239 2240 if (Ty->isForwardDecl()) { 2241 CO |= ClassOptions::ForwardReference; 2242 } else { 2243 ContinuationRecordBuilder ContinuationBuilder; 2244 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2245 for (const DINode *Element : Ty->getElements()) { 2246 // We assume that the frontend provides all members in source declaration 2247 // order, which is what MSVC does. 2248 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2249 // FIXME: Is it correct to always emit these as unsigned here? 2250 EnumeratorRecord ER(MemberAccess::Public, 2251 APSInt(Enumerator->getValue(), true), 2252 Enumerator->getName()); 2253 ContinuationBuilder.writeMemberType(ER); 2254 EnumeratorCount++; 2255 } 2256 } 2257 FTI = TypeTable.insertRecord(ContinuationBuilder); 2258 } 2259 2260 std::string FullName = getFullyQualifiedName(Ty); 2261 2262 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2263 getTypeIndex(Ty->getBaseType())); 2264 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2265 2266 addUDTSrcLine(Ty, EnumTI); 2267 2268 return EnumTI; 2269 } 2270 2271 //===----------------------------------------------------------------------===// 2272 // ClassInfo 2273 //===----------------------------------------------------------------------===// 2274 2275 struct llvm::ClassInfo { 2276 struct MemberInfo { 2277 const DIDerivedType *MemberTypeNode; 2278 uint64_t BaseOffset; 2279 }; 2280 // [MemberInfo] 2281 using MemberList = std::vector<MemberInfo>; 2282 2283 using MethodsList = TinyPtrVector<const DISubprogram *>; 2284 // MethodName -> MethodsList 2285 using MethodsMap = MapVector<MDString *, MethodsList>; 2286 2287 /// Base classes. 2288 std::vector<const DIDerivedType *> Inheritance; 2289 2290 /// Direct members. 2291 MemberList Members; 2292 // Direct overloaded methods gathered by name. 2293 MethodsMap Methods; 2294 2295 TypeIndex VShapeTI; 2296 2297 std::vector<const DIType *> NestedTypes; 2298 }; 2299 2300 void CodeViewDebug::clear() { 2301 assert(CurFn == nullptr); 2302 FileIdMap.clear(); 2303 FnDebugInfo.clear(); 2304 FileToFilepathMap.clear(); 2305 LocalUDTs.clear(); 2306 GlobalUDTs.clear(); 2307 TypeIndices.clear(); 2308 CompleteTypeIndices.clear(); 2309 ScopeGlobals.clear(); 2310 CVGlobalVariableOffsets.clear(); 2311 } 2312 2313 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2314 const DIDerivedType *DDTy) { 2315 if (!DDTy->getName().empty()) { 2316 Info.Members.push_back({DDTy, 0}); 2317 2318 // Collect static const data members with values. 2319 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2320 DINode::FlagStaticMember) { 2321 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) || 2322 isa<ConstantFP>(DDTy->getConstant()))) 2323 StaticConstMembers.push_back(DDTy); 2324 } 2325 2326 return; 2327 } 2328 2329 // An unnamed member may represent a nested struct or union. Attempt to 2330 // interpret the unnamed member as a DICompositeType possibly wrapped in 2331 // qualifier types. Add all the indirect fields to the current record if that 2332 // succeeds, and drop the member if that fails. 2333 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2334 uint64_t Offset = DDTy->getOffsetInBits(); 2335 const DIType *Ty = DDTy->getBaseType(); 2336 bool FullyResolved = false; 2337 while (!FullyResolved) { 2338 switch (Ty->getTag()) { 2339 case dwarf::DW_TAG_const_type: 2340 case dwarf::DW_TAG_volatile_type: 2341 // FIXME: we should apply the qualifier types to the indirect fields 2342 // rather than dropping them. 2343 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2344 break; 2345 default: 2346 FullyResolved = true; 2347 break; 2348 } 2349 } 2350 2351 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2352 if (!DCTy) 2353 return; 2354 2355 ClassInfo NestedInfo = collectClassInfo(DCTy); 2356 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2357 Info.Members.push_back( 2358 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2359 } 2360 2361 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2362 ClassInfo Info; 2363 // Add elements to structure type. 2364 DINodeArray Elements = Ty->getElements(); 2365 for (auto *Element : Elements) { 2366 // We assume that the frontend provides all members in source declaration 2367 // order, which is what MSVC does. 2368 if (!Element) 2369 continue; 2370 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2371 Info.Methods[SP->getRawName()].push_back(SP); 2372 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2373 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2374 collectMemberInfo(Info, DDTy); 2375 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2376 Info.Inheritance.push_back(DDTy); 2377 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2378 DDTy->getName() == "__vtbl_ptr_type") { 2379 Info.VShapeTI = getTypeIndex(DDTy); 2380 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2381 Info.NestedTypes.push_back(DDTy); 2382 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2383 // Ignore friend members. It appears that MSVC emitted info about 2384 // friends in the past, but modern versions do not. 2385 } 2386 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2387 Info.NestedTypes.push_back(Composite); 2388 } 2389 // Skip other unrecognized kinds of elements. 2390 } 2391 return Info; 2392 } 2393 2394 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2395 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2396 // if a complete type should be emitted instead of a forward reference. 2397 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2398 !Ty->isForwardDecl(); 2399 } 2400 2401 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2402 // Emit the complete type for unnamed structs. C++ classes with methods 2403 // which have a circular reference back to the class type are expected to 2404 // be named by the front-end and should not be "unnamed". C unnamed 2405 // structs should not have circular references. 2406 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2407 // If this unnamed complete type is already in the process of being defined 2408 // then the description of the type is malformed and cannot be emitted 2409 // into CodeView correctly so report a fatal error. 2410 auto I = CompleteTypeIndices.find(Ty); 2411 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2412 report_fatal_error("cannot debug circular reference to unnamed type"); 2413 return getCompleteTypeIndex(Ty); 2414 } 2415 2416 // First, construct the forward decl. Don't look into Ty to compute the 2417 // forward decl options, since it might not be available in all TUs. 2418 TypeRecordKind Kind = getRecordKind(Ty); 2419 ClassOptions CO = 2420 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2421 std::string FullName = getFullyQualifiedName(Ty); 2422 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2423 FullName, Ty->getIdentifier()); 2424 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2425 if (!Ty->isForwardDecl()) 2426 DeferredCompleteTypes.push_back(Ty); 2427 return FwdDeclTI; 2428 } 2429 2430 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2431 // Construct the field list and complete type record. 2432 TypeRecordKind Kind = getRecordKind(Ty); 2433 ClassOptions CO = getCommonClassOptions(Ty); 2434 TypeIndex FieldTI; 2435 TypeIndex VShapeTI; 2436 unsigned FieldCount; 2437 bool ContainsNestedClass; 2438 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2439 lowerRecordFieldList(Ty); 2440 2441 if (ContainsNestedClass) 2442 CO |= ClassOptions::ContainsNestedClass; 2443 2444 // MSVC appears to set this flag by searching any destructor or method with 2445 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2446 // the members, however special member functions are not yet emitted into 2447 // debug information. For now checking a class's non-triviality seems enough. 2448 // FIXME: not true for a nested unnamed struct. 2449 if (isNonTrivial(Ty)) 2450 CO |= ClassOptions::HasConstructorOrDestructor; 2451 2452 std::string FullName = getFullyQualifiedName(Ty); 2453 2454 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2455 2456 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2457 SizeInBytes, FullName, Ty->getIdentifier()); 2458 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2459 2460 addUDTSrcLine(Ty, ClassTI); 2461 2462 addToUDTs(Ty); 2463 2464 return ClassTI; 2465 } 2466 2467 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2468 // Emit the complete type for unnamed unions. 2469 if (shouldAlwaysEmitCompleteClassType(Ty)) 2470 return getCompleteTypeIndex(Ty); 2471 2472 ClassOptions CO = 2473 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2474 std::string FullName = getFullyQualifiedName(Ty); 2475 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2476 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2477 if (!Ty->isForwardDecl()) 2478 DeferredCompleteTypes.push_back(Ty); 2479 return FwdDeclTI; 2480 } 2481 2482 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2483 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2484 TypeIndex FieldTI; 2485 unsigned FieldCount; 2486 bool ContainsNestedClass; 2487 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2488 lowerRecordFieldList(Ty); 2489 2490 if (ContainsNestedClass) 2491 CO |= ClassOptions::ContainsNestedClass; 2492 2493 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2494 std::string FullName = getFullyQualifiedName(Ty); 2495 2496 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2497 Ty->getIdentifier()); 2498 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2499 2500 addUDTSrcLine(Ty, UnionTI); 2501 2502 addToUDTs(Ty); 2503 2504 return UnionTI; 2505 } 2506 2507 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2508 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2509 // Manually count members. MSVC appears to count everything that generates a 2510 // field list record. Each individual overload in a method overload group 2511 // contributes to this count, even though the overload group is a single field 2512 // list record. 2513 unsigned MemberCount = 0; 2514 ClassInfo Info = collectClassInfo(Ty); 2515 ContinuationRecordBuilder ContinuationBuilder; 2516 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2517 2518 // Create base classes. 2519 for (const DIDerivedType *I : Info.Inheritance) { 2520 if (I->getFlags() & DINode::FlagVirtual) { 2521 // Virtual base. 2522 unsigned VBPtrOffset = I->getVBPtrOffset(); 2523 // FIXME: Despite the accessor name, the offset is really in bytes. 2524 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2525 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2526 ? TypeRecordKind::IndirectVirtualBaseClass 2527 : TypeRecordKind::VirtualBaseClass; 2528 VirtualBaseClassRecord VBCR( 2529 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2530 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2531 VBTableIndex); 2532 2533 ContinuationBuilder.writeMemberType(VBCR); 2534 MemberCount++; 2535 } else { 2536 assert(I->getOffsetInBits() % 8 == 0 && 2537 "bases must be on byte boundaries"); 2538 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2539 getTypeIndex(I->getBaseType()), 2540 I->getOffsetInBits() / 8); 2541 ContinuationBuilder.writeMemberType(BCR); 2542 MemberCount++; 2543 } 2544 } 2545 2546 // Create members. 2547 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2548 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2549 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2550 StringRef MemberName = Member->getName(); 2551 MemberAccess Access = 2552 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2553 2554 if (Member->isStaticMember()) { 2555 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2556 ContinuationBuilder.writeMemberType(SDMR); 2557 MemberCount++; 2558 continue; 2559 } 2560 2561 // Virtual function pointer member. 2562 if ((Member->getFlags() & DINode::FlagArtificial) && 2563 Member->getName().startswith("_vptr$")) { 2564 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2565 ContinuationBuilder.writeMemberType(VFPR); 2566 MemberCount++; 2567 continue; 2568 } 2569 2570 // Data member. 2571 uint64_t MemberOffsetInBits = 2572 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2573 if (Member->isBitField()) { 2574 uint64_t StartBitOffset = MemberOffsetInBits; 2575 if (const auto *CI = 2576 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2577 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2578 } 2579 StartBitOffset -= MemberOffsetInBits; 2580 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2581 StartBitOffset); 2582 MemberBaseType = TypeTable.writeLeafType(BFR); 2583 } 2584 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2585 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2586 MemberName); 2587 ContinuationBuilder.writeMemberType(DMR); 2588 MemberCount++; 2589 } 2590 2591 // Create methods 2592 for (auto &MethodItr : Info.Methods) { 2593 StringRef Name = MethodItr.first->getString(); 2594 2595 std::vector<OneMethodRecord> Methods; 2596 for (const DISubprogram *SP : MethodItr.second) { 2597 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2598 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2599 2600 unsigned VFTableOffset = -1; 2601 if (Introduced) 2602 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2603 2604 Methods.push_back(OneMethodRecord( 2605 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2606 translateMethodKindFlags(SP, Introduced), 2607 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2608 MemberCount++; 2609 } 2610 assert(!Methods.empty() && "Empty methods map entry"); 2611 if (Methods.size() == 1) 2612 ContinuationBuilder.writeMemberType(Methods[0]); 2613 else { 2614 // FIXME: Make this use its own ContinuationBuilder so that 2615 // MethodOverloadList can be split correctly. 2616 MethodOverloadListRecord MOLR(Methods); 2617 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2618 2619 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2620 ContinuationBuilder.writeMemberType(OMR); 2621 } 2622 } 2623 2624 // Create nested classes. 2625 for (const DIType *Nested : Info.NestedTypes) { 2626 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2627 ContinuationBuilder.writeMemberType(R); 2628 MemberCount++; 2629 } 2630 2631 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2632 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2633 !Info.NestedTypes.empty()); 2634 } 2635 2636 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2637 if (!VBPType.getIndex()) { 2638 // Make a 'const int *' type. 2639 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2640 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2641 2642 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2643 : PointerKind::Near32; 2644 PointerMode PM = PointerMode::Pointer; 2645 PointerOptions PO = PointerOptions::None; 2646 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2647 VBPType = TypeTable.writeLeafType(PR); 2648 } 2649 2650 return VBPType; 2651 } 2652 2653 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2654 // The null DIType is the void type. Don't try to hash it. 2655 if (!Ty) 2656 return TypeIndex::Void(); 2657 2658 // Check if we've already translated this type. Don't try to do a 2659 // get-or-create style insertion that caches the hash lookup across the 2660 // lowerType call. It will update the TypeIndices map. 2661 auto I = TypeIndices.find({Ty, ClassTy}); 2662 if (I != TypeIndices.end()) 2663 return I->second; 2664 2665 TypeLoweringScope S(*this); 2666 TypeIndex TI = lowerType(Ty, ClassTy); 2667 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2668 } 2669 2670 codeview::TypeIndex 2671 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2672 const DISubroutineType *SubroutineTy) { 2673 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2674 "this type must be a pointer type"); 2675 2676 PointerOptions Options = PointerOptions::None; 2677 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2678 Options = PointerOptions::LValueRefThisPointer; 2679 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2680 Options = PointerOptions::RValueRefThisPointer; 2681 2682 // Check if we've already translated this type. If there is no ref qualifier 2683 // on the function then we look up this pointer type with no associated class 2684 // so that the TypeIndex for the this pointer can be shared with the type 2685 // index for other pointers to this class type. If there is a ref qualifier 2686 // then we lookup the pointer using the subroutine as the parent type. 2687 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2688 if (I != TypeIndices.end()) 2689 return I->second; 2690 2691 TypeLoweringScope S(*this); 2692 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2693 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2694 } 2695 2696 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2697 PointerRecord PR(getTypeIndex(Ty), 2698 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2699 : PointerKind::Near32, 2700 PointerMode::LValueReference, PointerOptions::None, 2701 Ty->getSizeInBits() / 8); 2702 return TypeTable.writeLeafType(PR); 2703 } 2704 2705 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2706 // The null DIType is the void type. Don't try to hash it. 2707 if (!Ty) 2708 return TypeIndex::Void(); 2709 2710 // Look through typedefs when getting the complete type index. Call 2711 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2712 // emitted only once. 2713 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2714 (void)getTypeIndex(Ty); 2715 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2716 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2717 2718 // If this is a non-record type, the complete type index is the same as the 2719 // normal type index. Just call getTypeIndex. 2720 switch (Ty->getTag()) { 2721 case dwarf::DW_TAG_class_type: 2722 case dwarf::DW_TAG_structure_type: 2723 case dwarf::DW_TAG_union_type: 2724 break; 2725 default: 2726 return getTypeIndex(Ty); 2727 } 2728 2729 const auto *CTy = cast<DICompositeType>(Ty); 2730 2731 TypeLoweringScope S(*this); 2732 2733 // Make sure the forward declaration is emitted first. It's unclear if this 2734 // is necessary, but MSVC does it, and we should follow suit until we can show 2735 // otherwise. 2736 // We only emit a forward declaration for named types. 2737 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2738 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2739 2740 // Just use the forward decl if we don't have complete type info. This 2741 // might happen if the frontend is using modules and expects the complete 2742 // definition to be emitted elsewhere. 2743 if (CTy->isForwardDecl()) 2744 return FwdDeclTI; 2745 } 2746 2747 // Check if we've already translated the complete record type. 2748 // Insert the type with a null TypeIndex to signify that the type is currently 2749 // being lowered. 2750 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2751 if (!InsertResult.second) 2752 return InsertResult.first->second; 2753 2754 TypeIndex TI; 2755 switch (CTy->getTag()) { 2756 case dwarf::DW_TAG_class_type: 2757 case dwarf::DW_TAG_structure_type: 2758 TI = lowerCompleteTypeClass(CTy); 2759 break; 2760 case dwarf::DW_TAG_union_type: 2761 TI = lowerCompleteTypeUnion(CTy); 2762 break; 2763 default: 2764 llvm_unreachable("not a record"); 2765 } 2766 2767 // Update the type index associated with this CompositeType. This cannot 2768 // use the 'InsertResult' iterator above because it is potentially 2769 // invalidated by map insertions which can occur while lowering the class 2770 // type above. 2771 CompleteTypeIndices[CTy] = TI; 2772 return TI; 2773 } 2774 2775 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2776 /// and do this until fixpoint, as each complete record type typically 2777 /// references 2778 /// many other record types. 2779 void CodeViewDebug::emitDeferredCompleteTypes() { 2780 SmallVector<const DICompositeType *, 4> TypesToEmit; 2781 while (!DeferredCompleteTypes.empty()) { 2782 std::swap(DeferredCompleteTypes, TypesToEmit); 2783 for (const DICompositeType *RecordTy : TypesToEmit) 2784 getCompleteTypeIndex(RecordTy); 2785 TypesToEmit.clear(); 2786 } 2787 } 2788 2789 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2790 ArrayRef<LocalVariable> Locals) { 2791 // Get the sorted list of parameters and emit them first. 2792 SmallVector<const LocalVariable *, 6> Params; 2793 for (const LocalVariable &L : Locals) 2794 if (L.DIVar->isParameter()) 2795 Params.push_back(&L); 2796 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2797 return L->DIVar->getArg() < R->DIVar->getArg(); 2798 }); 2799 for (const LocalVariable *L : Params) 2800 emitLocalVariable(FI, *L); 2801 2802 // Next emit all non-parameters in the order that we found them. 2803 for (const LocalVariable &L : Locals) { 2804 if (!L.DIVar->isParameter()) { 2805 if (L.ConstantValue) { 2806 // If ConstantValue is set we will emit it as a S_CONSTANT instead of a 2807 // S_LOCAL in order to be able to represent it at all. 2808 const DIType *Ty = L.DIVar->getType(); 2809 APSInt Val(*L.ConstantValue); 2810 emitConstantSymbolRecord(Ty, Val, std::string(L.DIVar->getName())); 2811 } else { 2812 emitLocalVariable(FI, L); 2813 } 2814 } 2815 } 2816 } 2817 2818 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2819 const LocalVariable &Var) { 2820 // LocalSym record, see SymbolRecord.h for more info. 2821 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2822 2823 LocalSymFlags Flags = LocalSymFlags::None; 2824 if (Var.DIVar->isParameter()) 2825 Flags |= LocalSymFlags::IsParameter; 2826 if (Var.DefRanges.empty()) 2827 Flags |= LocalSymFlags::IsOptimizedOut; 2828 2829 OS.AddComment("TypeIndex"); 2830 TypeIndex TI = Var.UseReferenceType 2831 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2832 : getCompleteTypeIndex(Var.DIVar->getType()); 2833 OS.emitInt32(TI.getIndex()); 2834 OS.AddComment("Flags"); 2835 OS.emitInt16(static_cast<uint16_t>(Flags)); 2836 // Truncate the name so we won't overflow the record length field. 2837 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2838 endSymbolRecord(LocalEnd); 2839 2840 // Calculate the on disk prefix of the appropriate def range record. The 2841 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2842 // should be big enough to hold all forms without memory allocation. 2843 SmallString<20> BytePrefix; 2844 for (const auto &Pair : Var.DefRanges) { 2845 LocalVarDef DefRange = Pair.first; 2846 const auto &Ranges = Pair.second; 2847 BytePrefix.clear(); 2848 if (DefRange.InMemory) { 2849 int Offset = DefRange.DataOffset; 2850 unsigned Reg = DefRange.CVRegister; 2851 2852 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2853 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2854 // instead. In frames without stack realignment, $T0 will be the CFA. 2855 if (RegisterId(Reg) == RegisterId::ESP) { 2856 Reg = unsigned(RegisterId::VFRAME); 2857 Offset += FI.OffsetAdjustment; 2858 } 2859 2860 // If we can use the chosen frame pointer for the frame and this isn't a 2861 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2862 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2863 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2864 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2865 (bool(Flags & LocalSymFlags::IsParameter) 2866 ? (EncFP == FI.EncodedParamFramePtrReg) 2867 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2868 DefRangeFramePointerRelHeader DRHdr; 2869 DRHdr.Offset = Offset; 2870 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2871 } else { 2872 uint16_t RegRelFlags = 0; 2873 if (DefRange.IsSubfield) { 2874 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2875 (DefRange.StructOffset 2876 << DefRangeRegisterRelSym::OffsetInParentShift); 2877 } 2878 DefRangeRegisterRelHeader DRHdr; 2879 DRHdr.Register = Reg; 2880 DRHdr.Flags = RegRelFlags; 2881 DRHdr.BasePointerOffset = Offset; 2882 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2883 } 2884 } else { 2885 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2886 if (DefRange.IsSubfield) { 2887 DefRangeSubfieldRegisterHeader DRHdr; 2888 DRHdr.Register = DefRange.CVRegister; 2889 DRHdr.MayHaveNoName = 0; 2890 DRHdr.OffsetInParent = DefRange.StructOffset; 2891 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2892 } else { 2893 DefRangeRegisterHeader DRHdr; 2894 DRHdr.Register = DefRange.CVRegister; 2895 DRHdr.MayHaveNoName = 0; 2896 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2897 } 2898 } 2899 } 2900 } 2901 2902 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2903 const FunctionInfo& FI) { 2904 for (LexicalBlock *Block : Blocks) 2905 emitLexicalBlock(*Block, FI); 2906 } 2907 2908 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2909 /// lexical block scope. 2910 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2911 const FunctionInfo& FI) { 2912 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2913 OS.AddComment("PtrParent"); 2914 OS.emitInt32(0); // PtrParent 2915 OS.AddComment("PtrEnd"); 2916 OS.emitInt32(0); // PtrEnd 2917 OS.AddComment("Code size"); 2918 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2919 OS.AddComment("Function section relative address"); 2920 OS.emitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2921 OS.AddComment("Function section index"); 2922 OS.emitCOFFSectionIndex(FI.Begin); // Func Symbol 2923 OS.AddComment("Lexical block name"); 2924 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2925 endSymbolRecord(RecordEnd); 2926 2927 // Emit variables local to this lexical block. 2928 emitLocalVariableList(FI, Block.Locals); 2929 emitGlobalVariableList(Block.Globals); 2930 2931 // Emit lexical blocks contained within this block. 2932 emitLexicalBlockList(Block.Children, FI); 2933 2934 // Close the lexical block scope. 2935 emitEndSymbolRecord(SymbolKind::S_END); 2936 } 2937 2938 /// Convenience routine for collecting lexical block information for a list 2939 /// of lexical scopes. 2940 void CodeViewDebug::collectLexicalBlockInfo( 2941 SmallVectorImpl<LexicalScope *> &Scopes, 2942 SmallVectorImpl<LexicalBlock *> &Blocks, 2943 SmallVectorImpl<LocalVariable> &Locals, 2944 SmallVectorImpl<CVGlobalVariable> &Globals) { 2945 for (LexicalScope *Scope : Scopes) 2946 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2947 } 2948 2949 /// Populate the lexical blocks and local variable lists of the parent with 2950 /// information about the specified lexical scope. 2951 void CodeViewDebug::collectLexicalBlockInfo( 2952 LexicalScope &Scope, 2953 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2954 SmallVectorImpl<LocalVariable> &ParentLocals, 2955 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2956 if (Scope.isAbstractScope()) 2957 return; 2958 2959 // Gather information about the lexical scope including local variables, 2960 // global variables, and address ranges. 2961 bool IgnoreScope = false; 2962 auto LI = ScopeVariables.find(&Scope); 2963 SmallVectorImpl<LocalVariable> *Locals = 2964 LI != ScopeVariables.end() ? &LI->second : nullptr; 2965 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2966 SmallVectorImpl<CVGlobalVariable> *Globals = 2967 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2968 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2969 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2970 2971 // Ignore lexical scopes which do not contain variables. 2972 if (!Locals && !Globals) 2973 IgnoreScope = true; 2974 2975 // Ignore lexical scopes which are not lexical blocks. 2976 if (!DILB) 2977 IgnoreScope = true; 2978 2979 // Ignore scopes which have too many address ranges to represent in the 2980 // current CodeView format or do not have a valid address range. 2981 // 2982 // For lexical scopes with multiple address ranges you may be tempted to 2983 // construct a single range covering every instruction where the block is 2984 // live and everything in between. Unfortunately, Visual Studio only 2985 // displays variables from the first matching lexical block scope. If the 2986 // first lexical block contains exception handling code or cold code which 2987 // is moved to the bottom of the routine creating a single range covering 2988 // nearly the entire routine, then it will hide all other lexical blocks 2989 // and the variables they contain. 2990 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2991 IgnoreScope = true; 2992 2993 if (IgnoreScope) { 2994 // This scope can be safely ignored and eliminating it will reduce the 2995 // size of the debug information. Be sure to collect any variable and scope 2996 // information from the this scope or any of its children and collapse them 2997 // into the parent scope. 2998 if (Locals) 2999 ParentLocals.append(Locals->begin(), Locals->end()); 3000 if (Globals) 3001 ParentGlobals.append(Globals->begin(), Globals->end()); 3002 collectLexicalBlockInfo(Scope.getChildren(), 3003 ParentBlocks, 3004 ParentLocals, 3005 ParentGlobals); 3006 return; 3007 } 3008 3009 // Create a new CodeView lexical block for this lexical scope. If we've 3010 // seen this DILexicalBlock before then the scope tree is malformed and 3011 // we can handle this gracefully by not processing it a second time. 3012 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 3013 if (!BlockInsertion.second) 3014 return; 3015 3016 // Create a lexical block containing the variables and collect the the 3017 // lexical block information for the children. 3018 const InsnRange &Range = Ranges.front(); 3019 assert(Range.first && Range.second); 3020 LexicalBlock &Block = BlockInsertion.first->second; 3021 Block.Begin = getLabelBeforeInsn(Range.first); 3022 Block.End = getLabelAfterInsn(Range.second); 3023 assert(Block.Begin && "missing label for scope begin"); 3024 assert(Block.End && "missing label for scope end"); 3025 Block.Name = DILB->getName(); 3026 if (Locals) 3027 Block.Locals = std::move(*Locals); 3028 if (Globals) 3029 Block.Globals = std::move(*Globals); 3030 ParentBlocks.push_back(&Block); 3031 collectLexicalBlockInfo(Scope.getChildren(), 3032 Block.Children, 3033 Block.Locals, 3034 Block.Globals); 3035 } 3036 3037 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 3038 const Function &GV = MF->getFunction(); 3039 assert(FnDebugInfo.count(&GV)); 3040 assert(CurFn == FnDebugInfo[&GV].get()); 3041 3042 collectVariableInfo(GV.getSubprogram()); 3043 3044 // Build the lexical block structure to emit for this routine. 3045 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 3046 collectLexicalBlockInfo(*CFS, 3047 CurFn->ChildBlocks, 3048 CurFn->Locals, 3049 CurFn->Globals); 3050 3051 // Clear the scope and variable information from the map which will not be 3052 // valid after we have finished processing this routine. This also prepares 3053 // the map for the subsequent routine. 3054 ScopeVariables.clear(); 3055 3056 // Don't emit anything if we don't have any line tables. 3057 // Thunks are compiler-generated and probably won't have source correlation. 3058 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 3059 FnDebugInfo.erase(&GV); 3060 CurFn = nullptr; 3061 return; 3062 } 3063 3064 // Find heap alloc sites and add to list. 3065 for (const auto &MBB : *MF) { 3066 for (const auto &MI : MBB) { 3067 if (MDNode *MD = MI.getHeapAllocMarker()) { 3068 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 3069 getLabelAfterInsn(&MI), 3070 dyn_cast<DIType>(MD))); 3071 } 3072 } 3073 } 3074 3075 CurFn->Annotations = MF->getCodeViewAnnotations(); 3076 3077 CurFn->End = Asm->getFunctionEnd(); 3078 3079 CurFn = nullptr; 3080 } 3081 3082 // Usable locations are valid with non-zero line numbers. A line number of zero 3083 // corresponds to optimized code that doesn't have a distinct source location. 3084 // In this case, we try to use the previous or next source location depending on 3085 // the context. 3086 static bool isUsableDebugLoc(DebugLoc DL) { 3087 return DL && DL.getLine() != 0; 3088 } 3089 3090 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 3091 DebugHandlerBase::beginInstruction(MI); 3092 3093 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 3094 if (!Asm || !CurFn || MI->isDebugInstr() || 3095 MI->getFlag(MachineInstr::FrameSetup)) 3096 return; 3097 3098 // If the first instruction of a new MBB has no location, find the first 3099 // instruction with a location and use that. 3100 DebugLoc DL = MI->getDebugLoc(); 3101 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 3102 for (const auto &NextMI : *MI->getParent()) { 3103 if (NextMI.isDebugInstr()) 3104 continue; 3105 DL = NextMI.getDebugLoc(); 3106 if (isUsableDebugLoc(DL)) 3107 break; 3108 } 3109 // FIXME: Handle the case where the BB has no valid locations. This would 3110 // probably require doing a real dataflow analysis. 3111 } 3112 PrevInstBB = MI->getParent(); 3113 3114 // If we still don't have a debug location, don't record a location. 3115 if (!isUsableDebugLoc(DL)) 3116 return; 3117 3118 maybeRecordLocation(DL, Asm->MF); 3119 } 3120 3121 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 3122 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 3123 *EndLabel = MMI->getContext().createTempSymbol(); 3124 OS.emitInt32(unsigned(Kind)); 3125 OS.AddComment("Subsection size"); 3126 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 3127 OS.emitLabel(BeginLabel); 3128 return EndLabel; 3129 } 3130 3131 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 3132 OS.emitLabel(EndLabel); 3133 // Every subsection must be aligned to a 4-byte boundary. 3134 OS.emitValueToAlignment(Align(4)); 3135 } 3136 3137 static StringRef getSymbolName(SymbolKind SymKind) { 3138 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 3139 if (EE.Value == SymKind) 3140 return EE.Name; 3141 return ""; 3142 } 3143 3144 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 3145 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 3146 *EndLabel = MMI->getContext().createTempSymbol(); 3147 OS.AddComment("Record length"); 3148 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 3149 OS.emitLabel(BeginLabel); 3150 if (OS.isVerboseAsm()) 3151 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 3152 OS.emitInt16(unsigned(SymKind)); 3153 return EndLabel; 3154 } 3155 3156 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 3157 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 3158 // an extra copy of every symbol record in LLD. This increases object file 3159 // size by less than 1% in the clang build, and is compatible with the Visual 3160 // C++ linker. 3161 OS.emitValueToAlignment(Align(4)); 3162 OS.emitLabel(SymEnd); 3163 } 3164 3165 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 3166 OS.AddComment("Record length"); 3167 OS.emitInt16(2); 3168 if (OS.isVerboseAsm()) 3169 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 3170 OS.emitInt16(uint16_t(EndKind)); // Record Kind 3171 } 3172 3173 void CodeViewDebug::emitDebugInfoForUDTs( 3174 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 3175 #ifndef NDEBUG 3176 size_t OriginalSize = UDTs.size(); 3177 #endif 3178 for (const auto &UDT : UDTs) { 3179 const DIType *T = UDT.second; 3180 assert(shouldEmitUdt(T)); 3181 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 3182 OS.AddComment("Type"); 3183 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3184 assert(OriginalSize == UDTs.size() && 3185 "getCompleteTypeIndex found new UDTs!"); 3186 emitNullTerminatedSymbolName(OS, UDT.first); 3187 endSymbolRecord(UDTRecordEnd); 3188 } 3189 } 3190 3191 void CodeViewDebug::collectGlobalVariableInfo() { 3192 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3193 GlobalMap; 3194 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3195 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3196 GV.getDebugInfo(GVEs); 3197 for (const auto *GVE : GVEs) 3198 GlobalMap[GVE] = &GV; 3199 } 3200 3201 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3202 for (const MDNode *Node : CUs->operands()) { 3203 const auto *CU = cast<DICompileUnit>(Node); 3204 for (const auto *GVE : CU->getGlobalVariables()) { 3205 const DIGlobalVariable *DIGV = GVE->getVariable(); 3206 const DIExpression *DIE = GVE->getExpression(); 3207 // Don't emit string literals in CodeView, as the only useful parts are 3208 // generally the filename and line number, which isn't possible to output 3209 // in CodeView. String literals should be the only unnamed GlobalVariable 3210 // with debug info. 3211 if (DIGV->getName().empty()) continue; 3212 3213 if ((DIE->getNumElements() == 2) && 3214 (DIE->getElement(0) == dwarf::DW_OP_plus_uconst)) 3215 // Record the constant offset for the variable. 3216 // 3217 // A Fortran common block uses this idiom to encode the offset 3218 // of a variable from the common block's starting address. 3219 CVGlobalVariableOffsets.insert( 3220 std::make_pair(DIGV, DIE->getElement(1))); 3221 3222 // Emit constant global variables in a global symbol section. 3223 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3224 CVGlobalVariable CVGV = {DIGV, DIE}; 3225 GlobalVariables.emplace_back(std::move(CVGV)); 3226 } 3227 3228 const auto *GV = GlobalMap.lookup(GVE); 3229 if (!GV || GV->isDeclarationForLinker()) 3230 continue; 3231 3232 DIScope *Scope = DIGV->getScope(); 3233 SmallVector<CVGlobalVariable, 1> *VariableList; 3234 if (Scope && isa<DILocalScope>(Scope)) { 3235 // Locate a global variable list for this scope, creating one if 3236 // necessary. 3237 auto Insertion = ScopeGlobals.insert( 3238 {Scope, std::unique_ptr<GlobalVariableList>()}); 3239 if (Insertion.second) 3240 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3241 VariableList = Insertion.first->second.get(); 3242 } else if (GV->hasComdat()) 3243 // Emit this global variable into a COMDAT section. 3244 VariableList = &ComdatVariables; 3245 else 3246 // Emit this global variable in a single global symbol section. 3247 VariableList = &GlobalVariables; 3248 CVGlobalVariable CVGV = {DIGV, GV}; 3249 VariableList->emplace_back(std::move(CVGV)); 3250 } 3251 } 3252 } 3253 3254 void CodeViewDebug::collectDebugInfoForGlobals() { 3255 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3256 const DIGlobalVariable *DIGV = CVGV.DIGV; 3257 const DIScope *Scope = DIGV->getScope(); 3258 getCompleteTypeIndex(DIGV->getType()); 3259 getFullyQualifiedName(Scope, DIGV->getName()); 3260 } 3261 3262 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3263 const DIGlobalVariable *DIGV = CVGV.DIGV; 3264 const DIScope *Scope = DIGV->getScope(); 3265 getCompleteTypeIndex(DIGV->getType()); 3266 getFullyQualifiedName(Scope, DIGV->getName()); 3267 } 3268 } 3269 3270 void CodeViewDebug::emitDebugInfoForGlobals() { 3271 // First, emit all globals that are not in a comdat in a single symbol 3272 // substream. MSVC doesn't like it if the substream is empty, so only open 3273 // it if we have at least one global to emit. 3274 switchToDebugSectionForSymbol(nullptr); 3275 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3276 OS.AddComment("Symbol subsection for globals"); 3277 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3278 emitGlobalVariableList(GlobalVariables); 3279 emitStaticConstMemberList(); 3280 endCVSubsection(EndLabel); 3281 } 3282 3283 // Second, emit each global that is in a comdat into its own .debug$S 3284 // section along with its own symbol substream. 3285 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3286 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3287 MCSymbol *GVSym = Asm->getSymbol(GV); 3288 OS.AddComment("Symbol subsection for " + 3289 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3290 switchToDebugSectionForSymbol(GVSym); 3291 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3292 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3293 emitDebugInfoForGlobal(CVGV); 3294 endCVSubsection(EndLabel); 3295 } 3296 } 3297 3298 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3299 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3300 for (const MDNode *Node : CUs->operands()) { 3301 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3302 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3303 getTypeIndex(RT); 3304 // FIXME: Add to global/local DTU list. 3305 } 3306 } 3307 } 3308 } 3309 3310 // Emit each global variable in the specified array. 3311 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3312 for (const CVGlobalVariable &CVGV : Globals) { 3313 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3314 emitDebugInfoForGlobal(CVGV); 3315 } 3316 } 3317 3318 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value, 3319 const std::string &QualifiedName) { 3320 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3321 OS.AddComment("Type"); 3322 OS.emitInt32(getTypeIndex(DTy).getIndex()); 3323 3324 OS.AddComment("Value"); 3325 3326 // Encoded integers shouldn't need more than 10 bytes. 3327 uint8_t Data[10]; 3328 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3329 CodeViewRecordIO IO(Writer); 3330 cantFail(IO.mapEncodedInteger(Value)); 3331 StringRef SRef((char *)Data, Writer.getOffset()); 3332 OS.emitBinaryData(SRef); 3333 3334 OS.AddComment("Name"); 3335 emitNullTerminatedSymbolName(OS, QualifiedName); 3336 endSymbolRecord(SConstantEnd); 3337 } 3338 3339 void CodeViewDebug::emitStaticConstMemberList() { 3340 for (const DIDerivedType *DTy : StaticConstMembers) { 3341 const DIScope *Scope = DTy->getScope(); 3342 3343 APSInt Value; 3344 if (const ConstantInt *CI = 3345 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3346 Value = APSInt(CI->getValue(), 3347 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3348 else if (const ConstantFP *CFP = 3349 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3350 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3351 else 3352 llvm_unreachable("cannot emit a constant without a value"); 3353 3354 emitConstantSymbolRecord(DTy->getBaseType(), Value, 3355 getFullyQualifiedName(Scope, DTy->getName())); 3356 } 3357 } 3358 3359 static bool isFloatDIType(const DIType *Ty) { 3360 if (isa<DICompositeType>(Ty)) 3361 return false; 3362 3363 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3364 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3365 if (T == dwarf::DW_TAG_pointer_type || 3366 T == dwarf::DW_TAG_ptr_to_member_type || 3367 T == dwarf::DW_TAG_reference_type || 3368 T == dwarf::DW_TAG_rvalue_reference_type) 3369 return false; 3370 assert(DTy->getBaseType() && "Expected valid base type"); 3371 return isFloatDIType(DTy->getBaseType()); 3372 } 3373 3374 auto *BTy = cast<DIBasicType>(Ty); 3375 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3376 } 3377 3378 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3379 const DIGlobalVariable *DIGV = CVGV.DIGV; 3380 3381 const DIScope *Scope = DIGV->getScope(); 3382 // For static data members, get the scope from the declaration. 3383 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3384 DIGV->getRawStaticDataMemberDeclaration())) 3385 Scope = MemberDecl->getScope(); 3386 // For static local variables and Fortran, the scoping portion is elided 3387 // in its name so that we can reference the variable in the command line 3388 // of the VS debugger. 3389 std::string QualifiedName = 3390 (moduleIsInFortran() || (Scope && isa<DILocalScope>(Scope))) 3391 ? std::string(DIGV->getName()) 3392 : getFullyQualifiedName(Scope, DIGV->getName()); 3393 3394 if (const GlobalVariable *GV = 3395 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3396 // DataSym record, see SymbolRecord.h for more info. Thread local data 3397 // happens to have the same format as global data. 3398 MCSymbol *GVSym = Asm->getSymbol(GV); 3399 SymbolKind DataSym = GV->isThreadLocal() 3400 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3401 : SymbolKind::S_GTHREAD32) 3402 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3403 : SymbolKind::S_GDATA32); 3404 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3405 OS.AddComment("Type"); 3406 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3407 OS.AddComment("DataOffset"); 3408 3409 uint64_t Offset = 0; 3410 if (CVGlobalVariableOffsets.contains(DIGV)) 3411 // Use the offset seen while collecting info on globals. 3412 Offset = CVGlobalVariableOffsets[DIGV]; 3413 OS.emitCOFFSecRel32(GVSym, Offset); 3414 3415 OS.AddComment("Segment"); 3416 OS.emitCOFFSectionIndex(GVSym); 3417 OS.AddComment("Name"); 3418 const unsigned LengthOfDataRecord = 12; 3419 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3420 endSymbolRecord(DataEnd); 3421 } else { 3422 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3423 assert(DIE->isConstant() && 3424 "Global constant variables must contain a constant expression."); 3425 3426 // Use unsigned for floats. 3427 bool isUnsigned = isFloatDIType(DIGV->getType()) 3428 ? true 3429 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3430 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3431 emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName); 3432 } 3433 } 3434