1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/ByteStream.h" 17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 18 #include "llvm/DebugInfo/CodeView/CodeView.h" 19 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 20 #include "llvm/DebugInfo/CodeView/Line.h" 21 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 22 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 23 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 24 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCSectionCOFF.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/Support/COFF.h" 31 #include "llvm/Support/ScopedPrinter.h" 32 #include "llvm/Target/TargetFrameLowering.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 36 using namespace llvm; 37 using namespace llvm::codeview; 38 39 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 40 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 41 // If module doesn't have named metadata anchors or COFF debug section 42 // is not available, skip any debug info related stuff. 43 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 44 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 45 Asm = nullptr; 46 return; 47 } 48 49 // Tell MMI that we have debug info. 50 MMI->setDebugInfoAvailability(true); 51 } 52 53 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 54 std::string &Filepath = FileToFilepathMap[File]; 55 if (!Filepath.empty()) 56 return Filepath; 57 58 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 59 60 // Clang emits directory and relative filename info into the IR, but CodeView 61 // operates on full paths. We could change Clang to emit full paths too, but 62 // that would increase the IR size and probably not needed for other users. 63 // For now, just concatenate and canonicalize the path here. 64 if (Filename.find(':') == 1) 65 Filepath = Filename; 66 else 67 Filepath = (Dir + "\\" + Filename).str(); 68 69 // Canonicalize the path. We have to do it textually because we may no longer 70 // have access the file in the filesystem. 71 // First, replace all slashes with backslashes. 72 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 73 74 // Remove all "\.\" with "\". 75 size_t Cursor = 0; 76 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 77 Filepath.erase(Cursor, 2); 78 79 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 80 // path should be well-formatted, e.g. start with a drive letter, etc. 81 Cursor = 0; 82 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 83 // Something's wrong if the path starts with "\..\", abort. 84 if (Cursor == 0) 85 break; 86 87 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 88 if (PrevSlash == std::string::npos) 89 // Something's wrong, abort. 90 break; 91 92 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 93 // The next ".." might be following the one we've just erased. 94 Cursor = PrevSlash; 95 } 96 97 // Remove all duplicate backslashes. 98 Cursor = 0; 99 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 100 Filepath.erase(Cursor, 1); 101 102 return Filepath; 103 } 104 105 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 106 unsigned NextId = FileIdMap.size() + 1; 107 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 108 if (Insertion.second) { 109 // We have to compute the full filepath and emit a .cv_file directive. 110 StringRef FullPath = getFullFilepath(F); 111 NextId = OS.EmitCVFileDirective(NextId, FullPath); 112 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 113 } 114 return Insertion.first->second; 115 } 116 117 CodeViewDebug::InlineSite & 118 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 119 const DISubprogram *Inlinee) { 120 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 121 InlineSite *Site = &SiteInsertion.first->second; 122 if (SiteInsertion.second) { 123 Site->SiteFuncId = NextFuncId++; 124 Site->Inlinee = Inlinee; 125 InlinedSubprograms.insert(Inlinee); 126 getFuncIdForSubprogram(Inlinee); 127 } 128 return *Site; 129 } 130 131 static StringRef getPrettyScopeName(const DIScope *Scope) { 132 StringRef ScopeName = Scope->getName(); 133 if (!ScopeName.empty()) 134 return ScopeName; 135 136 switch (Scope->getTag()) { 137 case dwarf::DW_TAG_enumeration_type: 138 case dwarf::DW_TAG_class_type: 139 case dwarf::DW_TAG_structure_type: 140 case dwarf::DW_TAG_union_type: 141 return "<unnamed-tag>"; 142 case dwarf::DW_TAG_namespace: 143 return "`anonymous namespace'"; 144 } 145 146 return StringRef(); 147 } 148 149 static const DISubprogram *getQualifiedNameComponents( 150 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 151 const DISubprogram *ClosestSubprogram = nullptr; 152 while (Scope != nullptr) { 153 if (ClosestSubprogram == nullptr) 154 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 155 StringRef ScopeName = getPrettyScopeName(Scope); 156 if (!ScopeName.empty()) 157 QualifiedNameComponents.push_back(ScopeName); 158 Scope = Scope->getScope().resolve(); 159 } 160 return ClosestSubprogram; 161 } 162 163 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 164 StringRef TypeName) { 165 std::string FullyQualifiedName; 166 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 167 FullyQualifiedName.append(QualifiedNameComponent); 168 FullyQualifiedName.append("::"); 169 } 170 FullyQualifiedName.append(TypeName); 171 return FullyQualifiedName; 172 } 173 174 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 175 SmallVector<StringRef, 5> QualifiedNameComponents; 176 getQualifiedNameComponents(Scope, QualifiedNameComponents); 177 return getQualifiedName(QualifiedNameComponents, Name); 178 } 179 180 struct CodeViewDebug::TypeLoweringScope { 181 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 182 ~TypeLoweringScope() { 183 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 184 // inner TypeLoweringScopes don't attempt to emit deferred types. 185 if (CVD.TypeEmissionLevel == 1) 186 CVD.emitDeferredCompleteTypes(); 187 --CVD.TypeEmissionLevel; 188 } 189 CodeViewDebug &CVD; 190 }; 191 192 static std::string getFullyQualifiedName(const DIScope *Ty) { 193 const DIScope *Scope = Ty->getScope().resolve(); 194 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 195 } 196 197 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 198 // No scope means global scope and that uses the zero index. 199 if (!Scope || isa<DIFile>(Scope)) 200 return TypeIndex(); 201 202 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 203 204 // Check if we've already translated this scope. 205 auto I = TypeIndices.find({Scope, nullptr}); 206 if (I != TypeIndices.end()) 207 return I->second; 208 209 // Build the fully qualified name of the scope. 210 std::string ScopeName = getFullyQualifiedName(Scope); 211 TypeIndex TI = 212 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 213 return recordTypeIndexForDINode(Scope, TI); 214 } 215 216 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 217 // It's possible to ask for the FuncId of a function which doesn't have a 218 // subprogram: inlining a function with debug info into a function with none. 219 if (!SP) 220 return TypeIndex::None(); 221 222 // Check if we've already translated this subprogram. 223 auto I = TypeIndices.find({SP, nullptr}); 224 if (I != TypeIndices.end()) 225 return I->second; 226 227 // The display name includes function template arguments. Drop them to match 228 // MSVC. 229 StringRef DisplayName = SP->getDisplayName().split('<').first; 230 231 const DIScope *Scope = SP->getScope().resolve(); 232 TypeIndex TI; 233 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 234 // If the scope is a DICompositeType, then this must be a method. Member 235 // function types take some special handling, and require access to the 236 // subprogram. 237 TypeIndex ClassType = getTypeIndex(Class); 238 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 239 DisplayName); 240 TI = TypeTable.writeMemberFuncId(MFuncId); 241 } else { 242 // Otherwise, this must be a free function. 243 TypeIndex ParentScope = getScopeIndex(Scope); 244 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 245 TI = TypeTable.writeFuncId(FuncId); 246 } 247 248 return recordTypeIndexForDINode(SP, TI); 249 } 250 251 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 252 const DICompositeType *Class) { 253 // Always use the method declaration as the key for the function type. The 254 // method declaration contains the this adjustment. 255 if (SP->getDeclaration()) 256 SP = SP->getDeclaration(); 257 assert(!SP->getDeclaration() && "should use declaration as key"); 258 259 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 260 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 261 auto I = TypeIndices.find({SP, Class}); 262 if (I != TypeIndices.end()) 263 return I->second; 264 265 // Make sure complete type info for the class is emitted *after* the member 266 // function type, as the complete class type is likely to reference this 267 // member function type. 268 TypeLoweringScope S(*this); 269 TypeIndex TI = 270 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 271 return recordTypeIndexForDINode(SP, TI, Class); 272 } 273 274 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, 275 const DIType *ClassTy) { 276 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 277 (void)InsertResult; 278 assert(InsertResult.second && "DINode was already assigned a type index"); 279 return TI; 280 } 281 282 unsigned CodeViewDebug::getPointerSizeInBytes() { 283 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 284 } 285 286 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 287 const DILocation *InlinedAt) { 288 if (InlinedAt) { 289 // This variable was inlined. Associate it with the InlineSite. 290 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 291 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 292 Site.InlinedLocals.emplace_back(Var); 293 } else { 294 // This variable goes in the main ProcSym. 295 CurFn->Locals.emplace_back(Var); 296 } 297 } 298 299 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 300 const DILocation *Loc) { 301 auto B = Locs.begin(), E = Locs.end(); 302 if (std::find(B, E, Loc) == E) 303 Locs.push_back(Loc); 304 } 305 306 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 307 const MachineFunction *MF) { 308 // Skip this instruction if it has the same location as the previous one. 309 if (DL == CurFn->LastLoc) 310 return; 311 312 const DIScope *Scope = DL.get()->getScope(); 313 if (!Scope) 314 return; 315 316 // Skip this line if it is longer than the maximum we can record. 317 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 318 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 319 LI.isNeverStepInto()) 320 return; 321 322 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 323 if (CI.getStartColumn() != DL.getCol()) 324 return; 325 326 if (!CurFn->HaveLineInfo) 327 CurFn->HaveLineInfo = true; 328 unsigned FileId = 0; 329 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 330 FileId = CurFn->LastFileId; 331 else 332 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 333 CurFn->LastLoc = DL; 334 335 unsigned FuncId = CurFn->FuncId; 336 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 337 const DILocation *Loc = DL.get(); 338 339 // If this location was actually inlined from somewhere else, give it the ID 340 // of the inline call site. 341 FuncId = 342 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 343 344 // Ensure we have links in the tree of inline call sites. 345 bool FirstLoc = true; 346 while ((SiteLoc = Loc->getInlinedAt())) { 347 InlineSite &Site = 348 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 349 if (!FirstLoc) 350 addLocIfNotPresent(Site.ChildSites, Loc); 351 FirstLoc = false; 352 Loc = SiteLoc; 353 } 354 addLocIfNotPresent(CurFn->ChildSites, Loc); 355 } 356 357 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 358 /*PrologueEnd=*/false, 359 /*IsStmt=*/false, DL->getFilename()); 360 } 361 362 void CodeViewDebug::emitCodeViewMagicVersion() { 363 OS.EmitValueToAlignment(4); 364 OS.AddComment("Debug section magic"); 365 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 366 } 367 368 void CodeViewDebug::endModule() { 369 if (!Asm || !MMI->hasDebugInfo()) 370 return; 371 372 assert(Asm != nullptr); 373 374 // The COFF .debug$S section consists of several subsections, each starting 375 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 376 // of the payload followed by the payload itself. The subsections are 4-byte 377 // aligned. 378 379 // Use the generic .debug$S section, and make a subsection for all the inlined 380 // subprograms. 381 switchToDebugSectionForSymbol(nullptr); 382 emitInlineeLinesSubsection(); 383 384 // Emit per-function debug information. 385 for (auto &P : FnDebugInfo) 386 if (!P.first->isDeclarationForLinker()) 387 emitDebugInfoForFunction(P.first, P.second); 388 389 // Emit global variable debug information. 390 setCurrentSubprogram(nullptr); 391 emitDebugInfoForGlobals(); 392 393 // Emit retained types. 394 emitDebugInfoForRetainedTypes(); 395 396 // Switch back to the generic .debug$S section after potentially processing 397 // comdat symbol sections. 398 switchToDebugSectionForSymbol(nullptr); 399 400 // Emit UDT records for any types used by global variables. 401 if (!GlobalUDTs.empty()) { 402 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 403 emitDebugInfoForUDTs(GlobalUDTs); 404 endCVSubsection(SymbolsEnd); 405 } 406 407 // This subsection holds a file index to offset in string table table. 408 OS.AddComment("File index to string table offset subsection"); 409 OS.EmitCVFileChecksumsDirective(); 410 411 // This subsection holds the string table. 412 OS.AddComment("String table"); 413 OS.EmitCVStringTableDirective(); 414 415 // Emit type information last, so that any types we translate while emitting 416 // function info are included. 417 emitTypeInformation(); 418 419 clear(); 420 } 421 422 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 423 // Microsoft's linker seems to have trouble with symbol names longer than 424 // 0xffd8 bytes. 425 S = S.substr(0, 0xffd8); 426 SmallString<32> NullTerminatedString(S); 427 NullTerminatedString.push_back('\0'); 428 OS.EmitBytes(NullTerminatedString); 429 } 430 431 void CodeViewDebug::emitTypeInformation() { 432 // Do nothing if we have no debug info or if no non-trivial types were emitted 433 // to TypeTable during codegen. 434 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 435 if (!CU_Nodes) 436 return; 437 if (TypeTable.empty()) 438 return; 439 440 // Start the .debug$T section with 0x4. 441 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 442 emitCodeViewMagicVersion(); 443 444 SmallString<8> CommentPrefix; 445 if (OS.isVerboseAsm()) { 446 CommentPrefix += '\t'; 447 CommentPrefix += Asm->MAI->getCommentString(); 448 CommentPrefix += ' '; 449 } 450 451 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 452 TypeTable.ForEachRecord( 453 [&](TypeIndex Index, StringRef Record) { 454 if (OS.isVerboseAsm()) { 455 // Emit a block comment describing the type record for readability. 456 SmallString<512> CommentBlock; 457 raw_svector_ostream CommentOS(CommentBlock); 458 ScopedPrinter SP(CommentOS); 459 SP.setPrefix(CommentPrefix); 460 CVTD.setPrinter(&SP); 461 Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 462 if (E) { 463 logAllUnhandledErrors(std::move(E), errs(), "error: "); 464 llvm_unreachable("produced malformed type record"); 465 } 466 // emitRawComment will insert its own tab and comment string before 467 // the first line, so strip off our first one. It also prints its own 468 // newline. 469 OS.emitRawComment( 470 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 471 } else { 472 #ifndef NDEBUG 473 // Assert that the type data is valid even if we aren't dumping 474 // comments. The MSVC linker doesn't do much type record validation, 475 // so the first link of an invalid type record can succeed while 476 // subsequent links will fail with LNK1285. 477 ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()}); 478 CVTypeArray Types; 479 StreamReader Reader(Stream); 480 Error E = Reader.readArray(Types, Reader.getLength()); 481 if (!E) { 482 TypeVisitorCallbacks C; 483 E = CVTypeVisitor(C).visitTypeStream(Types); 484 } 485 if (E) { 486 logAllUnhandledErrors(std::move(E), errs(), "error: "); 487 llvm_unreachable("produced malformed type record"); 488 } 489 #endif 490 } 491 OS.EmitBinaryData(Record); 492 }); 493 } 494 495 void CodeViewDebug::emitInlineeLinesSubsection() { 496 if (InlinedSubprograms.empty()) 497 return; 498 499 OS.AddComment("Inlinee lines subsection"); 500 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 501 502 // We don't provide any extra file info. 503 // FIXME: Find out if debuggers use this info. 504 OS.AddComment("Inlinee lines signature"); 505 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 506 507 for (const DISubprogram *SP : InlinedSubprograms) { 508 assert(TypeIndices.count({SP, nullptr})); 509 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 510 511 OS.AddBlankLine(); 512 unsigned FileId = maybeRecordFile(SP->getFile()); 513 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 514 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 515 OS.AddBlankLine(); 516 // The filechecksum table uses 8 byte entries for now, and file ids start at 517 // 1. 518 unsigned FileOffset = (FileId - 1) * 8; 519 OS.AddComment("Type index of inlined function"); 520 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 521 OS.AddComment("Offset into filechecksum table"); 522 OS.EmitIntValue(FileOffset, 4); 523 OS.AddComment("Starting line number"); 524 OS.EmitIntValue(SP->getLine(), 4); 525 } 526 527 endCVSubsection(InlineEnd); 528 } 529 530 void CodeViewDebug::collectInlineSiteChildren( 531 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 532 const InlineSite &Site) { 533 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 534 auto I = FI.InlineSites.find(ChildSiteLoc); 535 const InlineSite &ChildSite = I->second; 536 Children.push_back(ChildSite.SiteFuncId); 537 collectInlineSiteChildren(Children, FI, ChildSite); 538 } 539 } 540 541 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 542 const DILocation *InlinedAt, 543 const InlineSite &Site) { 544 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 545 *InlineEnd = MMI->getContext().createTempSymbol(); 546 547 assert(TypeIndices.count({Site.Inlinee, nullptr})); 548 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 549 550 // SymbolRecord 551 OS.AddComment("Record length"); 552 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 553 OS.EmitLabel(InlineBegin); 554 OS.AddComment("Record kind: S_INLINESITE"); 555 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 556 557 OS.AddComment("PtrParent"); 558 OS.EmitIntValue(0, 4); 559 OS.AddComment("PtrEnd"); 560 OS.EmitIntValue(0, 4); 561 OS.AddComment("Inlinee type index"); 562 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 563 564 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 565 unsigned StartLineNum = Site.Inlinee->getLine(); 566 SmallVector<unsigned, 3> SecondaryFuncIds; 567 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 568 569 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 570 FI.Begin, FI.End, SecondaryFuncIds); 571 572 OS.EmitLabel(InlineEnd); 573 574 emitLocalVariableList(Site.InlinedLocals); 575 576 // Recurse on child inlined call sites before closing the scope. 577 for (const DILocation *ChildSite : Site.ChildSites) { 578 auto I = FI.InlineSites.find(ChildSite); 579 assert(I != FI.InlineSites.end() && 580 "child site not in function inline site map"); 581 emitInlinedCallSite(FI, ChildSite, I->second); 582 } 583 584 // Close the scope. 585 OS.AddComment("Record length"); 586 OS.EmitIntValue(2, 2); // RecordLength 587 OS.AddComment("Record kind: S_INLINESITE_END"); 588 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 589 } 590 591 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 592 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 593 // comdat key. A section may be comdat because of -ffunction-sections or 594 // because it is comdat in the IR. 595 MCSectionCOFF *GVSec = 596 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 597 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 598 599 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 600 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 601 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 602 603 OS.SwitchSection(DebugSec); 604 605 // Emit the magic version number if this is the first time we've switched to 606 // this section. 607 if (ComdatDebugSections.insert(DebugSec).second) 608 emitCodeViewMagicVersion(); 609 } 610 611 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 612 FunctionInfo &FI) { 613 // For each function there is a separate subsection 614 // which holds the PC to file:line table. 615 const MCSymbol *Fn = Asm->getSymbol(GV); 616 assert(Fn); 617 618 // Switch to the to a comdat section, if appropriate. 619 switchToDebugSectionForSymbol(Fn); 620 621 std::string FuncName; 622 auto *SP = GV->getSubprogram(); 623 setCurrentSubprogram(SP); 624 625 // If we have a display name, build the fully qualified name by walking the 626 // chain of scopes. 627 if (SP != nullptr && !SP->getDisplayName().empty()) 628 FuncName = 629 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 630 631 // If our DISubprogram name is empty, use the mangled name. 632 if (FuncName.empty()) 633 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 634 635 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 636 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 637 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 638 { 639 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 640 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 641 OS.AddComment("Record length"); 642 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 643 OS.EmitLabel(ProcRecordBegin); 644 645 if (GV->hasLocalLinkage()) { 646 OS.AddComment("Record kind: S_LPROC32_ID"); 647 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 648 } else { 649 OS.AddComment("Record kind: S_GPROC32_ID"); 650 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 651 } 652 653 // These fields are filled in by tools like CVPACK which run after the fact. 654 OS.AddComment("PtrParent"); 655 OS.EmitIntValue(0, 4); 656 OS.AddComment("PtrEnd"); 657 OS.EmitIntValue(0, 4); 658 OS.AddComment("PtrNext"); 659 OS.EmitIntValue(0, 4); 660 // This is the important bit that tells the debugger where the function 661 // code is located and what's its size: 662 OS.AddComment("Code size"); 663 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 664 OS.AddComment("Offset after prologue"); 665 OS.EmitIntValue(0, 4); 666 OS.AddComment("Offset before epilogue"); 667 OS.EmitIntValue(0, 4); 668 OS.AddComment("Function type index"); 669 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 670 OS.AddComment("Function section relative address"); 671 OS.EmitCOFFSecRel32(Fn); 672 OS.AddComment("Function section index"); 673 OS.EmitCOFFSectionIndex(Fn); 674 OS.AddComment("Flags"); 675 OS.EmitIntValue(0, 1); 676 // Emit the function display name as a null-terminated string. 677 OS.AddComment("Function name"); 678 // Truncate the name so we won't overflow the record length field. 679 emitNullTerminatedSymbolName(OS, FuncName); 680 OS.EmitLabel(ProcRecordEnd); 681 682 emitLocalVariableList(FI.Locals); 683 684 // Emit inlined call site information. Only emit functions inlined directly 685 // into the parent function. We'll emit the other sites recursively as part 686 // of their parent inline site. 687 for (const DILocation *InlinedAt : FI.ChildSites) { 688 auto I = FI.InlineSites.find(InlinedAt); 689 assert(I != FI.InlineSites.end() && 690 "child site not in function inline site map"); 691 emitInlinedCallSite(FI, InlinedAt, I->second); 692 } 693 694 if (SP != nullptr) 695 emitDebugInfoForUDTs(LocalUDTs); 696 697 // We're done with this function. 698 OS.AddComment("Record length"); 699 OS.EmitIntValue(0x0002, 2); 700 OS.AddComment("Record kind: S_PROC_ID_END"); 701 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 702 } 703 endCVSubsection(SymbolsEnd); 704 705 // We have an assembler directive that takes care of the whole line table. 706 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 707 } 708 709 CodeViewDebug::LocalVarDefRange 710 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 711 LocalVarDefRange DR; 712 DR.InMemory = -1; 713 DR.DataOffset = Offset; 714 assert(DR.DataOffset == Offset && "truncation"); 715 DR.StructOffset = 0; 716 DR.CVRegister = CVRegister; 717 return DR; 718 } 719 720 CodeViewDebug::LocalVarDefRange 721 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 722 LocalVarDefRange DR; 723 DR.InMemory = 0; 724 DR.DataOffset = 0; 725 DR.StructOffset = 0; 726 DR.CVRegister = CVRegister; 727 return DR; 728 } 729 730 void CodeViewDebug::collectVariableInfoFromMMITable( 731 DenseSet<InlinedVariable> &Processed) { 732 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 733 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 734 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 735 736 for (const MachineModuleInfo::VariableDbgInfo &VI : 737 MMI->getVariableDbgInfo()) { 738 if (!VI.Var) 739 continue; 740 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 741 "Expected inlined-at fields to agree"); 742 743 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 744 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 745 746 // If variable scope is not found then skip this variable. 747 if (!Scope) 748 continue; 749 750 // Get the frame register used and the offset. 751 unsigned FrameReg = 0; 752 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 753 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 754 755 // Calculate the label ranges. 756 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 757 for (const InsnRange &Range : Scope->getRanges()) { 758 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 759 const MCSymbol *End = getLabelAfterInsn(Range.second); 760 End = End ? End : Asm->getFunctionEnd(); 761 DefRange.Ranges.emplace_back(Begin, End); 762 } 763 764 LocalVariable Var; 765 Var.DIVar = VI.Var; 766 Var.DefRanges.emplace_back(std::move(DefRange)); 767 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 768 } 769 } 770 771 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 772 DenseSet<InlinedVariable> Processed; 773 // Grab the variable info that was squirreled away in the MMI side-table. 774 collectVariableInfoFromMMITable(Processed); 775 776 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 777 778 for (const auto &I : DbgValues) { 779 InlinedVariable IV = I.first; 780 if (Processed.count(IV)) 781 continue; 782 const DILocalVariable *DIVar = IV.first; 783 const DILocation *InlinedAt = IV.second; 784 785 // Instruction ranges, specifying where IV is accessible. 786 const auto &Ranges = I.second; 787 788 LexicalScope *Scope = nullptr; 789 if (InlinedAt) 790 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 791 else 792 Scope = LScopes.findLexicalScope(DIVar->getScope()); 793 // If variable scope is not found then skip this variable. 794 if (!Scope) 795 continue; 796 797 LocalVariable Var; 798 Var.DIVar = DIVar; 799 800 // Calculate the definition ranges. 801 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 802 const InsnRange &Range = *I; 803 const MachineInstr *DVInst = Range.first; 804 assert(DVInst->isDebugValue() && "Invalid History entry"); 805 const DIExpression *DIExpr = DVInst->getDebugExpression(); 806 807 // Bail if there is a complex DWARF expression for now. 808 if (DIExpr && DIExpr->getNumElements() > 0) 809 continue; 810 811 // Bail if operand 0 is not a valid register. This means the variable is a 812 // simple constant, or is described by a complex expression. 813 // FIXME: Find a way to represent constant variables, since they are 814 // relatively common. 815 unsigned Reg = 816 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 817 if (Reg == 0) 818 continue; 819 820 // Handle the two cases we can handle: indirect in memory and in register. 821 bool IsIndirect = DVInst->getOperand(1).isImm(); 822 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 823 { 824 LocalVarDefRange DefRange; 825 if (IsIndirect) { 826 int64_t Offset = DVInst->getOperand(1).getImm(); 827 DefRange = createDefRangeMem(CVReg, Offset); 828 } else { 829 DefRange = createDefRangeReg(CVReg); 830 } 831 if (Var.DefRanges.empty() || 832 Var.DefRanges.back().isDifferentLocation(DefRange)) { 833 Var.DefRanges.emplace_back(std::move(DefRange)); 834 } 835 } 836 837 // Compute the label range. 838 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 839 const MCSymbol *End = getLabelAfterInsn(Range.second); 840 if (!End) { 841 if (std::next(I) != E) 842 End = getLabelBeforeInsn(std::next(I)->first); 843 else 844 End = Asm->getFunctionEnd(); 845 } 846 847 // If the last range end is our begin, just extend the last range. 848 // Otherwise make a new range. 849 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 850 Var.DefRanges.back().Ranges; 851 if (!Ranges.empty() && Ranges.back().second == Begin) 852 Ranges.back().second = End; 853 else 854 Ranges.emplace_back(Begin, End); 855 856 // FIXME: Do more range combining. 857 } 858 859 recordLocalVariable(std::move(Var), InlinedAt); 860 } 861 } 862 863 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 864 assert(!CurFn && "Can't process two functions at once!"); 865 866 if (!Asm || !MMI->hasDebugInfo()) 867 return; 868 869 DebugHandlerBase::beginFunction(MF); 870 871 const Function *GV = MF->getFunction(); 872 assert(FnDebugInfo.count(GV) == false); 873 CurFn = &FnDebugInfo[GV]; 874 CurFn->FuncId = NextFuncId++; 875 CurFn->Begin = Asm->getFunctionBegin(); 876 877 // Find the end of the function prolog. First known non-DBG_VALUE and 878 // non-frame setup location marks the beginning of the function body. 879 // FIXME: is there a simpler a way to do this? Can we just search 880 // for the first instruction of the function, not the last of the prolog? 881 DebugLoc PrologEndLoc; 882 bool EmptyPrologue = true; 883 for (const auto &MBB : *MF) { 884 for (const auto &MI : MBB) { 885 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 886 MI.getDebugLoc()) { 887 PrologEndLoc = MI.getDebugLoc(); 888 break; 889 } else if (!MI.isDebugValue()) { 890 EmptyPrologue = false; 891 } 892 } 893 } 894 895 // Record beginning of function if we have a non-empty prologue. 896 if (PrologEndLoc && !EmptyPrologue) { 897 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 898 maybeRecordLocation(FnStartDL, MF); 899 } 900 } 901 902 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 903 // Don't record empty UDTs. 904 if (Ty->getName().empty()) 905 return; 906 907 SmallVector<StringRef, 5> QualifiedNameComponents; 908 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 909 Ty->getScope().resolve(), QualifiedNameComponents); 910 911 std::string FullyQualifiedName = 912 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 913 914 if (ClosestSubprogram == nullptr) 915 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 916 else if (ClosestSubprogram == CurrentSubprogram) 917 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 918 919 // TODO: What if the ClosestSubprogram is neither null or the current 920 // subprogram? Currently, the UDT just gets dropped on the floor. 921 // 922 // The current behavior is not desirable. To get maximal fidelity, we would 923 // need to perform all type translation before beginning emission of .debug$S 924 // and then make LocalUDTs a member of FunctionInfo 925 } 926 927 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 928 // Generic dispatch for lowering an unknown type. 929 switch (Ty->getTag()) { 930 case dwarf::DW_TAG_array_type: 931 return lowerTypeArray(cast<DICompositeType>(Ty)); 932 case dwarf::DW_TAG_typedef: 933 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 934 case dwarf::DW_TAG_base_type: 935 return lowerTypeBasic(cast<DIBasicType>(Ty)); 936 case dwarf::DW_TAG_pointer_type: 937 case dwarf::DW_TAG_reference_type: 938 case dwarf::DW_TAG_rvalue_reference_type: 939 return lowerTypePointer(cast<DIDerivedType>(Ty)); 940 case dwarf::DW_TAG_ptr_to_member_type: 941 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 942 case dwarf::DW_TAG_const_type: 943 case dwarf::DW_TAG_volatile_type: 944 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 945 case dwarf::DW_TAG_subroutine_type: 946 if (ClassTy) { 947 // The member function type of a member function pointer has no 948 // ThisAdjustment. 949 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 950 /*ThisAdjustment=*/0); 951 } 952 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 953 case dwarf::DW_TAG_enumeration_type: 954 return lowerTypeEnum(cast<DICompositeType>(Ty)); 955 case dwarf::DW_TAG_class_type: 956 case dwarf::DW_TAG_structure_type: 957 return lowerTypeClass(cast<DICompositeType>(Ty)); 958 case dwarf::DW_TAG_union_type: 959 return lowerTypeUnion(cast<DICompositeType>(Ty)); 960 default: 961 // Use the null type index. 962 return TypeIndex(); 963 } 964 } 965 966 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 967 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 968 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 969 StringRef TypeName = Ty->getName(); 970 971 addToUDTs(Ty, UnderlyingTypeIndex); 972 973 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 974 TypeName == "HRESULT") 975 return TypeIndex(SimpleTypeKind::HResult); 976 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 977 TypeName == "wchar_t") 978 return TypeIndex(SimpleTypeKind::WideCharacter); 979 980 return UnderlyingTypeIndex; 981 } 982 983 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 984 DITypeRef ElementTypeRef = Ty->getBaseType(); 985 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 986 // IndexType is size_t, which depends on the bitness of the target. 987 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 988 ? TypeIndex(SimpleTypeKind::UInt64Quad) 989 : TypeIndex(SimpleTypeKind::UInt32Long); 990 uint64_t Size = Ty->getSizeInBits() / 8; 991 ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName()); 992 return TypeTable.writeArray(Record); 993 } 994 995 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 996 TypeIndex Index; 997 dwarf::TypeKind Kind; 998 uint32_t ByteSize; 999 1000 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1001 ByteSize = Ty->getSizeInBits() / 8; 1002 1003 SimpleTypeKind STK = SimpleTypeKind::None; 1004 switch (Kind) { 1005 case dwarf::DW_ATE_address: 1006 // FIXME: Translate 1007 break; 1008 case dwarf::DW_ATE_boolean: 1009 switch (ByteSize) { 1010 case 1: STK = SimpleTypeKind::Boolean8; break; 1011 case 2: STK = SimpleTypeKind::Boolean16; break; 1012 case 4: STK = SimpleTypeKind::Boolean32; break; 1013 case 8: STK = SimpleTypeKind::Boolean64; break; 1014 case 16: STK = SimpleTypeKind::Boolean128; break; 1015 } 1016 break; 1017 case dwarf::DW_ATE_complex_float: 1018 switch (ByteSize) { 1019 case 2: STK = SimpleTypeKind::Complex16; break; 1020 case 4: STK = SimpleTypeKind::Complex32; break; 1021 case 8: STK = SimpleTypeKind::Complex64; break; 1022 case 10: STK = SimpleTypeKind::Complex80; break; 1023 case 16: STK = SimpleTypeKind::Complex128; break; 1024 } 1025 break; 1026 case dwarf::DW_ATE_float: 1027 switch (ByteSize) { 1028 case 2: STK = SimpleTypeKind::Float16; break; 1029 case 4: STK = SimpleTypeKind::Float32; break; 1030 case 6: STK = SimpleTypeKind::Float48; break; 1031 case 8: STK = SimpleTypeKind::Float64; break; 1032 case 10: STK = SimpleTypeKind::Float80; break; 1033 case 16: STK = SimpleTypeKind::Float128; break; 1034 } 1035 break; 1036 case dwarf::DW_ATE_signed: 1037 switch (ByteSize) { 1038 case 1: STK = SimpleTypeKind::SByte; break; 1039 case 2: STK = SimpleTypeKind::Int16Short; break; 1040 case 4: STK = SimpleTypeKind::Int32; break; 1041 case 8: STK = SimpleTypeKind::Int64Quad; break; 1042 case 16: STK = SimpleTypeKind::Int128Oct; break; 1043 } 1044 break; 1045 case dwarf::DW_ATE_unsigned: 1046 switch (ByteSize) { 1047 case 1: STK = SimpleTypeKind::Byte; break; 1048 case 2: STK = SimpleTypeKind::UInt16Short; break; 1049 case 4: STK = SimpleTypeKind::UInt32; break; 1050 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1051 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1052 } 1053 break; 1054 case dwarf::DW_ATE_UTF: 1055 switch (ByteSize) { 1056 case 2: STK = SimpleTypeKind::Character16; break; 1057 case 4: STK = SimpleTypeKind::Character32; break; 1058 } 1059 break; 1060 case dwarf::DW_ATE_signed_char: 1061 if (ByteSize == 1) 1062 STK = SimpleTypeKind::SignedCharacter; 1063 break; 1064 case dwarf::DW_ATE_unsigned_char: 1065 if (ByteSize == 1) 1066 STK = SimpleTypeKind::UnsignedCharacter; 1067 break; 1068 default: 1069 break; 1070 } 1071 1072 // Apply some fixups based on the source-level type name. 1073 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1074 STK = SimpleTypeKind::Int32Long; 1075 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1076 STK = SimpleTypeKind::UInt32Long; 1077 if (STK == SimpleTypeKind::UInt16Short && 1078 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1079 STK = SimpleTypeKind::WideCharacter; 1080 if ((STK == SimpleTypeKind::SignedCharacter || 1081 STK == SimpleTypeKind::UnsignedCharacter) && 1082 Ty->getName() == "char") 1083 STK = SimpleTypeKind::NarrowCharacter; 1084 1085 return TypeIndex(STK); 1086 } 1087 1088 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1089 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1090 1091 // While processing the type being pointed to it is possible we already 1092 // created this pointer type. If so, we check here and return the existing 1093 // pointer type. 1094 auto I = TypeIndices.find({Ty, nullptr}); 1095 if (I != TypeIndices.end()) 1096 return I->second; 1097 1098 // Pointers to simple types can use SimpleTypeMode, rather than having a 1099 // dedicated pointer type record. 1100 if (PointeeTI.isSimple() && 1101 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1102 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1103 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1104 ? SimpleTypeMode::NearPointer64 1105 : SimpleTypeMode::NearPointer32; 1106 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1107 } 1108 1109 PointerKind PK = 1110 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1111 PointerMode PM = PointerMode::Pointer; 1112 switch (Ty->getTag()) { 1113 default: llvm_unreachable("not a pointer tag type"); 1114 case dwarf::DW_TAG_pointer_type: 1115 PM = PointerMode::Pointer; 1116 break; 1117 case dwarf::DW_TAG_reference_type: 1118 PM = PointerMode::LValueReference; 1119 break; 1120 case dwarf::DW_TAG_rvalue_reference_type: 1121 PM = PointerMode::RValueReference; 1122 break; 1123 } 1124 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1125 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1126 // do. 1127 PointerOptions PO = PointerOptions::None; 1128 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1129 return TypeTable.writePointer(PR); 1130 } 1131 1132 static PointerToMemberRepresentation 1133 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1134 // SizeInBytes being zero generally implies that the member pointer type was 1135 // incomplete, which can happen if it is part of a function prototype. In this 1136 // case, use the unknown model instead of the general model. 1137 if (IsPMF) { 1138 switch (Flags & DINode::FlagPtrToMemberRep) { 1139 case 0: 1140 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1141 : PointerToMemberRepresentation::GeneralFunction; 1142 case DINode::FlagSingleInheritance: 1143 return PointerToMemberRepresentation::SingleInheritanceFunction; 1144 case DINode::FlagMultipleInheritance: 1145 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1146 case DINode::FlagVirtualInheritance: 1147 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1148 } 1149 } else { 1150 switch (Flags & DINode::FlagPtrToMemberRep) { 1151 case 0: 1152 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1153 : PointerToMemberRepresentation::GeneralData; 1154 case DINode::FlagSingleInheritance: 1155 return PointerToMemberRepresentation::SingleInheritanceData; 1156 case DINode::FlagMultipleInheritance: 1157 return PointerToMemberRepresentation::MultipleInheritanceData; 1158 case DINode::FlagVirtualInheritance: 1159 return PointerToMemberRepresentation::VirtualInheritanceData; 1160 } 1161 } 1162 llvm_unreachable("invalid ptr to member representation"); 1163 } 1164 1165 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1166 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1167 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1168 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1169 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1170 : PointerKind::Near32; 1171 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1172 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1173 : PointerMode::PointerToDataMember; 1174 PointerOptions PO = PointerOptions::None; // FIXME 1175 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1176 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1177 MemberPointerInfo MPI( 1178 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1179 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1180 return TypeTable.writePointer(PR); 1181 } 1182 1183 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1184 /// have a translation, use the NearC convention. 1185 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1186 switch (DwarfCC) { 1187 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1188 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1189 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1190 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1191 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1192 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1193 } 1194 return CallingConvention::NearC; 1195 } 1196 1197 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1198 ModifierOptions Mods = ModifierOptions::None; 1199 bool IsModifier = true; 1200 const DIType *BaseTy = Ty; 1201 while (IsModifier && BaseTy) { 1202 // FIXME: Need to add DWARF tag for __unaligned. 1203 switch (BaseTy->getTag()) { 1204 case dwarf::DW_TAG_const_type: 1205 Mods |= ModifierOptions::Const; 1206 break; 1207 case dwarf::DW_TAG_volatile_type: 1208 Mods |= ModifierOptions::Volatile; 1209 break; 1210 default: 1211 IsModifier = false; 1212 break; 1213 } 1214 if (IsModifier) 1215 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1216 } 1217 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1218 1219 // While processing the type being pointed to, it is possible we already 1220 // created this modifier type. If so, we check here and return the existing 1221 // modifier type. 1222 auto I = TypeIndices.find({Ty, nullptr}); 1223 if (I != TypeIndices.end()) 1224 return I->second; 1225 1226 ModifierRecord MR(ModifiedTI, Mods); 1227 return TypeTable.writeModifier(MR); 1228 } 1229 1230 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1231 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1232 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1233 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1234 1235 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1236 ArrayRef<TypeIndex> ArgTypeIndices = None; 1237 if (!ReturnAndArgTypeIndices.empty()) { 1238 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1239 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1240 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1241 } 1242 1243 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1244 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1245 1246 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1247 1248 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1249 ArgTypeIndices.size(), ArgListIndex); 1250 return TypeTable.writeProcedure(Procedure); 1251 } 1252 1253 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1254 const DIType *ClassTy, 1255 int ThisAdjustment) { 1256 // Lower the containing class type. 1257 TypeIndex ClassType = getTypeIndex(ClassTy); 1258 1259 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1260 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1261 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1262 1263 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1264 ArrayRef<TypeIndex> ArgTypeIndices = None; 1265 if (!ReturnAndArgTypeIndices.empty()) { 1266 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1267 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1268 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1269 } 1270 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1271 if (!ArgTypeIndices.empty()) { 1272 ThisTypeIndex = ArgTypeIndices.front(); 1273 ArgTypeIndices = ArgTypeIndices.drop_front(); 1274 } 1275 1276 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1277 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1278 1279 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1280 1281 // TODO: Need to use the correct values for: 1282 // FunctionOptions 1283 // ThisPointerAdjustment. 1284 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1285 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1286 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1287 1288 return TI; 1289 } 1290 1291 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1292 switch (Flags & DINode::FlagAccessibility) { 1293 case DINode::FlagPrivate: return MemberAccess::Private; 1294 case DINode::FlagPublic: return MemberAccess::Public; 1295 case DINode::FlagProtected: return MemberAccess::Protected; 1296 case 0: 1297 // If there was no explicit access control, provide the default for the tag. 1298 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1299 : MemberAccess::Public; 1300 } 1301 llvm_unreachable("access flags are exclusive"); 1302 } 1303 1304 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1305 if (SP->isArtificial()) 1306 return MethodOptions::CompilerGenerated; 1307 1308 // FIXME: Handle other MethodOptions. 1309 1310 return MethodOptions::None; 1311 } 1312 1313 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1314 bool Introduced) { 1315 switch (SP->getVirtuality()) { 1316 case dwarf::DW_VIRTUALITY_none: 1317 break; 1318 case dwarf::DW_VIRTUALITY_virtual: 1319 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1320 case dwarf::DW_VIRTUALITY_pure_virtual: 1321 return Introduced ? MethodKind::PureIntroducingVirtual 1322 : MethodKind::PureVirtual; 1323 default: 1324 llvm_unreachable("unhandled virtuality case"); 1325 } 1326 1327 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1328 1329 return MethodKind::Vanilla; 1330 } 1331 1332 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1333 switch (Ty->getTag()) { 1334 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1335 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1336 } 1337 llvm_unreachable("unexpected tag"); 1338 } 1339 1340 /// Return ClassOptions that should be present on both the forward declaration 1341 /// and the defintion of a tag type. 1342 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1343 ClassOptions CO = ClassOptions::None; 1344 1345 // MSVC always sets this flag, even for local types. Clang doesn't always 1346 // appear to give every type a linkage name, which may be problematic for us. 1347 // FIXME: Investigate the consequences of not following them here. 1348 if (!Ty->getIdentifier().empty()) 1349 CO |= ClassOptions::HasUniqueName; 1350 1351 // Put the Nested flag on a type if it appears immediately inside a tag type. 1352 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1353 // here. That flag is only set on definitions, and not forward declarations. 1354 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1355 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1356 CO |= ClassOptions::Nested; 1357 1358 // Put the Scoped flag on function-local types. 1359 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1360 Scope = Scope->getScope().resolve()) { 1361 if (isa<DISubprogram>(Scope)) { 1362 CO |= ClassOptions::Scoped; 1363 break; 1364 } 1365 } 1366 1367 return CO; 1368 } 1369 1370 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1371 ClassOptions CO = getCommonClassOptions(Ty); 1372 TypeIndex FTI; 1373 unsigned EnumeratorCount = 0; 1374 1375 if (Ty->isForwardDecl()) { 1376 CO |= ClassOptions::ForwardReference; 1377 } else { 1378 FieldListRecordBuilder Fields; 1379 for (const DINode *Element : Ty->getElements()) { 1380 // We assume that the frontend provides all members in source declaration 1381 // order, which is what MSVC does. 1382 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1383 Fields.writeEnumerator(EnumeratorRecord( 1384 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1385 Enumerator->getName())); 1386 EnumeratorCount++; 1387 } 1388 } 1389 FTI = TypeTable.writeFieldList(Fields); 1390 } 1391 1392 std::string FullName = getFullyQualifiedName(Ty); 1393 1394 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1395 Ty->getIdentifier(), 1396 getTypeIndex(Ty->getBaseType()))); 1397 } 1398 1399 //===----------------------------------------------------------------------===// 1400 // ClassInfo 1401 //===----------------------------------------------------------------------===// 1402 1403 struct llvm::ClassInfo { 1404 struct MemberInfo { 1405 const DIDerivedType *MemberTypeNode; 1406 uint64_t BaseOffset; 1407 }; 1408 // [MemberInfo] 1409 typedef std::vector<MemberInfo> MemberList; 1410 1411 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1412 // MethodName -> MethodsList 1413 typedef MapVector<MDString *, MethodsList> MethodsMap; 1414 1415 /// Base classes. 1416 std::vector<const DIDerivedType *> Inheritance; 1417 1418 /// Direct members. 1419 MemberList Members; 1420 // Direct overloaded methods gathered by name. 1421 MethodsMap Methods; 1422 1423 std::vector<const DICompositeType *> NestedClasses; 1424 }; 1425 1426 void CodeViewDebug::clear() { 1427 assert(CurFn == nullptr); 1428 FileIdMap.clear(); 1429 FnDebugInfo.clear(); 1430 FileToFilepathMap.clear(); 1431 LocalUDTs.clear(); 1432 GlobalUDTs.clear(); 1433 TypeIndices.clear(); 1434 CompleteTypeIndices.clear(); 1435 } 1436 1437 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1438 const DIDerivedType *DDTy) { 1439 if (!DDTy->getName().empty()) { 1440 Info.Members.push_back({DDTy, 0}); 1441 return; 1442 } 1443 // An unnamed member must represent a nested struct or union. Add all the 1444 // indirect fields to the current record. 1445 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1446 uint64_t Offset = DDTy->getOffsetInBits(); 1447 const DIType *Ty = DDTy->getBaseType().resolve(); 1448 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1449 ClassInfo NestedInfo = collectClassInfo(DCTy); 1450 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1451 Info.Members.push_back( 1452 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1453 } 1454 1455 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1456 ClassInfo Info; 1457 // Add elements to structure type. 1458 DINodeArray Elements = Ty->getElements(); 1459 for (auto *Element : Elements) { 1460 // We assume that the frontend provides all members in source declaration 1461 // order, which is what MSVC does. 1462 if (!Element) 1463 continue; 1464 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1465 Info.Methods[SP->getRawName()].push_back(SP); 1466 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1467 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1468 collectMemberInfo(Info, DDTy); 1469 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1470 Info.Inheritance.push_back(DDTy); 1471 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1472 // Ignore friend members. It appears that MSVC emitted info about 1473 // friends in the past, but modern versions do not. 1474 } 1475 // FIXME: Get Clang to emit function virtual table here and handle it. 1476 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1477 Info.NestedClasses.push_back(Composite); 1478 } 1479 // Skip other unrecognized kinds of elements. 1480 } 1481 return Info; 1482 } 1483 1484 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1485 // First, construct the forward decl. Don't look into Ty to compute the 1486 // forward decl options, since it might not be available in all TUs. 1487 TypeRecordKind Kind = getRecordKind(Ty); 1488 ClassOptions CO = 1489 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1490 std::string FullName = getFullyQualifiedName(Ty); 1491 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1492 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1493 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1494 if (!Ty->isForwardDecl()) 1495 DeferredCompleteTypes.push_back(Ty); 1496 return FwdDeclTI; 1497 } 1498 1499 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1500 // Construct the field list and complete type record. 1501 TypeRecordKind Kind = getRecordKind(Ty); 1502 ClassOptions CO = getCommonClassOptions(Ty); 1503 TypeIndex FieldTI; 1504 TypeIndex VShapeTI; 1505 unsigned FieldCount; 1506 bool ContainsNestedClass; 1507 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1508 lowerRecordFieldList(Ty); 1509 1510 if (ContainsNestedClass) 1511 CO |= ClassOptions::ContainsNestedClass; 1512 1513 std::string FullName = getFullyQualifiedName(Ty); 1514 1515 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1516 1517 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord( 1518 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1519 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1520 1521 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1522 ClassTI, TypeTable.writeStringId(StringIdRecord( 1523 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1524 Ty->getLine())); 1525 1526 addToUDTs(Ty, ClassTI); 1527 1528 return ClassTI; 1529 } 1530 1531 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1532 ClassOptions CO = 1533 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1534 std::string FullName = getFullyQualifiedName(Ty); 1535 TypeIndex FwdDeclTI = 1536 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1537 FullName, Ty->getIdentifier())); 1538 if (!Ty->isForwardDecl()) 1539 DeferredCompleteTypes.push_back(Ty); 1540 return FwdDeclTI; 1541 } 1542 1543 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1544 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1545 TypeIndex FieldTI; 1546 unsigned FieldCount; 1547 bool ContainsNestedClass; 1548 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1549 lowerRecordFieldList(Ty); 1550 1551 if (ContainsNestedClass) 1552 CO |= ClassOptions::ContainsNestedClass; 1553 1554 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1555 std::string FullName = getFullyQualifiedName(Ty); 1556 1557 TypeIndex UnionTI = TypeTable.writeUnion( 1558 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1559 Ty->getIdentifier())); 1560 1561 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1562 UnionTI, TypeTable.writeStringId(StringIdRecord( 1563 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1564 Ty->getLine())); 1565 1566 addToUDTs(Ty, UnionTI); 1567 1568 return UnionTI; 1569 } 1570 1571 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1572 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1573 // Manually count members. MSVC appears to count everything that generates a 1574 // field list record. Each individual overload in a method overload group 1575 // contributes to this count, even though the overload group is a single field 1576 // list record. 1577 unsigned MemberCount = 0; 1578 ClassInfo Info = collectClassInfo(Ty); 1579 FieldListRecordBuilder Fields; 1580 1581 // Create base classes. 1582 for (const DIDerivedType *I : Info.Inheritance) { 1583 if (I->getFlags() & DINode::FlagVirtual) { 1584 // Virtual base. 1585 // FIXME: Emit VBPtrOffset when the frontend provides it. 1586 unsigned VBPtrOffset = 0; 1587 // FIXME: Despite the accessor name, the offset is really in bytes. 1588 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1589 Fields.writeVirtualBaseClass(VirtualBaseClassRecord( 1590 translateAccessFlags(Ty->getTag(), I->getFlags()), 1591 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1592 VBTableIndex)); 1593 } else { 1594 assert(I->getOffsetInBits() % 8 == 0 && 1595 "bases must be on byte boundaries"); 1596 Fields.writeBaseClass(BaseClassRecord( 1597 translateAccessFlags(Ty->getTag(), I->getFlags()), 1598 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1599 } 1600 } 1601 1602 // Create members. 1603 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1604 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1605 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1606 StringRef MemberName = Member->getName(); 1607 MemberAccess Access = 1608 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1609 1610 if (Member->isStaticMember()) { 1611 Fields.writeStaticDataMember( 1612 StaticDataMemberRecord(Access, MemberBaseType, MemberName)); 1613 MemberCount++; 1614 continue; 1615 } 1616 1617 // Data member. 1618 uint64_t MemberOffsetInBits = 1619 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1620 if (Member->isBitField()) { 1621 uint64_t StartBitOffset = MemberOffsetInBits; 1622 if (const auto *CI = 1623 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1624 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1625 } 1626 StartBitOffset -= MemberOffsetInBits; 1627 MemberBaseType = TypeTable.writeBitField(BitFieldRecord( 1628 MemberBaseType, Member->getSizeInBits(), StartBitOffset)); 1629 } 1630 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1631 Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType, 1632 MemberOffsetInBytes, MemberName)); 1633 MemberCount++; 1634 } 1635 1636 // Create methods 1637 for (auto &MethodItr : Info.Methods) { 1638 StringRef Name = MethodItr.first->getString(); 1639 1640 std::vector<OneMethodRecord> Methods; 1641 for (const DISubprogram *SP : MethodItr.second) { 1642 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1643 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1644 1645 unsigned VFTableOffset = -1; 1646 if (Introduced) 1647 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1648 1649 Methods.push_back( 1650 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1651 translateMethodOptionFlags(SP), 1652 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1653 VFTableOffset, Name)); 1654 MemberCount++; 1655 } 1656 assert(Methods.size() > 0 && "Empty methods map entry"); 1657 if (Methods.size() == 1) 1658 Fields.writeOneMethod(Methods[0]); 1659 else { 1660 TypeIndex MethodList = 1661 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1662 Fields.writeOverloadedMethod( 1663 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1664 } 1665 } 1666 1667 // Create nested classes. 1668 for (const DICompositeType *Nested : Info.NestedClasses) { 1669 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1670 Fields.writeNestedType(R); 1671 MemberCount++; 1672 } 1673 1674 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1675 return std::make_tuple(FieldTI, TypeIndex(), MemberCount, 1676 !Info.NestedClasses.empty()); 1677 } 1678 1679 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1680 if (!VBPType.getIndex()) { 1681 // Make a 'const int *' type. 1682 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1683 TypeIndex ModifiedTI = TypeTable.writeModifier(MR); 1684 1685 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1686 : PointerKind::Near32; 1687 PointerMode PM = PointerMode::Pointer; 1688 PointerOptions PO = PointerOptions::None; 1689 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1690 1691 VBPType = TypeTable.writePointer(PR); 1692 } 1693 1694 return VBPType; 1695 } 1696 1697 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1698 const DIType *Ty = TypeRef.resolve(); 1699 const DIType *ClassTy = ClassTyRef.resolve(); 1700 1701 // The null DIType is the void type. Don't try to hash it. 1702 if (!Ty) 1703 return TypeIndex::Void(); 1704 1705 // Check if we've already translated this type. Don't try to do a 1706 // get-or-create style insertion that caches the hash lookup across the 1707 // lowerType call. It will update the TypeIndices map. 1708 auto I = TypeIndices.find({Ty, ClassTy}); 1709 if (I != TypeIndices.end()) 1710 return I->second; 1711 1712 TypeLoweringScope S(*this); 1713 TypeIndex TI = lowerType(Ty, ClassTy); 1714 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1715 } 1716 1717 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1718 const DIType *Ty = TypeRef.resolve(); 1719 1720 // The null DIType is the void type. Don't try to hash it. 1721 if (!Ty) 1722 return TypeIndex::Void(); 1723 1724 // If this is a non-record type, the complete type index is the same as the 1725 // normal type index. Just call getTypeIndex. 1726 switch (Ty->getTag()) { 1727 case dwarf::DW_TAG_class_type: 1728 case dwarf::DW_TAG_structure_type: 1729 case dwarf::DW_TAG_union_type: 1730 break; 1731 default: 1732 return getTypeIndex(Ty); 1733 } 1734 1735 // Check if we've already translated the complete record type. Lowering a 1736 // complete type should never trigger lowering another complete type, so we 1737 // can reuse the hash table lookup result. 1738 const auto *CTy = cast<DICompositeType>(Ty); 1739 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1740 if (!InsertResult.second) 1741 return InsertResult.first->second; 1742 1743 TypeLoweringScope S(*this); 1744 1745 // Make sure the forward declaration is emitted first. It's unclear if this 1746 // is necessary, but MSVC does it, and we should follow suit until we can show 1747 // otherwise. 1748 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1749 1750 // Just use the forward decl if we don't have complete type info. This might 1751 // happen if the frontend is using modules and expects the complete definition 1752 // to be emitted elsewhere. 1753 if (CTy->isForwardDecl()) 1754 return FwdDeclTI; 1755 1756 TypeIndex TI; 1757 switch (CTy->getTag()) { 1758 case dwarf::DW_TAG_class_type: 1759 case dwarf::DW_TAG_structure_type: 1760 TI = lowerCompleteTypeClass(CTy); 1761 break; 1762 case dwarf::DW_TAG_union_type: 1763 TI = lowerCompleteTypeUnion(CTy); 1764 break; 1765 default: 1766 llvm_unreachable("not a record"); 1767 } 1768 1769 InsertResult.first->second = TI; 1770 return TI; 1771 } 1772 1773 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1774 /// and do this until fixpoint, as each complete record type typically references 1775 /// many other record types. 1776 void CodeViewDebug::emitDeferredCompleteTypes() { 1777 SmallVector<const DICompositeType *, 4> TypesToEmit; 1778 while (!DeferredCompleteTypes.empty()) { 1779 std::swap(DeferredCompleteTypes, TypesToEmit); 1780 for (const DICompositeType *RecordTy : TypesToEmit) 1781 getCompleteTypeIndex(RecordTy); 1782 TypesToEmit.clear(); 1783 } 1784 } 1785 1786 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 1787 // Get the sorted list of parameters and emit them first. 1788 SmallVector<const LocalVariable *, 6> Params; 1789 for (const LocalVariable &L : Locals) 1790 if (L.DIVar->isParameter()) 1791 Params.push_back(&L); 1792 std::sort(Params.begin(), Params.end(), 1793 [](const LocalVariable *L, const LocalVariable *R) { 1794 return L->DIVar->getArg() < R->DIVar->getArg(); 1795 }); 1796 for (const LocalVariable *L : Params) 1797 emitLocalVariable(*L); 1798 1799 // Next emit all non-parameters in the order that we found them. 1800 for (const LocalVariable &L : Locals) 1801 if (!L.DIVar->isParameter()) 1802 emitLocalVariable(L); 1803 } 1804 1805 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1806 // LocalSym record, see SymbolRecord.h for more info. 1807 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1808 *LocalEnd = MMI->getContext().createTempSymbol(); 1809 OS.AddComment("Record length"); 1810 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1811 OS.EmitLabel(LocalBegin); 1812 1813 OS.AddComment("Record kind: S_LOCAL"); 1814 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1815 1816 LocalSymFlags Flags = LocalSymFlags::None; 1817 if (Var.DIVar->isParameter()) 1818 Flags |= LocalSymFlags::IsParameter; 1819 if (Var.DefRanges.empty()) 1820 Flags |= LocalSymFlags::IsOptimizedOut; 1821 1822 OS.AddComment("TypeIndex"); 1823 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1824 OS.EmitIntValue(TI.getIndex(), 4); 1825 OS.AddComment("Flags"); 1826 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1827 // Truncate the name so we won't overflow the record length field. 1828 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1829 OS.EmitLabel(LocalEnd); 1830 1831 // Calculate the on disk prefix of the appropriate def range record. The 1832 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1833 // should be big enough to hold all forms without memory allocation. 1834 SmallString<20> BytePrefix; 1835 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1836 BytePrefix.clear(); 1837 // FIXME: Handle bitpieces. 1838 if (DefRange.StructOffset != 0) 1839 continue; 1840 1841 if (DefRange.InMemory) { 1842 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1843 0, 0, ArrayRef<LocalVariableAddrGap>()); 1844 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1845 BytePrefix += 1846 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1847 BytePrefix += 1848 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1849 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1850 } else { 1851 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1852 // Unclear what matters here. 1853 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1854 ArrayRef<LocalVariableAddrGap>()); 1855 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1856 BytePrefix += 1857 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1858 BytePrefix += 1859 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1860 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1861 } 1862 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1863 } 1864 } 1865 1866 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1867 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1868 return; 1869 1870 const Function *GV = MF->getFunction(); 1871 assert(FnDebugInfo.count(GV)); 1872 assert(CurFn == &FnDebugInfo[GV]); 1873 1874 collectVariableInfo(GV->getSubprogram()); 1875 1876 DebugHandlerBase::endFunction(MF); 1877 1878 // Don't emit anything if we don't have any line tables. 1879 if (!CurFn->HaveLineInfo) { 1880 FnDebugInfo.erase(GV); 1881 CurFn = nullptr; 1882 return; 1883 } 1884 1885 CurFn->End = Asm->getFunctionEnd(); 1886 1887 CurFn = nullptr; 1888 } 1889 1890 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1891 DebugHandlerBase::beginInstruction(MI); 1892 1893 // Ignore DBG_VALUE locations and function prologue. 1894 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1895 return; 1896 DebugLoc DL = MI->getDebugLoc(); 1897 if (DL == PrevInstLoc || !DL) 1898 return; 1899 maybeRecordLocation(DL, Asm->MF); 1900 } 1901 1902 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1903 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1904 *EndLabel = MMI->getContext().createTempSymbol(); 1905 OS.EmitIntValue(unsigned(Kind), 4); 1906 OS.AddComment("Subsection size"); 1907 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1908 OS.EmitLabel(BeginLabel); 1909 return EndLabel; 1910 } 1911 1912 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1913 OS.EmitLabel(EndLabel); 1914 // Every subsection must be aligned to a 4-byte boundary. 1915 OS.EmitValueToAlignment(4); 1916 } 1917 1918 void CodeViewDebug::emitDebugInfoForUDTs( 1919 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1920 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1921 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1922 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1923 OS.AddComment("Record length"); 1924 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1925 OS.EmitLabel(UDTRecordBegin); 1926 1927 OS.AddComment("Record kind: S_UDT"); 1928 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1929 1930 OS.AddComment("Type"); 1931 OS.EmitIntValue(UDT.second.getIndex(), 4); 1932 1933 emitNullTerminatedSymbolName(OS, UDT.first); 1934 OS.EmitLabel(UDTRecordEnd); 1935 } 1936 } 1937 1938 void CodeViewDebug::emitDebugInfoForGlobals() { 1939 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1940 for (const MDNode *Node : CUs->operands()) { 1941 const auto *CU = cast<DICompileUnit>(Node); 1942 1943 // First, emit all globals that are not in a comdat in a single symbol 1944 // substream. MSVC doesn't like it if the substream is empty, so only open 1945 // it if we have at least one global to emit. 1946 switchToDebugSectionForSymbol(nullptr); 1947 MCSymbol *EndLabel = nullptr; 1948 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1949 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1950 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1951 if (!EndLabel) { 1952 OS.AddComment("Symbol subsection for globals"); 1953 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1954 } 1955 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1956 } 1957 } 1958 } 1959 if (EndLabel) 1960 endCVSubsection(EndLabel); 1961 1962 // Second, emit each global that is in a comdat into its own .debug$S 1963 // section along with its own symbol substream. 1964 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1965 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1966 if (GV->hasComdat()) { 1967 MCSymbol *GVSym = Asm->getSymbol(GV); 1968 OS.AddComment("Symbol subsection for " + 1969 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 1970 switchToDebugSectionForSymbol(GVSym); 1971 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1972 emitDebugInfoForGlobal(G, GVSym); 1973 endCVSubsection(EndLabel); 1974 } 1975 } 1976 } 1977 } 1978 } 1979 1980 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 1981 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1982 for (const MDNode *Node : CUs->operands()) { 1983 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 1984 if (DIType *RT = dyn_cast<DIType>(Ty)) { 1985 getTypeIndex(RT); 1986 // FIXME: Add to global/local DTU list. 1987 } 1988 } 1989 } 1990 } 1991 1992 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 1993 MCSymbol *GVSym) { 1994 // DataSym record, see SymbolRecord.h for more info. 1995 // FIXME: Thread local data, etc 1996 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 1997 *DataEnd = MMI->getContext().createTempSymbol(); 1998 OS.AddComment("Record length"); 1999 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2000 OS.EmitLabel(DataBegin); 2001 const auto *GV = cast<GlobalVariable>(DIGV->getVariable()); 2002 if (DIGV->isLocalToUnit()) { 2003 if (GV->isThreadLocal()) { 2004 OS.AddComment("Record kind: S_LTHREAD32"); 2005 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2006 } else { 2007 OS.AddComment("Record kind: S_LDATA32"); 2008 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2009 } 2010 } else { 2011 if (GV->isThreadLocal()) { 2012 OS.AddComment("Record kind: S_GTHREAD32"); 2013 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2014 } else { 2015 OS.AddComment("Record kind: S_GDATA32"); 2016 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2017 } 2018 } 2019 OS.AddComment("Type"); 2020 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2021 OS.AddComment("DataOffset"); 2022 OS.EmitCOFFSecRel32(GVSym); 2023 OS.AddComment("Segment"); 2024 OS.EmitCOFFSectionIndex(GVSym); 2025 OS.AddComment("Name"); 2026 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2027 OS.EmitLabel(DataEnd); 2028 } 2029