xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision a54fe1acdc2df47c80f1eb319d7f8bcd65018aa9)
1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/ByteStream.h"
17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
18 #include "llvm/DebugInfo/CodeView/CodeView.h"
19 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
20 #include "llvm/DebugInfo/CodeView/Line.h"
21 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
22 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
23 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
24 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCSectionCOFF.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/COFF.h"
31 #include "llvm/Support/ScopedPrinter.h"
32 #include "llvm/Target/TargetFrameLowering.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 
36 using namespace llvm;
37 using namespace llvm::codeview;
38 
39 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
40     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
41   // If module doesn't have named metadata anchors or COFF debug section
42   // is not available, skip any debug info related stuff.
43   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
44       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
45     Asm = nullptr;
46     return;
47   }
48 
49   // Tell MMI that we have debug info.
50   MMI->setDebugInfoAvailability(true);
51 }
52 
53 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
54   std::string &Filepath = FileToFilepathMap[File];
55   if (!Filepath.empty())
56     return Filepath;
57 
58   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
59 
60   // Clang emits directory and relative filename info into the IR, but CodeView
61   // operates on full paths.  We could change Clang to emit full paths too, but
62   // that would increase the IR size and probably not needed for other users.
63   // For now, just concatenate and canonicalize the path here.
64   if (Filename.find(':') == 1)
65     Filepath = Filename;
66   else
67     Filepath = (Dir + "\\" + Filename).str();
68 
69   // Canonicalize the path.  We have to do it textually because we may no longer
70   // have access the file in the filesystem.
71   // First, replace all slashes with backslashes.
72   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
73 
74   // Remove all "\.\" with "\".
75   size_t Cursor = 0;
76   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
77     Filepath.erase(Cursor, 2);
78 
79   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
80   // path should be well-formatted, e.g. start with a drive letter, etc.
81   Cursor = 0;
82   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
83     // Something's wrong if the path starts with "\..\", abort.
84     if (Cursor == 0)
85       break;
86 
87     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
88     if (PrevSlash == std::string::npos)
89       // Something's wrong, abort.
90       break;
91 
92     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
93     // The next ".." might be following the one we've just erased.
94     Cursor = PrevSlash;
95   }
96 
97   // Remove all duplicate backslashes.
98   Cursor = 0;
99   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
100     Filepath.erase(Cursor, 1);
101 
102   return Filepath;
103 }
104 
105 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
106   unsigned NextId = FileIdMap.size() + 1;
107   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
108   if (Insertion.second) {
109     // We have to compute the full filepath and emit a .cv_file directive.
110     StringRef FullPath = getFullFilepath(F);
111     NextId = OS.EmitCVFileDirective(NextId, FullPath);
112     assert(NextId == FileIdMap.size() && ".cv_file directive failed");
113   }
114   return Insertion.first->second;
115 }
116 
117 CodeViewDebug::InlineSite &
118 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
119                              const DISubprogram *Inlinee) {
120   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
121   InlineSite *Site = &SiteInsertion.first->second;
122   if (SiteInsertion.second) {
123     Site->SiteFuncId = NextFuncId++;
124     Site->Inlinee = Inlinee;
125     InlinedSubprograms.insert(Inlinee);
126     getFuncIdForSubprogram(Inlinee);
127   }
128   return *Site;
129 }
130 
131 static StringRef getPrettyScopeName(const DIScope *Scope) {
132   StringRef ScopeName = Scope->getName();
133   if (!ScopeName.empty())
134     return ScopeName;
135 
136   switch (Scope->getTag()) {
137   case dwarf::DW_TAG_enumeration_type:
138   case dwarf::DW_TAG_class_type:
139   case dwarf::DW_TAG_structure_type:
140   case dwarf::DW_TAG_union_type:
141     return "<unnamed-tag>";
142   case dwarf::DW_TAG_namespace:
143     return "`anonymous namespace'";
144   }
145 
146   return StringRef();
147 }
148 
149 static const DISubprogram *getQualifiedNameComponents(
150     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
151   const DISubprogram *ClosestSubprogram = nullptr;
152   while (Scope != nullptr) {
153     if (ClosestSubprogram == nullptr)
154       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
155     StringRef ScopeName = getPrettyScopeName(Scope);
156     if (!ScopeName.empty())
157       QualifiedNameComponents.push_back(ScopeName);
158     Scope = Scope->getScope().resolve();
159   }
160   return ClosestSubprogram;
161 }
162 
163 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
164                                     StringRef TypeName) {
165   std::string FullyQualifiedName;
166   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
167     FullyQualifiedName.append(QualifiedNameComponent);
168     FullyQualifiedName.append("::");
169   }
170   FullyQualifiedName.append(TypeName);
171   return FullyQualifiedName;
172 }
173 
174 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
175   SmallVector<StringRef, 5> QualifiedNameComponents;
176   getQualifiedNameComponents(Scope, QualifiedNameComponents);
177   return getQualifiedName(QualifiedNameComponents, Name);
178 }
179 
180 struct CodeViewDebug::TypeLoweringScope {
181   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
182   ~TypeLoweringScope() {
183     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
184     // inner TypeLoweringScopes don't attempt to emit deferred types.
185     if (CVD.TypeEmissionLevel == 1)
186       CVD.emitDeferredCompleteTypes();
187     --CVD.TypeEmissionLevel;
188   }
189   CodeViewDebug &CVD;
190 };
191 
192 static std::string getFullyQualifiedName(const DIScope *Ty) {
193   const DIScope *Scope = Ty->getScope().resolve();
194   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
195 }
196 
197 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
198   // No scope means global scope and that uses the zero index.
199   if (!Scope || isa<DIFile>(Scope))
200     return TypeIndex();
201 
202   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
203 
204   // Check if we've already translated this scope.
205   auto I = TypeIndices.find({Scope, nullptr});
206   if (I != TypeIndices.end())
207     return I->second;
208 
209   // Build the fully qualified name of the scope.
210   std::string ScopeName = getFullyQualifiedName(Scope);
211   TypeIndex TI =
212       TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName));
213   return recordTypeIndexForDINode(Scope, TI);
214 }
215 
216 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
217   // It's possible to ask for the FuncId of a function which doesn't have a
218   // subprogram: inlining a function with debug info into a function with none.
219   if (!SP)
220     return TypeIndex::None();
221 
222   // Check if we've already translated this subprogram.
223   auto I = TypeIndices.find({SP, nullptr});
224   if (I != TypeIndices.end())
225     return I->second;
226 
227   // The display name includes function template arguments. Drop them to match
228   // MSVC.
229   StringRef DisplayName = SP->getDisplayName().split('<').first;
230 
231   const DIScope *Scope = SP->getScope().resolve();
232   TypeIndex TI;
233   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
234     // If the scope is a DICompositeType, then this must be a method. Member
235     // function types take some special handling, and require access to the
236     // subprogram.
237     TypeIndex ClassType = getTypeIndex(Class);
238     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
239                                DisplayName);
240     TI = TypeTable.writeMemberFuncId(MFuncId);
241   } else {
242     // Otherwise, this must be a free function.
243     TypeIndex ParentScope = getScopeIndex(Scope);
244     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
245     TI = TypeTable.writeFuncId(FuncId);
246   }
247 
248   return recordTypeIndexForDINode(SP, TI);
249 }
250 
251 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
252                                                const DICompositeType *Class) {
253   // Always use the method declaration as the key for the function type. The
254   // method declaration contains the this adjustment.
255   if (SP->getDeclaration())
256     SP = SP->getDeclaration();
257   assert(!SP->getDeclaration() && "should use declaration as key");
258 
259   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
260   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
261   auto I = TypeIndices.find({SP, Class});
262   if (I != TypeIndices.end())
263     return I->second;
264 
265   // Make sure complete type info for the class is emitted *after* the member
266   // function type, as the complete class type is likely to reference this
267   // member function type.
268   TypeLoweringScope S(*this);
269   TypeIndex TI =
270       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
271   return recordTypeIndexForDINode(SP, TI, Class);
272 }
273 
274 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI,
275                                              const DIType *ClassTy) {
276   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
277   (void)InsertResult;
278   assert(InsertResult.second && "DINode was already assigned a type index");
279   return TI;
280 }
281 
282 unsigned CodeViewDebug::getPointerSizeInBytes() {
283   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
284 }
285 
286 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
287                                         const DILocation *InlinedAt) {
288   if (InlinedAt) {
289     // This variable was inlined. Associate it with the InlineSite.
290     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
291     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
292     Site.InlinedLocals.emplace_back(Var);
293   } else {
294     // This variable goes in the main ProcSym.
295     CurFn->Locals.emplace_back(Var);
296   }
297 }
298 
299 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
300                                const DILocation *Loc) {
301   auto B = Locs.begin(), E = Locs.end();
302   if (std::find(B, E, Loc) == E)
303     Locs.push_back(Loc);
304 }
305 
306 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
307                                         const MachineFunction *MF) {
308   // Skip this instruction if it has the same location as the previous one.
309   if (DL == CurFn->LastLoc)
310     return;
311 
312   const DIScope *Scope = DL.get()->getScope();
313   if (!Scope)
314     return;
315 
316   // Skip this line if it is longer than the maximum we can record.
317   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
318   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
319       LI.isNeverStepInto())
320     return;
321 
322   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
323   if (CI.getStartColumn() != DL.getCol())
324     return;
325 
326   if (!CurFn->HaveLineInfo)
327     CurFn->HaveLineInfo = true;
328   unsigned FileId = 0;
329   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
330     FileId = CurFn->LastFileId;
331   else
332     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
333   CurFn->LastLoc = DL;
334 
335   unsigned FuncId = CurFn->FuncId;
336   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
337     const DILocation *Loc = DL.get();
338 
339     // If this location was actually inlined from somewhere else, give it the ID
340     // of the inline call site.
341     FuncId =
342         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
343 
344     // Ensure we have links in the tree of inline call sites.
345     bool FirstLoc = true;
346     while ((SiteLoc = Loc->getInlinedAt())) {
347       InlineSite &Site =
348           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
349       if (!FirstLoc)
350         addLocIfNotPresent(Site.ChildSites, Loc);
351       FirstLoc = false;
352       Loc = SiteLoc;
353     }
354     addLocIfNotPresent(CurFn->ChildSites, Loc);
355   }
356 
357   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
358                         /*PrologueEnd=*/false,
359                         /*IsStmt=*/false, DL->getFilename());
360 }
361 
362 void CodeViewDebug::emitCodeViewMagicVersion() {
363   OS.EmitValueToAlignment(4);
364   OS.AddComment("Debug section magic");
365   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
366 }
367 
368 void CodeViewDebug::endModule() {
369   if (!Asm || !MMI->hasDebugInfo())
370     return;
371 
372   assert(Asm != nullptr);
373 
374   // The COFF .debug$S section consists of several subsections, each starting
375   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
376   // of the payload followed by the payload itself.  The subsections are 4-byte
377   // aligned.
378 
379   // Use the generic .debug$S section, and make a subsection for all the inlined
380   // subprograms.
381   switchToDebugSectionForSymbol(nullptr);
382   emitInlineeLinesSubsection();
383 
384   // Emit per-function debug information.
385   for (auto &P : FnDebugInfo)
386     if (!P.first->isDeclarationForLinker())
387       emitDebugInfoForFunction(P.first, P.second);
388 
389   // Emit global variable debug information.
390   setCurrentSubprogram(nullptr);
391   emitDebugInfoForGlobals();
392 
393   // Emit retained types.
394   emitDebugInfoForRetainedTypes();
395 
396   // Switch back to the generic .debug$S section after potentially processing
397   // comdat symbol sections.
398   switchToDebugSectionForSymbol(nullptr);
399 
400   // Emit UDT records for any types used by global variables.
401   if (!GlobalUDTs.empty()) {
402     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
403     emitDebugInfoForUDTs(GlobalUDTs);
404     endCVSubsection(SymbolsEnd);
405   }
406 
407   // This subsection holds a file index to offset in string table table.
408   OS.AddComment("File index to string table offset subsection");
409   OS.EmitCVFileChecksumsDirective();
410 
411   // This subsection holds the string table.
412   OS.AddComment("String table");
413   OS.EmitCVStringTableDirective();
414 
415   // Emit type information last, so that any types we translate while emitting
416   // function info are included.
417   emitTypeInformation();
418 
419   clear();
420 }
421 
422 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
423   // Microsoft's linker seems to have trouble with symbol names longer than
424   // 0xffd8 bytes.
425   S = S.substr(0, 0xffd8);
426   SmallString<32> NullTerminatedString(S);
427   NullTerminatedString.push_back('\0');
428   OS.EmitBytes(NullTerminatedString);
429 }
430 
431 void CodeViewDebug::emitTypeInformation() {
432   // Do nothing if we have no debug info or if no non-trivial types were emitted
433   // to TypeTable during codegen.
434   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
435   if (!CU_Nodes)
436     return;
437   if (TypeTable.empty())
438     return;
439 
440   // Start the .debug$T section with 0x4.
441   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
442   emitCodeViewMagicVersion();
443 
444   SmallString<8> CommentPrefix;
445   if (OS.isVerboseAsm()) {
446     CommentPrefix += '\t';
447     CommentPrefix += Asm->MAI->getCommentString();
448     CommentPrefix += ' ';
449   }
450 
451   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
452   TypeTable.ForEachRecord(
453       [&](TypeIndex Index, StringRef Record) {
454         if (OS.isVerboseAsm()) {
455           // Emit a block comment describing the type record for readability.
456           SmallString<512> CommentBlock;
457           raw_svector_ostream CommentOS(CommentBlock);
458           ScopedPrinter SP(CommentOS);
459           SP.setPrefix(CommentPrefix);
460           CVTD.setPrinter(&SP);
461           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
462           if (E) {
463             logAllUnhandledErrors(std::move(E), errs(), "error: ");
464             llvm_unreachable("produced malformed type record");
465           }
466           // emitRawComment will insert its own tab and comment string before
467           // the first line, so strip off our first one. It also prints its own
468           // newline.
469           OS.emitRawComment(
470               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
471         } else {
472 #ifndef NDEBUG
473           // Assert that the type data is valid even if we aren't dumping
474           // comments. The MSVC linker doesn't do much type record validation,
475           // so the first link of an invalid type record can succeed while
476           // subsequent links will fail with LNK1285.
477           ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()});
478           CVTypeArray Types;
479           StreamReader Reader(Stream);
480           Error E = Reader.readArray(Types, Reader.getLength());
481           if (!E) {
482             TypeVisitorCallbacks C;
483             E = CVTypeVisitor(C).visitTypeStream(Types);
484           }
485           if (E) {
486             logAllUnhandledErrors(std::move(E), errs(), "error: ");
487             llvm_unreachable("produced malformed type record");
488           }
489 #endif
490         }
491         OS.EmitBinaryData(Record);
492       });
493 }
494 
495 void CodeViewDebug::emitInlineeLinesSubsection() {
496   if (InlinedSubprograms.empty())
497     return;
498 
499   OS.AddComment("Inlinee lines subsection");
500   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
501 
502   // We don't provide any extra file info.
503   // FIXME: Find out if debuggers use this info.
504   OS.AddComment("Inlinee lines signature");
505   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
506 
507   for (const DISubprogram *SP : InlinedSubprograms) {
508     assert(TypeIndices.count({SP, nullptr}));
509     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
510 
511     OS.AddBlankLine();
512     unsigned FileId = maybeRecordFile(SP->getFile());
513     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
514                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
515     OS.AddBlankLine();
516     // The filechecksum table uses 8 byte entries for now, and file ids start at
517     // 1.
518     unsigned FileOffset = (FileId - 1) * 8;
519     OS.AddComment("Type index of inlined function");
520     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
521     OS.AddComment("Offset into filechecksum table");
522     OS.EmitIntValue(FileOffset, 4);
523     OS.AddComment("Starting line number");
524     OS.EmitIntValue(SP->getLine(), 4);
525   }
526 
527   endCVSubsection(InlineEnd);
528 }
529 
530 void CodeViewDebug::collectInlineSiteChildren(
531     SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
532     const InlineSite &Site) {
533   for (const DILocation *ChildSiteLoc : Site.ChildSites) {
534     auto I = FI.InlineSites.find(ChildSiteLoc);
535     const InlineSite &ChildSite = I->second;
536     Children.push_back(ChildSite.SiteFuncId);
537     collectInlineSiteChildren(Children, FI, ChildSite);
538   }
539 }
540 
541 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
542                                         const DILocation *InlinedAt,
543                                         const InlineSite &Site) {
544   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
545            *InlineEnd = MMI->getContext().createTempSymbol();
546 
547   assert(TypeIndices.count({Site.Inlinee, nullptr}));
548   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
549 
550   // SymbolRecord
551   OS.AddComment("Record length");
552   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
553   OS.EmitLabel(InlineBegin);
554   OS.AddComment("Record kind: S_INLINESITE");
555   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
556 
557   OS.AddComment("PtrParent");
558   OS.EmitIntValue(0, 4);
559   OS.AddComment("PtrEnd");
560   OS.EmitIntValue(0, 4);
561   OS.AddComment("Inlinee type index");
562   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
563 
564   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
565   unsigned StartLineNum = Site.Inlinee->getLine();
566   SmallVector<unsigned, 3> SecondaryFuncIds;
567   collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
568 
569   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
570                                     FI.Begin, FI.End, SecondaryFuncIds);
571 
572   OS.EmitLabel(InlineEnd);
573 
574   emitLocalVariableList(Site.InlinedLocals);
575 
576   // Recurse on child inlined call sites before closing the scope.
577   for (const DILocation *ChildSite : Site.ChildSites) {
578     auto I = FI.InlineSites.find(ChildSite);
579     assert(I != FI.InlineSites.end() &&
580            "child site not in function inline site map");
581     emitInlinedCallSite(FI, ChildSite, I->second);
582   }
583 
584   // Close the scope.
585   OS.AddComment("Record length");
586   OS.EmitIntValue(2, 2);                                  // RecordLength
587   OS.AddComment("Record kind: S_INLINESITE_END");
588   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
589 }
590 
591 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
592   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
593   // comdat key. A section may be comdat because of -ffunction-sections or
594   // because it is comdat in the IR.
595   MCSectionCOFF *GVSec =
596       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
597   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
598 
599   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
600       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
601   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
602 
603   OS.SwitchSection(DebugSec);
604 
605   // Emit the magic version number if this is the first time we've switched to
606   // this section.
607   if (ComdatDebugSections.insert(DebugSec).second)
608     emitCodeViewMagicVersion();
609 }
610 
611 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
612                                              FunctionInfo &FI) {
613   // For each function there is a separate subsection
614   // which holds the PC to file:line table.
615   const MCSymbol *Fn = Asm->getSymbol(GV);
616   assert(Fn);
617 
618   // Switch to the to a comdat section, if appropriate.
619   switchToDebugSectionForSymbol(Fn);
620 
621   std::string FuncName;
622   auto *SP = GV->getSubprogram();
623   setCurrentSubprogram(SP);
624 
625   // If we have a display name, build the fully qualified name by walking the
626   // chain of scopes.
627   if (SP != nullptr && !SP->getDisplayName().empty())
628     FuncName =
629         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
630 
631   // If our DISubprogram name is empty, use the mangled name.
632   if (FuncName.empty())
633     FuncName = GlobalValue::getRealLinkageName(GV->getName());
634 
635   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
636   OS.AddComment("Symbol subsection for " + Twine(FuncName));
637   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
638   {
639     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
640              *ProcRecordEnd = MMI->getContext().createTempSymbol();
641     OS.AddComment("Record length");
642     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
643     OS.EmitLabel(ProcRecordBegin);
644 
645   if (GV->hasLocalLinkage()) {
646     OS.AddComment("Record kind: S_LPROC32_ID");
647     OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
648   } else {
649     OS.AddComment("Record kind: S_GPROC32_ID");
650     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
651   }
652 
653     // These fields are filled in by tools like CVPACK which run after the fact.
654     OS.AddComment("PtrParent");
655     OS.EmitIntValue(0, 4);
656     OS.AddComment("PtrEnd");
657     OS.EmitIntValue(0, 4);
658     OS.AddComment("PtrNext");
659     OS.EmitIntValue(0, 4);
660     // This is the important bit that tells the debugger where the function
661     // code is located and what's its size:
662     OS.AddComment("Code size");
663     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
664     OS.AddComment("Offset after prologue");
665     OS.EmitIntValue(0, 4);
666     OS.AddComment("Offset before epilogue");
667     OS.EmitIntValue(0, 4);
668     OS.AddComment("Function type index");
669     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
670     OS.AddComment("Function section relative address");
671     OS.EmitCOFFSecRel32(Fn);
672     OS.AddComment("Function section index");
673     OS.EmitCOFFSectionIndex(Fn);
674     OS.AddComment("Flags");
675     OS.EmitIntValue(0, 1);
676     // Emit the function display name as a null-terminated string.
677     OS.AddComment("Function name");
678     // Truncate the name so we won't overflow the record length field.
679     emitNullTerminatedSymbolName(OS, FuncName);
680     OS.EmitLabel(ProcRecordEnd);
681 
682     emitLocalVariableList(FI.Locals);
683 
684     // Emit inlined call site information. Only emit functions inlined directly
685     // into the parent function. We'll emit the other sites recursively as part
686     // of their parent inline site.
687     for (const DILocation *InlinedAt : FI.ChildSites) {
688       auto I = FI.InlineSites.find(InlinedAt);
689       assert(I != FI.InlineSites.end() &&
690              "child site not in function inline site map");
691       emitInlinedCallSite(FI, InlinedAt, I->second);
692     }
693 
694     if (SP != nullptr)
695       emitDebugInfoForUDTs(LocalUDTs);
696 
697     // We're done with this function.
698     OS.AddComment("Record length");
699     OS.EmitIntValue(0x0002, 2);
700     OS.AddComment("Record kind: S_PROC_ID_END");
701     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
702   }
703   endCVSubsection(SymbolsEnd);
704 
705   // We have an assembler directive that takes care of the whole line table.
706   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
707 }
708 
709 CodeViewDebug::LocalVarDefRange
710 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
711   LocalVarDefRange DR;
712   DR.InMemory = -1;
713   DR.DataOffset = Offset;
714   assert(DR.DataOffset == Offset && "truncation");
715   DR.StructOffset = 0;
716   DR.CVRegister = CVRegister;
717   return DR;
718 }
719 
720 CodeViewDebug::LocalVarDefRange
721 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
722   LocalVarDefRange DR;
723   DR.InMemory = 0;
724   DR.DataOffset = 0;
725   DR.StructOffset = 0;
726   DR.CVRegister = CVRegister;
727   return DR;
728 }
729 
730 void CodeViewDebug::collectVariableInfoFromMMITable(
731     DenseSet<InlinedVariable> &Processed) {
732   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
733   const TargetFrameLowering *TFI = TSI.getFrameLowering();
734   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
735 
736   for (const MachineModuleInfo::VariableDbgInfo &VI :
737        MMI->getVariableDbgInfo()) {
738     if (!VI.Var)
739       continue;
740     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
741            "Expected inlined-at fields to agree");
742 
743     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
744     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
745 
746     // If variable scope is not found then skip this variable.
747     if (!Scope)
748       continue;
749 
750     // Get the frame register used and the offset.
751     unsigned FrameReg = 0;
752     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
753     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
754 
755     // Calculate the label ranges.
756     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
757     for (const InsnRange &Range : Scope->getRanges()) {
758       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
759       const MCSymbol *End = getLabelAfterInsn(Range.second);
760       End = End ? End : Asm->getFunctionEnd();
761       DefRange.Ranges.emplace_back(Begin, End);
762     }
763 
764     LocalVariable Var;
765     Var.DIVar = VI.Var;
766     Var.DefRanges.emplace_back(std::move(DefRange));
767     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
768   }
769 }
770 
771 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
772   DenseSet<InlinedVariable> Processed;
773   // Grab the variable info that was squirreled away in the MMI side-table.
774   collectVariableInfoFromMMITable(Processed);
775 
776   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
777 
778   for (const auto &I : DbgValues) {
779     InlinedVariable IV = I.first;
780     if (Processed.count(IV))
781       continue;
782     const DILocalVariable *DIVar = IV.first;
783     const DILocation *InlinedAt = IV.second;
784 
785     // Instruction ranges, specifying where IV is accessible.
786     const auto &Ranges = I.second;
787 
788     LexicalScope *Scope = nullptr;
789     if (InlinedAt)
790       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
791     else
792       Scope = LScopes.findLexicalScope(DIVar->getScope());
793     // If variable scope is not found then skip this variable.
794     if (!Scope)
795       continue;
796 
797     LocalVariable Var;
798     Var.DIVar = DIVar;
799 
800     // Calculate the definition ranges.
801     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
802       const InsnRange &Range = *I;
803       const MachineInstr *DVInst = Range.first;
804       assert(DVInst->isDebugValue() && "Invalid History entry");
805       const DIExpression *DIExpr = DVInst->getDebugExpression();
806 
807       // Bail if there is a complex DWARF expression for now.
808       if (DIExpr && DIExpr->getNumElements() > 0)
809         continue;
810 
811       // Bail if operand 0 is not a valid register. This means the variable is a
812       // simple constant, or is described by a complex expression.
813       // FIXME: Find a way to represent constant variables, since they are
814       // relatively common.
815       unsigned Reg =
816           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
817       if (Reg == 0)
818         continue;
819 
820       // Handle the two cases we can handle: indirect in memory and in register.
821       bool IsIndirect = DVInst->getOperand(1).isImm();
822       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
823       {
824         LocalVarDefRange DefRange;
825         if (IsIndirect) {
826           int64_t Offset = DVInst->getOperand(1).getImm();
827           DefRange = createDefRangeMem(CVReg, Offset);
828         } else {
829           DefRange = createDefRangeReg(CVReg);
830         }
831         if (Var.DefRanges.empty() ||
832             Var.DefRanges.back().isDifferentLocation(DefRange)) {
833           Var.DefRanges.emplace_back(std::move(DefRange));
834         }
835       }
836 
837       // Compute the label range.
838       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
839       const MCSymbol *End = getLabelAfterInsn(Range.second);
840       if (!End) {
841         if (std::next(I) != E)
842           End = getLabelBeforeInsn(std::next(I)->first);
843         else
844           End = Asm->getFunctionEnd();
845       }
846 
847       // If the last range end is our begin, just extend the last range.
848       // Otherwise make a new range.
849       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
850           Var.DefRanges.back().Ranges;
851       if (!Ranges.empty() && Ranges.back().second == Begin)
852         Ranges.back().second = End;
853       else
854         Ranges.emplace_back(Begin, End);
855 
856       // FIXME: Do more range combining.
857     }
858 
859     recordLocalVariable(std::move(Var), InlinedAt);
860   }
861 }
862 
863 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
864   assert(!CurFn && "Can't process two functions at once!");
865 
866   if (!Asm || !MMI->hasDebugInfo())
867     return;
868 
869   DebugHandlerBase::beginFunction(MF);
870 
871   const Function *GV = MF->getFunction();
872   assert(FnDebugInfo.count(GV) == false);
873   CurFn = &FnDebugInfo[GV];
874   CurFn->FuncId = NextFuncId++;
875   CurFn->Begin = Asm->getFunctionBegin();
876 
877   // Find the end of the function prolog.  First known non-DBG_VALUE and
878   // non-frame setup location marks the beginning of the function body.
879   // FIXME: is there a simpler a way to do this? Can we just search
880   // for the first instruction of the function, not the last of the prolog?
881   DebugLoc PrologEndLoc;
882   bool EmptyPrologue = true;
883   for (const auto &MBB : *MF) {
884     for (const auto &MI : MBB) {
885       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
886           MI.getDebugLoc()) {
887         PrologEndLoc = MI.getDebugLoc();
888         break;
889       } else if (!MI.isDebugValue()) {
890         EmptyPrologue = false;
891       }
892     }
893   }
894 
895   // Record beginning of function if we have a non-empty prologue.
896   if (PrologEndLoc && !EmptyPrologue) {
897     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
898     maybeRecordLocation(FnStartDL, MF);
899   }
900 }
901 
902 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
903   // Don't record empty UDTs.
904   if (Ty->getName().empty())
905     return;
906 
907   SmallVector<StringRef, 5> QualifiedNameComponents;
908   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
909       Ty->getScope().resolve(), QualifiedNameComponents);
910 
911   std::string FullyQualifiedName =
912       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
913 
914   if (ClosestSubprogram == nullptr)
915     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
916   else if (ClosestSubprogram == CurrentSubprogram)
917     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
918 
919   // TODO: What if the ClosestSubprogram is neither null or the current
920   // subprogram?  Currently, the UDT just gets dropped on the floor.
921   //
922   // The current behavior is not desirable.  To get maximal fidelity, we would
923   // need to perform all type translation before beginning emission of .debug$S
924   // and then make LocalUDTs a member of FunctionInfo
925 }
926 
927 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
928   // Generic dispatch for lowering an unknown type.
929   switch (Ty->getTag()) {
930   case dwarf::DW_TAG_array_type:
931     return lowerTypeArray(cast<DICompositeType>(Ty));
932   case dwarf::DW_TAG_typedef:
933     return lowerTypeAlias(cast<DIDerivedType>(Ty));
934   case dwarf::DW_TAG_base_type:
935     return lowerTypeBasic(cast<DIBasicType>(Ty));
936   case dwarf::DW_TAG_pointer_type:
937   case dwarf::DW_TAG_reference_type:
938   case dwarf::DW_TAG_rvalue_reference_type:
939     return lowerTypePointer(cast<DIDerivedType>(Ty));
940   case dwarf::DW_TAG_ptr_to_member_type:
941     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
942   case dwarf::DW_TAG_const_type:
943   case dwarf::DW_TAG_volatile_type:
944     return lowerTypeModifier(cast<DIDerivedType>(Ty));
945   case dwarf::DW_TAG_subroutine_type:
946     if (ClassTy) {
947       // The member function type of a member function pointer has no
948       // ThisAdjustment.
949       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
950                                      /*ThisAdjustment=*/0);
951     }
952     return lowerTypeFunction(cast<DISubroutineType>(Ty));
953   case dwarf::DW_TAG_enumeration_type:
954     return lowerTypeEnum(cast<DICompositeType>(Ty));
955   case dwarf::DW_TAG_class_type:
956   case dwarf::DW_TAG_structure_type:
957     return lowerTypeClass(cast<DICompositeType>(Ty));
958   case dwarf::DW_TAG_union_type:
959     return lowerTypeUnion(cast<DICompositeType>(Ty));
960   default:
961     // Use the null type index.
962     return TypeIndex();
963   }
964 }
965 
966 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
967   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
968   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
969   StringRef TypeName = Ty->getName();
970 
971   addToUDTs(Ty, UnderlyingTypeIndex);
972 
973   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
974       TypeName == "HRESULT")
975     return TypeIndex(SimpleTypeKind::HResult);
976   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
977       TypeName == "wchar_t")
978     return TypeIndex(SimpleTypeKind::WideCharacter);
979 
980   return UnderlyingTypeIndex;
981 }
982 
983 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
984   DITypeRef ElementTypeRef = Ty->getBaseType();
985   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
986   // IndexType is size_t, which depends on the bitness of the target.
987   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
988                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
989                             : TypeIndex(SimpleTypeKind::UInt32Long);
990   uint64_t Size = Ty->getSizeInBits() / 8;
991   ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName());
992   return TypeTable.writeArray(Record);
993 }
994 
995 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
996   TypeIndex Index;
997   dwarf::TypeKind Kind;
998   uint32_t ByteSize;
999 
1000   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1001   ByteSize = Ty->getSizeInBits() / 8;
1002 
1003   SimpleTypeKind STK = SimpleTypeKind::None;
1004   switch (Kind) {
1005   case dwarf::DW_ATE_address:
1006     // FIXME: Translate
1007     break;
1008   case dwarf::DW_ATE_boolean:
1009     switch (ByteSize) {
1010     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1011     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1012     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1013     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1014     case 16: STK = SimpleTypeKind::Boolean128; break;
1015     }
1016     break;
1017   case dwarf::DW_ATE_complex_float:
1018     switch (ByteSize) {
1019     case 2:  STK = SimpleTypeKind::Complex16;  break;
1020     case 4:  STK = SimpleTypeKind::Complex32;  break;
1021     case 8:  STK = SimpleTypeKind::Complex64;  break;
1022     case 10: STK = SimpleTypeKind::Complex80;  break;
1023     case 16: STK = SimpleTypeKind::Complex128; break;
1024     }
1025     break;
1026   case dwarf::DW_ATE_float:
1027     switch (ByteSize) {
1028     case 2:  STK = SimpleTypeKind::Float16;  break;
1029     case 4:  STK = SimpleTypeKind::Float32;  break;
1030     case 6:  STK = SimpleTypeKind::Float48;  break;
1031     case 8:  STK = SimpleTypeKind::Float64;  break;
1032     case 10: STK = SimpleTypeKind::Float80;  break;
1033     case 16: STK = SimpleTypeKind::Float128; break;
1034     }
1035     break;
1036   case dwarf::DW_ATE_signed:
1037     switch (ByteSize) {
1038     case 1:  STK = SimpleTypeKind::SByte;      break;
1039     case 2:  STK = SimpleTypeKind::Int16Short; break;
1040     case 4:  STK = SimpleTypeKind::Int32;      break;
1041     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1042     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1043     }
1044     break;
1045   case dwarf::DW_ATE_unsigned:
1046     switch (ByteSize) {
1047     case 1:  STK = SimpleTypeKind::Byte;        break;
1048     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1049     case 4:  STK = SimpleTypeKind::UInt32;      break;
1050     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1051     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1052     }
1053     break;
1054   case dwarf::DW_ATE_UTF:
1055     switch (ByteSize) {
1056     case 2: STK = SimpleTypeKind::Character16; break;
1057     case 4: STK = SimpleTypeKind::Character32; break;
1058     }
1059     break;
1060   case dwarf::DW_ATE_signed_char:
1061     if (ByteSize == 1)
1062       STK = SimpleTypeKind::SignedCharacter;
1063     break;
1064   case dwarf::DW_ATE_unsigned_char:
1065     if (ByteSize == 1)
1066       STK = SimpleTypeKind::UnsignedCharacter;
1067     break;
1068   default:
1069     break;
1070   }
1071 
1072   // Apply some fixups based on the source-level type name.
1073   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1074     STK = SimpleTypeKind::Int32Long;
1075   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1076     STK = SimpleTypeKind::UInt32Long;
1077   if (STK == SimpleTypeKind::UInt16Short &&
1078       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1079     STK = SimpleTypeKind::WideCharacter;
1080   if ((STK == SimpleTypeKind::SignedCharacter ||
1081        STK == SimpleTypeKind::UnsignedCharacter) &&
1082       Ty->getName() == "char")
1083     STK = SimpleTypeKind::NarrowCharacter;
1084 
1085   return TypeIndex(STK);
1086 }
1087 
1088 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1089   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1090 
1091   // While processing the type being pointed to it is possible we already
1092   // created this pointer type.  If so, we check here and return the existing
1093   // pointer type.
1094   auto I = TypeIndices.find({Ty, nullptr});
1095   if (I != TypeIndices.end())
1096     return I->second;
1097 
1098   // Pointers to simple types can use SimpleTypeMode, rather than having a
1099   // dedicated pointer type record.
1100   if (PointeeTI.isSimple() &&
1101       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1102       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1103     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1104                               ? SimpleTypeMode::NearPointer64
1105                               : SimpleTypeMode::NearPointer32;
1106     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1107   }
1108 
1109   PointerKind PK =
1110       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1111   PointerMode PM = PointerMode::Pointer;
1112   switch (Ty->getTag()) {
1113   default: llvm_unreachable("not a pointer tag type");
1114   case dwarf::DW_TAG_pointer_type:
1115     PM = PointerMode::Pointer;
1116     break;
1117   case dwarf::DW_TAG_reference_type:
1118     PM = PointerMode::LValueReference;
1119     break;
1120   case dwarf::DW_TAG_rvalue_reference_type:
1121     PM = PointerMode::RValueReference;
1122     break;
1123   }
1124   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1125   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1126   // do.
1127   PointerOptions PO = PointerOptions::None;
1128   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1129   return TypeTable.writePointer(PR);
1130 }
1131 
1132 static PointerToMemberRepresentation
1133 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1134   // SizeInBytes being zero generally implies that the member pointer type was
1135   // incomplete, which can happen if it is part of a function prototype. In this
1136   // case, use the unknown model instead of the general model.
1137   if (IsPMF) {
1138     switch (Flags & DINode::FlagPtrToMemberRep) {
1139     case 0:
1140       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1141                               : PointerToMemberRepresentation::GeneralFunction;
1142     case DINode::FlagSingleInheritance:
1143       return PointerToMemberRepresentation::SingleInheritanceFunction;
1144     case DINode::FlagMultipleInheritance:
1145       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1146     case DINode::FlagVirtualInheritance:
1147       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1148     }
1149   } else {
1150     switch (Flags & DINode::FlagPtrToMemberRep) {
1151     case 0:
1152       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1153                               : PointerToMemberRepresentation::GeneralData;
1154     case DINode::FlagSingleInheritance:
1155       return PointerToMemberRepresentation::SingleInheritanceData;
1156     case DINode::FlagMultipleInheritance:
1157       return PointerToMemberRepresentation::MultipleInheritanceData;
1158     case DINode::FlagVirtualInheritance:
1159       return PointerToMemberRepresentation::VirtualInheritanceData;
1160     }
1161   }
1162   llvm_unreachable("invalid ptr to member representation");
1163 }
1164 
1165 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1166   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1167   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1168   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1169   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1170                                                    : PointerKind::Near32;
1171   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1172   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1173                          : PointerMode::PointerToDataMember;
1174   PointerOptions PO = PointerOptions::None; // FIXME
1175   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1176   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1177   MemberPointerInfo MPI(
1178       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1179   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1180   return TypeTable.writePointer(PR);
1181 }
1182 
1183 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1184 /// have a translation, use the NearC convention.
1185 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1186   switch (DwarfCC) {
1187   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1188   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1189   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1190   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1191   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1192   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1193   }
1194   return CallingConvention::NearC;
1195 }
1196 
1197 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1198   ModifierOptions Mods = ModifierOptions::None;
1199   bool IsModifier = true;
1200   const DIType *BaseTy = Ty;
1201   while (IsModifier && BaseTy) {
1202     // FIXME: Need to add DWARF tag for __unaligned.
1203     switch (BaseTy->getTag()) {
1204     case dwarf::DW_TAG_const_type:
1205       Mods |= ModifierOptions::Const;
1206       break;
1207     case dwarf::DW_TAG_volatile_type:
1208       Mods |= ModifierOptions::Volatile;
1209       break;
1210     default:
1211       IsModifier = false;
1212       break;
1213     }
1214     if (IsModifier)
1215       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1216   }
1217   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1218 
1219   // While processing the type being pointed to, it is possible we already
1220   // created this modifier type.  If so, we check here and return the existing
1221   // modifier type.
1222   auto I = TypeIndices.find({Ty, nullptr});
1223   if (I != TypeIndices.end())
1224     return I->second;
1225 
1226   ModifierRecord MR(ModifiedTI, Mods);
1227   return TypeTable.writeModifier(MR);
1228 }
1229 
1230 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1231   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1232   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1233     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1234 
1235   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1236   ArrayRef<TypeIndex> ArgTypeIndices = None;
1237   if (!ReturnAndArgTypeIndices.empty()) {
1238     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1239     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1240     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1241   }
1242 
1243   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1244   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1245 
1246   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1247 
1248   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1249                             ArgTypeIndices.size(), ArgListIndex);
1250   return TypeTable.writeProcedure(Procedure);
1251 }
1252 
1253 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1254                                                  const DIType *ClassTy,
1255                                                  int ThisAdjustment) {
1256   // Lower the containing class type.
1257   TypeIndex ClassType = getTypeIndex(ClassTy);
1258 
1259   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1260   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1261     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1262 
1263   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1264   ArrayRef<TypeIndex> ArgTypeIndices = None;
1265   if (!ReturnAndArgTypeIndices.empty()) {
1266     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1267     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1268     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1269   }
1270   TypeIndex ThisTypeIndex = TypeIndex::Void();
1271   if (!ArgTypeIndices.empty()) {
1272     ThisTypeIndex = ArgTypeIndices.front();
1273     ArgTypeIndices = ArgTypeIndices.drop_front();
1274   }
1275 
1276   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1277   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1278 
1279   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1280 
1281   // TODO: Need to use the correct values for:
1282   //       FunctionOptions
1283   //       ThisPointerAdjustment.
1284   TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord(
1285       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1286       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1287 
1288   return TI;
1289 }
1290 
1291 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1292   switch (Flags & DINode::FlagAccessibility) {
1293   case DINode::FlagPrivate:   return MemberAccess::Private;
1294   case DINode::FlagPublic:    return MemberAccess::Public;
1295   case DINode::FlagProtected: return MemberAccess::Protected;
1296   case 0:
1297     // If there was no explicit access control, provide the default for the tag.
1298     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1299                                                  : MemberAccess::Public;
1300   }
1301   llvm_unreachable("access flags are exclusive");
1302 }
1303 
1304 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1305   if (SP->isArtificial())
1306     return MethodOptions::CompilerGenerated;
1307 
1308   // FIXME: Handle other MethodOptions.
1309 
1310   return MethodOptions::None;
1311 }
1312 
1313 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1314                                            bool Introduced) {
1315   switch (SP->getVirtuality()) {
1316   case dwarf::DW_VIRTUALITY_none:
1317     break;
1318   case dwarf::DW_VIRTUALITY_virtual:
1319     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1320   case dwarf::DW_VIRTUALITY_pure_virtual:
1321     return Introduced ? MethodKind::PureIntroducingVirtual
1322                       : MethodKind::PureVirtual;
1323   default:
1324     llvm_unreachable("unhandled virtuality case");
1325   }
1326 
1327   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1328 
1329   return MethodKind::Vanilla;
1330 }
1331 
1332 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1333   switch (Ty->getTag()) {
1334   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1335   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1336   }
1337   llvm_unreachable("unexpected tag");
1338 }
1339 
1340 /// Return ClassOptions that should be present on both the forward declaration
1341 /// and the defintion of a tag type.
1342 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1343   ClassOptions CO = ClassOptions::None;
1344 
1345   // MSVC always sets this flag, even for local types. Clang doesn't always
1346   // appear to give every type a linkage name, which may be problematic for us.
1347   // FIXME: Investigate the consequences of not following them here.
1348   if (!Ty->getIdentifier().empty())
1349     CO |= ClassOptions::HasUniqueName;
1350 
1351   // Put the Nested flag on a type if it appears immediately inside a tag type.
1352   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1353   // here. That flag is only set on definitions, and not forward declarations.
1354   const DIScope *ImmediateScope = Ty->getScope().resolve();
1355   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1356     CO |= ClassOptions::Nested;
1357 
1358   // Put the Scoped flag on function-local types.
1359   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1360        Scope = Scope->getScope().resolve()) {
1361     if (isa<DISubprogram>(Scope)) {
1362       CO |= ClassOptions::Scoped;
1363       break;
1364     }
1365   }
1366 
1367   return CO;
1368 }
1369 
1370 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1371   ClassOptions CO = getCommonClassOptions(Ty);
1372   TypeIndex FTI;
1373   unsigned EnumeratorCount = 0;
1374 
1375   if (Ty->isForwardDecl()) {
1376     CO |= ClassOptions::ForwardReference;
1377   } else {
1378     FieldListRecordBuilder Fields;
1379     for (const DINode *Element : Ty->getElements()) {
1380       // We assume that the frontend provides all members in source declaration
1381       // order, which is what MSVC does.
1382       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1383         Fields.writeEnumerator(EnumeratorRecord(
1384             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1385             Enumerator->getName()));
1386         EnumeratorCount++;
1387       }
1388     }
1389     FTI = TypeTable.writeFieldList(Fields);
1390   }
1391 
1392   std::string FullName = getFullyQualifiedName(Ty);
1393 
1394   return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1395                                         Ty->getIdentifier(),
1396                                         getTypeIndex(Ty->getBaseType())));
1397 }
1398 
1399 //===----------------------------------------------------------------------===//
1400 // ClassInfo
1401 //===----------------------------------------------------------------------===//
1402 
1403 struct llvm::ClassInfo {
1404   struct MemberInfo {
1405     const DIDerivedType *MemberTypeNode;
1406     uint64_t BaseOffset;
1407   };
1408   // [MemberInfo]
1409   typedef std::vector<MemberInfo> MemberList;
1410 
1411   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1412   // MethodName -> MethodsList
1413   typedef MapVector<MDString *, MethodsList> MethodsMap;
1414 
1415   /// Base classes.
1416   std::vector<const DIDerivedType *> Inheritance;
1417 
1418   /// Direct members.
1419   MemberList Members;
1420   // Direct overloaded methods gathered by name.
1421   MethodsMap Methods;
1422 
1423   std::vector<const DICompositeType *> NestedClasses;
1424 };
1425 
1426 void CodeViewDebug::clear() {
1427   assert(CurFn == nullptr);
1428   FileIdMap.clear();
1429   FnDebugInfo.clear();
1430   FileToFilepathMap.clear();
1431   LocalUDTs.clear();
1432   GlobalUDTs.clear();
1433   TypeIndices.clear();
1434   CompleteTypeIndices.clear();
1435 }
1436 
1437 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1438                                       const DIDerivedType *DDTy) {
1439   if (!DDTy->getName().empty()) {
1440     Info.Members.push_back({DDTy, 0});
1441     return;
1442   }
1443   // An unnamed member must represent a nested struct or union. Add all the
1444   // indirect fields to the current record.
1445   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1446   uint64_t Offset = DDTy->getOffsetInBits();
1447   const DIType *Ty = DDTy->getBaseType().resolve();
1448   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1449   ClassInfo NestedInfo = collectClassInfo(DCTy);
1450   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1451     Info.Members.push_back(
1452         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1453 }
1454 
1455 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1456   ClassInfo Info;
1457   // Add elements to structure type.
1458   DINodeArray Elements = Ty->getElements();
1459   for (auto *Element : Elements) {
1460     // We assume that the frontend provides all members in source declaration
1461     // order, which is what MSVC does.
1462     if (!Element)
1463       continue;
1464     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1465       Info.Methods[SP->getRawName()].push_back(SP);
1466     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1467       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1468         collectMemberInfo(Info, DDTy);
1469       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1470         Info.Inheritance.push_back(DDTy);
1471       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1472         // Ignore friend members. It appears that MSVC emitted info about
1473         // friends in the past, but modern versions do not.
1474       }
1475       // FIXME: Get Clang to emit function virtual table here and handle it.
1476     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1477       Info.NestedClasses.push_back(Composite);
1478     }
1479     // Skip other unrecognized kinds of elements.
1480   }
1481   return Info;
1482 }
1483 
1484 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1485   // First, construct the forward decl.  Don't look into Ty to compute the
1486   // forward decl options, since it might not be available in all TUs.
1487   TypeRecordKind Kind = getRecordKind(Ty);
1488   ClassOptions CO =
1489       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1490   std::string FullName = getFullyQualifiedName(Ty);
1491   TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord(
1492       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1493       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1494   if (!Ty->isForwardDecl())
1495     DeferredCompleteTypes.push_back(Ty);
1496   return FwdDeclTI;
1497 }
1498 
1499 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1500   // Construct the field list and complete type record.
1501   TypeRecordKind Kind = getRecordKind(Ty);
1502   ClassOptions CO = getCommonClassOptions(Ty);
1503   TypeIndex FieldTI;
1504   TypeIndex VShapeTI;
1505   unsigned FieldCount;
1506   bool ContainsNestedClass;
1507   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1508       lowerRecordFieldList(Ty);
1509 
1510   if (ContainsNestedClass)
1511     CO |= ClassOptions::ContainsNestedClass;
1512 
1513   std::string FullName = getFullyQualifiedName(Ty);
1514 
1515   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1516 
1517   TypeIndex ClassTI = TypeTable.writeClass(ClassRecord(
1518       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1519       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1520 
1521   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1522       ClassTI, TypeTable.writeStringId(StringIdRecord(
1523                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1524       Ty->getLine()));
1525 
1526   addToUDTs(Ty, ClassTI);
1527 
1528   return ClassTI;
1529 }
1530 
1531 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1532   ClassOptions CO =
1533       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1534   std::string FullName = getFullyQualifiedName(Ty);
1535   TypeIndex FwdDeclTI =
1536       TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0,
1537                                        FullName, Ty->getIdentifier()));
1538   if (!Ty->isForwardDecl())
1539     DeferredCompleteTypes.push_back(Ty);
1540   return FwdDeclTI;
1541 }
1542 
1543 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1544   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1545   TypeIndex FieldTI;
1546   unsigned FieldCount;
1547   bool ContainsNestedClass;
1548   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1549       lowerRecordFieldList(Ty);
1550 
1551   if (ContainsNestedClass)
1552     CO |= ClassOptions::ContainsNestedClass;
1553 
1554   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1555   std::string FullName = getFullyQualifiedName(Ty);
1556 
1557   TypeIndex UnionTI = TypeTable.writeUnion(
1558       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1559                   Ty->getIdentifier()));
1560 
1561   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1562       UnionTI, TypeTable.writeStringId(StringIdRecord(
1563                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1564       Ty->getLine()));
1565 
1566   addToUDTs(Ty, UnionTI);
1567 
1568   return UnionTI;
1569 }
1570 
1571 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1572 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1573   // Manually count members. MSVC appears to count everything that generates a
1574   // field list record. Each individual overload in a method overload group
1575   // contributes to this count, even though the overload group is a single field
1576   // list record.
1577   unsigned MemberCount = 0;
1578   ClassInfo Info = collectClassInfo(Ty);
1579   FieldListRecordBuilder Fields;
1580 
1581   // Create base classes.
1582   for (const DIDerivedType *I : Info.Inheritance) {
1583     if (I->getFlags() & DINode::FlagVirtual) {
1584       // Virtual base.
1585       // FIXME: Emit VBPtrOffset when the frontend provides it.
1586       unsigned VBPtrOffset = 0;
1587       // FIXME: Despite the accessor name, the offset is really in bytes.
1588       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1589       Fields.writeVirtualBaseClass(VirtualBaseClassRecord(
1590           translateAccessFlags(Ty->getTag(), I->getFlags()),
1591           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1592           VBTableIndex));
1593     } else {
1594       assert(I->getOffsetInBits() % 8 == 0 &&
1595              "bases must be on byte boundaries");
1596       Fields.writeBaseClass(BaseClassRecord(
1597           translateAccessFlags(Ty->getTag(), I->getFlags()),
1598           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1599     }
1600   }
1601 
1602   // Create members.
1603   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1604     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1605     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1606     StringRef MemberName = Member->getName();
1607     MemberAccess Access =
1608         translateAccessFlags(Ty->getTag(), Member->getFlags());
1609 
1610     if (Member->isStaticMember()) {
1611       Fields.writeStaticDataMember(
1612           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1613       MemberCount++;
1614       continue;
1615     }
1616 
1617     // Data member.
1618     uint64_t MemberOffsetInBits =
1619         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1620     if (Member->isBitField()) {
1621       uint64_t StartBitOffset = MemberOffsetInBits;
1622       if (const auto *CI =
1623               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1624         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1625       }
1626       StartBitOffset -= MemberOffsetInBits;
1627       MemberBaseType = TypeTable.writeBitField(BitFieldRecord(
1628           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1629     }
1630     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1631     Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType,
1632                                             MemberOffsetInBytes, MemberName));
1633     MemberCount++;
1634   }
1635 
1636   // Create methods
1637   for (auto &MethodItr : Info.Methods) {
1638     StringRef Name = MethodItr.first->getString();
1639 
1640     std::vector<OneMethodRecord> Methods;
1641     for (const DISubprogram *SP : MethodItr.second) {
1642       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1643       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1644 
1645       unsigned VFTableOffset = -1;
1646       if (Introduced)
1647         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1648 
1649       Methods.push_back(
1650           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1651                           translateMethodOptionFlags(SP),
1652                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1653                           VFTableOffset, Name));
1654       MemberCount++;
1655     }
1656     assert(Methods.size() > 0 && "Empty methods map entry");
1657     if (Methods.size() == 1)
1658       Fields.writeOneMethod(Methods[0]);
1659     else {
1660       TypeIndex MethodList =
1661           TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods));
1662       Fields.writeOverloadedMethod(
1663           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1664     }
1665   }
1666 
1667   // Create nested classes.
1668   for (const DICompositeType *Nested : Info.NestedClasses) {
1669     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1670     Fields.writeNestedType(R);
1671     MemberCount++;
1672   }
1673 
1674   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1675   return std::make_tuple(FieldTI, TypeIndex(), MemberCount,
1676                          !Info.NestedClasses.empty());
1677 }
1678 
1679 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1680   if (!VBPType.getIndex()) {
1681     // Make a 'const int *' type.
1682     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1683     TypeIndex ModifiedTI = TypeTable.writeModifier(MR);
1684 
1685     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1686                                                   : PointerKind::Near32;
1687     PointerMode PM = PointerMode::Pointer;
1688     PointerOptions PO = PointerOptions::None;
1689     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1690 
1691     VBPType = TypeTable.writePointer(PR);
1692   }
1693 
1694   return VBPType;
1695 }
1696 
1697 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1698   const DIType *Ty = TypeRef.resolve();
1699   const DIType *ClassTy = ClassTyRef.resolve();
1700 
1701   // The null DIType is the void type. Don't try to hash it.
1702   if (!Ty)
1703     return TypeIndex::Void();
1704 
1705   // Check if we've already translated this type. Don't try to do a
1706   // get-or-create style insertion that caches the hash lookup across the
1707   // lowerType call. It will update the TypeIndices map.
1708   auto I = TypeIndices.find({Ty, ClassTy});
1709   if (I != TypeIndices.end())
1710     return I->second;
1711 
1712   TypeLoweringScope S(*this);
1713   TypeIndex TI = lowerType(Ty, ClassTy);
1714   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1715 }
1716 
1717 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1718   const DIType *Ty = TypeRef.resolve();
1719 
1720   // The null DIType is the void type. Don't try to hash it.
1721   if (!Ty)
1722     return TypeIndex::Void();
1723 
1724   // If this is a non-record type, the complete type index is the same as the
1725   // normal type index. Just call getTypeIndex.
1726   switch (Ty->getTag()) {
1727   case dwarf::DW_TAG_class_type:
1728   case dwarf::DW_TAG_structure_type:
1729   case dwarf::DW_TAG_union_type:
1730     break;
1731   default:
1732     return getTypeIndex(Ty);
1733   }
1734 
1735   // Check if we've already translated the complete record type.  Lowering a
1736   // complete type should never trigger lowering another complete type, so we
1737   // can reuse the hash table lookup result.
1738   const auto *CTy = cast<DICompositeType>(Ty);
1739   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1740   if (!InsertResult.second)
1741     return InsertResult.first->second;
1742 
1743   TypeLoweringScope S(*this);
1744 
1745   // Make sure the forward declaration is emitted first. It's unclear if this
1746   // is necessary, but MSVC does it, and we should follow suit until we can show
1747   // otherwise.
1748   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1749 
1750   // Just use the forward decl if we don't have complete type info. This might
1751   // happen if the frontend is using modules and expects the complete definition
1752   // to be emitted elsewhere.
1753   if (CTy->isForwardDecl())
1754     return FwdDeclTI;
1755 
1756   TypeIndex TI;
1757   switch (CTy->getTag()) {
1758   case dwarf::DW_TAG_class_type:
1759   case dwarf::DW_TAG_structure_type:
1760     TI = lowerCompleteTypeClass(CTy);
1761     break;
1762   case dwarf::DW_TAG_union_type:
1763     TI = lowerCompleteTypeUnion(CTy);
1764     break;
1765   default:
1766     llvm_unreachable("not a record");
1767   }
1768 
1769   InsertResult.first->second = TI;
1770   return TI;
1771 }
1772 
1773 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1774 /// and do this until fixpoint, as each complete record type typically references
1775 /// many other record types.
1776 void CodeViewDebug::emitDeferredCompleteTypes() {
1777   SmallVector<const DICompositeType *, 4> TypesToEmit;
1778   while (!DeferredCompleteTypes.empty()) {
1779     std::swap(DeferredCompleteTypes, TypesToEmit);
1780     for (const DICompositeType *RecordTy : TypesToEmit)
1781       getCompleteTypeIndex(RecordTy);
1782     TypesToEmit.clear();
1783   }
1784 }
1785 
1786 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1787   // Get the sorted list of parameters and emit them first.
1788   SmallVector<const LocalVariable *, 6> Params;
1789   for (const LocalVariable &L : Locals)
1790     if (L.DIVar->isParameter())
1791       Params.push_back(&L);
1792   std::sort(Params.begin(), Params.end(),
1793             [](const LocalVariable *L, const LocalVariable *R) {
1794               return L->DIVar->getArg() < R->DIVar->getArg();
1795             });
1796   for (const LocalVariable *L : Params)
1797     emitLocalVariable(*L);
1798 
1799   // Next emit all non-parameters in the order that we found them.
1800   for (const LocalVariable &L : Locals)
1801     if (!L.DIVar->isParameter())
1802       emitLocalVariable(L);
1803 }
1804 
1805 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1806   // LocalSym record, see SymbolRecord.h for more info.
1807   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1808            *LocalEnd = MMI->getContext().createTempSymbol();
1809   OS.AddComment("Record length");
1810   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1811   OS.EmitLabel(LocalBegin);
1812 
1813   OS.AddComment("Record kind: S_LOCAL");
1814   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1815 
1816   LocalSymFlags Flags = LocalSymFlags::None;
1817   if (Var.DIVar->isParameter())
1818     Flags |= LocalSymFlags::IsParameter;
1819   if (Var.DefRanges.empty())
1820     Flags |= LocalSymFlags::IsOptimizedOut;
1821 
1822   OS.AddComment("TypeIndex");
1823   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1824   OS.EmitIntValue(TI.getIndex(), 4);
1825   OS.AddComment("Flags");
1826   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1827   // Truncate the name so we won't overflow the record length field.
1828   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1829   OS.EmitLabel(LocalEnd);
1830 
1831   // Calculate the on disk prefix of the appropriate def range record. The
1832   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1833   // should be big enough to hold all forms without memory allocation.
1834   SmallString<20> BytePrefix;
1835   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1836     BytePrefix.clear();
1837     // FIXME: Handle bitpieces.
1838     if (DefRange.StructOffset != 0)
1839       continue;
1840 
1841     if (DefRange.InMemory) {
1842       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1843                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1844       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1845       BytePrefix +=
1846           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1847       BytePrefix +=
1848           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1849                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1850     } else {
1851       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1852       // Unclear what matters here.
1853       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1854                               ArrayRef<LocalVariableAddrGap>());
1855       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1856       BytePrefix +=
1857           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1858       BytePrefix +=
1859           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1860                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1861     }
1862     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1863   }
1864 }
1865 
1866 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1867   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1868     return;
1869 
1870   const Function *GV = MF->getFunction();
1871   assert(FnDebugInfo.count(GV));
1872   assert(CurFn == &FnDebugInfo[GV]);
1873 
1874   collectVariableInfo(GV->getSubprogram());
1875 
1876   DebugHandlerBase::endFunction(MF);
1877 
1878   // Don't emit anything if we don't have any line tables.
1879   if (!CurFn->HaveLineInfo) {
1880     FnDebugInfo.erase(GV);
1881     CurFn = nullptr;
1882     return;
1883   }
1884 
1885   CurFn->End = Asm->getFunctionEnd();
1886 
1887   CurFn = nullptr;
1888 }
1889 
1890 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1891   DebugHandlerBase::beginInstruction(MI);
1892 
1893   // Ignore DBG_VALUE locations and function prologue.
1894   if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup))
1895     return;
1896   DebugLoc DL = MI->getDebugLoc();
1897   if (DL == PrevInstLoc || !DL)
1898     return;
1899   maybeRecordLocation(DL, Asm->MF);
1900 }
1901 
1902 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1903   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1904            *EndLabel = MMI->getContext().createTempSymbol();
1905   OS.EmitIntValue(unsigned(Kind), 4);
1906   OS.AddComment("Subsection size");
1907   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1908   OS.EmitLabel(BeginLabel);
1909   return EndLabel;
1910 }
1911 
1912 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1913   OS.EmitLabel(EndLabel);
1914   // Every subsection must be aligned to a 4-byte boundary.
1915   OS.EmitValueToAlignment(4);
1916 }
1917 
1918 void CodeViewDebug::emitDebugInfoForUDTs(
1919     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1920   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1921     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1922              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1923     OS.AddComment("Record length");
1924     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1925     OS.EmitLabel(UDTRecordBegin);
1926 
1927     OS.AddComment("Record kind: S_UDT");
1928     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1929 
1930     OS.AddComment("Type");
1931     OS.EmitIntValue(UDT.second.getIndex(), 4);
1932 
1933     emitNullTerminatedSymbolName(OS, UDT.first);
1934     OS.EmitLabel(UDTRecordEnd);
1935   }
1936 }
1937 
1938 void CodeViewDebug::emitDebugInfoForGlobals() {
1939   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1940   for (const MDNode *Node : CUs->operands()) {
1941     const auto *CU = cast<DICompileUnit>(Node);
1942 
1943     // First, emit all globals that are not in a comdat in a single symbol
1944     // substream. MSVC doesn't like it if the substream is empty, so only open
1945     // it if we have at least one global to emit.
1946     switchToDebugSectionForSymbol(nullptr);
1947     MCSymbol *EndLabel = nullptr;
1948     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1949       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1950         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
1951           if (!EndLabel) {
1952             OS.AddComment("Symbol subsection for globals");
1953             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
1954           }
1955           emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
1956         }
1957       }
1958     }
1959     if (EndLabel)
1960       endCVSubsection(EndLabel);
1961 
1962     // Second, emit each global that is in a comdat into its own .debug$S
1963     // section along with its own symbol substream.
1964     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1965       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1966         if (GV->hasComdat()) {
1967           MCSymbol *GVSym = Asm->getSymbol(GV);
1968           OS.AddComment("Symbol subsection for " +
1969                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
1970           switchToDebugSectionForSymbol(GVSym);
1971           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
1972           emitDebugInfoForGlobal(G, GVSym);
1973           endCVSubsection(EndLabel);
1974         }
1975       }
1976     }
1977   }
1978 }
1979 
1980 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
1981   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1982   for (const MDNode *Node : CUs->operands()) {
1983     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
1984       if (DIType *RT = dyn_cast<DIType>(Ty)) {
1985         getTypeIndex(RT);
1986         // FIXME: Add to global/local DTU list.
1987       }
1988     }
1989   }
1990 }
1991 
1992 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
1993                                            MCSymbol *GVSym) {
1994   // DataSym record, see SymbolRecord.h for more info.
1995   // FIXME: Thread local data, etc
1996   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
1997            *DataEnd = MMI->getContext().createTempSymbol();
1998   OS.AddComment("Record length");
1999   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2000   OS.EmitLabel(DataBegin);
2001   const auto *GV = cast<GlobalVariable>(DIGV->getVariable());
2002   if (DIGV->isLocalToUnit()) {
2003     if (GV->isThreadLocal()) {
2004       OS.AddComment("Record kind: S_LTHREAD32");
2005       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2006     } else {
2007       OS.AddComment("Record kind: S_LDATA32");
2008       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2009     }
2010   } else {
2011     if (GV->isThreadLocal()) {
2012       OS.AddComment("Record kind: S_GTHREAD32");
2013       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2014     } else {
2015       OS.AddComment("Record kind: S_GDATA32");
2016       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2017     }
2018   }
2019   OS.AddComment("Type");
2020   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2021   OS.AddComment("DataOffset");
2022   OS.EmitCOFFSecRel32(GVSym);
2023   OS.AddComment("Segment");
2024   OS.EmitCOFFSectionIndex(GVSym);
2025   OS.AddComment("Name");
2026   emitNullTerminatedSymbolName(OS, DIGV->getName());
2027   OS.EmitLabel(DataEnd);
2028 }
2029