1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/TinyPtrVector.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/COFF.h" 24 #include "llvm/BinaryFormat/Dwarf.h" 25 #include "llvm/CodeGen/AsmPrinter.h" 26 #include "llvm/CodeGen/LexicalScopes.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/CodeGen/TargetFrameLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 36 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 37 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 38 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 39 #include "llvm/DebugInfo/CodeView/EnumTables.h" 40 #include "llvm/DebugInfo/CodeView/Line.h" 41 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 42 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 43 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 44 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/MC/MCAsmInfo.h" 54 #include "llvm/MC/MCContext.h" 55 #include "llvm/MC/MCSectionCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/Support/BinaryStreamWriter.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/Endian.h" 61 #include "llvm/Support/Error.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/FormatVariadic.h" 64 #include "llvm/Support/Path.h" 65 #include "llvm/Support/Program.h" 66 #include "llvm/Support/SMLoc.h" 67 #include "llvm/Support/ScopedPrinter.h" 68 #include "llvm/Target/TargetLoweringObjectFile.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cctype> 73 #include <cstddef> 74 #include <iterator> 75 #include <limits> 76 77 using namespace llvm; 78 using namespace llvm::codeview; 79 80 namespace { 81 class CVMCAdapter : public CodeViewRecordStreamer { 82 public: 83 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 84 : OS(&OS), TypeTable(TypeTable) {} 85 86 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 87 88 void emitIntValue(uint64_t Value, unsigned Size) override { 89 OS->emitIntValueInHex(Value, Size); 90 } 91 92 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 93 94 void AddComment(const Twine &T) override { OS->AddComment(T); } 95 96 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 97 98 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 99 100 std::string getTypeName(TypeIndex TI) override { 101 std::string TypeName; 102 if (!TI.isNoneType()) { 103 if (TI.isSimple()) 104 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 105 else 106 TypeName = std::string(TypeTable.getTypeName(TI)); 107 } 108 return TypeName; 109 } 110 111 private: 112 MCStreamer *OS = nullptr; 113 TypeCollection &TypeTable; 114 }; 115 } // namespace 116 117 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 118 switch (Type) { 119 case Triple::ArchType::x86: 120 return CPUType::Pentium3; 121 case Triple::ArchType::x86_64: 122 return CPUType::X64; 123 case Triple::ArchType::thumb: 124 // LLVM currently doesn't support Windows CE and so thumb 125 // here is indiscriminately mapped to ARMNT specifically. 126 return CPUType::ARMNT; 127 case Triple::ArchType::aarch64: 128 return CPUType::ARM64; 129 default: 130 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 131 } 132 } 133 134 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 135 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} 136 137 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 138 std::string &Filepath = FileToFilepathMap[File]; 139 if (!Filepath.empty()) 140 return Filepath; 141 142 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 143 144 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 145 // it textually because one of the path components could be a symlink. 146 if (Dir.startswith("/") || Filename.startswith("/")) { 147 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 148 return Filename; 149 Filepath = std::string(Dir); 150 if (Dir.back() != '/') 151 Filepath += '/'; 152 Filepath += Filename; 153 return Filepath; 154 } 155 156 // Clang emits directory and relative filename info into the IR, but CodeView 157 // operates on full paths. We could change Clang to emit full paths too, but 158 // that would increase the IR size and probably not needed for other users. 159 // For now, just concatenate and canonicalize the path here. 160 if (Filename.find(':') == 1) 161 Filepath = std::string(Filename); 162 else 163 Filepath = (Dir + "\\" + Filename).str(); 164 165 // Canonicalize the path. We have to do it textually because we may no longer 166 // have access the file in the filesystem. 167 // First, replace all slashes with backslashes. 168 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 169 170 // Remove all "\.\" with "\". 171 size_t Cursor = 0; 172 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 173 Filepath.erase(Cursor, 2); 174 175 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 176 // path should be well-formatted, e.g. start with a drive letter, etc. 177 Cursor = 0; 178 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 179 // Something's wrong if the path starts with "\..\", abort. 180 if (Cursor == 0) 181 break; 182 183 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 184 if (PrevSlash == std::string::npos) 185 // Something's wrong, abort. 186 break; 187 188 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 189 // The next ".." might be following the one we've just erased. 190 Cursor = PrevSlash; 191 } 192 193 // Remove all duplicate backslashes. 194 Cursor = 0; 195 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 196 Filepath.erase(Cursor, 1); 197 198 return Filepath; 199 } 200 201 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 202 StringRef FullPath = getFullFilepath(F); 203 unsigned NextId = FileIdMap.size() + 1; 204 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 205 if (Insertion.second) { 206 // We have to compute the full filepath and emit a .cv_file directive. 207 ArrayRef<uint8_t> ChecksumAsBytes; 208 FileChecksumKind CSKind = FileChecksumKind::None; 209 if (F->getChecksum()) { 210 std::string Checksum = fromHex(F->getChecksum()->Value); 211 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 212 memcpy(CKMem, Checksum.data(), Checksum.size()); 213 ChecksumAsBytes = ArrayRef<uint8_t>( 214 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 215 switch (F->getChecksum()->Kind) { 216 case DIFile::CSK_MD5: 217 CSKind = FileChecksumKind::MD5; 218 break; 219 case DIFile::CSK_SHA1: 220 CSKind = FileChecksumKind::SHA1; 221 break; 222 case DIFile::CSK_SHA256: 223 CSKind = FileChecksumKind::SHA256; 224 break; 225 } 226 } 227 bool Success = OS.emitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 228 static_cast<unsigned>(CSKind)); 229 (void)Success; 230 assert(Success && ".cv_file directive failed"); 231 } 232 return Insertion.first->second; 233 } 234 235 CodeViewDebug::InlineSite & 236 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 237 const DISubprogram *Inlinee) { 238 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 239 InlineSite *Site = &SiteInsertion.first->second; 240 if (SiteInsertion.second) { 241 unsigned ParentFuncId = CurFn->FuncId; 242 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 243 ParentFuncId = 244 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 245 .SiteFuncId; 246 247 Site->SiteFuncId = NextFuncId++; 248 OS.emitCVInlineSiteIdDirective( 249 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 250 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 251 Site->Inlinee = Inlinee; 252 InlinedSubprograms.insert(Inlinee); 253 getFuncIdForSubprogram(Inlinee); 254 } 255 return *Site; 256 } 257 258 static StringRef getPrettyScopeName(const DIScope *Scope) { 259 StringRef ScopeName = Scope->getName(); 260 if (!ScopeName.empty()) 261 return ScopeName; 262 263 switch (Scope->getTag()) { 264 case dwarf::DW_TAG_enumeration_type: 265 case dwarf::DW_TAG_class_type: 266 case dwarf::DW_TAG_structure_type: 267 case dwarf::DW_TAG_union_type: 268 return "<unnamed-tag>"; 269 case dwarf::DW_TAG_namespace: 270 return "`anonymous namespace'"; 271 default: 272 return StringRef(); 273 } 274 } 275 276 const DISubprogram *CodeViewDebug::collectParentScopeNames( 277 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 278 const DISubprogram *ClosestSubprogram = nullptr; 279 while (Scope != nullptr) { 280 if (ClosestSubprogram == nullptr) 281 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 282 283 // If a type appears in a scope chain, make sure it gets emitted. The 284 // frontend will be responsible for deciding if this should be a forward 285 // declaration or a complete type. 286 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 287 DeferredCompleteTypes.push_back(Ty); 288 289 StringRef ScopeName = getPrettyScopeName(Scope); 290 if (!ScopeName.empty()) 291 QualifiedNameComponents.push_back(ScopeName); 292 Scope = Scope->getScope(); 293 } 294 return ClosestSubprogram; 295 } 296 297 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 298 StringRef TypeName) { 299 std::string FullyQualifiedName; 300 for (StringRef QualifiedNameComponent : 301 llvm::reverse(QualifiedNameComponents)) { 302 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 303 FullyQualifiedName.append("::"); 304 } 305 FullyQualifiedName.append(std::string(TypeName)); 306 return FullyQualifiedName; 307 } 308 309 struct CodeViewDebug::TypeLoweringScope { 310 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 311 ~TypeLoweringScope() { 312 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 313 // inner TypeLoweringScopes don't attempt to emit deferred types. 314 if (CVD.TypeEmissionLevel == 1) 315 CVD.emitDeferredCompleteTypes(); 316 --CVD.TypeEmissionLevel; 317 } 318 CodeViewDebug &CVD; 319 }; 320 321 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 322 StringRef Name) { 323 // Ensure types in the scope chain are emitted as soon as possible. 324 // This can create otherwise a situation where S_UDTs are emitted while 325 // looping in emitDebugInfoForUDTs. 326 TypeLoweringScope S(*this); 327 SmallVector<StringRef, 5> QualifiedNameComponents; 328 collectParentScopeNames(Scope, QualifiedNameComponents); 329 return formatNestedName(QualifiedNameComponents, Name); 330 } 331 332 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 333 const DIScope *Scope = Ty->getScope(); 334 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 335 } 336 337 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 338 // No scope means global scope and that uses the zero index. 339 // 340 // We also use zero index when the scope is a DISubprogram 341 // to suppress the emission of LF_STRING_ID for the function, 342 // which can trigger a link-time error with the linker in 343 // VS2019 version 16.11.2 or newer. 344 // Note, however, skipping the debug info emission for the DISubprogram 345 // is a temporary fix. The root issue here is that we need to figure out 346 // the proper way to encode a function nested in another function 347 // (as introduced by the Fortran 'contains' keyword) in CodeView. 348 if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope)) 349 return TypeIndex(); 350 351 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 352 353 // Check if we've already translated this scope. 354 auto I = TypeIndices.find({Scope, nullptr}); 355 if (I != TypeIndices.end()) 356 return I->second; 357 358 // Build the fully qualified name of the scope. 359 std::string ScopeName = getFullyQualifiedName(Scope); 360 StringIdRecord SID(TypeIndex(), ScopeName); 361 auto TI = TypeTable.writeLeafType(SID); 362 return recordTypeIndexForDINode(Scope, TI); 363 } 364 365 static StringRef removeTemplateArgs(StringRef Name) { 366 // Remove template args from the display name. Assume that the template args 367 // are the last thing in the name. 368 if (Name.empty() || Name.back() != '>') 369 return Name; 370 371 int OpenBrackets = 0; 372 for (int i = Name.size() - 1; i >= 0; --i) { 373 if (Name[i] == '>') 374 ++OpenBrackets; 375 else if (Name[i] == '<') { 376 --OpenBrackets; 377 if (OpenBrackets == 0) 378 return Name.substr(0, i); 379 } 380 } 381 return Name; 382 } 383 384 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 385 assert(SP); 386 387 // Check if we've already translated this subprogram. 388 auto I = TypeIndices.find({SP, nullptr}); 389 if (I != TypeIndices.end()) 390 return I->second; 391 392 // The display name includes function template arguments. Drop them to match 393 // MSVC. We need to have the template arguments in the DISubprogram name 394 // because they are used in other symbol records, such as S_GPROC32_IDs. 395 StringRef DisplayName = removeTemplateArgs(SP->getName()); 396 397 const DIScope *Scope = SP->getScope(); 398 TypeIndex TI; 399 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 400 // If the scope is a DICompositeType, then this must be a method. Member 401 // function types take some special handling, and require access to the 402 // subprogram. 403 TypeIndex ClassType = getTypeIndex(Class); 404 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 405 DisplayName); 406 TI = TypeTable.writeLeafType(MFuncId); 407 } else { 408 // Otherwise, this must be a free function. 409 TypeIndex ParentScope = getScopeIndex(Scope); 410 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 411 TI = TypeTable.writeLeafType(FuncId); 412 } 413 414 return recordTypeIndexForDINode(SP, TI); 415 } 416 417 static bool isNonTrivial(const DICompositeType *DCTy) { 418 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 419 } 420 421 static FunctionOptions 422 getFunctionOptions(const DISubroutineType *Ty, 423 const DICompositeType *ClassTy = nullptr, 424 StringRef SPName = StringRef("")) { 425 FunctionOptions FO = FunctionOptions::None; 426 const DIType *ReturnTy = nullptr; 427 if (auto TypeArray = Ty->getTypeArray()) { 428 if (TypeArray.size()) 429 ReturnTy = TypeArray[0]; 430 } 431 432 // Add CxxReturnUdt option to functions that return nontrivial record types 433 // or methods that return record types. 434 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 435 if (isNonTrivial(ReturnDCTy) || ClassTy) 436 FO |= FunctionOptions::CxxReturnUdt; 437 438 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 439 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 440 FO |= FunctionOptions::Constructor; 441 442 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 443 444 } 445 return FO; 446 } 447 448 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 449 const DICompositeType *Class) { 450 // Always use the method declaration as the key for the function type. The 451 // method declaration contains the this adjustment. 452 if (SP->getDeclaration()) 453 SP = SP->getDeclaration(); 454 assert(!SP->getDeclaration() && "should use declaration as key"); 455 456 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 457 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 458 auto I = TypeIndices.find({SP, Class}); 459 if (I != TypeIndices.end()) 460 return I->second; 461 462 // Make sure complete type info for the class is emitted *after* the member 463 // function type, as the complete class type is likely to reference this 464 // member function type. 465 TypeLoweringScope S(*this); 466 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 467 468 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 469 TypeIndex TI = lowerTypeMemberFunction( 470 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 471 return recordTypeIndexForDINode(SP, TI, Class); 472 } 473 474 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 475 TypeIndex TI, 476 const DIType *ClassTy) { 477 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 478 (void)InsertResult; 479 assert(InsertResult.second && "DINode was already assigned a type index"); 480 return TI; 481 } 482 483 unsigned CodeViewDebug::getPointerSizeInBytes() { 484 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 485 } 486 487 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 488 const LexicalScope *LS) { 489 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 490 // This variable was inlined. Associate it with the InlineSite. 491 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 492 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 493 Site.InlinedLocals.emplace_back(Var); 494 } else { 495 // This variable goes into the corresponding lexical scope. 496 ScopeVariables[LS].emplace_back(Var); 497 } 498 } 499 500 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 501 const DILocation *Loc) { 502 if (!llvm::is_contained(Locs, Loc)) 503 Locs.push_back(Loc); 504 } 505 506 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 507 const MachineFunction *MF) { 508 // Skip this instruction if it has the same location as the previous one. 509 if (!DL || DL == PrevInstLoc) 510 return; 511 512 const DIScope *Scope = DL->getScope(); 513 if (!Scope) 514 return; 515 516 // Skip this line if it is longer than the maximum we can record. 517 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 518 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 519 LI.isNeverStepInto()) 520 return; 521 522 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 523 if (CI.getStartColumn() != DL.getCol()) 524 return; 525 526 if (!CurFn->HaveLineInfo) 527 CurFn->HaveLineInfo = true; 528 unsigned FileId = 0; 529 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 530 FileId = CurFn->LastFileId; 531 else 532 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 533 PrevInstLoc = DL; 534 535 unsigned FuncId = CurFn->FuncId; 536 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 537 const DILocation *Loc = DL.get(); 538 539 // If this location was actually inlined from somewhere else, give it the ID 540 // of the inline call site. 541 FuncId = 542 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 543 544 // Ensure we have links in the tree of inline call sites. 545 bool FirstLoc = true; 546 while ((SiteLoc = Loc->getInlinedAt())) { 547 InlineSite &Site = 548 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 549 if (!FirstLoc) 550 addLocIfNotPresent(Site.ChildSites, Loc); 551 FirstLoc = false; 552 Loc = SiteLoc; 553 } 554 addLocIfNotPresent(CurFn->ChildSites, Loc); 555 } 556 557 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 558 /*PrologueEnd=*/false, /*IsStmt=*/false, 559 DL->getFilename(), SMLoc()); 560 } 561 562 void CodeViewDebug::emitCodeViewMagicVersion() { 563 OS.emitValueToAlignment(Align(4)); 564 OS.AddComment("Debug section magic"); 565 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 566 } 567 568 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 569 switch (DWLang) { 570 case dwarf::DW_LANG_C: 571 case dwarf::DW_LANG_C89: 572 case dwarf::DW_LANG_C99: 573 case dwarf::DW_LANG_C11: 574 case dwarf::DW_LANG_ObjC: 575 return SourceLanguage::C; 576 case dwarf::DW_LANG_C_plus_plus: 577 case dwarf::DW_LANG_C_plus_plus_03: 578 case dwarf::DW_LANG_C_plus_plus_11: 579 case dwarf::DW_LANG_C_plus_plus_14: 580 return SourceLanguage::Cpp; 581 case dwarf::DW_LANG_Fortran77: 582 case dwarf::DW_LANG_Fortran90: 583 case dwarf::DW_LANG_Fortran95: 584 case dwarf::DW_LANG_Fortran03: 585 case dwarf::DW_LANG_Fortran08: 586 return SourceLanguage::Fortran; 587 case dwarf::DW_LANG_Pascal83: 588 return SourceLanguage::Pascal; 589 case dwarf::DW_LANG_Cobol74: 590 case dwarf::DW_LANG_Cobol85: 591 return SourceLanguage::Cobol; 592 case dwarf::DW_LANG_Java: 593 return SourceLanguage::Java; 594 case dwarf::DW_LANG_D: 595 return SourceLanguage::D; 596 case dwarf::DW_LANG_Swift: 597 return SourceLanguage::Swift; 598 case dwarf::DW_LANG_Rust: 599 return SourceLanguage::Rust; 600 default: 601 // There's no CodeView representation for this language, and CV doesn't 602 // have an "unknown" option for the language field, so we'll use MASM, 603 // as it's very low level. 604 return SourceLanguage::Masm; 605 } 606 } 607 608 void CodeViewDebug::beginModule(Module *M) { 609 // If module doesn't have named metadata anchors or COFF debug section 610 // is not available, skip any debug info related stuff. 611 if (!MMI->hasDebugInfo() || 612 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { 613 Asm = nullptr; 614 return; 615 } 616 617 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); 618 619 // Get the current source language. 620 const MDNode *Node = *M->debug_compile_units_begin(); 621 const auto *CU = cast<DICompileUnit>(Node); 622 623 CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage()); 624 625 collectGlobalVariableInfo(); 626 627 // Check if we should emit type record hashes. 628 ConstantInt *GH = 629 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); 630 EmitDebugGlobalHashes = GH && !GH->isZero(); 631 } 632 633 void CodeViewDebug::endModule() { 634 if (!Asm || !MMI->hasDebugInfo()) 635 return; 636 637 // The COFF .debug$S section consists of several subsections, each starting 638 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 639 // of the payload followed by the payload itself. The subsections are 4-byte 640 // aligned. 641 642 // Use the generic .debug$S section, and make a subsection for all the inlined 643 // subprograms. 644 switchToDebugSectionForSymbol(nullptr); 645 646 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 647 emitObjName(); 648 emitCompilerInformation(); 649 endCVSubsection(CompilerInfo); 650 651 emitInlineeLinesSubsection(); 652 653 // Emit per-function debug information. 654 for (auto &P : FnDebugInfo) 655 if (!P.first->isDeclarationForLinker()) 656 emitDebugInfoForFunction(P.first, *P.second); 657 658 // Get types used by globals without emitting anything. 659 // This is meant to collect all static const data members so they can be 660 // emitted as globals. 661 collectDebugInfoForGlobals(); 662 663 // Emit retained types. 664 emitDebugInfoForRetainedTypes(); 665 666 // Emit global variable debug information. 667 setCurrentSubprogram(nullptr); 668 emitDebugInfoForGlobals(); 669 670 // Switch back to the generic .debug$S section after potentially processing 671 // comdat symbol sections. 672 switchToDebugSectionForSymbol(nullptr); 673 674 // Emit UDT records for any types used by global variables. 675 if (!GlobalUDTs.empty()) { 676 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 677 emitDebugInfoForUDTs(GlobalUDTs); 678 endCVSubsection(SymbolsEnd); 679 } 680 681 // This subsection holds a file index to offset in string table table. 682 OS.AddComment("File index to string table offset subsection"); 683 OS.emitCVFileChecksumsDirective(); 684 685 // This subsection holds the string table. 686 OS.AddComment("String table"); 687 OS.emitCVStringTableDirective(); 688 689 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 690 // subsection in the generic .debug$S section at the end. There is no 691 // particular reason for this ordering other than to match MSVC. 692 emitBuildInfo(); 693 694 // Emit type information and hashes last, so that any types we translate while 695 // emitting function info are included. 696 emitTypeInformation(); 697 698 if (EmitDebugGlobalHashes) 699 emitTypeGlobalHashes(); 700 701 clear(); 702 } 703 704 static void 705 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 706 unsigned MaxFixedRecordLength = 0xF00) { 707 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 708 // after a fixed length portion of the record. The fixed length portion should 709 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 710 // overall record size is less than the maximum allowed. 711 SmallString<32> NullTerminatedString( 712 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 713 NullTerminatedString.push_back('\0'); 714 OS.emitBytes(NullTerminatedString); 715 } 716 717 void CodeViewDebug::emitTypeInformation() { 718 if (TypeTable.empty()) 719 return; 720 721 // Start the .debug$T or .debug$P section with 0x4. 722 OS.switchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 723 emitCodeViewMagicVersion(); 724 725 TypeTableCollection Table(TypeTable.records()); 726 TypeVisitorCallbackPipeline Pipeline; 727 728 // To emit type record using Codeview MCStreamer adapter 729 CVMCAdapter CVMCOS(OS, Table); 730 TypeRecordMapping typeMapping(CVMCOS); 731 Pipeline.addCallbackToPipeline(typeMapping); 732 733 std::optional<TypeIndex> B = Table.getFirst(); 734 while (B) { 735 // This will fail if the record data is invalid. 736 CVType Record = Table.getType(*B); 737 738 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 739 740 if (E) { 741 logAllUnhandledErrors(std::move(E), errs(), "error: "); 742 llvm_unreachable("produced malformed type record"); 743 } 744 745 B = Table.getNext(*B); 746 } 747 } 748 749 void CodeViewDebug::emitTypeGlobalHashes() { 750 if (TypeTable.empty()) 751 return; 752 753 // Start the .debug$H section with the version and hash algorithm, currently 754 // hardcoded to version 0, SHA1. 755 OS.switchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 756 757 OS.emitValueToAlignment(Align(4)); 758 OS.AddComment("Magic"); 759 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 760 OS.AddComment("Section Version"); 761 OS.emitInt16(0); 762 OS.AddComment("Hash Algorithm"); 763 OS.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3)); 764 765 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 766 for (const auto &GHR : TypeTable.hashes()) { 767 if (OS.isVerboseAsm()) { 768 // Emit an EOL-comment describing which TypeIndex this hash corresponds 769 // to, as well as the stringified SHA1 hash. 770 SmallString<32> Comment; 771 raw_svector_ostream CommentOS(Comment); 772 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 773 OS.AddComment(Comment); 774 ++TI; 775 } 776 assert(GHR.Hash.size() == 8); 777 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 778 GHR.Hash.size()); 779 OS.emitBinaryData(S); 780 } 781 } 782 783 void CodeViewDebug::emitObjName() { 784 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_OBJNAME); 785 786 StringRef PathRef(Asm->TM.Options.ObjectFilenameForDebug); 787 llvm::SmallString<256> PathStore(PathRef); 788 789 if (PathRef.empty() || PathRef == "-") { 790 // Don't emit the filename if we're writing to stdout or to /dev/null. 791 PathRef = {}; 792 } else { 793 llvm::sys::path::remove_dots(PathStore, /*remove_dot_dot=*/true); 794 PathRef = PathStore; 795 } 796 797 OS.AddComment("Signature"); 798 OS.emitIntValue(0, 4); 799 800 OS.AddComment("Object name"); 801 emitNullTerminatedSymbolName(OS, PathRef); 802 803 endSymbolRecord(CompilerEnd); 804 } 805 806 namespace { 807 struct Version { 808 int Part[4]; 809 }; 810 } // end anonymous namespace 811 812 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 813 // the version number. 814 static Version parseVersion(StringRef Name) { 815 Version V = {{0}}; 816 int N = 0; 817 for (const char C : Name) { 818 if (isdigit(C)) { 819 V.Part[N] *= 10; 820 V.Part[N] += C - '0'; 821 V.Part[N] = 822 std::min<int>(V.Part[N], std::numeric_limits<uint16_t>::max()); 823 } else if (C == '.') { 824 ++N; 825 if (N >= 4) 826 return V; 827 } else if (N > 0) 828 return V; 829 } 830 return V; 831 } 832 833 void CodeViewDebug::emitCompilerInformation() { 834 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 835 uint32_t Flags = 0; 836 837 // The low byte of the flags indicates the source language. 838 Flags = CurrentSourceLanguage; 839 // TODO: Figure out which other flags need to be set. 840 if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) { 841 Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO); 842 } 843 using ArchType = llvm::Triple::ArchType; 844 ArchType Arch = Triple(MMI->getModule()->getTargetTriple()).getArch(); 845 if (Asm->TM.Options.Hotpatch || Arch == ArchType::thumb || 846 Arch == ArchType::aarch64) { 847 Flags |= static_cast<uint32_t>(CompileSym3Flags::HotPatch); 848 } 849 850 OS.AddComment("Flags and language"); 851 OS.emitInt32(Flags); 852 853 OS.AddComment("CPUType"); 854 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 855 856 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 857 const MDNode *Node = *CUs->operands().begin(); 858 const auto *CU = cast<DICompileUnit>(Node); 859 860 StringRef CompilerVersion = CU->getProducer(); 861 Version FrontVer = parseVersion(CompilerVersion); 862 OS.AddComment("Frontend version"); 863 for (int N : FrontVer.Part) { 864 OS.emitInt16(N); 865 } 866 867 // Some Microsoft tools, like Binscope, expect a backend version number of at 868 // least 8.something, so we'll coerce the LLVM version into a form that 869 // guarantees it'll be big enough without really lying about the version. 870 int Major = 1000 * LLVM_VERSION_MAJOR + 871 10 * LLVM_VERSION_MINOR + 872 LLVM_VERSION_PATCH; 873 // Clamp it for builds that use unusually large version numbers. 874 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 875 Version BackVer = {{ Major, 0, 0, 0 }}; 876 OS.AddComment("Backend version"); 877 for (int N : BackVer.Part) 878 OS.emitInt16(N); 879 880 OS.AddComment("Null-terminated compiler version string"); 881 emitNullTerminatedSymbolName(OS, CompilerVersion); 882 883 endSymbolRecord(CompilerEnd); 884 } 885 886 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 887 StringRef S) { 888 StringIdRecord SIR(TypeIndex(0x0), S); 889 return TypeTable.writeLeafType(SIR); 890 } 891 892 static std::string flattenCommandLine(ArrayRef<std::string> Args, 893 StringRef MainFilename) { 894 std::string FlatCmdLine; 895 raw_string_ostream OS(FlatCmdLine); 896 bool PrintedOneArg = false; 897 if (!StringRef(Args[0]).contains("-cc1")) { 898 llvm::sys::printArg(OS, "-cc1", /*Quote=*/true); 899 PrintedOneArg = true; 900 } 901 for (unsigned i = 0; i < Args.size(); i++) { 902 StringRef Arg = Args[i]; 903 if (Arg.empty()) 904 continue; 905 if (Arg == "-main-file-name" || Arg == "-o") { 906 i++; // Skip this argument and next one. 907 continue; 908 } 909 if (Arg.startswith("-object-file-name") || Arg == MainFilename) 910 continue; 911 // Skip fmessage-length for reproduciability. 912 if (Arg.startswith("-fmessage-length")) 913 continue; 914 if (PrintedOneArg) 915 OS << " "; 916 llvm::sys::printArg(OS, Arg, /*Quote=*/true); 917 PrintedOneArg = true; 918 } 919 OS.flush(); 920 return FlatCmdLine; 921 } 922 923 void CodeViewDebug::emitBuildInfo() { 924 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 925 // build info. The known prefix is: 926 // - Absolute path of current directory 927 // - Compiler path 928 // - Main source file path, relative to CWD or absolute 929 // - Type server PDB file 930 // - Canonical compiler command line 931 // If frontend and backend compilation are separated (think llc or LTO), it's 932 // not clear if the compiler path should refer to the executable for the 933 // frontend or the backend. Leave it blank for now. 934 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 935 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 936 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 937 const auto *CU = cast<DICompileUnit>(Node); 938 const DIFile *MainSourceFile = CU->getFile(); 939 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 940 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 941 BuildInfoArgs[BuildInfoRecord::SourceFile] = 942 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 943 // FIXME: PDB is intentionally blank unless we implement /Zi type servers. 944 BuildInfoArgs[BuildInfoRecord::TypeServerPDB] = 945 getStringIdTypeIdx(TypeTable, ""); 946 if (Asm->TM.Options.MCOptions.Argv0 != nullptr) { 947 BuildInfoArgs[BuildInfoRecord::BuildTool] = 948 getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0); 949 BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx( 950 TypeTable, flattenCommandLine(Asm->TM.Options.MCOptions.CommandLineArgs, 951 MainSourceFile->getFilename())); 952 } 953 BuildInfoRecord BIR(BuildInfoArgs); 954 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 955 956 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 957 // from the module symbols into the type stream. 958 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 959 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 960 OS.AddComment("LF_BUILDINFO index"); 961 OS.emitInt32(BuildInfoIndex.getIndex()); 962 endSymbolRecord(BIEnd); 963 endCVSubsection(BISubsecEnd); 964 } 965 966 void CodeViewDebug::emitInlineeLinesSubsection() { 967 if (InlinedSubprograms.empty()) 968 return; 969 970 OS.AddComment("Inlinee lines subsection"); 971 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 972 973 // We emit the checksum info for files. This is used by debuggers to 974 // determine if a pdb matches the source before loading it. Visual Studio, 975 // for instance, will display a warning that the breakpoints are not valid if 976 // the pdb does not match the source. 977 OS.AddComment("Inlinee lines signature"); 978 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 979 980 for (const DISubprogram *SP : InlinedSubprograms) { 981 assert(TypeIndices.count({SP, nullptr})); 982 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 983 984 OS.addBlankLine(); 985 unsigned FileId = maybeRecordFile(SP->getFile()); 986 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 987 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 988 OS.addBlankLine(); 989 OS.AddComment("Type index of inlined function"); 990 OS.emitInt32(InlineeIdx.getIndex()); 991 OS.AddComment("Offset into filechecksum table"); 992 OS.emitCVFileChecksumOffsetDirective(FileId); 993 OS.AddComment("Starting line number"); 994 OS.emitInt32(SP->getLine()); 995 } 996 997 endCVSubsection(InlineEnd); 998 } 999 1000 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 1001 const DILocation *InlinedAt, 1002 const InlineSite &Site) { 1003 assert(TypeIndices.count({Site.Inlinee, nullptr})); 1004 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 1005 1006 // SymbolRecord 1007 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 1008 1009 OS.AddComment("PtrParent"); 1010 OS.emitInt32(0); 1011 OS.AddComment("PtrEnd"); 1012 OS.emitInt32(0); 1013 OS.AddComment("Inlinee type index"); 1014 OS.emitInt32(InlineeIdx.getIndex()); 1015 1016 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 1017 unsigned StartLineNum = Site.Inlinee->getLine(); 1018 1019 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 1020 FI.Begin, FI.End); 1021 1022 endSymbolRecord(InlineEnd); 1023 1024 emitLocalVariableList(FI, Site.InlinedLocals); 1025 1026 // Recurse on child inlined call sites before closing the scope. 1027 for (const DILocation *ChildSite : Site.ChildSites) { 1028 auto I = FI.InlineSites.find(ChildSite); 1029 assert(I != FI.InlineSites.end() && 1030 "child site not in function inline site map"); 1031 emitInlinedCallSite(FI, ChildSite, I->second); 1032 } 1033 1034 // Close the scope. 1035 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 1036 } 1037 1038 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 1039 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 1040 // comdat key. A section may be comdat because of -ffunction-sections or 1041 // because it is comdat in the IR. 1042 MCSectionCOFF *GVSec = 1043 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 1044 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 1045 1046 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 1047 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 1048 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 1049 1050 OS.switchSection(DebugSec); 1051 1052 // Emit the magic version number if this is the first time we've switched to 1053 // this section. 1054 if (ComdatDebugSections.insert(DebugSec).second) 1055 emitCodeViewMagicVersion(); 1056 } 1057 1058 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 1059 // The only supported thunk ordinal is currently the standard type. 1060 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 1061 FunctionInfo &FI, 1062 const MCSymbol *Fn) { 1063 std::string FuncName = 1064 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1065 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 1066 1067 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1068 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1069 1070 // Emit S_THUNK32 1071 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 1072 OS.AddComment("PtrParent"); 1073 OS.emitInt32(0); 1074 OS.AddComment("PtrEnd"); 1075 OS.emitInt32(0); 1076 OS.AddComment("PtrNext"); 1077 OS.emitInt32(0); 1078 OS.AddComment("Thunk section relative address"); 1079 OS.emitCOFFSecRel32(Fn, /*Offset=*/0); 1080 OS.AddComment("Thunk section index"); 1081 OS.emitCOFFSectionIndex(Fn); 1082 OS.AddComment("Code size"); 1083 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 1084 OS.AddComment("Ordinal"); 1085 OS.emitInt8(unsigned(ordinal)); 1086 OS.AddComment("Function name"); 1087 emitNullTerminatedSymbolName(OS, FuncName); 1088 // Additional fields specific to the thunk ordinal would go here. 1089 endSymbolRecord(ThunkRecordEnd); 1090 1091 // Local variables/inlined routines are purposely omitted here. The point of 1092 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 1093 1094 // Emit S_PROC_ID_END 1095 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1096 1097 endCVSubsection(SymbolsEnd); 1098 } 1099 1100 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 1101 FunctionInfo &FI) { 1102 // For each function there is a separate subsection which holds the PC to 1103 // file:line table. 1104 const MCSymbol *Fn = Asm->getSymbol(GV); 1105 assert(Fn); 1106 1107 // Switch to the to a comdat section, if appropriate. 1108 switchToDebugSectionForSymbol(Fn); 1109 1110 std::string FuncName; 1111 auto *SP = GV->getSubprogram(); 1112 assert(SP); 1113 setCurrentSubprogram(SP); 1114 1115 if (SP->isThunk()) { 1116 emitDebugInfoForThunk(GV, FI, Fn); 1117 return; 1118 } 1119 1120 // If we have a display name, build the fully qualified name by walking the 1121 // chain of scopes. 1122 if (!SP->getName().empty()) 1123 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1124 1125 // If our DISubprogram name is empty, use the mangled name. 1126 if (FuncName.empty()) 1127 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1128 1129 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1130 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1131 OS.emitCVFPOData(Fn); 1132 1133 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1134 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1135 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1136 { 1137 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1138 : SymbolKind::S_GPROC32_ID; 1139 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1140 1141 // These fields are filled in by tools like CVPACK which run after the fact. 1142 OS.AddComment("PtrParent"); 1143 OS.emitInt32(0); 1144 OS.AddComment("PtrEnd"); 1145 OS.emitInt32(0); 1146 OS.AddComment("PtrNext"); 1147 OS.emitInt32(0); 1148 // This is the important bit that tells the debugger where the function 1149 // code is located and what's its size: 1150 OS.AddComment("Code size"); 1151 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1152 OS.AddComment("Offset after prologue"); 1153 OS.emitInt32(0); 1154 OS.AddComment("Offset before epilogue"); 1155 OS.emitInt32(0); 1156 OS.AddComment("Function type index"); 1157 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1158 OS.AddComment("Function section relative address"); 1159 OS.emitCOFFSecRel32(Fn, /*Offset=*/0); 1160 OS.AddComment("Function section index"); 1161 OS.emitCOFFSectionIndex(Fn); 1162 OS.AddComment("Flags"); 1163 OS.emitInt8(0); 1164 // Emit the function display name as a null-terminated string. 1165 OS.AddComment("Function name"); 1166 // Truncate the name so we won't overflow the record length field. 1167 emitNullTerminatedSymbolName(OS, FuncName); 1168 endSymbolRecord(ProcRecordEnd); 1169 1170 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1171 // Subtract out the CSR size since MSVC excludes that and we include it. 1172 OS.AddComment("FrameSize"); 1173 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1174 OS.AddComment("Padding"); 1175 OS.emitInt32(0); 1176 OS.AddComment("Offset of padding"); 1177 OS.emitInt32(0); 1178 OS.AddComment("Bytes of callee saved registers"); 1179 OS.emitInt32(FI.CSRSize); 1180 OS.AddComment("Exception handler offset"); 1181 OS.emitInt32(0); 1182 OS.AddComment("Exception handler section"); 1183 OS.emitInt16(0); 1184 OS.AddComment("Flags (defines frame register)"); 1185 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1186 endSymbolRecord(FrameProcEnd); 1187 1188 emitLocalVariableList(FI, FI.Locals); 1189 emitGlobalVariableList(FI.Globals); 1190 emitLexicalBlockList(FI.ChildBlocks, FI); 1191 1192 // Emit inlined call site information. Only emit functions inlined directly 1193 // into the parent function. We'll emit the other sites recursively as part 1194 // of their parent inline site. 1195 for (const DILocation *InlinedAt : FI.ChildSites) { 1196 auto I = FI.InlineSites.find(InlinedAt); 1197 assert(I != FI.InlineSites.end() && 1198 "child site not in function inline site map"); 1199 emitInlinedCallSite(FI, InlinedAt, I->second); 1200 } 1201 1202 for (auto Annot : FI.Annotations) { 1203 MCSymbol *Label = Annot.first; 1204 MDTuple *Strs = cast<MDTuple>(Annot.second); 1205 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1206 OS.emitCOFFSecRel32(Label, /*Offset=*/0); 1207 // FIXME: Make sure we don't overflow the max record size. 1208 OS.emitCOFFSectionIndex(Label); 1209 OS.emitInt16(Strs->getNumOperands()); 1210 for (Metadata *MD : Strs->operands()) { 1211 // MDStrings are null terminated, so we can do EmitBytes and get the 1212 // nice .asciz directive. 1213 StringRef Str = cast<MDString>(MD)->getString(); 1214 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1215 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1216 } 1217 endSymbolRecord(AnnotEnd); 1218 } 1219 1220 for (auto HeapAllocSite : FI.HeapAllocSites) { 1221 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1222 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1223 const DIType *DITy = std::get<2>(HeapAllocSite); 1224 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1225 OS.AddComment("Call site offset"); 1226 OS.emitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1227 OS.AddComment("Call site section index"); 1228 OS.emitCOFFSectionIndex(BeginLabel); 1229 OS.AddComment("Call instruction length"); 1230 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1231 OS.AddComment("Type index"); 1232 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1233 endSymbolRecord(HeapAllocEnd); 1234 } 1235 1236 if (SP != nullptr) 1237 emitDebugInfoForUDTs(LocalUDTs); 1238 1239 // We're done with this function. 1240 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1241 } 1242 endCVSubsection(SymbolsEnd); 1243 1244 // We have an assembler directive that takes care of the whole line table. 1245 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1246 } 1247 1248 CodeViewDebug::LocalVarDef 1249 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1250 LocalVarDef DR; 1251 DR.InMemory = -1; 1252 DR.DataOffset = Offset; 1253 assert(DR.DataOffset == Offset && "truncation"); 1254 DR.IsSubfield = 0; 1255 DR.StructOffset = 0; 1256 DR.CVRegister = CVRegister; 1257 return DR; 1258 } 1259 1260 void CodeViewDebug::collectVariableInfoFromMFTable( 1261 DenseSet<InlinedEntity> &Processed) { 1262 const MachineFunction &MF = *Asm->MF; 1263 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1264 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1265 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1266 1267 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1268 if (!VI.Var) 1269 continue; 1270 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1271 "Expected inlined-at fields to agree"); 1272 1273 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1274 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1275 1276 // If variable scope is not found then skip this variable. 1277 if (!Scope) 1278 continue; 1279 1280 // If the variable has an attached offset expression, extract it. 1281 // FIXME: Try to handle DW_OP_deref as well. 1282 int64_t ExprOffset = 0; 1283 bool Deref = false; 1284 if (VI.Expr) { 1285 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1286 if (VI.Expr->getNumElements() == 1 && 1287 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1288 Deref = true; 1289 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1290 continue; 1291 } 1292 1293 // Get the frame register used and the offset. 1294 Register FrameReg; 1295 StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1296 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1297 1298 assert(!FrameOffset.getScalable() && 1299 "Frame offsets with a scalable component are not supported"); 1300 1301 // Calculate the label ranges. 1302 LocalVarDef DefRange = 1303 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); 1304 1305 LocalVariable Var; 1306 Var.DIVar = VI.Var; 1307 1308 for (const InsnRange &Range : Scope->getRanges()) { 1309 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1310 const MCSymbol *End = getLabelAfterInsn(Range.second); 1311 End = End ? End : Asm->getFunctionEnd(); 1312 Var.DefRanges[DefRange].emplace_back(Begin, End); 1313 } 1314 1315 if (Deref) 1316 Var.UseReferenceType = true; 1317 1318 recordLocalVariable(std::move(Var), Scope); 1319 } 1320 } 1321 1322 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1323 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1324 } 1325 1326 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1327 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1328 } 1329 1330 void CodeViewDebug::calculateRanges( 1331 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1332 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1333 1334 // Calculate the definition ranges. 1335 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1336 const auto &Entry = *I; 1337 if (!Entry.isDbgValue()) 1338 continue; 1339 const MachineInstr *DVInst = Entry.getInstr(); 1340 assert(DVInst->isDebugValue() && "Invalid History entry"); 1341 // FIXME: Find a way to represent constant variables, since they are 1342 // relatively common. 1343 Optional<DbgVariableLocation> Location = 1344 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1345 if (!Location) 1346 continue; 1347 1348 // CodeView can only express variables in register and variables in memory 1349 // at a constant offset from a register. However, for variables passed 1350 // indirectly by pointer, it is common for that pointer to be spilled to a 1351 // stack location. For the special case of one offseted load followed by a 1352 // zero offset load (a pointer spilled to the stack), we change the type of 1353 // the local variable from a value type to a reference type. This tricks the 1354 // debugger into doing the load for us. 1355 if (Var.UseReferenceType) { 1356 // We're using a reference type. Drop the last zero offset load. 1357 if (canUseReferenceType(*Location)) 1358 Location->LoadChain.pop_back(); 1359 else 1360 continue; 1361 } else if (needsReferenceType(*Location)) { 1362 // This location can't be expressed without switching to a reference type. 1363 // Start over using that. 1364 Var.UseReferenceType = true; 1365 Var.DefRanges.clear(); 1366 calculateRanges(Var, Entries); 1367 return; 1368 } 1369 1370 // We can only handle a register or an offseted load of a register. 1371 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1372 continue; 1373 1374 LocalVarDef DR; 1375 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1376 DR.InMemory = !Location->LoadChain.empty(); 1377 DR.DataOffset = 1378 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1379 if (Location->FragmentInfo) { 1380 DR.IsSubfield = true; 1381 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1382 } else { 1383 DR.IsSubfield = false; 1384 DR.StructOffset = 0; 1385 } 1386 1387 // Compute the label range. 1388 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1389 const MCSymbol *End; 1390 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1391 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1392 End = EndingEntry.isDbgValue() 1393 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1394 : getLabelAfterInsn(EndingEntry.getInstr()); 1395 } else 1396 End = Asm->getFunctionEnd(); 1397 1398 // If the last range end is our begin, just extend the last range. 1399 // Otherwise make a new range. 1400 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1401 Var.DefRanges[DR]; 1402 if (!R.empty() && R.back().second == Begin) 1403 R.back().second = End; 1404 else 1405 R.emplace_back(Begin, End); 1406 1407 // FIXME: Do more range combining. 1408 } 1409 } 1410 1411 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1412 DenseSet<InlinedEntity> Processed; 1413 // Grab the variable info that was squirreled away in the MMI side-table. 1414 collectVariableInfoFromMFTable(Processed); 1415 1416 for (const auto &I : DbgValues) { 1417 InlinedEntity IV = I.first; 1418 if (Processed.count(IV)) 1419 continue; 1420 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1421 const DILocation *InlinedAt = IV.second; 1422 1423 // Instruction ranges, specifying where IV is accessible. 1424 const auto &Entries = I.second; 1425 1426 LexicalScope *Scope = nullptr; 1427 if (InlinedAt) 1428 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1429 else 1430 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1431 // If variable scope is not found then skip this variable. 1432 if (!Scope) 1433 continue; 1434 1435 LocalVariable Var; 1436 Var.DIVar = DIVar; 1437 1438 calculateRanges(Var, Entries); 1439 recordLocalVariable(std::move(Var), Scope); 1440 } 1441 } 1442 1443 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1444 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1445 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1446 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1447 const Function &GV = MF->getFunction(); 1448 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1449 assert(Insertion.second && "function already has info"); 1450 CurFn = Insertion.first->second.get(); 1451 CurFn->FuncId = NextFuncId++; 1452 CurFn->Begin = Asm->getFunctionBegin(); 1453 1454 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1455 // callee-saved registers were used. For targets that don't use a PUSH 1456 // instruction (AArch64), this will be zero. 1457 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1458 CurFn->FrameSize = MFI.getStackSize(); 1459 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1460 CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF); 1461 1462 // For this function S_FRAMEPROC record, figure out which codeview register 1463 // will be the frame pointer. 1464 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1465 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1466 if (CurFn->FrameSize > 0) { 1467 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1468 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1469 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1470 } else { 1471 // If there is an FP, parameters are always relative to it. 1472 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1473 if (CurFn->HasStackRealignment) { 1474 // If the stack needs realignment, locals are relative to SP or VFRAME. 1475 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1476 } else { 1477 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1478 // other stack adjustments. 1479 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1480 } 1481 } 1482 } 1483 1484 // Compute other frame procedure options. 1485 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1486 if (MFI.hasVarSizedObjects()) 1487 FPO |= FrameProcedureOptions::HasAlloca; 1488 if (MF->exposesReturnsTwice()) 1489 FPO |= FrameProcedureOptions::HasSetJmp; 1490 // FIXME: Set HasLongJmp if we ever track that info. 1491 if (MF->hasInlineAsm()) 1492 FPO |= FrameProcedureOptions::HasInlineAssembly; 1493 if (GV.hasPersonalityFn()) { 1494 if (isAsynchronousEHPersonality( 1495 classifyEHPersonality(GV.getPersonalityFn()))) 1496 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1497 else 1498 FPO |= FrameProcedureOptions::HasExceptionHandling; 1499 } 1500 if (GV.hasFnAttribute(Attribute::InlineHint)) 1501 FPO |= FrameProcedureOptions::MarkedInline; 1502 if (GV.hasFnAttribute(Attribute::Naked)) 1503 FPO |= FrameProcedureOptions::Naked; 1504 if (MFI.hasStackProtectorIndex()) { 1505 FPO |= FrameProcedureOptions::SecurityChecks; 1506 if (GV.hasFnAttribute(Attribute::StackProtectStrong) || 1507 GV.hasFnAttribute(Attribute::StackProtectReq)) { 1508 FPO |= FrameProcedureOptions::StrictSecurityChecks; 1509 } 1510 } else if (!GV.hasStackProtectorFnAttr()) { 1511 // __declspec(safebuffers) disables stack guards. 1512 FPO |= FrameProcedureOptions::SafeBuffers; 1513 } 1514 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1515 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1516 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1517 !GV.hasOptSize() && !GV.hasOptNone()) 1518 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1519 if (GV.hasProfileData()) { 1520 FPO |= FrameProcedureOptions::ValidProfileCounts; 1521 FPO |= FrameProcedureOptions::ProfileGuidedOptimization; 1522 } 1523 // FIXME: Set GuardCfg when it is implemented. 1524 CurFn->FrameProcOpts = FPO; 1525 1526 OS.emitCVFuncIdDirective(CurFn->FuncId); 1527 1528 // Find the end of the function prolog. First known non-DBG_VALUE and 1529 // non-frame setup location marks the beginning of the function body. 1530 // FIXME: is there a simpler a way to do this? Can we just search 1531 // for the first instruction of the function, not the last of the prolog? 1532 DebugLoc PrologEndLoc; 1533 bool EmptyPrologue = true; 1534 for (const auto &MBB : *MF) { 1535 for (const auto &MI : MBB) { 1536 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1537 MI.getDebugLoc()) { 1538 PrologEndLoc = MI.getDebugLoc(); 1539 break; 1540 } else if (!MI.isMetaInstruction()) { 1541 EmptyPrologue = false; 1542 } 1543 } 1544 } 1545 1546 // Record beginning of function if we have a non-empty prologue. 1547 if (PrologEndLoc && !EmptyPrologue) { 1548 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1549 maybeRecordLocation(FnStartDL, MF); 1550 } 1551 1552 // Find heap alloc sites and emit labels around them. 1553 for (const auto &MBB : *MF) { 1554 for (const auto &MI : MBB) { 1555 if (MI.getHeapAllocMarker()) { 1556 requestLabelBeforeInsn(&MI); 1557 requestLabelAfterInsn(&MI); 1558 } 1559 } 1560 } 1561 } 1562 1563 static bool shouldEmitUdt(const DIType *T) { 1564 if (!T) 1565 return false; 1566 1567 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1568 if (T->getTag() == dwarf::DW_TAG_typedef) { 1569 if (DIScope *Scope = T->getScope()) { 1570 switch (Scope->getTag()) { 1571 case dwarf::DW_TAG_structure_type: 1572 case dwarf::DW_TAG_class_type: 1573 case dwarf::DW_TAG_union_type: 1574 return false; 1575 default: 1576 // do nothing. 1577 ; 1578 } 1579 } 1580 } 1581 1582 while (true) { 1583 if (!T || T->isForwardDecl()) 1584 return false; 1585 1586 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1587 if (!DT) 1588 return true; 1589 T = DT->getBaseType(); 1590 } 1591 return true; 1592 } 1593 1594 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1595 // Don't record empty UDTs. 1596 if (Ty->getName().empty()) 1597 return; 1598 if (!shouldEmitUdt(Ty)) 1599 return; 1600 1601 SmallVector<StringRef, 5> ParentScopeNames; 1602 const DISubprogram *ClosestSubprogram = 1603 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1604 1605 std::string FullyQualifiedName = 1606 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1607 1608 if (ClosestSubprogram == nullptr) { 1609 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1610 } else if (ClosestSubprogram == CurrentSubprogram) { 1611 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1612 } 1613 1614 // TODO: What if the ClosestSubprogram is neither null or the current 1615 // subprogram? Currently, the UDT just gets dropped on the floor. 1616 // 1617 // The current behavior is not desirable. To get maximal fidelity, we would 1618 // need to perform all type translation before beginning emission of .debug$S 1619 // and then make LocalUDTs a member of FunctionInfo 1620 } 1621 1622 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1623 // Generic dispatch for lowering an unknown type. 1624 switch (Ty->getTag()) { 1625 case dwarf::DW_TAG_array_type: 1626 return lowerTypeArray(cast<DICompositeType>(Ty)); 1627 case dwarf::DW_TAG_typedef: 1628 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1629 case dwarf::DW_TAG_base_type: 1630 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1631 case dwarf::DW_TAG_pointer_type: 1632 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1633 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1634 [[fallthrough]]; 1635 case dwarf::DW_TAG_reference_type: 1636 case dwarf::DW_TAG_rvalue_reference_type: 1637 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1638 case dwarf::DW_TAG_ptr_to_member_type: 1639 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1640 case dwarf::DW_TAG_restrict_type: 1641 case dwarf::DW_TAG_const_type: 1642 case dwarf::DW_TAG_volatile_type: 1643 // TODO: add support for DW_TAG_atomic_type here 1644 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1645 case dwarf::DW_TAG_subroutine_type: 1646 if (ClassTy) { 1647 // The member function type of a member function pointer has no 1648 // ThisAdjustment. 1649 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1650 /*ThisAdjustment=*/0, 1651 /*IsStaticMethod=*/false); 1652 } 1653 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1654 case dwarf::DW_TAG_enumeration_type: 1655 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1656 case dwarf::DW_TAG_class_type: 1657 case dwarf::DW_TAG_structure_type: 1658 return lowerTypeClass(cast<DICompositeType>(Ty)); 1659 case dwarf::DW_TAG_union_type: 1660 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1661 case dwarf::DW_TAG_string_type: 1662 return lowerTypeString(cast<DIStringType>(Ty)); 1663 case dwarf::DW_TAG_unspecified_type: 1664 if (Ty->getName() == "decltype(nullptr)") 1665 return TypeIndex::NullptrT(); 1666 return TypeIndex::None(); 1667 default: 1668 // Use the null type index. 1669 return TypeIndex(); 1670 } 1671 } 1672 1673 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1674 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1675 StringRef TypeName = Ty->getName(); 1676 1677 addToUDTs(Ty); 1678 1679 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1680 TypeName == "HRESULT") 1681 return TypeIndex(SimpleTypeKind::HResult); 1682 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1683 TypeName == "wchar_t") 1684 return TypeIndex(SimpleTypeKind::WideCharacter); 1685 1686 return UnderlyingTypeIndex; 1687 } 1688 1689 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1690 const DIType *ElementType = Ty->getBaseType(); 1691 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1692 // IndexType is size_t, which depends on the bitness of the target. 1693 TypeIndex IndexType = getPointerSizeInBytes() == 8 1694 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1695 : TypeIndex(SimpleTypeKind::UInt32Long); 1696 1697 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1698 1699 // Add subranges to array type. 1700 DINodeArray Elements = Ty->getElements(); 1701 for (int i = Elements.size() - 1; i >= 0; --i) { 1702 const DINode *Element = Elements[i]; 1703 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1704 1705 const DISubrange *Subrange = cast<DISubrange>(Element); 1706 int64_t Count = -1; 1707 1708 // If Subrange has a Count field, use it. 1709 // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1), 1710 // where lowerbound is from the LowerBound field of the Subrange, 1711 // or the language default lowerbound if that field is unspecified. 1712 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt *>()) 1713 Count = CI->getSExtValue(); 1714 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt *>()) { 1715 // Fortran uses 1 as the default lowerbound; other languages use 0. 1716 int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0; 1717 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1718 Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound; 1719 Count = UI->getSExtValue() - Lowerbound + 1; 1720 } 1721 1722 // Forward declarations of arrays without a size and VLAs use a count of -1. 1723 // Emit a count of zero in these cases to match what MSVC does for arrays 1724 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1725 // should do for them even if we could distinguish them. 1726 if (Count == -1) 1727 Count = 0; 1728 1729 // Update the element size and element type index for subsequent subranges. 1730 ElementSize *= Count; 1731 1732 // If this is the outermost array, use the size from the array. It will be 1733 // more accurate if we had a VLA or an incomplete element type size. 1734 uint64_t ArraySize = 1735 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1736 1737 StringRef Name = (i == 0) ? Ty->getName() : ""; 1738 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1739 ElementTypeIndex = TypeTable.writeLeafType(AR); 1740 } 1741 1742 return ElementTypeIndex; 1743 } 1744 1745 // This function lowers a Fortran character type (DIStringType). 1746 // Note that it handles only the character*n variant (using SizeInBits 1747 // field in DIString to describe the type size) at the moment. 1748 // Other variants (leveraging the StringLength and StringLengthExp 1749 // fields in DIStringType) remain TBD. 1750 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) { 1751 TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter); 1752 uint64_t ArraySize = Ty->getSizeInBits() >> 3; 1753 StringRef Name = Ty->getName(); 1754 // IndexType is size_t, which depends on the bitness of the target. 1755 TypeIndex IndexType = getPointerSizeInBytes() == 8 1756 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1757 : TypeIndex(SimpleTypeKind::UInt32Long); 1758 1759 // Create a type of character array of ArraySize. 1760 ArrayRecord AR(CharType, IndexType, ArraySize, Name); 1761 1762 return TypeTable.writeLeafType(AR); 1763 } 1764 1765 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1766 TypeIndex Index; 1767 dwarf::TypeKind Kind; 1768 uint32_t ByteSize; 1769 1770 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1771 ByteSize = Ty->getSizeInBits() / 8; 1772 1773 SimpleTypeKind STK = SimpleTypeKind::None; 1774 switch (Kind) { 1775 case dwarf::DW_ATE_address: 1776 // FIXME: Translate 1777 break; 1778 case dwarf::DW_ATE_boolean: 1779 switch (ByteSize) { 1780 case 1: STK = SimpleTypeKind::Boolean8; break; 1781 case 2: STK = SimpleTypeKind::Boolean16; break; 1782 case 4: STK = SimpleTypeKind::Boolean32; break; 1783 case 8: STK = SimpleTypeKind::Boolean64; break; 1784 case 16: STK = SimpleTypeKind::Boolean128; break; 1785 } 1786 break; 1787 case dwarf::DW_ATE_complex_float: 1788 switch (ByteSize) { 1789 case 2: STK = SimpleTypeKind::Complex16; break; 1790 case 4: STK = SimpleTypeKind::Complex32; break; 1791 case 8: STK = SimpleTypeKind::Complex64; break; 1792 case 10: STK = SimpleTypeKind::Complex80; break; 1793 case 16: STK = SimpleTypeKind::Complex128; break; 1794 } 1795 break; 1796 case dwarf::DW_ATE_float: 1797 switch (ByteSize) { 1798 case 2: STK = SimpleTypeKind::Float16; break; 1799 case 4: STK = SimpleTypeKind::Float32; break; 1800 case 6: STK = SimpleTypeKind::Float48; break; 1801 case 8: STK = SimpleTypeKind::Float64; break; 1802 case 10: STK = SimpleTypeKind::Float80; break; 1803 case 16: STK = SimpleTypeKind::Float128; break; 1804 } 1805 break; 1806 case dwarf::DW_ATE_signed: 1807 switch (ByteSize) { 1808 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1809 case 2: STK = SimpleTypeKind::Int16Short; break; 1810 case 4: STK = SimpleTypeKind::Int32; break; 1811 case 8: STK = SimpleTypeKind::Int64Quad; break; 1812 case 16: STK = SimpleTypeKind::Int128Oct; break; 1813 } 1814 break; 1815 case dwarf::DW_ATE_unsigned: 1816 switch (ByteSize) { 1817 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1818 case 2: STK = SimpleTypeKind::UInt16Short; break; 1819 case 4: STK = SimpleTypeKind::UInt32; break; 1820 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1821 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1822 } 1823 break; 1824 case dwarf::DW_ATE_UTF: 1825 switch (ByteSize) { 1826 case 1: STK = SimpleTypeKind::Character8; break; 1827 case 2: STK = SimpleTypeKind::Character16; break; 1828 case 4: STK = SimpleTypeKind::Character32; break; 1829 } 1830 break; 1831 case dwarf::DW_ATE_signed_char: 1832 if (ByteSize == 1) 1833 STK = SimpleTypeKind::SignedCharacter; 1834 break; 1835 case dwarf::DW_ATE_unsigned_char: 1836 if (ByteSize == 1) 1837 STK = SimpleTypeKind::UnsignedCharacter; 1838 break; 1839 default: 1840 break; 1841 } 1842 1843 // Apply some fixups based on the source-level type name. 1844 // Include some amount of canonicalization from an old naming scheme Clang 1845 // used to use for integer types (in an outdated effort to be compatible with 1846 // GCC's debug info/GDB's behavior, which has since been addressed). 1847 if (STK == SimpleTypeKind::Int32 && 1848 (Ty->getName() == "long int" || Ty->getName() == "long")) 1849 STK = SimpleTypeKind::Int32Long; 1850 if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" || 1851 Ty->getName() == "unsigned long")) 1852 STK = SimpleTypeKind::UInt32Long; 1853 if (STK == SimpleTypeKind::UInt16Short && 1854 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1855 STK = SimpleTypeKind::WideCharacter; 1856 if ((STK == SimpleTypeKind::SignedCharacter || 1857 STK == SimpleTypeKind::UnsignedCharacter) && 1858 Ty->getName() == "char") 1859 STK = SimpleTypeKind::NarrowCharacter; 1860 1861 return TypeIndex(STK); 1862 } 1863 1864 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1865 PointerOptions PO) { 1866 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1867 1868 // Pointers to simple types without any options can use SimpleTypeMode, rather 1869 // than having a dedicated pointer type record. 1870 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1871 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1872 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1873 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1874 ? SimpleTypeMode::NearPointer64 1875 : SimpleTypeMode::NearPointer32; 1876 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1877 } 1878 1879 PointerKind PK = 1880 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1881 PointerMode PM = PointerMode::Pointer; 1882 switch (Ty->getTag()) { 1883 default: llvm_unreachable("not a pointer tag type"); 1884 case dwarf::DW_TAG_pointer_type: 1885 PM = PointerMode::Pointer; 1886 break; 1887 case dwarf::DW_TAG_reference_type: 1888 PM = PointerMode::LValueReference; 1889 break; 1890 case dwarf::DW_TAG_rvalue_reference_type: 1891 PM = PointerMode::RValueReference; 1892 break; 1893 } 1894 1895 if (Ty->isObjectPointer()) 1896 PO |= PointerOptions::Const; 1897 1898 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1899 return TypeTable.writeLeafType(PR); 1900 } 1901 1902 static PointerToMemberRepresentation 1903 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1904 // SizeInBytes being zero generally implies that the member pointer type was 1905 // incomplete, which can happen if it is part of a function prototype. In this 1906 // case, use the unknown model instead of the general model. 1907 if (IsPMF) { 1908 switch (Flags & DINode::FlagPtrToMemberRep) { 1909 case 0: 1910 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1911 : PointerToMemberRepresentation::GeneralFunction; 1912 case DINode::FlagSingleInheritance: 1913 return PointerToMemberRepresentation::SingleInheritanceFunction; 1914 case DINode::FlagMultipleInheritance: 1915 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1916 case DINode::FlagVirtualInheritance: 1917 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1918 } 1919 } else { 1920 switch (Flags & DINode::FlagPtrToMemberRep) { 1921 case 0: 1922 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1923 : PointerToMemberRepresentation::GeneralData; 1924 case DINode::FlagSingleInheritance: 1925 return PointerToMemberRepresentation::SingleInheritanceData; 1926 case DINode::FlagMultipleInheritance: 1927 return PointerToMemberRepresentation::MultipleInheritanceData; 1928 case DINode::FlagVirtualInheritance: 1929 return PointerToMemberRepresentation::VirtualInheritanceData; 1930 } 1931 } 1932 llvm_unreachable("invalid ptr to member representation"); 1933 } 1934 1935 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1936 PointerOptions PO) { 1937 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1938 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1939 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1940 TypeIndex PointeeTI = 1941 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1942 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1943 : PointerKind::Near32; 1944 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1945 : PointerMode::PointerToDataMember; 1946 1947 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1948 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1949 MemberPointerInfo MPI( 1950 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1951 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1952 return TypeTable.writeLeafType(PR); 1953 } 1954 1955 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1956 /// have a translation, use the NearC convention. 1957 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1958 switch (DwarfCC) { 1959 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1960 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1961 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1962 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1963 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1964 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1965 } 1966 return CallingConvention::NearC; 1967 } 1968 1969 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1970 ModifierOptions Mods = ModifierOptions::None; 1971 PointerOptions PO = PointerOptions::None; 1972 bool IsModifier = true; 1973 const DIType *BaseTy = Ty; 1974 while (IsModifier && BaseTy) { 1975 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1976 switch (BaseTy->getTag()) { 1977 case dwarf::DW_TAG_const_type: 1978 Mods |= ModifierOptions::Const; 1979 PO |= PointerOptions::Const; 1980 break; 1981 case dwarf::DW_TAG_volatile_type: 1982 Mods |= ModifierOptions::Volatile; 1983 PO |= PointerOptions::Volatile; 1984 break; 1985 case dwarf::DW_TAG_restrict_type: 1986 // Only pointer types be marked with __restrict. There is no known flag 1987 // for __restrict in LF_MODIFIER records. 1988 PO |= PointerOptions::Restrict; 1989 break; 1990 default: 1991 IsModifier = false; 1992 break; 1993 } 1994 if (IsModifier) 1995 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1996 } 1997 1998 // Check if the inner type will use an LF_POINTER record. If so, the 1999 // qualifiers will go in the LF_POINTER record. This comes up for types like 2000 // 'int *const' and 'int *__restrict', not the more common cases like 'const 2001 // char *'. 2002 if (BaseTy) { 2003 switch (BaseTy->getTag()) { 2004 case dwarf::DW_TAG_pointer_type: 2005 case dwarf::DW_TAG_reference_type: 2006 case dwarf::DW_TAG_rvalue_reference_type: 2007 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 2008 case dwarf::DW_TAG_ptr_to_member_type: 2009 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 2010 default: 2011 break; 2012 } 2013 } 2014 2015 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 2016 2017 // Return the base type index if there aren't any modifiers. For example, the 2018 // metadata could contain restrict wrappers around non-pointer types. 2019 if (Mods == ModifierOptions::None) 2020 return ModifiedTI; 2021 2022 ModifierRecord MR(ModifiedTI, Mods); 2023 return TypeTable.writeLeafType(MR); 2024 } 2025 2026 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 2027 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 2028 for (const DIType *ArgType : Ty->getTypeArray()) 2029 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 2030 2031 // MSVC uses type none for variadic argument. 2032 if (ReturnAndArgTypeIndices.size() > 1 && 2033 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 2034 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 2035 } 2036 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 2037 ArrayRef<TypeIndex> ArgTypeIndices = std::nullopt; 2038 if (!ReturnAndArgTypeIndices.empty()) { 2039 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 2040 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 2041 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 2042 } 2043 2044 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 2045 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 2046 2047 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 2048 2049 FunctionOptions FO = getFunctionOptions(Ty); 2050 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 2051 ArgListIndex); 2052 return TypeTable.writeLeafType(Procedure); 2053 } 2054 2055 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 2056 const DIType *ClassTy, 2057 int ThisAdjustment, 2058 bool IsStaticMethod, 2059 FunctionOptions FO) { 2060 // Lower the containing class type. 2061 TypeIndex ClassType = getTypeIndex(ClassTy); 2062 2063 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 2064 2065 unsigned Index = 0; 2066 SmallVector<TypeIndex, 8> ArgTypeIndices; 2067 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 2068 if (ReturnAndArgs.size() > Index) { 2069 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 2070 } 2071 2072 // If the first argument is a pointer type and this isn't a static method, 2073 // treat it as the special 'this' parameter, which is encoded separately from 2074 // the arguments. 2075 TypeIndex ThisTypeIndex; 2076 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 2077 if (const DIDerivedType *PtrTy = 2078 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 2079 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 2080 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 2081 Index++; 2082 } 2083 } 2084 } 2085 2086 while (Index < ReturnAndArgs.size()) 2087 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 2088 2089 // MSVC uses type none for variadic argument. 2090 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 2091 ArgTypeIndices.back() = TypeIndex::None(); 2092 2093 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 2094 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 2095 2096 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 2097 2098 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 2099 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 2100 return TypeTable.writeLeafType(MFR); 2101 } 2102 2103 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 2104 unsigned VSlotCount = 2105 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 2106 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 2107 2108 VFTableShapeRecord VFTSR(Slots); 2109 return TypeTable.writeLeafType(VFTSR); 2110 } 2111 2112 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 2113 switch (Flags & DINode::FlagAccessibility) { 2114 case DINode::FlagPrivate: return MemberAccess::Private; 2115 case DINode::FlagPublic: return MemberAccess::Public; 2116 case DINode::FlagProtected: return MemberAccess::Protected; 2117 case 0: 2118 // If there was no explicit access control, provide the default for the tag. 2119 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 2120 : MemberAccess::Public; 2121 } 2122 llvm_unreachable("access flags are exclusive"); 2123 } 2124 2125 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 2126 if (SP->isArtificial()) 2127 return MethodOptions::CompilerGenerated; 2128 2129 // FIXME: Handle other MethodOptions. 2130 2131 return MethodOptions::None; 2132 } 2133 2134 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 2135 bool Introduced) { 2136 if (SP->getFlags() & DINode::FlagStaticMember) 2137 return MethodKind::Static; 2138 2139 switch (SP->getVirtuality()) { 2140 case dwarf::DW_VIRTUALITY_none: 2141 break; 2142 case dwarf::DW_VIRTUALITY_virtual: 2143 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 2144 case dwarf::DW_VIRTUALITY_pure_virtual: 2145 return Introduced ? MethodKind::PureIntroducingVirtual 2146 : MethodKind::PureVirtual; 2147 default: 2148 llvm_unreachable("unhandled virtuality case"); 2149 } 2150 2151 return MethodKind::Vanilla; 2152 } 2153 2154 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2155 switch (Ty->getTag()) { 2156 case dwarf::DW_TAG_class_type: 2157 return TypeRecordKind::Class; 2158 case dwarf::DW_TAG_structure_type: 2159 return TypeRecordKind::Struct; 2160 default: 2161 llvm_unreachable("unexpected tag"); 2162 } 2163 } 2164 2165 /// Return ClassOptions that should be present on both the forward declaration 2166 /// and the defintion of a tag type. 2167 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2168 ClassOptions CO = ClassOptions::None; 2169 2170 // MSVC always sets this flag, even for local types. Clang doesn't always 2171 // appear to give every type a linkage name, which may be problematic for us. 2172 // FIXME: Investigate the consequences of not following them here. 2173 if (!Ty->getIdentifier().empty()) 2174 CO |= ClassOptions::HasUniqueName; 2175 2176 // Put the Nested flag on a type if it appears immediately inside a tag type. 2177 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2178 // here. That flag is only set on definitions, and not forward declarations. 2179 const DIScope *ImmediateScope = Ty->getScope(); 2180 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2181 CO |= ClassOptions::Nested; 2182 2183 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2184 // type only when it has an immediate function scope. Clang never puts enums 2185 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2186 // always in function, class, or file scopes. 2187 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2188 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2189 CO |= ClassOptions::Scoped; 2190 } else { 2191 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2192 Scope = Scope->getScope()) { 2193 if (isa<DISubprogram>(Scope)) { 2194 CO |= ClassOptions::Scoped; 2195 break; 2196 } 2197 } 2198 } 2199 2200 return CO; 2201 } 2202 2203 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2204 switch (Ty->getTag()) { 2205 case dwarf::DW_TAG_class_type: 2206 case dwarf::DW_TAG_structure_type: 2207 case dwarf::DW_TAG_union_type: 2208 case dwarf::DW_TAG_enumeration_type: 2209 break; 2210 default: 2211 return; 2212 } 2213 2214 if (const auto *File = Ty->getFile()) { 2215 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2216 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2217 2218 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2219 TypeTable.writeLeafType(USLR); 2220 } 2221 } 2222 2223 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2224 ClassOptions CO = getCommonClassOptions(Ty); 2225 TypeIndex FTI; 2226 unsigned EnumeratorCount = 0; 2227 2228 if (Ty->isForwardDecl()) { 2229 CO |= ClassOptions::ForwardReference; 2230 } else { 2231 ContinuationRecordBuilder ContinuationBuilder; 2232 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2233 for (const DINode *Element : Ty->getElements()) { 2234 // We assume that the frontend provides all members in source declaration 2235 // order, which is what MSVC does. 2236 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2237 // FIXME: Is it correct to always emit these as unsigned here? 2238 EnumeratorRecord ER(MemberAccess::Public, 2239 APSInt(Enumerator->getValue(), true), 2240 Enumerator->getName()); 2241 ContinuationBuilder.writeMemberType(ER); 2242 EnumeratorCount++; 2243 } 2244 } 2245 FTI = TypeTable.insertRecord(ContinuationBuilder); 2246 } 2247 2248 std::string FullName = getFullyQualifiedName(Ty); 2249 2250 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2251 getTypeIndex(Ty->getBaseType())); 2252 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2253 2254 addUDTSrcLine(Ty, EnumTI); 2255 2256 return EnumTI; 2257 } 2258 2259 //===----------------------------------------------------------------------===// 2260 // ClassInfo 2261 //===----------------------------------------------------------------------===// 2262 2263 struct llvm::ClassInfo { 2264 struct MemberInfo { 2265 const DIDerivedType *MemberTypeNode; 2266 uint64_t BaseOffset; 2267 }; 2268 // [MemberInfo] 2269 using MemberList = std::vector<MemberInfo>; 2270 2271 using MethodsList = TinyPtrVector<const DISubprogram *>; 2272 // MethodName -> MethodsList 2273 using MethodsMap = MapVector<MDString *, MethodsList>; 2274 2275 /// Base classes. 2276 std::vector<const DIDerivedType *> Inheritance; 2277 2278 /// Direct members. 2279 MemberList Members; 2280 // Direct overloaded methods gathered by name. 2281 MethodsMap Methods; 2282 2283 TypeIndex VShapeTI; 2284 2285 std::vector<const DIType *> NestedTypes; 2286 }; 2287 2288 void CodeViewDebug::clear() { 2289 assert(CurFn == nullptr); 2290 FileIdMap.clear(); 2291 FnDebugInfo.clear(); 2292 FileToFilepathMap.clear(); 2293 LocalUDTs.clear(); 2294 GlobalUDTs.clear(); 2295 TypeIndices.clear(); 2296 CompleteTypeIndices.clear(); 2297 ScopeGlobals.clear(); 2298 CVGlobalVariableOffsets.clear(); 2299 } 2300 2301 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2302 const DIDerivedType *DDTy) { 2303 if (!DDTy->getName().empty()) { 2304 Info.Members.push_back({DDTy, 0}); 2305 2306 // Collect static const data members with values. 2307 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2308 DINode::FlagStaticMember) { 2309 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) || 2310 isa<ConstantFP>(DDTy->getConstant()))) 2311 StaticConstMembers.push_back(DDTy); 2312 } 2313 2314 return; 2315 } 2316 2317 // An unnamed member may represent a nested struct or union. Attempt to 2318 // interpret the unnamed member as a DICompositeType possibly wrapped in 2319 // qualifier types. Add all the indirect fields to the current record if that 2320 // succeeds, and drop the member if that fails. 2321 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2322 uint64_t Offset = DDTy->getOffsetInBits(); 2323 const DIType *Ty = DDTy->getBaseType(); 2324 bool FullyResolved = false; 2325 while (!FullyResolved) { 2326 switch (Ty->getTag()) { 2327 case dwarf::DW_TAG_const_type: 2328 case dwarf::DW_TAG_volatile_type: 2329 // FIXME: we should apply the qualifier types to the indirect fields 2330 // rather than dropping them. 2331 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2332 break; 2333 default: 2334 FullyResolved = true; 2335 break; 2336 } 2337 } 2338 2339 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2340 if (!DCTy) 2341 return; 2342 2343 ClassInfo NestedInfo = collectClassInfo(DCTy); 2344 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2345 Info.Members.push_back( 2346 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2347 } 2348 2349 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2350 ClassInfo Info; 2351 // Add elements to structure type. 2352 DINodeArray Elements = Ty->getElements(); 2353 for (auto *Element : Elements) { 2354 // We assume that the frontend provides all members in source declaration 2355 // order, which is what MSVC does. 2356 if (!Element) 2357 continue; 2358 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2359 Info.Methods[SP->getRawName()].push_back(SP); 2360 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2361 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2362 collectMemberInfo(Info, DDTy); 2363 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2364 Info.Inheritance.push_back(DDTy); 2365 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2366 DDTy->getName() == "__vtbl_ptr_type") { 2367 Info.VShapeTI = getTypeIndex(DDTy); 2368 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2369 Info.NestedTypes.push_back(DDTy); 2370 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2371 // Ignore friend members. It appears that MSVC emitted info about 2372 // friends in the past, but modern versions do not. 2373 } 2374 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2375 Info.NestedTypes.push_back(Composite); 2376 } 2377 // Skip other unrecognized kinds of elements. 2378 } 2379 return Info; 2380 } 2381 2382 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2383 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2384 // if a complete type should be emitted instead of a forward reference. 2385 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2386 !Ty->isForwardDecl(); 2387 } 2388 2389 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2390 // Emit the complete type for unnamed structs. C++ classes with methods 2391 // which have a circular reference back to the class type are expected to 2392 // be named by the front-end and should not be "unnamed". C unnamed 2393 // structs should not have circular references. 2394 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2395 // If this unnamed complete type is already in the process of being defined 2396 // then the description of the type is malformed and cannot be emitted 2397 // into CodeView correctly so report a fatal error. 2398 auto I = CompleteTypeIndices.find(Ty); 2399 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2400 report_fatal_error("cannot debug circular reference to unnamed type"); 2401 return getCompleteTypeIndex(Ty); 2402 } 2403 2404 // First, construct the forward decl. Don't look into Ty to compute the 2405 // forward decl options, since it might not be available in all TUs. 2406 TypeRecordKind Kind = getRecordKind(Ty); 2407 ClassOptions CO = 2408 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2409 std::string FullName = getFullyQualifiedName(Ty); 2410 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2411 FullName, Ty->getIdentifier()); 2412 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2413 if (!Ty->isForwardDecl()) 2414 DeferredCompleteTypes.push_back(Ty); 2415 return FwdDeclTI; 2416 } 2417 2418 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2419 // Construct the field list and complete type record. 2420 TypeRecordKind Kind = getRecordKind(Ty); 2421 ClassOptions CO = getCommonClassOptions(Ty); 2422 TypeIndex FieldTI; 2423 TypeIndex VShapeTI; 2424 unsigned FieldCount; 2425 bool ContainsNestedClass; 2426 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2427 lowerRecordFieldList(Ty); 2428 2429 if (ContainsNestedClass) 2430 CO |= ClassOptions::ContainsNestedClass; 2431 2432 // MSVC appears to set this flag by searching any destructor or method with 2433 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2434 // the members, however special member functions are not yet emitted into 2435 // debug information. For now checking a class's non-triviality seems enough. 2436 // FIXME: not true for a nested unnamed struct. 2437 if (isNonTrivial(Ty)) 2438 CO |= ClassOptions::HasConstructorOrDestructor; 2439 2440 std::string FullName = getFullyQualifiedName(Ty); 2441 2442 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2443 2444 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2445 SizeInBytes, FullName, Ty->getIdentifier()); 2446 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2447 2448 addUDTSrcLine(Ty, ClassTI); 2449 2450 addToUDTs(Ty); 2451 2452 return ClassTI; 2453 } 2454 2455 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2456 // Emit the complete type for unnamed unions. 2457 if (shouldAlwaysEmitCompleteClassType(Ty)) 2458 return getCompleteTypeIndex(Ty); 2459 2460 ClassOptions CO = 2461 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2462 std::string FullName = getFullyQualifiedName(Ty); 2463 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2464 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2465 if (!Ty->isForwardDecl()) 2466 DeferredCompleteTypes.push_back(Ty); 2467 return FwdDeclTI; 2468 } 2469 2470 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2471 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2472 TypeIndex FieldTI; 2473 unsigned FieldCount; 2474 bool ContainsNestedClass; 2475 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2476 lowerRecordFieldList(Ty); 2477 2478 if (ContainsNestedClass) 2479 CO |= ClassOptions::ContainsNestedClass; 2480 2481 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2482 std::string FullName = getFullyQualifiedName(Ty); 2483 2484 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2485 Ty->getIdentifier()); 2486 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2487 2488 addUDTSrcLine(Ty, UnionTI); 2489 2490 addToUDTs(Ty); 2491 2492 return UnionTI; 2493 } 2494 2495 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2496 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2497 // Manually count members. MSVC appears to count everything that generates a 2498 // field list record. Each individual overload in a method overload group 2499 // contributes to this count, even though the overload group is a single field 2500 // list record. 2501 unsigned MemberCount = 0; 2502 ClassInfo Info = collectClassInfo(Ty); 2503 ContinuationRecordBuilder ContinuationBuilder; 2504 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2505 2506 // Create base classes. 2507 for (const DIDerivedType *I : Info.Inheritance) { 2508 if (I->getFlags() & DINode::FlagVirtual) { 2509 // Virtual base. 2510 unsigned VBPtrOffset = I->getVBPtrOffset(); 2511 // FIXME: Despite the accessor name, the offset is really in bytes. 2512 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2513 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2514 ? TypeRecordKind::IndirectVirtualBaseClass 2515 : TypeRecordKind::VirtualBaseClass; 2516 VirtualBaseClassRecord VBCR( 2517 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2518 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2519 VBTableIndex); 2520 2521 ContinuationBuilder.writeMemberType(VBCR); 2522 MemberCount++; 2523 } else { 2524 assert(I->getOffsetInBits() % 8 == 0 && 2525 "bases must be on byte boundaries"); 2526 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2527 getTypeIndex(I->getBaseType()), 2528 I->getOffsetInBits() / 8); 2529 ContinuationBuilder.writeMemberType(BCR); 2530 MemberCount++; 2531 } 2532 } 2533 2534 // Create members. 2535 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2536 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2537 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2538 StringRef MemberName = Member->getName(); 2539 MemberAccess Access = 2540 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2541 2542 if (Member->isStaticMember()) { 2543 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2544 ContinuationBuilder.writeMemberType(SDMR); 2545 MemberCount++; 2546 continue; 2547 } 2548 2549 // Virtual function pointer member. 2550 if ((Member->getFlags() & DINode::FlagArtificial) && 2551 Member->getName().startswith("_vptr$")) { 2552 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2553 ContinuationBuilder.writeMemberType(VFPR); 2554 MemberCount++; 2555 continue; 2556 } 2557 2558 // Data member. 2559 uint64_t MemberOffsetInBits = 2560 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2561 if (Member->isBitField()) { 2562 uint64_t StartBitOffset = MemberOffsetInBits; 2563 if (const auto *CI = 2564 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2565 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2566 } 2567 StartBitOffset -= MemberOffsetInBits; 2568 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2569 StartBitOffset); 2570 MemberBaseType = TypeTable.writeLeafType(BFR); 2571 } 2572 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2573 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2574 MemberName); 2575 ContinuationBuilder.writeMemberType(DMR); 2576 MemberCount++; 2577 } 2578 2579 // Create methods 2580 for (auto &MethodItr : Info.Methods) { 2581 StringRef Name = MethodItr.first->getString(); 2582 2583 std::vector<OneMethodRecord> Methods; 2584 for (const DISubprogram *SP : MethodItr.second) { 2585 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2586 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2587 2588 unsigned VFTableOffset = -1; 2589 if (Introduced) 2590 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2591 2592 Methods.push_back(OneMethodRecord( 2593 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2594 translateMethodKindFlags(SP, Introduced), 2595 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2596 MemberCount++; 2597 } 2598 assert(!Methods.empty() && "Empty methods map entry"); 2599 if (Methods.size() == 1) 2600 ContinuationBuilder.writeMemberType(Methods[0]); 2601 else { 2602 // FIXME: Make this use its own ContinuationBuilder so that 2603 // MethodOverloadList can be split correctly. 2604 MethodOverloadListRecord MOLR(Methods); 2605 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2606 2607 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2608 ContinuationBuilder.writeMemberType(OMR); 2609 } 2610 } 2611 2612 // Create nested classes. 2613 for (const DIType *Nested : Info.NestedTypes) { 2614 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2615 ContinuationBuilder.writeMemberType(R); 2616 MemberCount++; 2617 } 2618 2619 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2620 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2621 !Info.NestedTypes.empty()); 2622 } 2623 2624 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2625 if (!VBPType.getIndex()) { 2626 // Make a 'const int *' type. 2627 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2628 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2629 2630 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2631 : PointerKind::Near32; 2632 PointerMode PM = PointerMode::Pointer; 2633 PointerOptions PO = PointerOptions::None; 2634 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2635 VBPType = TypeTable.writeLeafType(PR); 2636 } 2637 2638 return VBPType; 2639 } 2640 2641 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2642 // The null DIType is the void type. Don't try to hash it. 2643 if (!Ty) 2644 return TypeIndex::Void(); 2645 2646 // Check if we've already translated this type. Don't try to do a 2647 // get-or-create style insertion that caches the hash lookup across the 2648 // lowerType call. It will update the TypeIndices map. 2649 auto I = TypeIndices.find({Ty, ClassTy}); 2650 if (I != TypeIndices.end()) 2651 return I->second; 2652 2653 TypeLoweringScope S(*this); 2654 TypeIndex TI = lowerType(Ty, ClassTy); 2655 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2656 } 2657 2658 codeview::TypeIndex 2659 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2660 const DISubroutineType *SubroutineTy) { 2661 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2662 "this type must be a pointer type"); 2663 2664 PointerOptions Options = PointerOptions::None; 2665 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2666 Options = PointerOptions::LValueRefThisPointer; 2667 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2668 Options = PointerOptions::RValueRefThisPointer; 2669 2670 // Check if we've already translated this type. If there is no ref qualifier 2671 // on the function then we look up this pointer type with no associated class 2672 // so that the TypeIndex for the this pointer can be shared with the type 2673 // index for other pointers to this class type. If there is a ref qualifier 2674 // then we lookup the pointer using the subroutine as the parent type. 2675 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2676 if (I != TypeIndices.end()) 2677 return I->second; 2678 2679 TypeLoweringScope S(*this); 2680 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2681 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2682 } 2683 2684 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2685 PointerRecord PR(getTypeIndex(Ty), 2686 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2687 : PointerKind::Near32, 2688 PointerMode::LValueReference, PointerOptions::None, 2689 Ty->getSizeInBits() / 8); 2690 return TypeTable.writeLeafType(PR); 2691 } 2692 2693 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2694 // The null DIType is the void type. Don't try to hash it. 2695 if (!Ty) 2696 return TypeIndex::Void(); 2697 2698 // Look through typedefs when getting the complete type index. Call 2699 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2700 // emitted only once. 2701 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2702 (void)getTypeIndex(Ty); 2703 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2704 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2705 2706 // If this is a non-record type, the complete type index is the same as the 2707 // normal type index. Just call getTypeIndex. 2708 switch (Ty->getTag()) { 2709 case dwarf::DW_TAG_class_type: 2710 case dwarf::DW_TAG_structure_type: 2711 case dwarf::DW_TAG_union_type: 2712 break; 2713 default: 2714 return getTypeIndex(Ty); 2715 } 2716 2717 const auto *CTy = cast<DICompositeType>(Ty); 2718 2719 TypeLoweringScope S(*this); 2720 2721 // Make sure the forward declaration is emitted first. It's unclear if this 2722 // is necessary, but MSVC does it, and we should follow suit until we can show 2723 // otherwise. 2724 // We only emit a forward declaration for named types. 2725 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2726 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2727 2728 // Just use the forward decl if we don't have complete type info. This 2729 // might happen if the frontend is using modules and expects the complete 2730 // definition to be emitted elsewhere. 2731 if (CTy->isForwardDecl()) 2732 return FwdDeclTI; 2733 } 2734 2735 // Check if we've already translated the complete record type. 2736 // Insert the type with a null TypeIndex to signify that the type is currently 2737 // being lowered. 2738 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2739 if (!InsertResult.second) 2740 return InsertResult.first->second; 2741 2742 TypeIndex TI; 2743 switch (CTy->getTag()) { 2744 case dwarf::DW_TAG_class_type: 2745 case dwarf::DW_TAG_structure_type: 2746 TI = lowerCompleteTypeClass(CTy); 2747 break; 2748 case dwarf::DW_TAG_union_type: 2749 TI = lowerCompleteTypeUnion(CTy); 2750 break; 2751 default: 2752 llvm_unreachable("not a record"); 2753 } 2754 2755 // Update the type index associated with this CompositeType. This cannot 2756 // use the 'InsertResult' iterator above because it is potentially 2757 // invalidated by map insertions which can occur while lowering the class 2758 // type above. 2759 CompleteTypeIndices[CTy] = TI; 2760 return TI; 2761 } 2762 2763 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2764 /// and do this until fixpoint, as each complete record type typically 2765 /// references 2766 /// many other record types. 2767 void CodeViewDebug::emitDeferredCompleteTypes() { 2768 SmallVector<const DICompositeType *, 4> TypesToEmit; 2769 while (!DeferredCompleteTypes.empty()) { 2770 std::swap(DeferredCompleteTypes, TypesToEmit); 2771 for (const DICompositeType *RecordTy : TypesToEmit) 2772 getCompleteTypeIndex(RecordTy); 2773 TypesToEmit.clear(); 2774 } 2775 } 2776 2777 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2778 ArrayRef<LocalVariable> Locals) { 2779 // Get the sorted list of parameters and emit them first. 2780 SmallVector<const LocalVariable *, 6> Params; 2781 for (const LocalVariable &L : Locals) 2782 if (L.DIVar->isParameter()) 2783 Params.push_back(&L); 2784 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2785 return L->DIVar->getArg() < R->DIVar->getArg(); 2786 }); 2787 for (const LocalVariable *L : Params) 2788 emitLocalVariable(FI, *L); 2789 2790 // Next emit all non-parameters in the order that we found them. 2791 for (const LocalVariable &L : Locals) 2792 if (!L.DIVar->isParameter()) 2793 emitLocalVariable(FI, L); 2794 } 2795 2796 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2797 const LocalVariable &Var) { 2798 // LocalSym record, see SymbolRecord.h for more info. 2799 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2800 2801 LocalSymFlags Flags = LocalSymFlags::None; 2802 if (Var.DIVar->isParameter()) 2803 Flags |= LocalSymFlags::IsParameter; 2804 if (Var.DefRanges.empty()) 2805 Flags |= LocalSymFlags::IsOptimizedOut; 2806 2807 OS.AddComment("TypeIndex"); 2808 TypeIndex TI = Var.UseReferenceType 2809 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2810 : getCompleteTypeIndex(Var.DIVar->getType()); 2811 OS.emitInt32(TI.getIndex()); 2812 OS.AddComment("Flags"); 2813 OS.emitInt16(static_cast<uint16_t>(Flags)); 2814 // Truncate the name so we won't overflow the record length field. 2815 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2816 endSymbolRecord(LocalEnd); 2817 2818 // Calculate the on disk prefix of the appropriate def range record. The 2819 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2820 // should be big enough to hold all forms without memory allocation. 2821 SmallString<20> BytePrefix; 2822 for (const auto &Pair : Var.DefRanges) { 2823 LocalVarDef DefRange = Pair.first; 2824 const auto &Ranges = Pair.second; 2825 BytePrefix.clear(); 2826 if (DefRange.InMemory) { 2827 int Offset = DefRange.DataOffset; 2828 unsigned Reg = DefRange.CVRegister; 2829 2830 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2831 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2832 // instead. In frames without stack realignment, $T0 will be the CFA. 2833 if (RegisterId(Reg) == RegisterId::ESP) { 2834 Reg = unsigned(RegisterId::VFRAME); 2835 Offset += FI.OffsetAdjustment; 2836 } 2837 2838 // If we can use the chosen frame pointer for the frame and this isn't a 2839 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2840 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2841 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2842 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2843 (bool(Flags & LocalSymFlags::IsParameter) 2844 ? (EncFP == FI.EncodedParamFramePtrReg) 2845 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2846 DefRangeFramePointerRelHeader DRHdr; 2847 DRHdr.Offset = Offset; 2848 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2849 } else { 2850 uint16_t RegRelFlags = 0; 2851 if (DefRange.IsSubfield) { 2852 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2853 (DefRange.StructOffset 2854 << DefRangeRegisterRelSym::OffsetInParentShift); 2855 } 2856 DefRangeRegisterRelHeader DRHdr; 2857 DRHdr.Register = Reg; 2858 DRHdr.Flags = RegRelFlags; 2859 DRHdr.BasePointerOffset = Offset; 2860 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2861 } 2862 } else { 2863 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2864 if (DefRange.IsSubfield) { 2865 DefRangeSubfieldRegisterHeader DRHdr; 2866 DRHdr.Register = DefRange.CVRegister; 2867 DRHdr.MayHaveNoName = 0; 2868 DRHdr.OffsetInParent = DefRange.StructOffset; 2869 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2870 } else { 2871 DefRangeRegisterHeader DRHdr; 2872 DRHdr.Register = DefRange.CVRegister; 2873 DRHdr.MayHaveNoName = 0; 2874 OS.emitCVDefRangeDirective(Ranges, DRHdr); 2875 } 2876 } 2877 } 2878 } 2879 2880 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2881 const FunctionInfo& FI) { 2882 for (LexicalBlock *Block : Blocks) 2883 emitLexicalBlock(*Block, FI); 2884 } 2885 2886 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2887 /// lexical block scope. 2888 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2889 const FunctionInfo& FI) { 2890 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2891 OS.AddComment("PtrParent"); 2892 OS.emitInt32(0); // PtrParent 2893 OS.AddComment("PtrEnd"); 2894 OS.emitInt32(0); // PtrEnd 2895 OS.AddComment("Code size"); 2896 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2897 OS.AddComment("Function section relative address"); 2898 OS.emitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2899 OS.AddComment("Function section index"); 2900 OS.emitCOFFSectionIndex(FI.Begin); // Func Symbol 2901 OS.AddComment("Lexical block name"); 2902 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2903 endSymbolRecord(RecordEnd); 2904 2905 // Emit variables local to this lexical block. 2906 emitLocalVariableList(FI, Block.Locals); 2907 emitGlobalVariableList(Block.Globals); 2908 2909 // Emit lexical blocks contained within this block. 2910 emitLexicalBlockList(Block.Children, FI); 2911 2912 // Close the lexical block scope. 2913 emitEndSymbolRecord(SymbolKind::S_END); 2914 } 2915 2916 /// Convenience routine for collecting lexical block information for a list 2917 /// of lexical scopes. 2918 void CodeViewDebug::collectLexicalBlockInfo( 2919 SmallVectorImpl<LexicalScope *> &Scopes, 2920 SmallVectorImpl<LexicalBlock *> &Blocks, 2921 SmallVectorImpl<LocalVariable> &Locals, 2922 SmallVectorImpl<CVGlobalVariable> &Globals) { 2923 for (LexicalScope *Scope : Scopes) 2924 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2925 } 2926 2927 /// Populate the lexical blocks and local variable lists of the parent with 2928 /// information about the specified lexical scope. 2929 void CodeViewDebug::collectLexicalBlockInfo( 2930 LexicalScope &Scope, 2931 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2932 SmallVectorImpl<LocalVariable> &ParentLocals, 2933 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2934 if (Scope.isAbstractScope()) 2935 return; 2936 2937 // Gather information about the lexical scope including local variables, 2938 // global variables, and address ranges. 2939 bool IgnoreScope = false; 2940 auto LI = ScopeVariables.find(&Scope); 2941 SmallVectorImpl<LocalVariable> *Locals = 2942 LI != ScopeVariables.end() ? &LI->second : nullptr; 2943 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2944 SmallVectorImpl<CVGlobalVariable> *Globals = 2945 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2946 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2947 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2948 2949 // Ignore lexical scopes which do not contain variables. 2950 if (!Locals && !Globals) 2951 IgnoreScope = true; 2952 2953 // Ignore lexical scopes which are not lexical blocks. 2954 if (!DILB) 2955 IgnoreScope = true; 2956 2957 // Ignore scopes which have too many address ranges to represent in the 2958 // current CodeView format or do not have a valid address range. 2959 // 2960 // For lexical scopes with multiple address ranges you may be tempted to 2961 // construct a single range covering every instruction where the block is 2962 // live and everything in between. Unfortunately, Visual Studio only 2963 // displays variables from the first matching lexical block scope. If the 2964 // first lexical block contains exception handling code or cold code which 2965 // is moved to the bottom of the routine creating a single range covering 2966 // nearly the entire routine, then it will hide all other lexical blocks 2967 // and the variables they contain. 2968 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2969 IgnoreScope = true; 2970 2971 if (IgnoreScope) { 2972 // This scope can be safely ignored and eliminating it will reduce the 2973 // size of the debug information. Be sure to collect any variable and scope 2974 // information from the this scope or any of its children and collapse them 2975 // into the parent scope. 2976 if (Locals) 2977 ParentLocals.append(Locals->begin(), Locals->end()); 2978 if (Globals) 2979 ParentGlobals.append(Globals->begin(), Globals->end()); 2980 collectLexicalBlockInfo(Scope.getChildren(), 2981 ParentBlocks, 2982 ParentLocals, 2983 ParentGlobals); 2984 return; 2985 } 2986 2987 // Create a new CodeView lexical block for this lexical scope. If we've 2988 // seen this DILexicalBlock before then the scope tree is malformed and 2989 // we can handle this gracefully by not processing it a second time. 2990 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2991 if (!BlockInsertion.second) 2992 return; 2993 2994 // Create a lexical block containing the variables and collect the the 2995 // lexical block information for the children. 2996 const InsnRange &Range = Ranges.front(); 2997 assert(Range.first && Range.second); 2998 LexicalBlock &Block = BlockInsertion.first->second; 2999 Block.Begin = getLabelBeforeInsn(Range.first); 3000 Block.End = getLabelAfterInsn(Range.second); 3001 assert(Block.Begin && "missing label for scope begin"); 3002 assert(Block.End && "missing label for scope end"); 3003 Block.Name = DILB->getName(); 3004 if (Locals) 3005 Block.Locals = std::move(*Locals); 3006 if (Globals) 3007 Block.Globals = std::move(*Globals); 3008 ParentBlocks.push_back(&Block); 3009 collectLexicalBlockInfo(Scope.getChildren(), 3010 Block.Children, 3011 Block.Locals, 3012 Block.Globals); 3013 } 3014 3015 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 3016 const Function &GV = MF->getFunction(); 3017 assert(FnDebugInfo.count(&GV)); 3018 assert(CurFn == FnDebugInfo[&GV].get()); 3019 3020 collectVariableInfo(GV.getSubprogram()); 3021 3022 // Build the lexical block structure to emit for this routine. 3023 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 3024 collectLexicalBlockInfo(*CFS, 3025 CurFn->ChildBlocks, 3026 CurFn->Locals, 3027 CurFn->Globals); 3028 3029 // Clear the scope and variable information from the map which will not be 3030 // valid after we have finished processing this routine. This also prepares 3031 // the map for the subsequent routine. 3032 ScopeVariables.clear(); 3033 3034 // Don't emit anything if we don't have any line tables. 3035 // Thunks are compiler-generated and probably won't have source correlation. 3036 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 3037 FnDebugInfo.erase(&GV); 3038 CurFn = nullptr; 3039 return; 3040 } 3041 3042 // Find heap alloc sites and add to list. 3043 for (const auto &MBB : *MF) { 3044 for (const auto &MI : MBB) { 3045 if (MDNode *MD = MI.getHeapAllocMarker()) { 3046 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 3047 getLabelAfterInsn(&MI), 3048 dyn_cast<DIType>(MD))); 3049 } 3050 } 3051 } 3052 3053 CurFn->Annotations = MF->getCodeViewAnnotations(); 3054 3055 CurFn->End = Asm->getFunctionEnd(); 3056 3057 CurFn = nullptr; 3058 } 3059 3060 // Usable locations are valid with non-zero line numbers. A line number of zero 3061 // corresponds to optimized code that doesn't have a distinct source location. 3062 // In this case, we try to use the previous or next source location depending on 3063 // the context. 3064 static bool isUsableDebugLoc(DebugLoc DL) { 3065 return DL && DL.getLine() != 0; 3066 } 3067 3068 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 3069 DebugHandlerBase::beginInstruction(MI); 3070 3071 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 3072 if (!Asm || !CurFn || MI->isDebugInstr() || 3073 MI->getFlag(MachineInstr::FrameSetup)) 3074 return; 3075 3076 // If the first instruction of a new MBB has no location, find the first 3077 // instruction with a location and use that. 3078 DebugLoc DL = MI->getDebugLoc(); 3079 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 3080 for (const auto &NextMI : *MI->getParent()) { 3081 if (NextMI.isDebugInstr()) 3082 continue; 3083 DL = NextMI.getDebugLoc(); 3084 if (isUsableDebugLoc(DL)) 3085 break; 3086 } 3087 // FIXME: Handle the case where the BB has no valid locations. This would 3088 // probably require doing a real dataflow analysis. 3089 } 3090 PrevInstBB = MI->getParent(); 3091 3092 // If we still don't have a debug location, don't record a location. 3093 if (!isUsableDebugLoc(DL)) 3094 return; 3095 3096 maybeRecordLocation(DL, Asm->MF); 3097 } 3098 3099 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 3100 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 3101 *EndLabel = MMI->getContext().createTempSymbol(); 3102 OS.emitInt32(unsigned(Kind)); 3103 OS.AddComment("Subsection size"); 3104 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 3105 OS.emitLabel(BeginLabel); 3106 return EndLabel; 3107 } 3108 3109 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 3110 OS.emitLabel(EndLabel); 3111 // Every subsection must be aligned to a 4-byte boundary. 3112 OS.emitValueToAlignment(Align(4)); 3113 } 3114 3115 static StringRef getSymbolName(SymbolKind SymKind) { 3116 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 3117 if (EE.Value == SymKind) 3118 return EE.Name; 3119 return ""; 3120 } 3121 3122 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 3123 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 3124 *EndLabel = MMI->getContext().createTempSymbol(); 3125 OS.AddComment("Record length"); 3126 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 3127 OS.emitLabel(BeginLabel); 3128 if (OS.isVerboseAsm()) 3129 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 3130 OS.emitInt16(unsigned(SymKind)); 3131 return EndLabel; 3132 } 3133 3134 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 3135 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 3136 // an extra copy of every symbol record in LLD. This increases object file 3137 // size by less than 1% in the clang build, and is compatible with the Visual 3138 // C++ linker. 3139 OS.emitValueToAlignment(Align(4)); 3140 OS.emitLabel(SymEnd); 3141 } 3142 3143 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 3144 OS.AddComment("Record length"); 3145 OS.emitInt16(2); 3146 if (OS.isVerboseAsm()) 3147 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 3148 OS.emitInt16(uint16_t(EndKind)); // Record Kind 3149 } 3150 3151 void CodeViewDebug::emitDebugInfoForUDTs( 3152 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 3153 #ifndef NDEBUG 3154 size_t OriginalSize = UDTs.size(); 3155 #endif 3156 for (const auto &UDT : UDTs) { 3157 const DIType *T = UDT.second; 3158 assert(shouldEmitUdt(T)); 3159 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 3160 OS.AddComment("Type"); 3161 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3162 assert(OriginalSize == UDTs.size() && 3163 "getCompleteTypeIndex found new UDTs!"); 3164 emitNullTerminatedSymbolName(OS, UDT.first); 3165 endSymbolRecord(UDTRecordEnd); 3166 } 3167 } 3168 3169 void CodeViewDebug::collectGlobalVariableInfo() { 3170 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3171 GlobalMap; 3172 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3173 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3174 GV.getDebugInfo(GVEs); 3175 for (const auto *GVE : GVEs) 3176 GlobalMap[GVE] = &GV; 3177 } 3178 3179 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3180 for (const MDNode *Node : CUs->operands()) { 3181 const auto *CU = cast<DICompileUnit>(Node); 3182 for (const auto *GVE : CU->getGlobalVariables()) { 3183 const DIGlobalVariable *DIGV = GVE->getVariable(); 3184 const DIExpression *DIE = GVE->getExpression(); 3185 // Don't emit string literals in CodeView, as the only useful parts are 3186 // generally the filename and line number, which isn't possible to output 3187 // in CodeView. String literals should be the only unnamed GlobalVariable 3188 // with debug info. 3189 if (DIGV->getName().empty()) continue; 3190 3191 if ((DIE->getNumElements() == 2) && 3192 (DIE->getElement(0) == dwarf::DW_OP_plus_uconst)) 3193 // Record the constant offset for the variable. 3194 // 3195 // A Fortran common block uses this idiom to encode the offset 3196 // of a variable from the common block's starting address. 3197 CVGlobalVariableOffsets.insert( 3198 std::make_pair(DIGV, DIE->getElement(1))); 3199 3200 // Emit constant global variables in a global symbol section. 3201 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3202 CVGlobalVariable CVGV = {DIGV, DIE}; 3203 GlobalVariables.emplace_back(std::move(CVGV)); 3204 } 3205 3206 const auto *GV = GlobalMap.lookup(GVE); 3207 if (!GV || GV->isDeclarationForLinker()) 3208 continue; 3209 3210 DIScope *Scope = DIGV->getScope(); 3211 SmallVector<CVGlobalVariable, 1> *VariableList; 3212 if (Scope && isa<DILocalScope>(Scope)) { 3213 // Locate a global variable list for this scope, creating one if 3214 // necessary. 3215 auto Insertion = ScopeGlobals.insert( 3216 {Scope, std::unique_ptr<GlobalVariableList>()}); 3217 if (Insertion.second) 3218 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3219 VariableList = Insertion.first->second.get(); 3220 } else if (GV->hasComdat()) 3221 // Emit this global variable into a COMDAT section. 3222 VariableList = &ComdatVariables; 3223 else 3224 // Emit this global variable in a single global symbol section. 3225 VariableList = &GlobalVariables; 3226 CVGlobalVariable CVGV = {DIGV, GV}; 3227 VariableList->emplace_back(std::move(CVGV)); 3228 } 3229 } 3230 } 3231 3232 void CodeViewDebug::collectDebugInfoForGlobals() { 3233 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3234 const DIGlobalVariable *DIGV = CVGV.DIGV; 3235 const DIScope *Scope = DIGV->getScope(); 3236 getCompleteTypeIndex(DIGV->getType()); 3237 getFullyQualifiedName(Scope, DIGV->getName()); 3238 } 3239 3240 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3241 const DIGlobalVariable *DIGV = CVGV.DIGV; 3242 const DIScope *Scope = DIGV->getScope(); 3243 getCompleteTypeIndex(DIGV->getType()); 3244 getFullyQualifiedName(Scope, DIGV->getName()); 3245 } 3246 } 3247 3248 void CodeViewDebug::emitDebugInfoForGlobals() { 3249 // First, emit all globals that are not in a comdat in a single symbol 3250 // substream. MSVC doesn't like it if the substream is empty, so only open 3251 // it if we have at least one global to emit. 3252 switchToDebugSectionForSymbol(nullptr); 3253 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3254 OS.AddComment("Symbol subsection for globals"); 3255 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3256 emitGlobalVariableList(GlobalVariables); 3257 emitStaticConstMemberList(); 3258 endCVSubsection(EndLabel); 3259 } 3260 3261 // Second, emit each global that is in a comdat into its own .debug$S 3262 // section along with its own symbol substream. 3263 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3264 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3265 MCSymbol *GVSym = Asm->getSymbol(GV); 3266 OS.AddComment("Symbol subsection for " + 3267 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3268 switchToDebugSectionForSymbol(GVSym); 3269 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3270 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3271 emitDebugInfoForGlobal(CVGV); 3272 endCVSubsection(EndLabel); 3273 } 3274 } 3275 3276 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3277 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3278 for (const MDNode *Node : CUs->operands()) { 3279 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3280 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3281 getTypeIndex(RT); 3282 // FIXME: Add to global/local DTU list. 3283 } 3284 } 3285 } 3286 } 3287 3288 // Emit each global variable in the specified array. 3289 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3290 for (const CVGlobalVariable &CVGV : Globals) { 3291 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3292 emitDebugInfoForGlobal(CVGV); 3293 } 3294 } 3295 3296 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value, 3297 const std::string &QualifiedName) { 3298 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3299 OS.AddComment("Type"); 3300 OS.emitInt32(getTypeIndex(DTy).getIndex()); 3301 3302 OS.AddComment("Value"); 3303 3304 // Encoded integers shouldn't need more than 10 bytes. 3305 uint8_t Data[10]; 3306 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3307 CodeViewRecordIO IO(Writer); 3308 cantFail(IO.mapEncodedInteger(Value)); 3309 StringRef SRef((char *)Data, Writer.getOffset()); 3310 OS.emitBinaryData(SRef); 3311 3312 OS.AddComment("Name"); 3313 emitNullTerminatedSymbolName(OS, QualifiedName); 3314 endSymbolRecord(SConstantEnd); 3315 } 3316 3317 void CodeViewDebug::emitStaticConstMemberList() { 3318 for (const DIDerivedType *DTy : StaticConstMembers) { 3319 const DIScope *Scope = DTy->getScope(); 3320 3321 APSInt Value; 3322 if (const ConstantInt *CI = 3323 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3324 Value = APSInt(CI->getValue(), 3325 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3326 else if (const ConstantFP *CFP = 3327 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3328 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3329 else 3330 llvm_unreachable("cannot emit a constant without a value"); 3331 3332 emitConstantSymbolRecord(DTy->getBaseType(), Value, 3333 getFullyQualifiedName(Scope, DTy->getName())); 3334 } 3335 } 3336 3337 static bool isFloatDIType(const DIType *Ty) { 3338 if (isa<DICompositeType>(Ty)) 3339 return false; 3340 3341 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3342 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3343 if (T == dwarf::DW_TAG_pointer_type || 3344 T == dwarf::DW_TAG_ptr_to_member_type || 3345 T == dwarf::DW_TAG_reference_type || 3346 T == dwarf::DW_TAG_rvalue_reference_type) 3347 return false; 3348 assert(DTy->getBaseType() && "Expected valid base type"); 3349 return isFloatDIType(DTy->getBaseType()); 3350 } 3351 3352 auto *BTy = cast<DIBasicType>(Ty); 3353 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3354 } 3355 3356 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3357 const DIGlobalVariable *DIGV = CVGV.DIGV; 3358 3359 const DIScope *Scope = DIGV->getScope(); 3360 // For static data members, get the scope from the declaration. 3361 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3362 DIGV->getRawStaticDataMemberDeclaration())) 3363 Scope = MemberDecl->getScope(); 3364 // For static local variables and Fortran, the scoping portion is elided 3365 // in its name so that we can reference the variable in the command line 3366 // of the VS debugger. 3367 std::string QualifiedName = 3368 (moduleIsInFortran() || (Scope && isa<DILocalScope>(Scope))) 3369 ? std::string(DIGV->getName()) 3370 : getFullyQualifiedName(Scope, DIGV->getName()); 3371 3372 if (const GlobalVariable *GV = 3373 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3374 // DataSym record, see SymbolRecord.h for more info. Thread local data 3375 // happens to have the same format as global data. 3376 MCSymbol *GVSym = Asm->getSymbol(GV); 3377 SymbolKind DataSym = GV->isThreadLocal() 3378 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3379 : SymbolKind::S_GTHREAD32) 3380 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3381 : SymbolKind::S_GDATA32); 3382 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3383 OS.AddComment("Type"); 3384 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3385 OS.AddComment("DataOffset"); 3386 3387 uint64_t Offset = 0; 3388 if (CVGlobalVariableOffsets.find(DIGV) != CVGlobalVariableOffsets.end()) 3389 // Use the offset seen while collecting info on globals. 3390 Offset = CVGlobalVariableOffsets[DIGV]; 3391 OS.emitCOFFSecRel32(GVSym, Offset); 3392 3393 OS.AddComment("Segment"); 3394 OS.emitCOFFSectionIndex(GVSym); 3395 OS.AddComment("Name"); 3396 const unsigned LengthOfDataRecord = 12; 3397 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3398 endSymbolRecord(DataEnd); 3399 } else { 3400 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3401 assert(DIE->isConstant() && 3402 "Global constant variables must contain a constant expression."); 3403 3404 // Use unsigned for floats. 3405 bool isUnsigned = isFloatDIType(DIGV->getType()) 3406 ? true 3407 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3408 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3409 emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName); 3410 } 3411 } 3412