xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision 7649d8388a697e1cf9ad062ebdc8c85a47f56c5d)
1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/ByteStream.h"
17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
18 #include "llvm/DebugInfo/CodeView/CodeView.h"
19 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
20 #include "llvm/DebugInfo/CodeView/Line.h"
21 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
22 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
23 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
24 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCSectionCOFF.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/COFF.h"
31 #include "llvm/Support/ScopedPrinter.h"
32 #include "llvm/Target/TargetFrameLowering.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 
36 using namespace llvm;
37 using namespace llvm::codeview;
38 
39 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
40     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
41   // If module doesn't have named metadata anchors or COFF debug section
42   // is not available, skip any debug info related stuff.
43   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
44       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
45     Asm = nullptr;
46     return;
47   }
48 
49   // Tell MMI that we have debug info.
50   MMI->setDebugInfoAvailability(true);
51 }
52 
53 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
54   std::string &Filepath = FileToFilepathMap[File];
55   if (!Filepath.empty())
56     return Filepath;
57 
58   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
59 
60   // Clang emits directory and relative filename info into the IR, but CodeView
61   // operates on full paths.  We could change Clang to emit full paths too, but
62   // that would increase the IR size and probably not needed for other users.
63   // For now, just concatenate and canonicalize the path here.
64   if (Filename.find(':') == 1)
65     Filepath = Filename;
66   else
67     Filepath = (Dir + "\\" + Filename).str();
68 
69   // Canonicalize the path.  We have to do it textually because we may no longer
70   // have access the file in the filesystem.
71   // First, replace all slashes with backslashes.
72   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
73 
74   // Remove all "\.\" with "\".
75   size_t Cursor = 0;
76   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
77     Filepath.erase(Cursor, 2);
78 
79   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
80   // path should be well-formatted, e.g. start with a drive letter, etc.
81   Cursor = 0;
82   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
83     // Something's wrong if the path starts with "\..\", abort.
84     if (Cursor == 0)
85       break;
86 
87     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
88     if (PrevSlash == std::string::npos)
89       // Something's wrong, abort.
90       break;
91 
92     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
93     // The next ".." might be following the one we've just erased.
94     Cursor = PrevSlash;
95   }
96 
97   // Remove all duplicate backslashes.
98   Cursor = 0;
99   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
100     Filepath.erase(Cursor, 1);
101 
102   return Filepath;
103 }
104 
105 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
106   unsigned NextId = FileIdMap.size() + 1;
107   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
108   if (Insertion.second) {
109     // We have to compute the full filepath and emit a .cv_file directive.
110     StringRef FullPath = getFullFilepath(F);
111     NextId = OS.EmitCVFileDirective(NextId, FullPath);
112     assert(NextId == FileIdMap.size() && ".cv_file directive failed");
113   }
114   return Insertion.first->second;
115 }
116 
117 CodeViewDebug::InlineSite &
118 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
119                              const DISubprogram *Inlinee) {
120   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
121   InlineSite *Site = &SiteInsertion.first->second;
122   if (SiteInsertion.second) {
123     Site->SiteFuncId = NextFuncId++;
124     Site->Inlinee = Inlinee;
125     InlinedSubprograms.insert(Inlinee);
126     getFuncIdForSubprogram(Inlinee);
127   }
128   return *Site;
129 }
130 
131 static StringRef getPrettyScopeName(const DIScope *Scope) {
132   StringRef ScopeName = Scope->getName();
133   if (!ScopeName.empty())
134     return ScopeName;
135 
136   switch (Scope->getTag()) {
137   case dwarf::DW_TAG_enumeration_type:
138   case dwarf::DW_TAG_class_type:
139   case dwarf::DW_TAG_structure_type:
140   case dwarf::DW_TAG_union_type:
141     return "<unnamed-tag>";
142   case dwarf::DW_TAG_namespace:
143     return "`anonymous namespace'";
144   }
145 
146   return StringRef();
147 }
148 
149 static const DISubprogram *getQualifiedNameComponents(
150     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
151   const DISubprogram *ClosestSubprogram = nullptr;
152   while (Scope != nullptr) {
153     if (ClosestSubprogram == nullptr)
154       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
155     StringRef ScopeName = getPrettyScopeName(Scope);
156     if (!ScopeName.empty())
157       QualifiedNameComponents.push_back(ScopeName);
158     Scope = Scope->getScope().resolve();
159   }
160   return ClosestSubprogram;
161 }
162 
163 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
164                                     StringRef TypeName) {
165   std::string FullyQualifiedName;
166   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
167     FullyQualifiedName.append(QualifiedNameComponent);
168     FullyQualifiedName.append("::");
169   }
170   FullyQualifiedName.append(TypeName);
171   return FullyQualifiedName;
172 }
173 
174 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
175   SmallVector<StringRef, 5> QualifiedNameComponents;
176   getQualifiedNameComponents(Scope, QualifiedNameComponents);
177   return getQualifiedName(QualifiedNameComponents, Name);
178 }
179 
180 struct CodeViewDebug::TypeLoweringScope {
181   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
182   ~TypeLoweringScope() {
183     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
184     // inner TypeLoweringScopes don't attempt to emit deferred types.
185     if (CVD.TypeEmissionLevel == 1)
186       CVD.emitDeferredCompleteTypes();
187     --CVD.TypeEmissionLevel;
188   }
189   CodeViewDebug &CVD;
190 };
191 
192 static std::string getFullyQualifiedName(const DIScope *Ty) {
193   const DIScope *Scope = Ty->getScope().resolve();
194   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
195 }
196 
197 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
198   // No scope means global scope and that uses the zero index.
199   if (!Scope || isa<DIFile>(Scope))
200     return TypeIndex();
201 
202   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
203 
204   // Check if we've already translated this scope.
205   auto I = TypeIndices.find({Scope, nullptr});
206   if (I != TypeIndices.end())
207     return I->second;
208 
209   // Build the fully qualified name of the scope.
210   std::string ScopeName = getFullyQualifiedName(Scope);
211   TypeIndex TI =
212       TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName));
213   return recordTypeIndexForDINode(Scope, TI);
214 }
215 
216 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
217   // It's possible to ask for the FuncId of a function which doesn't have a
218   // subprogram: inlining a function with debug info into a function with none.
219   if (!SP)
220     return TypeIndex::None();
221 
222   // Check if we've already translated this subprogram.
223   auto I = TypeIndices.find({SP, nullptr});
224   if (I != TypeIndices.end())
225     return I->second;
226 
227   // The display name includes function template arguments. Drop them to match
228   // MSVC.
229   StringRef DisplayName = SP->getDisplayName().split('<').first;
230 
231   const DIScope *Scope = SP->getScope().resolve();
232   TypeIndex TI;
233   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
234     // If the scope is a DICompositeType, then this must be a method. Member
235     // function types take some special handling, and require access to the
236     // subprogram.
237     TypeIndex ClassType = getTypeIndex(Class);
238     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
239                                DisplayName);
240     TI = TypeTable.writeMemberFuncId(MFuncId);
241   } else {
242     // Otherwise, this must be a free function.
243     TypeIndex ParentScope = getScopeIndex(Scope);
244     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
245     TI = TypeTable.writeFuncId(FuncId);
246   }
247 
248   return recordTypeIndexForDINode(SP, TI);
249 }
250 
251 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
252                                                const DICompositeType *Class) {
253   // Always use the method declaration as the key for the function type. The
254   // method declaration contains the this adjustment.
255   if (SP->getDeclaration())
256     SP = SP->getDeclaration();
257   assert(!SP->getDeclaration() && "should use declaration as key");
258 
259   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
260   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
261   auto I = TypeIndices.find({SP, Class});
262   if (I != TypeIndices.end())
263     return I->second;
264 
265   // Make sure complete type info for the class is emitted *after* the member
266   // function type, as the complete class type is likely to reference this
267   // member function type.
268   TypeLoweringScope S(*this);
269   TypeIndex TI =
270       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
271   return recordTypeIndexForDINode(SP, TI, Class);
272 }
273 
274 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI,
275                                              const DIType *ClassTy) {
276   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
277   (void)InsertResult;
278   assert(InsertResult.second && "DINode was already assigned a type index");
279   return TI;
280 }
281 
282 unsigned CodeViewDebug::getPointerSizeInBytes() {
283   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
284 }
285 
286 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
287                                         const DILocation *InlinedAt) {
288   if (InlinedAt) {
289     // This variable was inlined. Associate it with the InlineSite.
290     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
291     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
292     Site.InlinedLocals.emplace_back(Var);
293   } else {
294     // This variable goes in the main ProcSym.
295     CurFn->Locals.emplace_back(Var);
296   }
297 }
298 
299 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
300                                const DILocation *Loc) {
301   auto B = Locs.begin(), E = Locs.end();
302   if (std::find(B, E, Loc) == E)
303     Locs.push_back(Loc);
304 }
305 
306 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
307                                         const MachineFunction *MF) {
308   // Skip this instruction if it has the same location as the previous one.
309   if (DL == CurFn->LastLoc)
310     return;
311 
312   const DIScope *Scope = DL.get()->getScope();
313   if (!Scope)
314     return;
315 
316   // Skip this line if it is longer than the maximum we can record.
317   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
318   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
319       LI.isNeverStepInto())
320     return;
321 
322   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
323   if (CI.getStartColumn() != DL.getCol())
324     return;
325 
326   if (!CurFn->HaveLineInfo)
327     CurFn->HaveLineInfo = true;
328   unsigned FileId = 0;
329   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
330     FileId = CurFn->LastFileId;
331   else
332     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
333   CurFn->LastLoc = DL;
334 
335   unsigned FuncId = CurFn->FuncId;
336   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
337     const DILocation *Loc = DL.get();
338 
339     // If this location was actually inlined from somewhere else, give it the ID
340     // of the inline call site.
341     FuncId =
342         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
343 
344     // Ensure we have links in the tree of inline call sites.
345     bool FirstLoc = true;
346     while ((SiteLoc = Loc->getInlinedAt())) {
347       InlineSite &Site =
348           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
349       if (!FirstLoc)
350         addLocIfNotPresent(Site.ChildSites, Loc);
351       FirstLoc = false;
352       Loc = SiteLoc;
353     }
354     addLocIfNotPresent(CurFn->ChildSites, Loc);
355   }
356 
357   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
358                         /*PrologueEnd=*/false,
359                         /*IsStmt=*/false, DL->getFilename());
360 }
361 
362 void CodeViewDebug::emitCodeViewMagicVersion() {
363   OS.EmitValueToAlignment(4);
364   OS.AddComment("Debug section magic");
365   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
366 }
367 
368 void CodeViewDebug::endModule() {
369   if (!Asm || !MMI->hasDebugInfo())
370     return;
371 
372   assert(Asm != nullptr);
373 
374   // The COFF .debug$S section consists of several subsections, each starting
375   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
376   // of the payload followed by the payload itself.  The subsections are 4-byte
377   // aligned.
378 
379   // Use the generic .debug$S section, and make a subsection for all the inlined
380   // subprograms.
381   switchToDebugSectionForSymbol(nullptr);
382   emitInlineeLinesSubsection();
383 
384   // Emit per-function debug information.
385   for (auto &P : FnDebugInfo)
386     if (!P.first->isDeclarationForLinker())
387       emitDebugInfoForFunction(P.first, P.second);
388 
389   // Emit global variable debug information.
390   setCurrentSubprogram(nullptr);
391   emitDebugInfoForGlobals();
392 
393   // Emit retained types.
394   emitDebugInfoForRetainedTypes();
395 
396   // Switch back to the generic .debug$S section after potentially processing
397   // comdat symbol sections.
398   switchToDebugSectionForSymbol(nullptr);
399 
400   // Emit UDT records for any types used by global variables.
401   if (!GlobalUDTs.empty()) {
402     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
403     emitDebugInfoForUDTs(GlobalUDTs);
404     endCVSubsection(SymbolsEnd);
405   }
406 
407   // This subsection holds a file index to offset in string table table.
408   OS.AddComment("File index to string table offset subsection");
409   OS.EmitCVFileChecksumsDirective();
410 
411   // This subsection holds the string table.
412   OS.AddComment("String table");
413   OS.EmitCVStringTableDirective();
414 
415   // Emit type information last, so that any types we translate while emitting
416   // function info are included.
417   emitTypeInformation();
418 
419   clear();
420 }
421 
422 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
423   // Microsoft's linker seems to have trouble with symbol names longer than
424   // 0xffd8 bytes.
425   S = S.substr(0, 0xffd8);
426   SmallString<32> NullTerminatedString(S);
427   NullTerminatedString.push_back('\0');
428   OS.EmitBytes(NullTerminatedString);
429 }
430 
431 void CodeViewDebug::emitTypeInformation() {
432   // Do nothing if we have no debug info or if no non-trivial types were emitted
433   // to TypeTable during codegen.
434   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
435   if (!CU_Nodes)
436     return;
437   if (TypeTable.empty())
438     return;
439 
440   // Start the .debug$T section with 0x4.
441   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
442   emitCodeViewMagicVersion();
443 
444   SmallString<8> CommentPrefix;
445   if (OS.isVerboseAsm()) {
446     CommentPrefix += '\t';
447     CommentPrefix += Asm->MAI->getCommentString();
448     CommentPrefix += ' ';
449   }
450 
451   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
452   TypeTable.ForEachRecord(
453       [&](TypeIndex Index, StringRef Record) {
454         if (OS.isVerboseAsm()) {
455           // Emit a block comment describing the type record for readability.
456           SmallString<512> CommentBlock;
457           raw_svector_ostream CommentOS(CommentBlock);
458           ScopedPrinter SP(CommentOS);
459           SP.setPrefix(CommentPrefix);
460           CVTD.setPrinter(&SP);
461           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
462           if (E) {
463             logAllUnhandledErrors(std::move(E), errs(), "error: ");
464             llvm_unreachable("produced malformed type record");
465           }
466           // emitRawComment will insert its own tab and comment string before
467           // the first line, so strip off our first one. It also prints its own
468           // newline.
469           OS.emitRawComment(
470               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
471         } else {
472 #ifndef NDEBUG
473           // Assert that the type data is valid even if we aren't dumping
474           // comments. The MSVC linker doesn't do much type record validation,
475           // so the first link of an invalid type record can succeed while
476           // subsequent links will fail with LNK1285.
477           ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()});
478           CVTypeArray Types;
479           StreamReader Reader(Stream);
480           Error E = Reader.readArray(Types, Reader.getLength());
481           if (!E) {
482             TypeVisitorCallbacks C;
483             E = CVTypeVisitor(C).visitTypeStream(Types);
484           }
485           if (E) {
486             logAllUnhandledErrors(std::move(E), errs(), "error: ");
487             llvm_unreachable("produced malformed type record");
488           }
489 #endif
490         }
491         OS.EmitBinaryData(Record);
492       });
493 }
494 
495 void CodeViewDebug::emitInlineeLinesSubsection() {
496   if (InlinedSubprograms.empty())
497     return;
498 
499   OS.AddComment("Inlinee lines subsection");
500   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
501 
502   // We don't provide any extra file info.
503   // FIXME: Find out if debuggers use this info.
504   OS.AddComment("Inlinee lines signature");
505   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
506 
507   for (const DISubprogram *SP : InlinedSubprograms) {
508     assert(TypeIndices.count({SP, nullptr}));
509     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
510 
511     OS.AddBlankLine();
512     unsigned FileId = maybeRecordFile(SP->getFile());
513     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
514                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
515     OS.AddBlankLine();
516     // The filechecksum table uses 8 byte entries for now, and file ids start at
517     // 1.
518     unsigned FileOffset = (FileId - 1) * 8;
519     OS.AddComment("Type index of inlined function");
520     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
521     OS.AddComment("Offset into filechecksum table");
522     OS.EmitIntValue(FileOffset, 4);
523     OS.AddComment("Starting line number");
524     OS.EmitIntValue(SP->getLine(), 4);
525   }
526 
527   endCVSubsection(InlineEnd);
528 }
529 
530 void CodeViewDebug::collectInlineSiteChildren(
531     SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
532     const InlineSite &Site) {
533   for (const DILocation *ChildSiteLoc : Site.ChildSites) {
534     auto I = FI.InlineSites.find(ChildSiteLoc);
535     const InlineSite &ChildSite = I->second;
536     Children.push_back(ChildSite.SiteFuncId);
537     collectInlineSiteChildren(Children, FI, ChildSite);
538   }
539 }
540 
541 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
542                                         const DILocation *InlinedAt,
543                                         const InlineSite &Site) {
544   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
545            *InlineEnd = MMI->getContext().createTempSymbol();
546 
547   assert(TypeIndices.count({Site.Inlinee, nullptr}));
548   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
549 
550   // SymbolRecord
551   OS.AddComment("Record length");
552   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
553   OS.EmitLabel(InlineBegin);
554   OS.AddComment("Record kind: S_INLINESITE");
555   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
556 
557   OS.AddComment("PtrParent");
558   OS.EmitIntValue(0, 4);
559   OS.AddComment("PtrEnd");
560   OS.EmitIntValue(0, 4);
561   OS.AddComment("Inlinee type index");
562   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
563 
564   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
565   unsigned StartLineNum = Site.Inlinee->getLine();
566   SmallVector<unsigned, 3> SecondaryFuncIds;
567   collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
568 
569   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
570                                     FI.Begin, FI.End, SecondaryFuncIds);
571 
572   OS.EmitLabel(InlineEnd);
573 
574   emitLocalVariableList(Site.InlinedLocals);
575 
576   // Recurse on child inlined call sites before closing the scope.
577   for (const DILocation *ChildSite : Site.ChildSites) {
578     auto I = FI.InlineSites.find(ChildSite);
579     assert(I != FI.InlineSites.end() &&
580            "child site not in function inline site map");
581     emitInlinedCallSite(FI, ChildSite, I->second);
582   }
583 
584   // Close the scope.
585   OS.AddComment("Record length");
586   OS.EmitIntValue(2, 2);                                  // RecordLength
587   OS.AddComment("Record kind: S_INLINESITE_END");
588   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
589 }
590 
591 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
592   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
593   // comdat key. A section may be comdat because of -ffunction-sections or
594   // because it is comdat in the IR.
595   MCSectionCOFF *GVSec =
596       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
597   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
598 
599   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
600       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
601   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
602 
603   OS.SwitchSection(DebugSec);
604 
605   // Emit the magic version number if this is the first time we've switched to
606   // this section.
607   if (ComdatDebugSections.insert(DebugSec).second)
608     emitCodeViewMagicVersion();
609 }
610 
611 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
612                                              FunctionInfo &FI) {
613   // For each function there is a separate subsection
614   // which holds the PC to file:line table.
615   const MCSymbol *Fn = Asm->getSymbol(GV);
616   assert(Fn);
617 
618   // Switch to the to a comdat section, if appropriate.
619   switchToDebugSectionForSymbol(Fn);
620 
621   std::string FuncName;
622   auto *SP = GV->getSubprogram();
623   setCurrentSubprogram(SP);
624 
625   // If we have a display name, build the fully qualified name by walking the
626   // chain of scopes.
627   if (SP != nullptr && !SP->getDisplayName().empty())
628     FuncName =
629         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
630 
631   // If our DISubprogram name is empty, use the mangled name.
632   if (FuncName.empty())
633     FuncName = GlobalValue::getRealLinkageName(GV->getName());
634 
635   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
636   OS.AddComment("Symbol subsection for " + Twine(FuncName));
637   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
638   {
639     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
640              *ProcRecordEnd = MMI->getContext().createTempSymbol();
641     OS.AddComment("Record length");
642     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
643     OS.EmitLabel(ProcRecordBegin);
644 
645     OS.AddComment("Record kind: S_GPROC32_ID");
646     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
647 
648     // These fields are filled in by tools like CVPACK which run after the fact.
649     OS.AddComment("PtrParent");
650     OS.EmitIntValue(0, 4);
651     OS.AddComment("PtrEnd");
652     OS.EmitIntValue(0, 4);
653     OS.AddComment("PtrNext");
654     OS.EmitIntValue(0, 4);
655     // This is the important bit that tells the debugger where the function
656     // code is located and what's its size:
657     OS.AddComment("Code size");
658     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
659     OS.AddComment("Offset after prologue");
660     OS.EmitIntValue(0, 4);
661     OS.AddComment("Offset before epilogue");
662     OS.EmitIntValue(0, 4);
663     OS.AddComment("Function type index");
664     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
665     OS.AddComment("Function section relative address");
666     OS.EmitCOFFSecRel32(Fn);
667     OS.AddComment("Function section index");
668     OS.EmitCOFFSectionIndex(Fn);
669     OS.AddComment("Flags");
670     OS.EmitIntValue(0, 1);
671     // Emit the function display name as a null-terminated string.
672     OS.AddComment("Function name");
673     // Truncate the name so we won't overflow the record length field.
674     emitNullTerminatedSymbolName(OS, FuncName);
675     OS.EmitLabel(ProcRecordEnd);
676 
677     emitLocalVariableList(FI.Locals);
678 
679     // Emit inlined call site information. Only emit functions inlined directly
680     // into the parent function. We'll emit the other sites recursively as part
681     // of their parent inline site.
682     for (const DILocation *InlinedAt : FI.ChildSites) {
683       auto I = FI.InlineSites.find(InlinedAt);
684       assert(I != FI.InlineSites.end() &&
685              "child site not in function inline site map");
686       emitInlinedCallSite(FI, InlinedAt, I->second);
687     }
688 
689     if (SP != nullptr)
690       emitDebugInfoForUDTs(LocalUDTs);
691 
692     // We're done with this function.
693     OS.AddComment("Record length");
694     OS.EmitIntValue(0x0002, 2);
695     OS.AddComment("Record kind: S_PROC_ID_END");
696     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
697   }
698   endCVSubsection(SymbolsEnd);
699 
700   // We have an assembler directive that takes care of the whole line table.
701   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
702 }
703 
704 CodeViewDebug::LocalVarDefRange
705 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
706   LocalVarDefRange DR;
707   DR.InMemory = -1;
708   DR.DataOffset = Offset;
709   assert(DR.DataOffset == Offset && "truncation");
710   DR.StructOffset = 0;
711   DR.CVRegister = CVRegister;
712   return DR;
713 }
714 
715 CodeViewDebug::LocalVarDefRange
716 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
717   LocalVarDefRange DR;
718   DR.InMemory = 0;
719   DR.DataOffset = 0;
720   DR.StructOffset = 0;
721   DR.CVRegister = CVRegister;
722   return DR;
723 }
724 
725 void CodeViewDebug::collectVariableInfoFromMMITable(
726     DenseSet<InlinedVariable> &Processed) {
727   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
728   const TargetFrameLowering *TFI = TSI.getFrameLowering();
729   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
730 
731   for (const MachineModuleInfo::VariableDbgInfo &VI :
732        MMI->getVariableDbgInfo()) {
733     if (!VI.Var)
734       continue;
735     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
736            "Expected inlined-at fields to agree");
737 
738     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
739     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
740 
741     // If variable scope is not found then skip this variable.
742     if (!Scope)
743       continue;
744 
745     // Get the frame register used and the offset.
746     unsigned FrameReg = 0;
747     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
748     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
749 
750     // Calculate the label ranges.
751     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
752     for (const InsnRange &Range : Scope->getRanges()) {
753       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
754       const MCSymbol *End = getLabelAfterInsn(Range.second);
755       End = End ? End : Asm->getFunctionEnd();
756       DefRange.Ranges.emplace_back(Begin, End);
757     }
758 
759     LocalVariable Var;
760     Var.DIVar = VI.Var;
761     Var.DefRanges.emplace_back(std::move(DefRange));
762     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
763   }
764 }
765 
766 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
767   DenseSet<InlinedVariable> Processed;
768   // Grab the variable info that was squirreled away in the MMI side-table.
769   collectVariableInfoFromMMITable(Processed);
770 
771   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
772 
773   for (const auto &I : DbgValues) {
774     InlinedVariable IV = I.first;
775     if (Processed.count(IV))
776       continue;
777     const DILocalVariable *DIVar = IV.first;
778     const DILocation *InlinedAt = IV.second;
779 
780     // Instruction ranges, specifying where IV is accessible.
781     const auto &Ranges = I.second;
782 
783     LexicalScope *Scope = nullptr;
784     if (InlinedAt)
785       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
786     else
787       Scope = LScopes.findLexicalScope(DIVar->getScope());
788     // If variable scope is not found then skip this variable.
789     if (!Scope)
790       continue;
791 
792     LocalVariable Var;
793     Var.DIVar = DIVar;
794 
795     // Calculate the definition ranges.
796     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
797       const InsnRange &Range = *I;
798       const MachineInstr *DVInst = Range.first;
799       assert(DVInst->isDebugValue() && "Invalid History entry");
800       const DIExpression *DIExpr = DVInst->getDebugExpression();
801 
802       // Bail if there is a complex DWARF expression for now.
803       if (DIExpr && DIExpr->getNumElements() > 0)
804         continue;
805 
806       // Bail if operand 0 is not a valid register. This means the variable is a
807       // simple constant, or is described by a complex expression.
808       // FIXME: Find a way to represent constant variables, since they are
809       // relatively common.
810       unsigned Reg =
811           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
812       if (Reg == 0)
813         continue;
814 
815       // Handle the two cases we can handle: indirect in memory and in register.
816       bool IsIndirect = DVInst->getOperand(1).isImm();
817       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
818       {
819         LocalVarDefRange DefRange;
820         if (IsIndirect) {
821           int64_t Offset = DVInst->getOperand(1).getImm();
822           DefRange = createDefRangeMem(CVReg, Offset);
823         } else {
824           DefRange = createDefRangeReg(CVReg);
825         }
826         if (Var.DefRanges.empty() ||
827             Var.DefRanges.back().isDifferentLocation(DefRange)) {
828           Var.DefRanges.emplace_back(std::move(DefRange));
829         }
830       }
831 
832       // Compute the label range.
833       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
834       const MCSymbol *End = getLabelAfterInsn(Range.second);
835       if (!End) {
836         if (std::next(I) != E)
837           End = getLabelBeforeInsn(std::next(I)->first);
838         else
839           End = Asm->getFunctionEnd();
840       }
841 
842       // If the last range end is our begin, just extend the last range.
843       // Otherwise make a new range.
844       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
845           Var.DefRanges.back().Ranges;
846       if (!Ranges.empty() && Ranges.back().second == Begin)
847         Ranges.back().second = End;
848       else
849         Ranges.emplace_back(Begin, End);
850 
851       // FIXME: Do more range combining.
852     }
853 
854     recordLocalVariable(std::move(Var), InlinedAt);
855   }
856 }
857 
858 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
859   assert(!CurFn && "Can't process two functions at once!");
860 
861   if (!Asm || !MMI->hasDebugInfo())
862     return;
863 
864   DebugHandlerBase::beginFunction(MF);
865 
866   const Function *GV = MF->getFunction();
867   assert(FnDebugInfo.count(GV) == false);
868   CurFn = &FnDebugInfo[GV];
869   CurFn->FuncId = NextFuncId++;
870   CurFn->Begin = Asm->getFunctionBegin();
871 
872   // Find the end of the function prolog.  First known non-DBG_VALUE and
873   // non-frame setup location marks the beginning of the function body.
874   // FIXME: is there a simpler a way to do this? Can we just search
875   // for the first instruction of the function, not the last of the prolog?
876   DebugLoc PrologEndLoc;
877   bool EmptyPrologue = true;
878   for (const auto &MBB : *MF) {
879     for (const auto &MI : MBB) {
880       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
881           MI.getDebugLoc()) {
882         PrologEndLoc = MI.getDebugLoc();
883         break;
884       } else if (!MI.isDebugValue()) {
885         EmptyPrologue = false;
886       }
887     }
888   }
889 
890   // Record beginning of function if we have a non-empty prologue.
891   if (PrologEndLoc && !EmptyPrologue) {
892     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
893     maybeRecordLocation(FnStartDL, MF);
894   }
895 }
896 
897 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
898   // Don't record empty UDTs.
899   if (Ty->getName().empty())
900     return;
901 
902   SmallVector<StringRef, 5> QualifiedNameComponents;
903   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
904       Ty->getScope().resolve(), QualifiedNameComponents);
905 
906   std::string FullyQualifiedName =
907       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
908 
909   if (ClosestSubprogram == nullptr)
910     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
911   else if (ClosestSubprogram == CurrentSubprogram)
912     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
913 
914   // TODO: What if the ClosestSubprogram is neither null or the current
915   // subprogram?  Currently, the UDT just gets dropped on the floor.
916   //
917   // The current behavior is not desirable.  To get maximal fidelity, we would
918   // need to perform all type translation before beginning emission of .debug$S
919   // and then make LocalUDTs a member of FunctionInfo
920 }
921 
922 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
923   // Generic dispatch for lowering an unknown type.
924   switch (Ty->getTag()) {
925   case dwarf::DW_TAG_array_type:
926     return lowerTypeArray(cast<DICompositeType>(Ty));
927   case dwarf::DW_TAG_typedef:
928     return lowerTypeAlias(cast<DIDerivedType>(Ty));
929   case dwarf::DW_TAG_base_type:
930     return lowerTypeBasic(cast<DIBasicType>(Ty));
931   case dwarf::DW_TAG_pointer_type:
932   case dwarf::DW_TAG_reference_type:
933   case dwarf::DW_TAG_rvalue_reference_type:
934     return lowerTypePointer(cast<DIDerivedType>(Ty));
935   case dwarf::DW_TAG_ptr_to_member_type:
936     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
937   case dwarf::DW_TAG_const_type:
938   case dwarf::DW_TAG_volatile_type:
939     return lowerTypeModifier(cast<DIDerivedType>(Ty));
940   case dwarf::DW_TAG_subroutine_type:
941     if (ClassTy) {
942       // The member function type of a member function pointer has no
943       // ThisAdjustment.
944       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
945                                      /*ThisAdjustment=*/0);
946     }
947     return lowerTypeFunction(cast<DISubroutineType>(Ty));
948   case dwarf::DW_TAG_enumeration_type:
949     return lowerTypeEnum(cast<DICompositeType>(Ty));
950   case dwarf::DW_TAG_class_type:
951   case dwarf::DW_TAG_structure_type:
952     return lowerTypeClass(cast<DICompositeType>(Ty));
953   case dwarf::DW_TAG_union_type:
954     return lowerTypeUnion(cast<DICompositeType>(Ty));
955   default:
956     // Use the null type index.
957     return TypeIndex();
958   }
959 }
960 
961 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
962   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
963   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
964   StringRef TypeName = Ty->getName();
965 
966   addToUDTs(Ty, UnderlyingTypeIndex);
967 
968   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
969       TypeName == "HRESULT")
970     return TypeIndex(SimpleTypeKind::HResult);
971   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
972       TypeName == "wchar_t")
973     return TypeIndex(SimpleTypeKind::WideCharacter);
974 
975   return UnderlyingTypeIndex;
976 }
977 
978 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
979   DITypeRef ElementTypeRef = Ty->getBaseType();
980   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
981   // IndexType is size_t, which depends on the bitness of the target.
982   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
983                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
984                             : TypeIndex(SimpleTypeKind::UInt32Long);
985   uint64_t Size = Ty->getSizeInBits() / 8;
986   ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName());
987   return TypeTable.writeArray(Record);
988 }
989 
990 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
991   TypeIndex Index;
992   dwarf::TypeKind Kind;
993   uint32_t ByteSize;
994 
995   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
996   ByteSize = Ty->getSizeInBits() / 8;
997 
998   SimpleTypeKind STK = SimpleTypeKind::None;
999   switch (Kind) {
1000   case dwarf::DW_ATE_address:
1001     // FIXME: Translate
1002     break;
1003   case dwarf::DW_ATE_boolean:
1004     switch (ByteSize) {
1005     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1006     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1007     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1008     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1009     case 16: STK = SimpleTypeKind::Boolean128; break;
1010     }
1011     break;
1012   case dwarf::DW_ATE_complex_float:
1013     switch (ByteSize) {
1014     case 2:  STK = SimpleTypeKind::Complex16;  break;
1015     case 4:  STK = SimpleTypeKind::Complex32;  break;
1016     case 8:  STK = SimpleTypeKind::Complex64;  break;
1017     case 10: STK = SimpleTypeKind::Complex80;  break;
1018     case 16: STK = SimpleTypeKind::Complex128; break;
1019     }
1020     break;
1021   case dwarf::DW_ATE_float:
1022     switch (ByteSize) {
1023     case 2:  STK = SimpleTypeKind::Float16;  break;
1024     case 4:  STK = SimpleTypeKind::Float32;  break;
1025     case 6:  STK = SimpleTypeKind::Float48;  break;
1026     case 8:  STK = SimpleTypeKind::Float64;  break;
1027     case 10: STK = SimpleTypeKind::Float80;  break;
1028     case 16: STK = SimpleTypeKind::Float128; break;
1029     }
1030     break;
1031   case dwarf::DW_ATE_signed:
1032     switch (ByteSize) {
1033     case 1:  STK = SimpleTypeKind::SByte;      break;
1034     case 2:  STK = SimpleTypeKind::Int16Short; break;
1035     case 4:  STK = SimpleTypeKind::Int32;      break;
1036     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1037     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1038     }
1039     break;
1040   case dwarf::DW_ATE_unsigned:
1041     switch (ByteSize) {
1042     case 1:  STK = SimpleTypeKind::Byte;        break;
1043     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1044     case 4:  STK = SimpleTypeKind::UInt32;      break;
1045     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1046     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1047     }
1048     break;
1049   case dwarf::DW_ATE_UTF:
1050     switch (ByteSize) {
1051     case 2: STK = SimpleTypeKind::Character16; break;
1052     case 4: STK = SimpleTypeKind::Character32; break;
1053     }
1054     break;
1055   case dwarf::DW_ATE_signed_char:
1056     if (ByteSize == 1)
1057       STK = SimpleTypeKind::SignedCharacter;
1058     break;
1059   case dwarf::DW_ATE_unsigned_char:
1060     if (ByteSize == 1)
1061       STK = SimpleTypeKind::UnsignedCharacter;
1062     break;
1063   default:
1064     break;
1065   }
1066 
1067   // Apply some fixups based on the source-level type name.
1068   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1069     STK = SimpleTypeKind::Int32Long;
1070   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1071     STK = SimpleTypeKind::UInt32Long;
1072   if (STK == SimpleTypeKind::UInt16Short &&
1073       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1074     STK = SimpleTypeKind::WideCharacter;
1075   if ((STK == SimpleTypeKind::SignedCharacter ||
1076        STK == SimpleTypeKind::UnsignedCharacter) &&
1077       Ty->getName() == "char")
1078     STK = SimpleTypeKind::NarrowCharacter;
1079 
1080   return TypeIndex(STK);
1081 }
1082 
1083 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1084   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1085 
1086   // While processing the type being pointed to it is possible we already
1087   // created this pointer type.  If so, we check here and return the existing
1088   // pointer type.
1089   auto I = TypeIndices.find({Ty, nullptr});
1090   if (I != TypeIndices.end())
1091     return I->second;
1092 
1093   // Pointers to simple types can use SimpleTypeMode, rather than having a
1094   // dedicated pointer type record.
1095   if (PointeeTI.isSimple() &&
1096       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1097       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1098     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1099                               ? SimpleTypeMode::NearPointer64
1100                               : SimpleTypeMode::NearPointer32;
1101     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1102   }
1103 
1104   PointerKind PK =
1105       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1106   PointerMode PM = PointerMode::Pointer;
1107   switch (Ty->getTag()) {
1108   default: llvm_unreachable("not a pointer tag type");
1109   case dwarf::DW_TAG_pointer_type:
1110     PM = PointerMode::Pointer;
1111     break;
1112   case dwarf::DW_TAG_reference_type:
1113     PM = PointerMode::LValueReference;
1114     break;
1115   case dwarf::DW_TAG_rvalue_reference_type:
1116     PM = PointerMode::RValueReference;
1117     break;
1118   }
1119   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1120   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1121   // do.
1122   PointerOptions PO = PointerOptions::None;
1123   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1124   return TypeTable.writePointer(PR);
1125 }
1126 
1127 static PointerToMemberRepresentation
1128 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1129   // SizeInBytes being zero generally implies that the member pointer type was
1130   // incomplete, which can happen if it is part of a function prototype. In this
1131   // case, use the unknown model instead of the general model.
1132   if (IsPMF) {
1133     switch (Flags & DINode::FlagPtrToMemberRep) {
1134     case 0:
1135       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1136                               : PointerToMemberRepresentation::GeneralFunction;
1137     case DINode::FlagSingleInheritance:
1138       return PointerToMemberRepresentation::SingleInheritanceFunction;
1139     case DINode::FlagMultipleInheritance:
1140       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1141     case DINode::FlagVirtualInheritance:
1142       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1143     }
1144   } else {
1145     switch (Flags & DINode::FlagPtrToMemberRep) {
1146     case 0:
1147       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1148                               : PointerToMemberRepresentation::GeneralData;
1149     case DINode::FlagSingleInheritance:
1150       return PointerToMemberRepresentation::SingleInheritanceData;
1151     case DINode::FlagMultipleInheritance:
1152       return PointerToMemberRepresentation::MultipleInheritanceData;
1153     case DINode::FlagVirtualInheritance:
1154       return PointerToMemberRepresentation::VirtualInheritanceData;
1155     }
1156   }
1157   llvm_unreachable("invalid ptr to member representation");
1158 }
1159 
1160 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1161   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1162   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1163   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1164   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1165                                                    : PointerKind::Near32;
1166   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1167   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1168                          : PointerMode::PointerToDataMember;
1169   PointerOptions PO = PointerOptions::None; // FIXME
1170   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1171   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1172   MemberPointerInfo MPI(
1173       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1174   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1175   return TypeTable.writePointer(PR);
1176 }
1177 
1178 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1179 /// have a translation, use the NearC convention.
1180 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1181   switch (DwarfCC) {
1182   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1183   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1184   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1185   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1186   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1187   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1188   }
1189   return CallingConvention::NearC;
1190 }
1191 
1192 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1193   ModifierOptions Mods = ModifierOptions::None;
1194   bool IsModifier = true;
1195   const DIType *BaseTy = Ty;
1196   while (IsModifier && BaseTy) {
1197     // FIXME: Need to add DWARF tag for __unaligned.
1198     switch (BaseTy->getTag()) {
1199     case dwarf::DW_TAG_const_type:
1200       Mods |= ModifierOptions::Const;
1201       break;
1202     case dwarf::DW_TAG_volatile_type:
1203       Mods |= ModifierOptions::Volatile;
1204       break;
1205     default:
1206       IsModifier = false;
1207       break;
1208     }
1209     if (IsModifier)
1210       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1211   }
1212   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1213 
1214   // While processing the type being pointed to, it is possible we already
1215   // created this modifier type.  If so, we check here and return the existing
1216   // modifier type.
1217   auto I = TypeIndices.find({Ty, nullptr});
1218   if (I != TypeIndices.end())
1219     return I->second;
1220 
1221   ModifierRecord MR(ModifiedTI, Mods);
1222   return TypeTable.writeModifier(MR);
1223 }
1224 
1225 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1226   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1227   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1228     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1229 
1230   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1231   ArrayRef<TypeIndex> ArgTypeIndices = None;
1232   if (!ReturnAndArgTypeIndices.empty()) {
1233     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1234     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1235     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1236   }
1237 
1238   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1239   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1240 
1241   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1242 
1243   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1244                             ArgTypeIndices.size(), ArgListIndex);
1245   return TypeTable.writeProcedure(Procedure);
1246 }
1247 
1248 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1249                                                  const DIType *ClassTy,
1250                                                  int ThisAdjustment) {
1251   // Lower the containing class type.
1252   TypeIndex ClassType = getTypeIndex(ClassTy);
1253 
1254   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1255   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1256     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1257 
1258   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1259   ArrayRef<TypeIndex> ArgTypeIndices = None;
1260   if (!ReturnAndArgTypeIndices.empty()) {
1261     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1262     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1263     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1264   }
1265   TypeIndex ThisTypeIndex = TypeIndex::Void();
1266   if (!ArgTypeIndices.empty()) {
1267     ThisTypeIndex = ArgTypeIndices.front();
1268     ArgTypeIndices = ArgTypeIndices.drop_front();
1269   }
1270 
1271   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1272   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1273 
1274   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1275 
1276   // TODO: Need to use the correct values for:
1277   //       FunctionOptions
1278   //       ThisPointerAdjustment.
1279   TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord(
1280       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1281       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1282 
1283   return TI;
1284 }
1285 
1286 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1287   switch (Flags & DINode::FlagAccessibility) {
1288   case DINode::FlagPrivate:   return MemberAccess::Private;
1289   case DINode::FlagPublic:    return MemberAccess::Public;
1290   case DINode::FlagProtected: return MemberAccess::Protected;
1291   case 0:
1292     // If there was no explicit access control, provide the default for the tag.
1293     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1294                                                  : MemberAccess::Public;
1295   }
1296   llvm_unreachable("access flags are exclusive");
1297 }
1298 
1299 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1300   if (SP->isArtificial())
1301     return MethodOptions::CompilerGenerated;
1302 
1303   // FIXME: Handle other MethodOptions.
1304 
1305   return MethodOptions::None;
1306 }
1307 
1308 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1309                                            bool Introduced) {
1310   switch (SP->getVirtuality()) {
1311   case dwarf::DW_VIRTUALITY_none:
1312     break;
1313   case dwarf::DW_VIRTUALITY_virtual:
1314     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1315   case dwarf::DW_VIRTUALITY_pure_virtual:
1316     return Introduced ? MethodKind::PureIntroducingVirtual
1317                       : MethodKind::PureVirtual;
1318   default:
1319     llvm_unreachable("unhandled virtuality case");
1320   }
1321 
1322   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1323 
1324   return MethodKind::Vanilla;
1325 }
1326 
1327 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1328   switch (Ty->getTag()) {
1329   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1330   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1331   }
1332   llvm_unreachable("unexpected tag");
1333 }
1334 
1335 /// Return ClassOptions that should be present on both the forward declaration
1336 /// and the defintion of a tag type.
1337 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1338   ClassOptions CO = ClassOptions::None;
1339 
1340   // MSVC always sets this flag, even for local types. Clang doesn't always
1341   // appear to give every type a linkage name, which may be problematic for us.
1342   // FIXME: Investigate the consequences of not following them here.
1343   if (!Ty->getIdentifier().empty())
1344     CO |= ClassOptions::HasUniqueName;
1345 
1346   // Put the Nested flag on a type if it appears immediately inside a tag type.
1347   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1348   // here. That flag is only set on definitions, and not forward declarations.
1349   const DIScope *ImmediateScope = Ty->getScope().resolve();
1350   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1351     CO |= ClassOptions::Nested;
1352 
1353   // Put the Scoped flag on function-local types.
1354   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1355        Scope = Scope->getScope().resolve()) {
1356     if (isa<DISubprogram>(Scope)) {
1357       CO |= ClassOptions::Scoped;
1358       break;
1359     }
1360   }
1361 
1362   return CO;
1363 }
1364 
1365 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1366   ClassOptions CO = getCommonClassOptions(Ty);
1367   TypeIndex FTI;
1368   unsigned EnumeratorCount = 0;
1369 
1370   if (Ty->isForwardDecl()) {
1371     CO |= ClassOptions::ForwardReference;
1372   } else {
1373     FieldListRecordBuilder Fields;
1374     for (const DINode *Element : Ty->getElements()) {
1375       // We assume that the frontend provides all members in source declaration
1376       // order, which is what MSVC does.
1377       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1378         Fields.writeEnumerator(EnumeratorRecord(
1379             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1380             Enumerator->getName()));
1381         EnumeratorCount++;
1382       }
1383     }
1384     FTI = TypeTable.writeFieldList(Fields);
1385   }
1386 
1387   std::string FullName = getFullyQualifiedName(Ty);
1388 
1389   return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1390                                         Ty->getIdentifier(),
1391                                         getTypeIndex(Ty->getBaseType())));
1392 }
1393 
1394 //===----------------------------------------------------------------------===//
1395 // ClassInfo
1396 //===----------------------------------------------------------------------===//
1397 
1398 struct llvm::ClassInfo {
1399   struct MemberInfo {
1400     const DIDerivedType *MemberTypeNode;
1401     uint64_t BaseOffset;
1402   };
1403   // [MemberInfo]
1404   typedef std::vector<MemberInfo> MemberList;
1405 
1406   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1407   // MethodName -> MethodsList
1408   typedef MapVector<MDString *, MethodsList> MethodsMap;
1409 
1410   /// Base classes.
1411   std::vector<const DIDerivedType *> Inheritance;
1412 
1413   /// Direct members.
1414   MemberList Members;
1415   // Direct overloaded methods gathered by name.
1416   MethodsMap Methods;
1417 };
1418 
1419 void CodeViewDebug::clear() {
1420   assert(CurFn == nullptr);
1421   FileIdMap.clear();
1422   FnDebugInfo.clear();
1423   FileToFilepathMap.clear();
1424   LocalUDTs.clear();
1425   GlobalUDTs.clear();
1426   TypeIndices.clear();
1427   CompleteTypeIndices.clear();
1428 }
1429 
1430 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1431                                       const DIDerivedType *DDTy) {
1432   if (!DDTy->getName().empty()) {
1433     Info.Members.push_back({DDTy, 0});
1434     return;
1435   }
1436   // An unnamed member must represent a nested struct or union. Add all the
1437   // indirect fields to the current record.
1438   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1439   uint64_t Offset = DDTy->getOffsetInBits();
1440   const DIType *Ty = DDTy->getBaseType().resolve();
1441   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1442   ClassInfo NestedInfo = collectClassInfo(DCTy);
1443   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1444     Info.Members.push_back(
1445         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1446 }
1447 
1448 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1449   ClassInfo Info;
1450   // Add elements to structure type.
1451   DINodeArray Elements = Ty->getElements();
1452   for (auto *Element : Elements) {
1453     // We assume that the frontend provides all members in source declaration
1454     // order, which is what MSVC does.
1455     if (!Element)
1456       continue;
1457     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1458       Info.Methods[SP->getRawName()].push_back(SP);
1459     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1460       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1461         collectMemberInfo(Info, DDTy);
1462       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1463         Info.Inheritance.push_back(DDTy);
1464       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1465         // Ignore friend members. It appears that MSVC emitted info about
1466         // friends in the past, but modern versions do not.
1467       }
1468       // FIXME: Get Clang to emit function virtual table here and handle it.
1469       // FIXME: Get clang to emit nested types here and do something with
1470       // them.
1471     }
1472     // Skip other unrecognized kinds of elements.
1473   }
1474   return Info;
1475 }
1476 
1477 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1478   // First, construct the forward decl.  Don't look into Ty to compute the
1479   // forward decl options, since it might not be available in all TUs.
1480   TypeRecordKind Kind = getRecordKind(Ty);
1481   ClassOptions CO =
1482       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1483   std::string FullName = getFullyQualifiedName(Ty);
1484   TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord(
1485       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1486       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1487   if (!Ty->isForwardDecl())
1488     DeferredCompleteTypes.push_back(Ty);
1489   return FwdDeclTI;
1490 }
1491 
1492 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1493   // Construct the field list and complete type record.
1494   TypeRecordKind Kind = getRecordKind(Ty);
1495   ClassOptions CO = getCommonClassOptions(Ty);
1496   TypeIndex FieldTI;
1497   TypeIndex VShapeTI;
1498   unsigned FieldCount;
1499   std::tie(FieldTI, VShapeTI, FieldCount) = lowerRecordFieldList(Ty);
1500 
1501   std::string FullName = getFullyQualifiedName(Ty);
1502 
1503   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1504 
1505   TypeIndex ClassTI = TypeTable.writeClass(ClassRecord(
1506       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1507       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1508 
1509   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1510       ClassTI, TypeTable.writeStringId(StringIdRecord(
1511                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1512       Ty->getLine()));
1513 
1514   addToUDTs(Ty, ClassTI);
1515 
1516   return ClassTI;
1517 }
1518 
1519 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1520   ClassOptions CO =
1521       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1522   std::string FullName = getFullyQualifiedName(Ty);
1523   TypeIndex FwdDeclTI =
1524       TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0,
1525                                        FullName, Ty->getIdentifier()));
1526   if (!Ty->isForwardDecl())
1527     DeferredCompleteTypes.push_back(Ty);
1528   return FwdDeclTI;
1529 }
1530 
1531 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1532   ClassOptions CO = getCommonClassOptions(Ty);
1533   TypeIndex FieldTI;
1534   unsigned FieldCount;
1535   std::tie(FieldTI, std::ignore, FieldCount) = lowerRecordFieldList(Ty);
1536   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1537   std::string FullName = getFullyQualifiedName(Ty);
1538 
1539   TypeIndex UnionTI = TypeTable.writeUnion(
1540       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1541                   Ty->getIdentifier()));
1542 
1543   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1544       UnionTI, TypeTable.writeStringId(StringIdRecord(
1545                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1546       Ty->getLine()));
1547 
1548   addToUDTs(Ty, UnionTI);
1549 
1550   return UnionTI;
1551 }
1552 
1553 std::tuple<TypeIndex, TypeIndex, unsigned>
1554 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1555   // Manually count members. MSVC appears to count everything that generates a
1556   // field list record. Each individual overload in a method overload group
1557   // contributes to this count, even though the overload group is a single field
1558   // list record.
1559   unsigned MemberCount = 0;
1560   ClassInfo Info = collectClassInfo(Ty);
1561   FieldListRecordBuilder Fields;
1562 
1563   // Create base classes.
1564   for (const DIDerivedType *I : Info.Inheritance) {
1565     if (I->getFlags() & DINode::FlagVirtual) {
1566       // Virtual base.
1567       // FIXME: Emit VBPtrOffset when the frontend provides it.
1568       unsigned VBPtrOffset = 0;
1569       // FIXME: Despite the accessor name, the offset is really in bytes.
1570       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1571       Fields.writeVirtualBaseClass(VirtualBaseClassRecord(
1572           translateAccessFlags(Ty->getTag(), I->getFlags()),
1573           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1574           VBTableIndex));
1575     } else {
1576       assert(I->getOffsetInBits() % 8 == 0 &&
1577              "bases must be on byte boundaries");
1578       Fields.writeBaseClass(BaseClassRecord(
1579           translateAccessFlags(Ty->getTag(), I->getFlags()),
1580           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1581     }
1582   }
1583 
1584   // Create members.
1585   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1586     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1587     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1588     StringRef MemberName = Member->getName();
1589     MemberAccess Access =
1590         translateAccessFlags(Ty->getTag(), Member->getFlags());
1591 
1592     if (Member->isStaticMember()) {
1593       Fields.writeStaticDataMember(
1594           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1595       MemberCount++;
1596       continue;
1597     }
1598 
1599     // Data member.
1600     uint64_t MemberOffsetInBits =
1601         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1602     if (Member->isBitField()) {
1603       uint64_t StartBitOffset = MemberOffsetInBits;
1604       if (const auto *CI =
1605               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1606         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1607       }
1608       StartBitOffset -= MemberOffsetInBits;
1609       MemberBaseType = TypeTable.writeBitField(BitFieldRecord(
1610           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1611     }
1612     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1613     Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType,
1614                                             MemberOffsetInBytes, MemberName));
1615     MemberCount++;
1616   }
1617 
1618   // Create methods
1619   for (auto &MethodItr : Info.Methods) {
1620     StringRef Name = MethodItr.first->getString();
1621 
1622     std::vector<OneMethodRecord> Methods;
1623     for (const DISubprogram *SP : MethodItr.second) {
1624       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1625       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1626 
1627       unsigned VFTableOffset = -1;
1628       if (Introduced)
1629         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1630 
1631       Methods.push_back(
1632           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1633                           translateMethodOptionFlags(SP),
1634                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1635                           VFTableOffset, Name));
1636       MemberCount++;
1637     }
1638     assert(Methods.size() > 0 && "Empty methods map entry");
1639     if (Methods.size() == 1)
1640       Fields.writeOneMethod(Methods[0]);
1641     else {
1642       TypeIndex MethodList =
1643           TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods));
1644       Fields.writeOverloadedMethod(
1645           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1646     }
1647   }
1648   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1649   return std::make_tuple(FieldTI, TypeIndex(), MemberCount);
1650 }
1651 
1652 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1653   if (!VBPType.getIndex()) {
1654     // Make a 'const int *' type.
1655     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1656     TypeIndex ModifiedTI = TypeTable.writeModifier(MR);
1657 
1658     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1659                                                   : PointerKind::Near32;
1660     PointerMode PM = PointerMode::Pointer;
1661     PointerOptions PO = PointerOptions::None;
1662     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1663 
1664     VBPType = TypeTable.writePointer(PR);
1665   }
1666 
1667   return VBPType;
1668 }
1669 
1670 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1671   const DIType *Ty = TypeRef.resolve();
1672   const DIType *ClassTy = ClassTyRef.resolve();
1673 
1674   // The null DIType is the void type. Don't try to hash it.
1675   if (!Ty)
1676     return TypeIndex::Void();
1677 
1678   // Check if we've already translated this type. Don't try to do a
1679   // get-or-create style insertion that caches the hash lookup across the
1680   // lowerType call. It will update the TypeIndices map.
1681   auto I = TypeIndices.find({Ty, ClassTy});
1682   if (I != TypeIndices.end())
1683     return I->second;
1684 
1685   TypeLoweringScope S(*this);
1686   TypeIndex TI = lowerType(Ty, ClassTy);
1687   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1688 }
1689 
1690 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1691   const DIType *Ty = TypeRef.resolve();
1692 
1693   // The null DIType is the void type. Don't try to hash it.
1694   if (!Ty)
1695     return TypeIndex::Void();
1696 
1697   // If this is a non-record type, the complete type index is the same as the
1698   // normal type index. Just call getTypeIndex.
1699   switch (Ty->getTag()) {
1700   case dwarf::DW_TAG_class_type:
1701   case dwarf::DW_TAG_structure_type:
1702   case dwarf::DW_TAG_union_type:
1703     break;
1704   default:
1705     return getTypeIndex(Ty);
1706   }
1707 
1708   // Check if we've already translated the complete record type.  Lowering a
1709   // complete type should never trigger lowering another complete type, so we
1710   // can reuse the hash table lookup result.
1711   const auto *CTy = cast<DICompositeType>(Ty);
1712   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1713   if (!InsertResult.second)
1714     return InsertResult.first->second;
1715 
1716   TypeLoweringScope S(*this);
1717 
1718   // Make sure the forward declaration is emitted first. It's unclear if this
1719   // is necessary, but MSVC does it, and we should follow suit until we can show
1720   // otherwise.
1721   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1722 
1723   // Just use the forward decl if we don't have complete type info. This might
1724   // happen if the frontend is using modules and expects the complete definition
1725   // to be emitted elsewhere.
1726   if (CTy->isForwardDecl())
1727     return FwdDeclTI;
1728 
1729   TypeIndex TI;
1730   switch (CTy->getTag()) {
1731   case dwarf::DW_TAG_class_type:
1732   case dwarf::DW_TAG_structure_type:
1733     TI = lowerCompleteTypeClass(CTy);
1734     break;
1735   case dwarf::DW_TAG_union_type:
1736     TI = lowerCompleteTypeUnion(CTy);
1737     break;
1738   default:
1739     llvm_unreachable("not a record");
1740   }
1741 
1742   InsertResult.first->second = TI;
1743   return TI;
1744 }
1745 
1746 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1747 /// and do this until fixpoint, as each complete record type typically references
1748 /// many other record types.
1749 void CodeViewDebug::emitDeferredCompleteTypes() {
1750   SmallVector<const DICompositeType *, 4> TypesToEmit;
1751   while (!DeferredCompleteTypes.empty()) {
1752     std::swap(DeferredCompleteTypes, TypesToEmit);
1753     for (const DICompositeType *RecordTy : TypesToEmit)
1754       getCompleteTypeIndex(RecordTy);
1755     TypesToEmit.clear();
1756   }
1757 }
1758 
1759 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1760   // Get the sorted list of parameters and emit them first.
1761   SmallVector<const LocalVariable *, 6> Params;
1762   for (const LocalVariable &L : Locals)
1763     if (L.DIVar->isParameter())
1764       Params.push_back(&L);
1765   std::sort(Params.begin(), Params.end(),
1766             [](const LocalVariable *L, const LocalVariable *R) {
1767               return L->DIVar->getArg() < R->DIVar->getArg();
1768             });
1769   for (const LocalVariable *L : Params)
1770     emitLocalVariable(*L);
1771 
1772   // Next emit all non-parameters in the order that we found them.
1773   for (const LocalVariable &L : Locals)
1774     if (!L.DIVar->isParameter())
1775       emitLocalVariable(L);
1776 }
1777 
1778 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1779   // LocalSym record, see SymbolRecord.h for more info.
1780   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1781            *LocalEnd = MMI->getContext().createTempSymbol();
1782   OS.AddComment("Record length");
1783   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1784   OS.EmitLabel(LocalBegin);
1785 
1786   OS.AddComment("Record kind: S_LOCAL");
1787   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1788 
1789   LocalSymFlags Flags = LocalSymFlags::None;
1790   if (Var.DIVar->isParameter())
1791     Flags |= LocalSymFlags::IsParameter;
1792   if (Var.DefRanges.empty())
1793     Flags |= LocalSymFlags::IsOptimizedOut;
1794 
1795   OS.AddComment("TypeIndex");
1796   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1797   OS.EmitIntValue(TI.getIndex(), 4);
1798   OS.AddComment("Flags");
1799   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1800   // Truncate the name so we won't overflow the record length field.
1801   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1802   OS.EmitLabel(LocalEnd);
1803 
1804   // Calculate the on disk prefix of the appropriate def range record. The
1805   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1806   // should be big enough to hold all forms without memory allocation.
1807   SmallString<20> BytePrefix;
1808   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1809     BytePrefix.clear();
1810     // FIXME: Handle bitpieces.
1811     if (DefRange.StructOffset != 0)
1812       continue;
1813 
1814     if (DefRange.InMemory) {
1815       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1816                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1817       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1818       BytePrefix +=
1819           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1820       BytePrefix +=
1821           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1822                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1823     } else {
1824       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1825       // Unclear what matters here.
1826       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1827                               ArrayRef<LocalVariableAddrGap>());
1828       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1829       BytePrefix +=
1830           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1831       BytePrefix +=
1832           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1833                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1834     }
1835     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1836   }
1837 }
1838 
1839 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1840   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1841     return;
1842 
1843   const Function *GV = MF->getFunction();
1844   assert(FnDebugInfo.count(GV));
1845   assert(CurFn == &FnDebugInfo[GV]);
1846 
1847   collectVariableInfo(GV->getSubprogram());
1848 
1849   DebugHandlerBase::endFunction(MF);
1850 
1851   // Don't emit anything if we don't have any line tables.
1852   if (!CurFn->HaveLineInfo) {
1853     FnDebugInfo.erase(GV);
1854     CurFn = nullptr;
1855     return;
1856   }
1857 
1858   CurFn->End = Asm->getFunctionEnd();
1859 
1860   CurFn = nullptr;
1861 }
1862 
1863 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1864   DebugHandlerBase::beginInstruction(MI);
1865 
1866   // Ignore DBG_VALUE locations and function prologue.
1867   if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup))
1868     return;
1869   DebugLoc DL = MI->getDebugLoc();
1870   if (DL == PrevInstLoc || !DL)
1871     return;
1872   maybeRecordLocation(DL, Asm->MF);
1873 }
1874 
1875 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1876   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1877            *EndLabel = MMI->getContext().createTempSymbol();
1878   OS.EmitIntValue(unsigned(Kind), 4);
1879   OS.AddComment("Subsection size");
1880   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1881   OS.EmitLabel(BeginLabel);
1882   return EndLabel;
1883 }
1884 
1885 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1886   OS.EmitLabel(EndLabel);
1887   // Every subsection must be aligned to a 4-byte boundary.
1888   OS.EmitValueToAlignment(4);
1889 }
1890 
1891 void CodeViewDebug::emitDebugInfoForUDTs(
1892     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1893   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1894     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1895              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1896     OS.AddComment("Record length");
1897     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1898     OS.EmitLabel(UDTRecordBegin);
1899 
1900     OS.AddComment("Record kind: S_UDT");
1901     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1902 
1903     OS.AddComment("Type");
1904     OS.EmitIntValue(UDT.second.getIndex(), 4);
1905 
1906     emitNullTerminatedSymbolName(OS, UDT.first);
1907     OS.EmitLabel(UDTRecordEnd);
1908   }
1909 }
1910 
1911 void CodeViewDebug::emitDebugInfoForGlobals() {
1912   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1913   for (const MDNode *Node : CUs->operands()) {
1914     const auto *CU = cast<DICompileUnit>(Node);
1915 
1916     // First, emit all globals that are not in a comdat in a single symbol
1917     // substream. MSVC doesn't like it if the substream is empty, so only open
1918     // it if we have at least one global to emit.
1919     switchToDebugSectionForSymbol(nullptr);
1920     MCSymbol *EndLabel = nullptr;
1921     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1922       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1923         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
1924           if (!EndLabel) {
1925             OS.AddComment("Symbol subsection for globals");
1926             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
1927           }
1928           emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
1929         }
1930       }
1931     }
1932     if (EndLabel)
1933       endCVSubsection(EndLabel);
1934 
1935     // Second, emit each global that is in a comdat into its own .debug$S
1936     // section along with its own symbol substream.
1937     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1938       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1939         if (GV->hasComdat()) {
1940           MCSymbol *GVSym = Asm->getSymbol(GV);
1941           OS.AddComment("Symbol subsection for " +
1942                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
1943           switchToDebugSectionForSymbol(GVSym);
1944           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
1945           emitDebugInfoForGlobal(G, GVSym);
1946           endCVSubsection(EndLabel);
1947         }
1948       }
1949     }
1950   }
1951 }
1952 
1953 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
1954   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1955   for (const MDNode *Node : CUs->operands()) {
1956     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
1957       if (DIType *RT = dyn_cast<DIType>(Ty)) {
1958         getTypeIndex(RT);
1959         // FIXME: Add to global/local DTU list.
1960       }
1961     }
1962   }
1963 }
1964 
1965 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
1966                                            MCSymbol *GVSym) {
1967   // DataSym record, see SymbolRecord.h for more info.
1968   // FIXME: Thread local data, etc
1969   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
1970            *DataEnd = MMI->getContext().createTempSymbol();
1971   OS.AddComment("Record length");
1972   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
1973   OS.EmitLabel(DataBegin);
1974   OS.AddComment("Record kind: S_GDATA32");
1975   OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
1976   OS.AddComment("Type");
1977   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
1978   OS.AddComment("DataOffset");
1979   OS.EmitCOFFSecRel32(GVSym);
1980   OS.AddComment("Segment");
1981   OS.EmitCOFFSectionIndex(GVSym);
1982   OS.AddComment("Name");
1983   emitNullTerminatedSymbolName(OS, DIGV->getName());
1984   OS.EmitLabel(DataEnd);
1985 }
1986