1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/BinaryFormat/Dwarf.h" 26 #include "llvm/CodeGen/AsmPrinter.h" 27 #include "llvm/CodeGen/LexicalScopes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/TargetFrameLowering.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/Config/llvm-config.h" 37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/EnumTables.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/BinaryStreamWriter.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/SMLoc.h" 72 #include "llvm/Support/ScopedPrinter.h" 73 #include "llvm/Target/TargetLoweringObjectFile.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <iterator> 80 #include <limits> 81 82 using namespace llvm; 83 using namespace llvm::codeview; 84 85 namespace { 86 class CVMCAdapter : public CodeViewRecordStreamer { 87 public: 88 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 89 : OS(&OS), TypeTable(TypeTable) {} 90 91 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 92 93 void emitIntValue(uint64_t Value, unsigned Size) override { 94 OS->emitIntValueInHex(Value, Size); 95 } 96 97 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 98 99 void AddComment(const Twine &T) override { OS->AddComment(T); } 100 101 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 102 103 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 104 105 std::string getTypeName(TypeIndex TI) override { 106 std::string TypeName; 107 if (!TI.isNoneType()) { 108 if (TI.isSimple()) 109 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 110 else 111 TypeName = std::string(TypeTable.getTypeName(TI)); 112 } 113 return TypeName; 114 } 115 116 private: 117 MCStreamer *OS = nullptr; 118 TypeCollection &TypeTable; 119 }; 120 } // namespace 121 122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 123 switch (Type) { 124 case Triple::ArchType::x86: 125 return CPUType::Pentium3; 126 case Triple::ArchType::x86_64: 127 return CPUType::X64; 128 case Triple::ArchType::thumb: 129 // LLVM currently doesn't support Windows CE and so thumb 130 // here is indiscriminately mapped to ARMNT specifically. 131 return CPUType::ARMNT; 132 case Triple::ArchType::aarch64: 133 return CPUType::ARM64; 134 default: 135 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 136 } 137 } 138 139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 140 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 141 // If module doesn't have named metadata anchors or COFF debug section 142 // is not available, skip any debug info related stuff. 143 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 144 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 145 Asm = nullptr; 146 MMI->setDebugInfoAvailability(false); 147 return; 148 } 149 // Tell MMI that we have debug info. 150 MMI->setDebugInfoAvailability(true); 151 152 TheCPU = 153 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 154 155 collectGlobalVariableInfo(); 156 157 // Check if we should emit type record hashes. 158 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 159 MMI->getModule()->getModuleFlag("CodeViewGHash")); 160 EmitDebugGlobalHashes = GH && !GH->isZero(); 161 } 162 163 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 164 std::string &Filepath = FileToFilepathMap[File]; 165 if (!Filepath.empty()) 166 return Filepath; 167 168 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 169 170 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 171 // it textually because one of the path components could be a symlink. 172 if (Dir.startswith("/") || Filename.startswith("/")) { 173 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 174 return Filename; 175 Filepath = std::string(Dir); 176 if (Dir.back() != '/') 177 Filepath += '/'; 178 Filepath += Filename; 179 return Filepath; 180 } 181 182 // Clang emits directory and relative filename info into the IR, but CodeView 183 // operates on full paths. We could change Clang to emit full paths too, but 184 // that would increase the IR size and probably not needed for other users. 185 // For now, just concatenate and canonicalize the path here. 186 if (Filename.find(':') == 1) 187 Filepath = std::string(Filename); 188 else 189 Filepath = (Dir + "\\" + Filename).str(); 190 191 // Canonicalize the path. We have to do it textually because we may no longer 192 // have access the file in the filesystem. 193 // First, replace all slashes with backslashes. 194 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 195 196 // Remove all "\.\" with "\". 197 size_t Cursor = 0; 198 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 199 Filepath.erase(Cursor, 2); 200 201 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 202 // path should be well-formatted, e.g. start with a drive letter, etc. 203 Cursor = 0; 204 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 205 // Something's wrong if the path starts with "\..\", abort. 206 if (Cursor == 0) 207 break; 208 209 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 210 if (PrevSlash == std::string::npos) 211 // Something's wrong, abort. 212 break; 213 214 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 215 // The next ".." might be following the one we've just erased. 216 Cursor = PrevSlash; 217 } 218 219 // Remove all duplicate backslashes. 220 Cursor = 0; 221 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 222 Filepath.erase(Cursor, 1); 223 224 return Filepath; 225 } 226 227 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 228 StringRef FullPath = getFullFilepath(F); 229 unsigned NextId = FileIdMap.size() + 1; 230 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 231 if (Insertion.second) { 232 // We have to compute the full filepath and emit a .cv_file directive. 233 ArrayRef<uint8_t> ChecksumAsBytes; 234 FileChecksumKind CSKind = FileChecksumKind::None; 235 if (F->getChecksum()) { 236 std::string Checksum = fromHex(F->getChecksum()->Value); 237 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 238 memcpy(CKMem, Checksum.data(), Checksum.size()); 239 ChecksumAsBytes = ArrayRef<uint8_t>( 240 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 241 switch (F->getChecksum()->Kind) { 242 case DIFile::CSK_MD5: 243 CSKind = FileChecksumKind::MD5; 244 break; 245 case DIFile::CSK_SHA1: 246 CSKind = FileChecksumKind::SHA1; 247 break; 248 case DIFile::CSK_SHA256: 249 CSKind = FileChecksumKind::SHA256; 250 break; 251 } 252 } 253 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 254 static_cast<unsigned>(CSKind)); 255 (void)Success; 256 assert(Success && ".cv_file directive failed"); 257 } 258 return Insertion.first->second; 259 } 260 261 CodeViewDebug::InlineSite & 262 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 263 const DISubprogram *Inlinee) { 264 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 265 InlineSite *Site = &SiteInsertion.first->second; 266 if (SiteInsertion.second) { 267 unsigned ParentFuncId = CurFn->FuncId; 268 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 269 ParentFuncId = 270 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 271 .SiteFuncId; 272 273 Site->SiteFuncId = NextFuncId++; 274 OS.EmitCVInlineSiteIdDirective( 275 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 276 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 277 Site->Inlinee = Inlinee; 278 InlinedSubprograms.insert(Inlinee); 279 getFuncIdForSubprogram(Inlinee); 280 } 281 return *Site; 282 } 283 284 static StringRef getPrettyScopeName(const DIScope *Scope) { 285 StringRef ScopeName = Scope->getName(); 286 if (!ScopeName.empty()) 287 return ScopeName; 288 289 switch (Scope->getTag()) { 290 case dwarf::DW_TAG_enumeration_type: 291 case dwarf::DW_TAG_class_type: 292 case dwarf::DW_TAG_structure_type: 293 case dwarf::DW_TAG_union_type: 294 return "<unnamed-tag>"; 295 case dwarf::DW_TAG_namespace: 296 return "`anonymous namespace'"; 297 } 298 299 return StringRef(); 300 } 301 302 const DISubprogram *CodeViewDebug::collectParentScopeNames( 303 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 304 const DISubprogram *ClosestSubprogram = nullptr; 305 while (Scope != nullptr) { 306 if (ClosestSubprogram == nullptr) 307 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 308 309 // If a type appears in a scope chain, make sure it gets emitted. The 310 // frontend will be responsible for deciding if this should be a forward 311 // declaration or a complete type. 312 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 313 DeferredCompleteTypes.push_back(Ty); 314 315 StringRef ScopeName = getPrettyScopeName(Scope); 316 if (!ScopeName.empty()) 317 QualifiedNameComponents.push_back(ScopeName); 318 Scope = Scope->getScope(); 319 } 320 return ClosestSubprogram; 321 } 322 323 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 324 StringRef TypeName) { 325 std::string FullyQualifiedName; 326 for (StringRef QualifiedNameComponent : 327 llvm::reverse(QualifiedNameComponents)) { 328 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 329 FullyQualifiedName.append("::"); 330 } 331 FullyQualifiedName.append(std::string(TypeName)); 332 return FullyQualifiedName; 333 } 334 335 struct CodeViewDebug::TypeLoweringScope { 336 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 337 ~TypeLoweringScope() { 338 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 339 // inner TypeLoweringScopes don't attempt to emit deferred types. 340 if (CVD.TypeEmissionLevel == 1) 341 CVD.emitDeferredCompleteTypes(); 342 --CVD.TypeEmissionLevel; 343 } 344 CodeViewDebug &CVD; 345 }; 346 347 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 348 StringRef Name) { 349 // Ensure types in the scope chain are emitted as soon as possible. 350 // This can create otherwise a situation where S_UDTs are emitted while 351 // looping in emitDebugInfoForUDTs. 352 TypeLoweringScope S(*this); 353 SmallVector<StringRef, 5> QualifiedNameComponents; 354 collectParentScopeNames(Scope, QualifiedNameComponents); 355 return formatNestedName(QualifiedNameComponents, Name); 356 } 357 358 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 359 const DIScope *Scope = Ty->getScope(); 360 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 361 } 362 363 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 364 // No scope means global scope and that uses the zero index. 365 if (!Scope || isa<DIFile>(Scope)) 366 return TypeIndex(); 367 368 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 369 370 // Check if we've already translated this scope. 371 auto I = TypeIndices.find({Scope, nullptr}); 372 if (I != TypeIndices.end()) 373 return I->second; 374 375 // Build the fully qualified name of the scope. 376 std::string ScopeName = getFullyQualifiedName(Scope); 377 StringIdRecord SID(TypeIndex(), ScopeName); 378 auto TI = TypeTable.writeLeafType(SID); 379 return recordTypeIndexForDINode(Scope, TI); 380 } 381 382 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 383 assert(SP); 384 385 // Check if we've already translated this subprogram. 386 auto I = TypeIndices.find({SP, nullptr}); 387 if (I != TypeIndices.end()) 388 return I->second; 389 390 // The display name includes function template arguments. Drop them to match 391 // MSVC. 392 StringRef DisplayName = SP->getName().split('<').first; 393 394 const DIScope *Scope = SP->getScope(); 395 TypeIndex TI; 396 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 397 // If the scope is a DICompositeType, then this must be a method. Member 398 // function types take some special handling, and require access to the 399 // subprogram. 400 TypeIndex ClassType = getTypeIndex(Class); 401 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 402 DisplayName); 403 TI = TypeTable.writeLeafType(MFuncId); 404 } else { 405 // Otherwise, this must be a free function. 406 TypeIndex ParentScope = getScopeIndex(Scope); 407 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 408 TI = TypeTable.writeLeafType(FuncId); 409 } 410 411 return recordTypeIndexForDINode(SP, TI); 412 } 413 414 static bool isNonTrivial(const DICompositeType *DCTy) { 415 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 416 } 417 418 static FunctionOptions 419 getFunctionOptions(const DISubroutineType *Ty, 420 const DICompositeType *ClassTy = nullptr, 421 StringRef SPName = StringRef("")) { 422 FunctionOptions FO = FunctionOptions::None; 423 const DIType *ReturnTy = nullptr; 424 if (auto TypeArray = Ty->getTypeArray()) { 425 if (TypeArray.size()) 426 ReturnTy = TypeArray[0]; 427 } 428 429 // Add CxxReturnUdt option to functions that return nontrivial record types 430 // or methods that return record types. 431 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 432 if (isNonTrivial(ReturnDCTy) || ClassTy) 433 FO |= FunctionOptions::CxxReturnUdt; 434 435 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 436 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 437 FO |= FunctionOptions::Constructor; 438 439 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 440 441 } 442 return FO; 443 } 444 445 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 446 const DICompositeType *Class) { 447 // Always use the method declaration as the key for the function type. The 448 // method declaration contains the this adjustment. 449 if (SP->getDeclaration()) 450 SP = SP->getDeclaration(); 451 assert(!SP->getDeclaration() && "should use declaration as key"); 452 453 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 454 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 455 auto I = TypeIndices.find({SP, Class}); 456 if (I != TypeIndices.end()) 457 return I->second; 458 459 // Make sure complete type info for the class is emitted *after* the member 460 // function type, as the complete class type is likely to reference this 461 // member function type. 462 TypeLoweringScope S(*this); 463 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 464 465 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 466 TypeIndex TI = lowerTypeMemberFunction( 467 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 468 return recordTypeIndexForDINode(SP, TI, Class); 469 } 470 471 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 472 TypeIndex TI, 473 const DIType *ClassTy) { 474 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 475 (void)InsertResult; 476 assert(InsertResult.second && "DINode was already assigned a type index"); 477 return TI; 478 } 479 480 unsigned CodeViewDebug::getPointerSizeInBytes() { 481 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 482 } 483 484 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 485 const LexicalScope *LS) { 486 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 487 // This variable was inlined. Associate it with the InlineSite. 488 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 489 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 490 Site.InlinedLocals.emplace_back(Var); 491 } else { 492 // This variable goes into the corresponding lexical scope. 493 ScopeVariables[LS].emplace_back(Var); 494 } 495 } 496 497 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 498 const DILocation *Loc) { 499 if (!llvm::is_contained(Locs, Loc)) 500 Locs.push_back(Loc); 501 } 502 503 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 504 const MachineFunction *MF) { 505 // Skip this instruction if it has the same location as the previous one. 506 if (!DL || DL == PrevInstLoc) 507 return; 508 509 const DIScope *Scope = DL.get()->getScope(); 510 if (!Scope) 511 return; 512 513 // Skip this line if it is longer than the maximum we can record. 514 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 515 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 516 LI.isNeverStepInto()) 517 return; 518 519 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 520 if (CI.getStartColumn() != DL.getCol()) 521 return; 522 523 if (!CurFn->HaveLineInfo) 524 CurFn->HaveLineInfo = true; 525 unsigned FileId = 0; 526 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 527 FileId = CurFn->LastFileId; 528 else 529 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 530 PrevInstLoc = DL; 531 532 unsigned FuncId = CurFn->FuncId; 533 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 534 const DILocation *Loc = DL.get(); 535 536 // If this location was actually inlined from somewhere else, give it the ID 537 // of the inline call site. 538 FuncId = 539 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 540 541 // Ensure we have links in the tree of inline call sites. 542 bool FirstLoc = true; 543 while ((SiteLoc = Loc->getInlinedAt())) { 544 InlineSite &Site = 545 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 546 if (!FirstLoc) 547 addLocIfNotPresent(Site.ChildSites, Loc); 548 FirstLoc = false; 549 Loc = SiteLoc; 550 } 551 addLocIfNotPresent(CurFn->ChildSites, Loc); 552 } 553 554 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 555 /*PrologueEnd=*/false, /*IsStmt=*/false, 556 DL->getFilename(), SMLoc()); 557 } 558 559 void CodeViewDebug::emitCodeViewMagicVersion() { 560 OS.emitValueToAlignment(4); 561 OS.AddComment("Debug section magic"); 562 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 563 } 564 565 void CodeViewDebug::endModule() { 566 if (!Asm || !MMI->hasDebugInfo()) 567 return; 568 569 assert(Asm != nullptr); 570 571 // The COFF .debug$S section consists of several subsections, each starting 572 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 573 // of the payload followed by the payload itself. The subsections are 4-byte 574 // aligned. 575 576 // Use the generic .debug$S section, and make a subsection for all the inlined 577 // subprograms. 578 switchToDebugSectionForSymbol(nullptr); 579 580 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 581 emitCompilerInformation(); 582 endCVSubsection(CompilerInfo); 583 584 emitInlineeLinesSubsection(); 585 586 // Emit per-function debug information. 587 for (auto &P : FnDebugInfo) 588 if (!P.first->isDeclarationForLinker()) 589 emitDebugInfoForFunction(P.first, *P.second); 590 591 // Get types used by globals without emitting anything. 592 // This is meant to collect all static const data members so they can be 593 // emitted as globals. 594 collectDebugInfoForGlobals(); 595 596 // Emit retained types. 597 emitDebugInfoForRetainedTypes(); 598 599 // Emit global variable debug information. 600 setCurrentSubprogram(nullptr); 601 emitDebugInfoForGlobals(); 602 603 // Switch back to the generic .debug$S section after potentially processing 604 // comdat symbol sections. 605 switchToDebugSectionForSymbol(nullptr); 606 607 // Emit UDT records for any types used by global variables. 608 if (!GlobalUDTs.empty()) { 609 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 610 emitDebugInfoForUDTs(GlobalUDTs); 611 endCVSubsection(SymbolsEnd); 612 } 613 614 // This subsection holds a file index to offset in string table table. 615 OS.AddComment("File index to string table offset subsection"); 616 OS.emitCVFileChecksumsDirective(); 617 618 // This subsection holds the string table. 619 OS.AddComment("String table"); 620 OS.emitCVStringTableDirective(); 621 622 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 623 // subsection in the generic .debug$S section at the end. There is no 624 // particular reason for this ordering other than to match MSVC. 625 emitBuildInfo(); 626 627 // Emit type information and hashes last, so that any types we translate while 628 // emitting function info are included. 629 emitTypeInformation(); 630 631 if (EmitDebugGlobalHashes) 632 emitTypeGlobalHashes(); 633 634 clear(); 635 } 636 637 static void 638 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 639 unsigned MaxFixedRecordLength = 0xF00) { 640 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 641 // after a fixed length portion of the record. The fixed length portion should 642 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 643 // overall record size is less than the maximum allowed. 644 SmallString<32> NullTerminatedString( 645 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 646 NullTerminatedString.push_back('\0'); 647 OS.emitBytes(NullTerminatedString); 648 } 649 650 void CodeViewDebug::emitTypeInformation() { 651 if (TypeTable.empty()) 652 return; 653 654 // Start the .debug$T or .debug$P section with 0x4. 655 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 656 emitCodeViewMagicVersion(); 657 658 TypeTableCollection Table(TypeTable.records()); 659 TypeVisitorCallbackPipeline Pipeline; 660 661 // To emit type record using Codeview MCStreamer adapter 662 CVMCAdapter CVMCOS(OS, Table); 663 TypeRecordMapping typeMapping(CVMCOS); 664 Pipeline.addCallbackToPipeline(typeMapping); 665 666 Optional<TypeIndex> B = Table.getFirst(); 667 while (B) { 668 // This will fail if the record data is invalid. 669 CVType Record = Table.getType(*B); 670 671 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 672 673 if (E) { 674 logAllUnhandledErrors(std::move(E), errs(), "error: "); 675 llvm_unreachable("produced malformed type record"); 676 } 677 678 B = Table.getNext(*B); 679 } 680 } 681 682 void CodeViewDebug::emitTypeGlobalHashes() { 683 if (TypeTable.empty()) 684 return; 685 686 // Start the .debug$H section with the version and hash algorithm, currently 687 // hardcoded to version 0, SHA1. 688 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 689 690 OS.emitValueToAlignment(4); 691 OS.AddComment("Magic"); 692 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 693 OS.AddComment("Section Version"); 694 OS.emitInt16(0); 695 OS.AddComment("Hash Algorithm"); 696 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 697 698 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 699 for (const auto &GHR : TypeTable.hashes()) { 700 if (OS.isVerboseAsm()) { 701 // Emit an EOL-comment describing which TypeIndex this hash corresponds 702 // to, as well as the stringified SHA1 hash. 703 SmallString<32> Comment; 704 raw_svector_ostream CommentOS(Comment); 705 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 706 OS.AddComment(Comment); 707 ++TI; 708 } 709 assert(GHR.Hash.size() == 8); 710 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 711 GHR.Hash.size()); 712 OS.emitBinaryData(S); 713 } 714 } 715 716 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 717 switch (DWLang) { 718 case dwarf::DW_LANG_C: 719 case dwarf::DW_LANG_C89: 720 case dwarf::DW_LANG_C99: 721 case dwarf::DW_LANG_C11: 722 case dwarf::DW_LANG_ObjC: 723 return SourceLanguage::C; 724 case dwarf::DW_LANG_C_plus_plus: 725 case dwarf::DW_LANG_C_plus_plus_03: 726 case dwarf::DW_LANG_C_plus_plus_11: 727 case dwarf::DW_LANG_C_plus_plus_14: 728 return SourceLanguage::Cpp; 729 case dwarf::DW_LANG_Fortran77: 730 case dwarf::DW_LANG_Fortran90: 731 case dwarf::DW_LANG_Fortran03: 732 case dwarf::DW_LANG_Fortran08: 733 return SourceLanguage::Fortran; 734 case dwarf::DW_LANG_Pascal83: 735 return SourceLanguage::Pascal; 736 case dwarf::DW_LANG_Cobol74: 737 case dwarf::DW_LANG_Cobol85: 738 return SourceLanguage::Cobol; 739 case dwarf::DW_LANG_Java: 740 return SourceLanguage::Java; 741 case dwarf::DW_LANG_D: 742 return SourceLanguage::D; 743 case dwarf::DW_LANG_Swift: 744 return SourceLanguage::Swift; 745 default: 746 // There's no CodeView representation for this language, and CV doesn't 747 // have an "unknown" option for the language field, so we'll use MASM, 748 // as it's very low level. 749 return SourceLanguage::Masm; 750 } 751 } 752 753 namespace { 754 struct Version { 755 int Part[4]; 756 }; 757 } // end anonymous namespace 758 759 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 760 // the version number. 761 static Version parseVersion(StringRef Name) { 762 Version V = {{0}}; 763 int N = 0; 764 for (const char C : Name) { 765 if (isdigit(C)) { 766 V.Part[N] *= 10; 767 V.Part[N] += C - '0'; 768 } else if (C == '.') { 769 ++N; 770 if (N >= 4) 771 return V; 772 } else if (N > 0) 773 return V; 774 } 775 return V; 776 } 777 778 void CodeViewDebug::emitCompilerInformation() { 779 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 780 uint32_t Flags = 0; 781 782 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 783 const MDNode *Node = *CUs->operands().begin(); 784 const auto *CU = cast<DICompileUnit>(Node); 785 786 // The low byte of the flags indicates the source language. 787 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 788 // TODO: Figure out which other flags need to be set. 789 790 OS.AddComment("Flags and language"); 791 OS.emitInt32(Flags); 792 793 OS.AddComment("CPUType"); 794 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 795 796 StringRef CompilerVersion = CU->getProducer(); 797 Version FrontVer = parseVersion(CompilerVersion); 798 OS.AddComment("Frontend version"); 799 for (int N = 0; N < 4; ++N) 800 OS.emitInt16(FrontVer.Part[N]); 801 802 // Some Microsoft tools, like Binscope, expect a backend version number of at 803 // least 8.something, so we'll coerce the LLVM version into a form that 804 // guarantees it'll be big enough without really lying about the version. 805 int Major = 1000 * LLVM_VERSION_MAJOR + 806 10 * LLVM_VERSION_MINOR + 807 LLVM_VERSION_PATCH; 808 // Clamp it for builds that use unusually large version numbers. 809 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 810 Version BackVer = {{ Major, 0, 0, 0 }}; 811 OS.AddComment("Backend version"); 812 for (int N = 0; N < 4; ++N) 813 OS.emitInt16(BackVer.Part[N]); 814 815 OS.AddComment("Null-terminated compiler version string"); 816 emitNullTerminatedSymbolName(OS, CompilerVersion); 817 818 endSymbolRecord(CompilerEnd); 819 } 820 821 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 822 StringRef S) { 823 StringIdRecord SIR(TypeIndex(0x0), S); 824 return TypeTable.writeLeafType(SIR); 825 } 826 827 void CodeViewDebug::emitBuildInfo() { 828 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 829 // build info. The known prefix is: 830 // - Absolute path of current directory 831 // - Compiler path 832 // - Main source file path, relative to CWD or absolute 833 // - Type server PDB file 834 // - Canonical compiler command line 835 // If frontend and backend compilation are separated (think llc or LTO), it's 836 // not clear if the compiler path should refer to the executable for the 837 // frontend or the backend. Leave it blank for now. 838 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 839 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 840 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 841 const auto *CU = cast<DICompileUnit>(Node); 842 const DIFile *MainSourceFile = CU->getFile(); 843 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 844 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 845 BuildInfoArgs[BuildInfoRecord::SourceFile] = 846 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 847 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 848 // we implement /Zi type servers. 849 BuildInfoRecord BIR(BuildInfoArgs); 850 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 851 852 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 853 // from the module symbols into the type stream. 854 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 855 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 856 OS.AddComment("LF_BUILDINFO index"); 857 OS.emitInt32(BuildInfoIndex.getIndex()); 858 endSymbolRecord(BIEnd); 859 endCVSubsection(BISubsecEnd); 860 } 861 862 void CodeViewDebug::emitInlineeLinesSubsection() { 863 if (InlinedSubprograms.empty()) 864 return; 865 866 OS.AddComment("Inlinee lines subsection"); 867 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 868 869 // We emit the checksum info for files. This is used by debuggers to 870 // determine if a pdb matches the source before loading it. Visual Studio, 871 // for instance, will display a warning that the breakpoints are not valid if 872 // the pdb does not match the source. 873 OS.AddComment("Inlinee lines signature"); 874 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 875 876 for (const DISubprogram *SP : InlinedSubprograms) { 877 assert(TypeIndices.count({SP, nullptr})); 878 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 879 880 OS.AddBlankLine(); 881 unsigned FileId = maybeRecordFile(SP->getFile()); 882 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 883 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 884 OS.AddBlankLine(); 885 OS.AddComment("Type index of inlined function"); 886 OS.emitInt32(InlineeIdx.getIndex()); 887 OS.AddComment("Offset into filechecksum table"); 888 OS.emitCVFileChecksumOffsetDirective(FileId); 889 OS.AddComment("Starting line number"); 890 OS.emitInt32(SP->getLine()); 891 } 892 893 endCVSubsection(InlineEnd); 894 } 895 896 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 897 const DILocation *InlinedAt, 898 const InlineSite &Site) { 899 assert(TypeIndices.count({Site.Inlinee, nullptr})); 900 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 901 902 // SymbolRecord 903 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 904 905 OS.AddComment("PtrParent"); 906 OS.emitInt32(0); 907 OS.AddComment("PtrEnd"); 908 OS.emitInt32(0); 909 OS.AddComment("Inlinee type index"); 910 OS.emitInt32(InlineeIdx.getIndex()); 911 912 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 913 unsigned StartLineNum = Site.Inlinee->getLine(); 914 915 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 916 FI.Begin, FI.End); 917 918 endSymbolRecord(InlineEnd); 919 920 emitLocalVariableList(FI, Site.InlinedLocals); 921 922 // Recurse on child inlined call sites before closing the scope. 923 for (const DILocation *ChildSite : Site.ChildSites) { 924 auto I = FI.InlineSites.find(ChildSite); 925 assert(I != FI.InlineSites.end() && 926 "child site not in function inline site map"); 927 emitInlinedCallSite(FI, ChildSite, I->second); 928 } 929 930 // Close the scope. 931 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 932 } 933 934 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 935 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 936 // comdat key. A section may be comdat because of -ffunction-sections or 937 // because it is comdat in the IR. 938 MCSectionCOFF *GVSec = 939 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 940 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 941 942 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 943 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 944 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 945 946 OS.SwitchSection(DebugSec); 947 948 // Emit the magic version number if this is the first time we've switched to 949 // this section. 950 if (ComdatDebugSections.insert(DebugSec).second) 951 emitCodeViewMagicVersion(); 952 } 953 954 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 955 // The only supported thunk ordinal is currently the standard type. 956 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 957 FunctionInfo &FI, 958 const MCSymbol *Fn) { 959 std::string FuncName = 960 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 961 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 962 963 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 964 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 965 966 // Emit S_THUNK32 967 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 968 OS.AddComment("PtrParent"); 969 OS.emitInt32(0); 970 OS.AddComment("PtrEnd"); 971 OS.emitInt32(0); 972 OS.AddComment("PtrNext"); 973 OS.emitInt32(0); 974 OS.AddComment("Thunk section relative address"); 975 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 976 OS.AddComment("Thunk section index"); 977 OS.EmitCOFFSectionIndex(Fn); 978 OS.AddComment("Code size"); 979 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 980 OS.AddComment("Ordinal"); 981 OS.emitInt8(unsigned(ordinal)); 982 OS.AddComment("Function name"); 983 emitNullTerminatedSymbolName(OS, FuncName); 984 // Additional fields specific to the thunk ordinal would go here. 985 endSymbolRecord(ThunkRecordEnd); 986 987 // Local variables/inlined routines are purposely omitted here. The point of 988 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 989 990 // Emit S_PROC_ID_END 991 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 992 993 endCVSubsection(SymbolsEnd); 994 } 995 996 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 997 FunctionInfo &FI) { 998 // For each function there is a separate subsection which holds the PC to 999 // file:line table. 1000 const MCSymbol *Fn = Asm->getSymbol(GV); 1001 assert(Fn); 1002 1003 // Switch to the to a comdat section, if appropriate. 1004 switchToDebugSectionForSymbol(Fn); 1005 1006 std::string FuncName; 1007 auto *SP = GV->getSubprogram(); 1008 assert(SP); 1009 setCurrentSubprogram(SP); 1010 1011 if (SP->isThunk()) { 1012 emitDebugInfoForThunk(GV, FI, Fn); 1013 return; 1014 } 1015 1016 // If we have a display name, build the fully qualified name by walking the 1017 // chain of scopes. 1018 if (!SP->getName().empty()) 1019 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1020 1021 // If our DISubprogram name is empty, use the mangled name. 1022 if (FuncName.empty()) 1023 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1024 1025 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1026 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1027 OS.EmitCVFPOData(Fn); 1028 1029 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1030 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1031 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1032 { 1033 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1034 : SymbolKind::S_GPROC32_ID; 1035 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1036 1037 // These fields are filled in by tools like CVPACK which run after the fact. 1038 OS.AddComment("PtrParent"); 1039 OS.emitInt32(0); 1040 OS.AddComment("PtrEnd"); 1041 OS.emitInt32(0); 1042 OS.AddComment("PtrNext"); 1043 OS.emitInt32(0); 1044 // This is the important bit that tells the debugger where the function 1045 // code is located and what's its size: 1046 OS.AddComment("Code size"); 1047 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1048 OS.AddComment("Offset after prologue"); 1049 OS.emitInt32(0); 1050 OS.AddComment("Offset before epilogue"); 1051 OS.emitInt32(0); 1052 OS.AddComment("Function type index"); 1053 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1054 OS.AddComment("Function section relative address"); 1055 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1056 OS.AddComment("Function section index"); 1057 OS.EmitCOFFSectionIndex(Fn); 1058 OS.AddComment("Flags"); 1059 OS.emitInt8(0); 1060 // Emit the function display name as a null-terminated string. 1061 OS.AddComment("Function name"); 1062 // Truncate the name so we won't overflow the record length field. 1063 emitNullTerminatedSymbolName(OS, FuncName); 1064 endSymbolRecord(ProcRecordEnd); 1065 1066 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1067 // Subtract out the CSR size since MSVC excludes that and we include it. 1068 OS.AddComment("FrameSize"); 1069 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1070 OS.AddComment("Padding"); 1071 OS.emitInt32(0); 1072 OS.AddComment("Offset of padding"); 1073 OS.emitInt32(0); 1074 OS.AddComment("Bytes of callee saved registers"); 1075 OS.emitInt32(FI.CSRSize); 1076 OS.AddComment("Exception handler offset"); 1077 OS.emitInt32(0); 1078 OS.AddComment("Exception handler section"); 1079 OS.emitInt16(0); 1080 OS.AddComment("Flags (defines frame register)"); 1081 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1082 endSymbolRecord(FrameProcEnd); 1083 1084 emitLocalVariableList(FI, FI.Locals); 1085 emitGlobalVariableList(FI.Globals); 1086 emitLexicalBlockList(FI.ChildBlocks, FI); 1087 1088 // Emit inlined call site information. Only emit functions inlined directly 1089 // into the parent function. We'll emit the other sites recursively as part 1090 // of their parent inline site. 1091 for (const DILocation *InlinedAt : FI.ChildSites) { 1092 auto I = FI.InlineSites.find(InlinedAt); 1093 assert(I != FI.InlineSites.end() && 1094 "child site not in function inline site map"); 1095 emitInlinedCallSite(FI, InlinedAt, I->second); 1096 } 1097 1098 for (auto Annot : FI.Annotations) { 1099 MCSymbol *Label = Annot.first; 1100 MDTuple *Strs = cast<MDTuple>(Annot.second); 1101 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1102 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1103 // FIXME: Make sure we don't overflow the max record size. 1104 OS.EmitCOFFSectionIndex(Label); 1105 OS.emitInt16(Strs->getNumOperands()); 1106 for (Metadata *MD : Strs->operands()) { 1107 // MDStrings are null terminated, so we can do EmitBytes and get the 1108 // nice .asciz directive. 1109 StringRef Str = cast<MDString>(MD)->getString(); 1110 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1111 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1112 } 1113 endSymbolRecord(AnnotEnd); 1114 } 1115 1116 for (auto HeapAllocSite : FI.HeapAllocSites) { 1117 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1118 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1119 const DIType *DITy = std::get<2>(HeapAllocSite); 1120 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1121 OS.AddComment("Call site offset"); 1122 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1123 OS.AddComment("Call site section index"); 1124 OS.EmitCOFFSectionIndex(BeginLabel); 1125 OS.AddComment("Call instruction length"); 1126 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1127 OS.AddComment("Type index"); 1128 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1129 endSymbolRecord(HeapAllocEnd); 1130 } 1131 1132 if (SP != nullptr) 1133 emitDebugInfoForUDTs(LocalUDTs); 1134 1135 // We're done with this function. 1136 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1137 } 1138 endCVSubsection(SymbolsEnd); 1139 1140 // We have an assembler directive that takes care of the whole line table. 1141 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1142 } 1143 1144 CodeViewDebug::LocalVarDefRange 1145 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1146 LocalVarDefRange DR; 1147 DR.InMemory = -1; 1148 DR.DataOffset = Offset; 1149 assert(DR.DataOffset == Offset && "truncation"); 1150 DR.IsSubfield = 0; 1151 DR.StructOffset = 0; 1152 DR.CVRegister = CVRegister; 1153 return DR; 1154 } 1155 1156 void CodeViewDebug::collectVariableInfoFromMFTable( 1157 DenseSet<InlinedEntity> &Processed) { 1158 const MachineFunction &MF = *Asm->MF; 1159 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1160 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1161 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1162 1163 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1164 if (!VI.Var) 1165 continue; 1166 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1167 "Expected inlined-at fields to agree"); 1168 1169 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1170 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1171 1172 // If variable scope is not found then skip this variable. 1173 if (!Scope) 1174 continue; 1175 1176 // If the variable has an attached offset expression, extract it. 1177 // FIXME: Try to handle DW_OP_deref as well. 1178 int64_t ExprOffset = 0; 1179 bool Deref = false; 1180 if (VI.Expr) { 1181 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1182 if (VI.Expr->getNumElements() == 1 && 1183 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1184 Deref = true; 1185 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1186 continue; 1187 } 1188 1189 // Get the frame register used and the offset. 1190 Register FrameReg; 1191 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1192 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1193 1194 // Calculate the label ranges. 1195 LocalVarDefRange DefRange = 1196 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1197 1198 for (const InsnRange &Range : Scope->getRanges()) { 1199 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1200 const MCSymbol *End = getLabelAfterInsn(Range.second); 1201 End = End ? End : Asm->getFunctionEnd(); 1202 DefRange.Ranges.emplace_back(Begin, End); 1203 } 1204 1205 LocalVariable Var; 1206 Var.DIVar = VI.Var; 1207 Var.DefRanges.emplace_back(std::move(DefRange)); 1208 if (Deref) 1209 Var.UseReferenceType = true; 1210 1211 recordLocalVariable(std::move(Var), Scope); 1212 } 1213 } 1214 1215 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1216 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1217 } 1218 1219 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1220 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1221 } 1222 1223 void CodeViewDebug::calculateRanges( 1224 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1225 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1226 1227 // Calculate the definition ranges. 1228 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1229 const auto &Entry = *I; 1230 if (!Entry.isDbgValue()) 1231 continue; 1232 const MachineInstr *DVInst = Entry.getInstr(); 1233 assert(DVInst->isDebugValue() && "Invalid History entry"); 1234 // FIXME: Find a way to represent constant variables, since they are 1235 // relatively common. 1236 Optional<DbgVariableLocation> Location = 1237 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1238 if (!Location) 1239 continue; 1240 1241 // CodeView can only express variables in register and variables in memory 1242 // at a constant offset from a register. However, for variables passed 1243 // indirectly by pointer, it is common for that pointer to be spilled to a 1244 // stack location. For the special case of one offseted load followed by a 1245 // zero offset load (a pointer spilled to the stack), we change the type of 1246 // the local variable from a value type to a reference type. This tricks the 1247 // debugger into doing the load for us. 1248 if (Var.UseReferenceType) { 1249 // We're using a reference type. Drop the last zero offset load. 1250 if (canUseReferenceType(*Location)) 1251 Location->LoadChain.pop_back(); 1252 else 1253 continue; 1254 } else if (needsReferenceType(*Location)) { 1255 // This location can't be expressed without switching to a reference type. 1256 // Start over using that. 1257 Var.UseReferenceType = true; 1258 Var.DefRanges.clear(); 1259 calculateRanges(Var, Entries); 1260 return; 1261 } 1262 1263 // We can only handle a register or an offseted load of a register. 1264 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1265 continue; 1266 { 1267 LocalVarDefRange DR; 1268 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1269 DR.InMemory = !Location->LoadChain.empty(); 1270 DR.DataOffset = 1271 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1272 if (Location->FragmentInfo) { 1273 DR.IsSubfield = true; 1274 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1275 } else { 1276 DR.IsSubfield = false; 1277 DR.StructOffset = 0; 1278 } 1279 1280 if (Var.DefRanges.empty() || 1281 Var.DefRanges.back().isDifferentLocation(DR)) { 1282 Var.DefRanges.emplace_back(std::move(DR)); 1283 } 1284 } 1285 1286 // Compute the label range. 1287 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1288 const MCSymbol *End; 1289 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1290 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1291 End = EndingEntry.isDbgValue() 1292 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1293 : getLabelAfterInsn(EndingEntry.getInstr()); 1294 } else 1295 End = Asm->getFunctionEnd(); 1296 1297 // If the last range end is our begin, just extend the last range. 1298 // Otherwise make a new range. 1299 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1300 Var.DefRanges.back().Ranges; 1301 if (!R.empty() && R.back().second == Begin) 1302 R.back().second = End; 1303 else 1304 R.emplace_back(Begin, End); 1305 1306 // FIXME: Do more range combining. 1307 } 1308 } 1309 1310 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1311 DenseSet<InlinedEntity> Processed; 1312 // Grab the variable info that was squirreled away in the MMI side-table. 1313 collectVariableInfoFromMFTable(Processed); 1314 1315 for (const auto &I : DbgValues) { 1316 InlinedEntity IV = I.first; 1317 if (Processed.count(IV)) 1318 continue; 1319 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1320 const DILocation *InlinedAt = IV.second; 1321 1322 // Instruction ranges, specifying where IV is accessible. 1323 const auto &Entries = I.second; 1324 1325 LexicalScope *Scope = nullptr; 1326 if (InlinedAt) 1327 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1328 else 1329 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1330 // If variable scope is not found then skip this variable. 1331 if (!Scope) 1332 continue; 1333 1334 LocalVariable Var; 1335 Var.DIVar = DIVar; 1336 1337 calculateRanges(Var, Entries); 1338 recordLocalVariable(std::move(Var), Scope); 1339 } 1340 } 1341 1342 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1343 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1344 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1345 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1346 const Function &GV = MF->getFunction(); 1347 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1348 assert(Insertion.second && "function already has info"); 1349 CurFn = Insertion.first->second.get(); 1350 CurFn->FuncId = NextFuncId++; 1351 CurFn->Begin = Asm->getFunctionBegin(); 1352 1353 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1354 // callee-saved registers were used. For targets that don't use a PUSH 1355 // instruction (AArch64), this will be zero. 1356 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1357 CurFn->FrameSize = MFI.getStackSize(); 1358 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1359 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1360 1361 // For this function S_FRAMEPROC record, figure out which codeview register 1362 // will be the frame pointer. 1363 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1364 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1365 if (CurFn->FrameSize > 0) { 1366 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1367 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1368 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1369 } else { 1370 // If there is an FP, parameters are always relative to it. 1371 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1372 if (CurFn->HasStackRealignment) { 1373 // If the stack needs realignment, locals are relative to SP or VFRAME. 1374 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1375 } else { 1376 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1377 // other stack adjustments. 1378 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1379 } 1380 } 1381 } 1382 1383 // Compute other frame procedure options. 1384 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1385 if (MFI.hasVarSizedObjects()) 1386 FPO |= FrameProcedureOptions::HasAlloca; 1387 if (MF->exposesReturnsTwice()) 1388 FPO |= FrameProcedureOptions::HasSetJmp; 1389 // FIXME: Set HasLongJmp if we ever track that info. 1390 if (MF->hasInlineAsm()) 1391 FPO |= FrameProcedureOptions::HasInlineAssembly; 1392 if (GV.hasPersonalityFn()) { 1393 if (isAsynchronousEHPersonality( 1394 classifyEHPersonality(GV.getPersonalityFn()))) 1395 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1396 else 1397 FPO |= FrameProcedureOptions::HasExceptionHandling; 1398 } 1399 if (GV.hasFnAttribute(Attribute::InlineHint)) 1400 FPO |= FrameProcedureOptions::MarkedInline; 1401 if (GV.hasFnAttribute(Attribute::Naked)) 1402 FPO |= FrameProcedureOptions::Naked; 1403 if (MFI.hasStackProtectorIndex()) 1404 FPO |= FrameProcedureOptions::SecurityChecks; 1405 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1406 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1407 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1408 !GV.hasOptSize() && !GV.hasOptNone()) 1409 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1410 // FIXME: Set GuardCfg when it is implemented. 1411 CurFn->FrameProcOpts = FPO; 1412 1413 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1414 1415 // Find the end of the function prolog. First known non-DBG_VALUE and 1416 // non-frame setup location marks the beginning of the function body. 1417 // FIXME: is there a simpler a way to do this? Can we just search 1418 // for the first instruction of the function, not the last of the prolog? 1419 DebugLoc PrologEndLoc; 1420 bool EmptyPrologue = true; 1421 for (const auto &MBB : *MF) { 1422 for (const auto &MI : MBB) { 1423 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1424 MI.getDebugLoc()) { 1425 PrologEndLoc = MI.getDebugLoc(); 1426 break; 1427 } else if (!MI.isMetaInstruction()) { 1428 EmptyPrologue = false; 1429 } 1430 } 1431 } 1432 1433 // Record beginning of function if we have a non-empty prologue. 1434 if (PrologEndLoc && !EmptyPrologue) { 1435 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1436 maybeRecordLocation(FnStartDL, MF); 1437 } 1438 1439 // Find heap alloc sites and emit labels around them. 1440 for (const auto &MBB : *MF) { 1441 for (const auto &MI : MBB) { 1442 if (MI.getHeapAllocMarker()) { 1443 requestLabelBeforeInsn(&MI); 1444 requestLabelAfterInsn(&MI); 1445 } 1446 } 1447 } 1448 } 1449 1450 static bool shouldEmitUdt(const DIType *T) { 1451 if (!T) 1452 return false; 1453 1454 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1455 if (T->getTag() == dwarf::DW_TAG_typedef) { 1456 if (DIScope *Scope = T->getScope()) { 1457 switch (Scope->getTag()) { 1458 case dwarf::DW_TAG_structure_type: 1459 case dwarf::DW_TAG_class_type: 1460 case dwarf::DW_TAG_union_type: 1461 return false; 1462 } 1463 } 1464 } 1465 1466 while (true) { 1467 if (!T || T->isForwardDecl()) 1468 return false; 1469 1470 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1471 if (!DT) 1472 return true; 1473 T = DT->getBaseType(); 1474 } 1475 return true; 1476 } 1477 1478 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1479 // Don't record empty UDTs. 1480 if (Ty->getName().empty()) 1481 return; 1482 if (!shouldEmitUdt(Ty)) 1483 return; 1484 1485 SmallVector<StringRef, 5> ParentScopeNames; 1486 const DISubprogram *ClosestSubprogram = 1487 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1488 1489 std::string FullyQualifiedName = 1490 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1491 1492 if (ClosestSubprogram == nullptr) { 1493 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1494 } else if (ClosestSubprogram == CurrentSubprogram) { 1495 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1496 } 1497 1498 // TODO: What if the ClosestSubprogram is neither null or the current 1499 // subprogram? Currently, the UDT just gets dropped on the floor. 1500 // 1501 // The current behavior is not desirable. To get maximal fidelity, we would 1502 // need to perform all type translation before beginning emission of .debug$S 1503 // and then make LocalUDTs a member of FunctionInfo 1504 } 1505 1506 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1507 // Generic dispatch for lowering an unknown type. 1508 switch (Ty->getTag()) { 1509 case dwarf::DW_TAG_array_type: 1510 return lowerTypeArray(cast<DICompositeType>(Ty)); 1511 case dwarf::DW_TAG_typedef: 1512 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1513 case dwarf::DW_TAG_base_type: 1514 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1515 case dwarf::DW_TAG_pointer_type: 1516 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1517 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1518 LLVM_FALLTHROUGH; 1519 case dwarf::DW_TAG_reference_type: 1520 case dwarf::DW_TAG_rvalue_reference_type: 1521 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1522 case dwarf::DW_TAG_ptr_to_member_type: 1523 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1524 case dwarf::DW_TAG_restrict_type: 1525 case dwarf::DW_TAG_const_type: 1526 case dwarf::DW_TAG_volatile_type: 1527 // TODO: add support for DW_TAG_atomic_type here 1528 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1529 case dwarf::DW_TAG_subroutine_type: 1530 if (ClassTy) { 1531 // The member function type of a member function pointer has no 1532 // ThisAdjustment. 1533 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1534 /*ThisAdjustment=*/0, 1535 /*IsStaticMethod=*/false); 1536 } 1537 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1538 case dwarf::DW_TAG_enumeration_type: 1539 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1540 case dwarf::DW_TAG_class_type: 1541 case dwarf::DW_TAG_structure_type: 1542 return lowerTypeClass(cast<DICompositeType>(Ty)); 1543 case dwarf::DW_TAG_union_type: 1544 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1545 case dwarf::DW_TAG_unspecified_type: 1546 if (Ty->getName() == "decltype(nullptr)") 1547 return TypeIndex::NullptrT(); 1548 return TypeIndex::None(); 1549 default: 1550 // Use the null type index. 1551 return TypeIndex(); 1552 } 1553 } 1554 1555 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1556 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1557 StringRef TypeName = Ty->getName(); 1558 1559 addToUDTs(Ty); 1560 1561 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1562 TypeName == "HRESULT") 1563 return TypeIndex(SimpleTypeKind::HResult); 1564 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1565 TypeName == "wchar_t") 1566 return TypeIndex(SimpleTypeKind::WideCharacter); 1567 1568 return UnderlyingTypeIndex; 1569 } 1570 1571 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1572 const DIType *ElementType = Ty->getBaseType(); 1573 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1574 // IndexType is size_t, which depends on the bitness of the target. 1575 TypeIndex IndexType = getPointerSizeInBytes() == 8 1576 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1577 : TypeIndex(SimpleTypeKind::UInt32Long); 1578 1579 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1580 1581 // Add subranges to array type. 1582 DINodeArray Elements = Ty->getElements(); 1583 for (int i = Elements.size() - 1; i >= 0; --i) { 1584 const DINode *Element = Elements[i]; 1585 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1586 1587 const DISubrange *Subrange = cast<DISubrange>(Element); 1588 int64_t Count = -1; 1589 // Calculate the count if either LowerBound is absent or is zero and 1590 // either of Count or UpperBound are constant. 1591 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1592 if (!Subrange->getRawLowerBound() || (LI && (LI->getSExtValue() == 0))) { 1593 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1594 Count = CI->getSExtValue(); 1595 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt*>()) 1596 Count = UI->getSExtValue() + 1; // LowerBound is zero 1597 } 1598 1599 // Forward declarations of arrays without a size and VLAs use a count of -1. 1600 // Emit a count of zero in these cases to match what MSVC does for arrays 1601 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1602 // should do for them even if we could distinguish them. 1603 if (Count == -1) 1604 Count = 0; 1605 1606 // Update the element size and element type index for subsequent subranges. 1607 ElementSize *= Count; 1608 1609 // If this is the outermost array, use the size from the array. It will be 1610 // more accurate if we had a VLA or an incomplete element type size. 1611 uint64_t ArraySize = 1612 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1613 1614 StringRef Name = (i == 0) ? Ty->getName() : ""; 1615 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1616 ElementTypeIndex = TypeTable.writeLeafType(AR); 1617 } 1618 1619 return ElementTypeIndex; 1620 } 1621 1622 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1623 TypeIndex Index; 1624 dwarf::TypeKind Kind; 1625 uint32_t ByteSize; 1626 1627 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1628 ByteSize = Ty->getSizeInBits() / 8; 1629 1630 SimpleTypeKind STK = SimpleTypeKind::None; 1631 switch (Kind) { 1632 case dwarf::DW_ATE_address: 1633 // FIXME: Translate 1634 break; 1635 case dwarf::DW_ATE_boolean: 1636 switch (ByteSize) { 1637 case 1: STK = SimpleTypeKind::Boolean8; break; 1638 case 2: STK = SimpleTypeKind::Boolean16; break; 1639 case 4: STK = SimpleTypeKind::Boolean32; break; 1640 case 8: STK = SimpleTypeKind::Boolean64; break; 1641 case 16: STK = SimpleTypeKind::Boolean128; break; 1642 } 1643 break; 1644 case dwarf::DW_ATE_complex_float: 1645 switch (ByteSize) { 1646 case 2: STK = SimpleTypeKind::Complex16; break; 1647 case 4: STK = SimpleTypeKind::Complex32; break; 1648 case 8: STK = SimpleTypeKind::Complex64; break; 1649 case 10: STK = SimpleTypeKind::Complex80; break; 1650 case 16: STK = SimpleTypeKind::Complex128; break; 1651 } 1652 break; 1653 case dwarf::DW_ATE_float: 1654 switch (ByteSize) { 1655 case 2: STK = SimpleTypeKind::Float16; break; 1656 case 4: STK = SimpleTypeKind::Float32; break; 1657 case 6: STK = SimpleTypeKind::Float48; break; 1658 case 8: STK = SimpleTypeKind::Float64; break; 1659 case 10: STK = SimpleTypeKind::Float80; break; 1660 case 16: STK = SimpleTypeKind::Float128; break; 1661 } 1662 break; 1663 case dwarf::DW_ATE_signed: 1664 switch (ByteSize) { 1665 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1666 case 2: STK = SimpleTypeKind::Int16Short; break; 1667 case 4: STK = SimpleTypeKind::Int32; break; 1668 case 8: STK = SimpleTypeKind::Int64Quad; break; 1669 case 16: STK = SimpleTypeKind::Int128Oct; break; 1670 } 1671 break; 1672 case dwarf::DW_ATE_unsigned: 1673 switch (ByteSize) { 1674 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1675 case 2: STK = SimpleTypeKind::UInt16Short; break; 1676 case 4: STK = SimpleTypeKind::UInt32; break; 1677 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1678 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1679 } 1680 break; 1681 case dwarf::DW_ATE_UTF: 1682 switch (ByteSize) { 1683 case 2: STK = SimpleTypeKind::Character16; break; 1684 case 4: STK = SimpleTypeKind::Character32; break; 1685 } 1686 break; 1687 case dwarf::DW_ATE_signed_char: 1688 if (ByteSize == 1) 1689 STK = SimpleTypeKind::SignedCharacter; 1690 break; 1691 case dwarf::DW_ATE_unsigned_char: 1692 if (ByteSize == 1) 1693 STK = SimpleTypeKind::UnsignedCharacter; 1694 break; 1695 default: 1696 break; 1697 } 1698 1699 // Apply some fixups based on the source-level type name. 1700 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1701 STK = SimpleTypeKind::Int32Long; 1702 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1703 STK = SimpleTypeKind::UInt32Long; 1704 if (STK == SimpleTypeKind::UInt16Short && 1705 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1706 STK = SimpleTypeKind::WideCharacter; 1707 if ((STK == SimpleTypeKind::SignedCharacter || 1708 STK == SimpleTypeKind::UnsignedCharacter) && 1709 Ty->getName() == "char") 1710 STK = SimpleTypeKind::NarrowCharacter; 1711 1712 return TypeIndex(STK); 1713 } 1714 1715 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1716 PointerOptions PO) { 1717 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1718 1719 // Pointers to simple types without any options can use SimpleTypeMode, rather 1720 // than having a dedicated pointer type record. 1721 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1722 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1723 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1724 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1725 ? SimpleTypeMode::NearPointer64 1726 : SimpleTypeMode::NearPointer32; 1727 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1728 } 1729 1730 PointerKind PK = 1731 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1732 PointerMode PM = PointerMode::Pointer; 1733 switch (Ty->getTag()) { 1734 default: llvm_unreachable("not a pointer tag type"); 1735 case dwarf::DW_TAG_pointer_type: 1736 PM = PointerMode::Pointer; 1737 break; 1738 case dwarf::DW_TAG_reference_type: 1739 PM = PointerMode::LValueReference; 1740 break; 1741 case dwarf::DW_TAG_rvalue_reference_type: 1742 PM = PointerMode::RValueReference; 1743 break; 1744 } 1745 1746 if (Ty->isObjectPointer()) 1747 PO |= PointerOptions::Const; 1748 1749 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1750 return TypeTable.writeLeafType(PR); 1751 } 1752 1753 static PointerToMemberRepresentation 1754 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1755 // SizeInBytes being zero generally implies that the member pointer type was 1756 // incomplete, which can happen if it is part of a function prototype. In this 1757 // case, use the unknown model instead of the general model. 1758 if (IsPMF) { 1759 switch (Flags & DINode::FlagPtrToMemberRep) { 1760 case 0: 1761 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1762 : PointerToMemberRepresentation::GeneralFunction; 1763 case DINode::FlagSingleInheritance: 1764 return PointerToMemberRepresentation::SingleInheritanceFunction; 1765 case DINode::FlagMultipleInheritance: 1766 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1767 case DINode::FlagVirtualInheritance: 1768 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1769 } 1770 } else { 1771 switch (Flags & DINode::FlagPtrToMemberRep) { 1772 case 0: 1773 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1774 : PointerToMemberRepresentation::GeneralData; 1775 case DINode::FlagSingleInheritance: 1776 return PointerToMemberRepresentation::SingleInheritanceData; 1777 case DINode::FlagMultipleInheritance: 1778 return PointerToMemberRepresentation::MultipleInheritanceData; 1779 case DINode::FlagVirtualInheritance: 1780 return PointerToMemberRepresentation::VirtualInheritanceData; 1781 } 1782 } 1783 llvm_unreachable("invalid ptr to member representation"); 1784 } 1785 1786 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1787 PointerOptions PO) { 1788 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1789 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1790 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1791 TypeIndex PointeeTI = 1792 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1793 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1794 : PointerKind::Near32; 1795 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1796 : PointerMode::PointerToDataMember; 1797 1798 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1799 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1800 MemberPointerInfo MPI( 1801 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1802 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1803 return TypeTable.writeLeafType(PR); 1804 } 1805 1806 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1807 /// have a translation, use the NearC convention. 1808 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1809 switch (DwarfCC) { 1810 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1811 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1812 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1813 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1814 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1815 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1816 } 1817 return CallingConvention::NearC; 1818 } 1819 1820 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1821 ModifierOptions Mods = ModifierOptions::None; 1822 PointerOptions PO = PointerOptions::None; 1823 bool IsModifier = true; 1824 const DIType *BaseTy = Ty; 1825 while (IsModifier && BaseTy) { 1826 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1827 switch (BaseTy->getTag()) { 1828 case dwarf::DW_TAG_const_type: 1829 Mods |= ModifierOptions::Const; 1830 PO |= PointerOptions::Const; 1831 break; 1832 case dwarf::DW_TAG_volatile_type: 1833 Mods |= ModifierOptions::Volatile; 1834 PO |= PointerOptions::Volatile; 1835 break; 1836 case dwarf::DW_TAG_restrict_type: 1837 // Only pointer types be marked with __restrict. There is no known flag 1838 // for __restrict in LF_MODIFIER records. 1839 PO |= PointerOptions::Restrict; 1840 break; 1841 default: 1842 IsModifier = false; 1843 break; 1844 } 1845 if (IsModifier) 1846 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1847 } 1848 1849 // Check if the inner type will use an LF_POINTER record. If so, the 1850 // qualifiers will go in the LF_POINTER record. This comes up for types like 1851 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1852 // char *'. 1853 if (BaseTy) { 1854 switch (BaseTy->getTag()) { 1855 case dwarf::DW_TAG_pointer_type: 1856 case dwarf::DW_TAG_reference_type: 1857 case dwarf::DW_TAG_rvalue_reference_type: 1858 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1859 case dwarf::DW_TAG_ptr_to_member_type: 1860 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1861 default: 1862 break; 1863 } 1864 } 1865 1866 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1867 1868 // Return the base type index if there aren't any modifiers. For example, the 1869 // metadata could contain restrict wrappers around non-pointer types. 1870 if (Mods == ModifierOptions::None) 1871 return ModifiedTI; 1872 1873 ModifierRecord MR(ModifiedTI, Mods); 1874 return TypeTable.writeLeafType(MR); 1875 } 1876 1877 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1878 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1879 for (const DIType *ArgType : Ty->getTypeArray()) 1880 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1881 1882 // MSVC uses type none for variadic argument. 1883 if (ReturnAndArgTypeIndices.size() > 1 && 1884 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1885 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1886 } 1887 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1888 ArrayRef<TypeIndex> ArgTypeIndices = None; 1889 if (!ReturnAndArgTypeIndices.empty()) { 1890 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1891 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1892 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1893 } 1894 1895 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1896 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1897 1898 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1899 1900 FunctionOptions FO = getFunctionOptions(Ty); 1901 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1902 ArgListIndex); 1903 return TypeTable.writeLeafType(Procedure); 1904 } 1905 1906 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1907 const DIType *ClassTy, 1908 int ThisAdjustment, 1909 bool IsStaticMethod, 1910 FunctionOptions FO) { 1911 // Lower the containing class type. 1912 TypeIndex ClassType = getTypeIndex(ClassTy); 1913 1914 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1915 1916 unsigned Index = 0; 1917 SmallVector<TypeIndex, 8> ArgTypeIndices; 1918 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1919 if (ReturnAndArgs.size() > Index) { 1920 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1921 } 1922 1923 // If the first argument is a pointer type and this isn't a static method, 1924 // treat it as the special 'this' parameter, which is encoded separately from 1925 // the arguments. 1926 TypeIndex ThisTypeIndex; 1927 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1928 if (const DIDerivedType *PtrTy = 1929 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1930 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1931 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1932 Index++; 1933 } 1934 } 1935 } 1936 1937 while (Index < ReturnAndArgs.size()) 1938 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1939 1940 // MSVC uses type none for variadic argument. 1941 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1942 ArgTypeIndices.back() = TypeIndex::None(); 1943 1944 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1945 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1946 1947 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1948 1949 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1950 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1951 return TypeTable.writeLeafType(MFR); 1952 } 1953 1954 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1955 unsigned VSlotCount = 1956 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1957 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1958 1959 VFTableShapeRecord VFTSR(Slots); 1960 return TypeTable.writeLeafType(VFTSR); 1961 } 1962 1963 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1964 switch (Flags & DINode::FlagAccessibility) { 1965 case DINode::FlagPrivate: return MemberAccess::Private; 1966 case DINode::FlagPublic: return MemberAccess::Public; 1967 case DINode::FlagProtected: return MemberAccess::Protected; 1968 case 0: 1969 // If there was no explicit access control, provide the default for the tag. 1970 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1971 : MemberAccess::Public; 1972 } 1973 llvm_unreachable("access flags are exclusive"); 1974 } 1975 1976 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1977 if (SP->isArtificial()) 1978 return MethodOptions::CompilerGenerated; 1979 1980 // FIXME: Handle other MethodOptions. 1981 1982 return MethodOptions::None; 1983 } 1984 1985 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1986 bool Introduced) { 1987 if (SP->getFlags() & DINode::FlagStaticMember) 1988 return MethodKind::Static; 1989 1990 switch (SP->getVirtuality()) { 1991 case dwarf::DW_VIRTUALITY_none: 1992 break; 1993 case dwarf::DW_VIRTUALITY_virtual: 1994 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1995 case dwarf::DW_VIRTUALITY_pure_virtual: 1996 return Introduced ? MethodKind::PureIntroducingVirtual 1997 : MethodKind::PureVirtual; 1998 default: 1999 llvm_unreachable("unhandled virtuality case"); 2000 } 2001 2002 return MethodKind::Vanilla; 2003 } 2004 2005 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2006 switch (Ty->getTag()) { 2007 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 2008 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 2009 } 2010 llvm_unreachable("unexpected tag"); 2011 } 2012 2013 /// Return ClassOptions that should be present on both the forward declaration 2014 /// and the defintion of a tag type. 2015 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2016 ClassOptions CO = ClassOptions::None; 2017 2018 // MSVC always sets this flag, even for local types. Clang doesn't always 2019 // appear to give every type a linkage name, which may be problematic for us. 2020 // FIXME: Investigate the consequences of not following them here. 2021 if (!Ty->getIdentifier().empty()) 2022 CO |= ClassOptions::HasUniqueName; 2023 2024 // Put the Nested flag on a type if it appears immediately inside a tag type. 2025 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2026 // here. That flag is only set on definitions, and not forward declarations. 2027 const DIScope *ImmediateScope = Ty->getScope(); 2028 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2029 CO |= ClassOptions::Nested; 2030 2031 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2032 // type only when it has an immediate function scope. Clang never puts enums 2033 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2034 // always in function, class, or file scopes. 2035 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2036 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2037 CO |= ClassOptions::Scoped; 2038 } else { 2039 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2040 Scope = Scope->getScope()) { 2041 if (isa<DISubprogram>(Scope)) { 2042 CO |= ClassOptions::Scoped; 2043 break; 2044 } 2045 } 2046 } 2047 2048 return CO; 2049 } 2050 2051 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2052 switch (Ty->getTag()) { 2053 case dwarf::DW_TAG_class_type: 2054 case dwarf::DW_TAG_structure_type: 2055 case dwarf::DW_TAG_union_type: 2056 case dwarf::DW_TAG_enumeration_type: 2057 break; 2058 default: 2059 return; 2060 } 2061 2062 if (const auto *File = Ty->getFile()) { 2063 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2064 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2065 2066 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2067 TypeTable.writeLeafType(USLR); 2068 } 2069 } 2070 2071 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2072 ClassOptions CO = getCommonClassOptions(Ty); 2073 TypeIndex FTI; 2074 unsigned EnumeratorCount = 0; 2075 2076 if (Ty->isForwardDecl()) { 2077 CO |= ClassOptions::ForwardReference; 2078 } else { 2079 ContinuationRecordBuilder ContinuationBuilder; 2080 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2081 for (const DINode *Element : Ty->getElements()) { 2082 // We assume that the frontend provides all members in source declaration 2083 // order, which is what MSVC does. 2084 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2085 EnumeratorRecord ER(MemberAccess::Public, 2086 APSInt(Enumerator->getValue(), true), 2087 Enumerator->getName()); 2088 ContinuationBuilder.writeMemberType(ER); 2089 EnumeratorCount++; 2090 } 2091 } 2092 FTI = TypeTable.insertRecord(ContinuationBuilder); 2093 } 2094 2095 std::string FullName = getFullyQualifiedName(Ty); 2096 2097 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2098 getTypeIndex(Ty->getBaseType())); 2099 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2100 2101 addUDTSrcLine(Ty, EnumTI); 2102 2103 return EnumTI; 2104 } 2105 2106 //===----------------------------------------------------------------------===// 2107 // ClassInfo 2108 //===----------------------------------------------------------------------===// 2109 2110 struct llvm::ClassInfo { 2111 struct MemberInfo { 2112 const DIDerivedType *MemberTypeNode; 2113 uint64_t BaseOffset; 2114 }; 2115 // [MemberInfo] 2116 using MemberList = std::vector<MemberInfo>; 2117 2118 using MethodsList = TinyPtrVector<const DISubprogram *>; 2119 // MethodName -> MethodsList 2120 using MethodsMap = MapVector<MDString *, MethodsList>; 2121 2122 /// Base classes. 2123 std::vector<const DIDerivedType *> Inheritance; 2124 2125 /// Direct members. 2126 MemberList Members; 2127 // Direct overloaded methods gathered by name. 2128 MethodsMap Methods; 2129 2130 TypeIndex VShapeTI; 2131 2132 std::vector<const DIType *> NestedTypes; 2133 }; 2134 2135 void CodeViewDebug::clear() { 2136 assert(CurFn == nullptr); 2137 FileIdMap.clear(); 2138 FnDebugInfo.clear(); 2139 FileToFilepathMap.clear(); 2140 LocalUDTs.clear(); 2141 GlobalUDTs.clear(); 2142 TypeIndices.clear(); 2143 CompleteTypeIndices.clear(); 2144 ScopeGlobals.clear(); 2145 } 2146 2147 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2148 const DIDerivedType *DDTy) { 2149 if (!DDTy->getName().empty()) { 2150 Info.Members.push_back({DDTy, 0}); 2151 2152 // Collect static const data members. 2153 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2154 DINode::FlagStaticMember) 2155 StaticConstMembers.push_back(DDTy); 2156 2157 return; 2158 } 2159 2160 // An unnamed member may represent a nested struct or union. Attempt to 2161 // interpret the unnamed member as a DICompositeType possibly wrapped in 2162 // qualifier types. Add all the indirect fields to the current record if that 2163 // succeeds, and drop the member if that fails. 2164 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2165 uint64_t Offset = DDTy->getOffsetInBits(); 2166 const DIType *Ty = DDTy->getBaseType(); 2167 bool FullyResolved = false; 2168 while (!FullyResolved) { 2169 switch (Ty->getTag()) { 2170 case dwarf::DW_TAG_const_type: 2171 case dwarf::DW_TAG_volatile_type: 2172 // FIXME: we should apply the qualifier types to the indirect fields 2173 // rather than dropping them. 2174 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2175 break; 2176 default: 2177 FullyResolved = true; 2178 break; 2179 } 2180 } 2181 2182 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2183 if (!DCTy) 2184 return; 2185 2186 ClassInfo NestedInfo = collectClassInfo(DCTy); 2187 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2188 Info.Members.push_back( 2189 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2190 } 2191 2192 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2193 ClassInfo Info; 2194 // Add elements to structure type. 2195 DINodeArray Elements = Ty->getElements(); 2196 for (auto *Element : Elements) { 2197 // We assume that the frontend provides all members in source declaration 2198 // order, which is what MSVC does. 2199 if (!Element) 2200 continue; 2201 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2202 Info.Methods[SP->getRawName()].push_back(SP); 2203 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2204 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2205 collectMemberInfo(Info, DDTy); 2206 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2207 Info.Inheritance.push_back(DDTy); 2208 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2209 DDTy->getName() == "__vtbl_ptr_type") { 2210 Info.VShapeTI = getTypeIndex(DDTy); 2211 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2212 Info.NestedTypes.push_back(DDTy); 2213 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2214 // Ignore friend members. It appears that MSVC emitted info about 2215 // friends in the past, but modern versions do not. 2216 } 2217 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2218 Info.NestedTypes.push_back(Composite); 2219 } 2220 // Skip other unrecognized kinds of elements. 2221 } 2222 return Info; 2223 } 2224 2225 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2226 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2227 // if a complete type should be emitted instead of a forward reference. 2228 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2229 !Ty->isForwardDecl(); 2230 } 2231 2232 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2233 // Emit the complete type for unnamed structs. C++ classes with methods 2234 // which have a circular reference back to the class type are expected to 2235 // be named by the front-end and should not be "unnamed". C unnamed 2236 // structs should not have circular references. 2237 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2238 // If this unnamed complete type is already in the process of being defined 2239 // then the description of the type is malformed and cannot be emitted 2240 // into CodeView correctly so report a fatal error. 2241 auto I = CompleteTypeIndices.find(Ty); 2242 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2243 report_fatal_error("cannot debug circular reference to unnamed type"); 2244 return getCompleteTypeIndex(Ty); 2245 } 2246 2247 // First, construct the forward decl. Don't look into Ty to compute the 2248 // forward decl options, since it might not be available in all TUs. 2249 TypeRecordKind Kind = getRecordKind(Ty); 2250 ClassOptions CO = 2251 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2252 std::string FullName = getFullyQualifiedName(Ty); 2253 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2254 FullName, Ty->getIdentifier()); 2255 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2256 if (!Ty->isForwardDecl()) 2257 DeferredCompleteTypes.push_back(Ty); 2258 return FwdDeclTI; 2259 } 2260 2261 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2262 // Construct the field list and complete type record. 2263 TypeRecordKind Kind = getRecordKind(Ty); 2264 ClassOptions CO = getCommonClassOptions(Ty); 2265 TypeIndex FieldTI; 2266 TypeIndex VShapeTI; 2267 unsigned FieldCount; 2268 bool ContainsNestedClass; 2269 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2270 lowerRecordFieldList(Ty); 2271 2272 if (ContainsNestedClass) 2273 CO |= ClassOptions::ContainsNestedClass; 2274 2275 // MSVC appears to set this flag by searching any destructor or method with 2276 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2277 // the members, however special member functions are not yet emitted into 2278 // debug information. For now checking a class's non-triviality seems enough. 2279 // FIXME: not true for a nested unnamed struct. 2280 if (isNonTrivial(Ty)) 2281 CO |= ClassOptions::HasConstructorOrDestructor; 2282 2283 std::string FullName = getFullyQualifiedName(Ty); 2284 2285 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2286 2287 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2288 SizeInBytes, FullName, Ty->getIdentifier()); 2289 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2290 2291 addUDTSrcLine(Ty, ClassTI); 2292 2293 addToUDTs(Ty); 2294 2295 return ClassTI; 2296 } 2297 2298 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2299 // Emit the complete type for unnamed unions. 2300 if (shouldAlwaysEmitCompleteClassType(Ty)) 2301 return getCompleteTypeIndex(Ty); 2302 2303 ClassOptions CO = 2304 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2305 std::string FullName = getFullyQualifiedName(Ty); 2306 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2307 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2308 if (!Ty->isForwardDecl()) 2309 DeferredCompleteTypes.push_back(Ty); 2310 return FwdDeclTI; 2311 } 2312 2313 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2314 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2315 TypeIndex FieldTI; 2316 unsigned FieldCount; 2317 bool ContainsNestedClass; 2318 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2319 lowerRecordFieldList(Ty); 2320 2321 if (ContainsNestedClass) 2322 CO |= ClassOptions::ContainsNestedClass; 2323 2324 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2325 std::string FullName = getFullyQualifiedName(Ty); 2326 2327 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2328 Ty->getIdentifier()); 2329 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2330 2331 addUDTSrcLine(Ty, UnionTI); 2332 2333 addToUDTs(Ty); 2334 2335 return UnionTI; 2336 } 2337 2338 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2339 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2340 // Manually count members. MSVC appears to count everything that generates a 2341 // field list record. Each individual overload in a method overload group 2342 // contributes to this count, even though the overload group is a single field 2343 // list record. 2344 unsigned MemberCount = 0; 2345 ClassInfo Info = collectClassInfo(Ty); 2346 ContinuationRecordBuilder ContinuationBuilder; 2347 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2348 2349 // Create base classes. 2350 for (const DIDerivedType *I : Info.Inheritance) { 2351 if (I->getFlags() & DINode::FlagVirtual) { 2352 // Virtual base. 2353 unsigned VBPtrOffset = I->getVBPtrOffset(); 2354 // FIXME: Despite the accessor name, the offset is really in bytes. 2355 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2356 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2357 ? TypeRecordKind::IndirectVirtualBaseClass 2358 : TypeRecordKind::VirtualBaseClass; 2359 VirtualBaseClassRecord VBCR( 2360 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2361 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2362 VBTableIndex); 2363 2364 ContinuationBuilder.writeMemberType(VBCR); 2365 MemberCount++; 2366 } else { 2367 assert(I->getOffsetInBits() % 8 == 0 && 2368 "bases must be on byte boundaries"); 2369 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2370 getTypeIndex(I->getBaseType()), 2371 I->getOffsetInBits() / 8); 2372 ContinuationBuilder.writeMemberType(BCR); 2373 MemberCount++; 2374 } 2375 } 2376 2377 // Create members. 2378 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2379 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2380 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2381 StringRef MemberName = Member->getName(); 2382 MemberAccess Access = 2383 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2384 2385 if (Member->isStaticMember()) { 2386 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2387 ContinuationBuilder.writeMemberType(SDMR); 2388 MemberCount++; 2389 continue; 2390 } 2391 2392 // Virtual function pointer member. 2393 if ((Member->getFlags() & DINode::FlagArtificial) && 2394 Member->getName().startswith("_vptr$")) { 2395 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2396 ContinuationBuilder.writeMemberType(VFPR); 2397 MemberCount++; 2398 continue; 2399 } 2400 2401 // Data member. 2402 uint64_t MemberOffsetInBits = 2403 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2404 if (Member->isBitField()) { 2405 uint64_t StartBitOffset = MemberOffsetInBits; 2406 if (const auto *CI = 2407 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2408 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2409 } 2410 StartBitOffset -= MemberOffsetInBits; 2411 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2412 StartBitOffset); 2413 MemberBaseType = TypeTable.writeLeafType(BFR); 2414 } 2415 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2416 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2417 MemberName); 2418 ContinuationBuilder.writeMemberType(DMR); 2419 MemberCount++; 2420 } 2421 2422 // Create methods 2423 for (auto &MethodItr : Info.Methods) { 2424 StringRef Name = MethodItr.first->getString(); 2425 2426 std::vector<OneMethodRecord> Methods; 2427 for (const DISubprogram *SP : MethodItr.second) { 2428 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2429 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2430 2431 unsigned VFTableOffset = -1; 2432 if (Introduced) 2433 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2434 2435 Methods.push_back(OneMethodRecord( 2436 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2437 translateMethodKindFlags(SP, Introduced), 2438 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2439 MemberCount++; 2440 } 2441 assert(!Methods.empty() && "Empty methods map entry"); 2442 if (Methods.size() == 1) 2443 ContinuationBuilder.writeMemberType(Methods[0]); 2444 else { 2445 // FIXME: Make this use its own ContinuationBuilder so that 2446 // MethodOverloadList can be split correctly. 2447 MethodOverloadListRecord MOLR(Methods); 2448 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2449 2450 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2451 ContinuationBuilder.writeMemberType(OMR); 2452 } 2453 } 2454 2455 // Create nested classes. 2456 for (const DIType *Nested : Info.NestedTypes) { 2457 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2458 ContinuationBuilder.writeMemberType(R); 2459 MemberCount++; 2460 } 2461 2462 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2463 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2464 !Info.NestedTypes.empty()); 2465 } 2466 2467 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2468 if (!VBPType.getIndex()) { 2469 // Make a 'const int *' type. 2470 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2471 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2472 2473 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2474 : PointerKind::Near32; 2475 PointerMode PM = PointerMode::Pointer; 2476 PointerOptions PO = PointerOptions::None; 2477 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2478 VBPType = TypeTable.writeLeafType(PR); 2479 } 2480 2481 return VBPType; 2482 } 2483 2484 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2485 // The null DIType is the void type. Don't try to hash it. 2486 if (!Ty) 2487 return TypeIndex::Void(); 2488 2489 // Check if we've already translated this type. Don't try to do a 2490 // get-or-create style insertion that caches the hash lookup across the 2491 // lowerType call. It will update the TypeIndices map. 2492 auto I = TypeIndices.find({Ty, ClassTy}); 2493 if (I != TypeIndices.end()) 2494 return I->second; 2495 2496 TypeLoweringScope S(*this); 2497 TypeIndex TI = lowerType(Ty, ClassTy); 2498 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2499 } 2500 2501 codeview::TypeIndex 2502 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2503 const DISubroutineType *SubroutineTy) { 2504 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2505 "this type must be a pointer type"); 2506 2507 PointerOptions Options = PointerOptions::None; 2508 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2509 Options = PointerOptions::LValueRefThisPointer; 2510 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2511 Options = PointerOptions::RValueRefThisPointer; 2512 2513 // Check if we've already translated this type. If there is no ref qualifier 2514 // on the function then we look up this pointer type with no associated class 2515 // so that the TypeIndex for the this pointer can be shared with the type 2516 // index for other pointers to this class type. If there is a ref qualifier 2517 // then we lookup the pointer using the subroutine as the parent type. 2518 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2519 if (I != TypeIndices.end()) 2520 return I->second; 2521 2522 TypeLoweringScope S(*this); 2523 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2524 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2525 } 2526 2527 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2528 PointerRecord PR(getTypeIndex(Ty), 2529 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2530 : PointerKind::Near32, 2531 PointerMode::LValueReference, PointerOptions::None, 2532 Ty->getSizeInBits() / 8); 2533 return TypeTable.writeLeafType(PR); 2534 } 2535 2536 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2537 // The null DIType is the void type. Don't try to hash it. 2538 if (!Ty) 2539 return TypeIndex::Void(); 2540 2541 // Look through typedefs when getting the complete type index. Call 2542 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2543 // emitted only once. 2544 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2545 (void)getTypeIndex(Ty); 2546 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2547 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2548 2549 // If this is a non-record type, the complete type index is the same as the 2550 // normal type index. Just call getTypeIndex. 2551 switch (Ty->getTag()) { 2552 case dwarf::DW_TAG_class_type: 2553 case dwarf::DW_TAG_structure_type: 2554 case dwarf::DW_TAG_union_type: 2555 break; 2556 default: 2557 return getTypeIndex(Ty); 2558 } 2559 2560 const auto *CTy = cast<DICompositeType>(Ty); 2561 2562 TypeLoweringScope S(*this); 2563 2564 // Make sure the forward declaration is emitted first. It's unclear if this 2565 // is necessary, but MSVC does it, and we should follow suit until we can show 2566 // otherwise. 2567 // We only emit a forward declaration for named types. 2568 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2569 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2570 2571 // Just use the forward decl if we don't have complete type info. This 2572 // might happen if the frontend is using modules and expects the complete 2573 // definition to be emitted elsewhere. 2574 if (CTy->isForwardDecl()) 2575 return FwdDeclTI; 2576 } 2577 2578 // Check if we've already translated the complete record type. 2579 // Insert the type with a null TypeIndex to signify that the type is currently 2580 // being lowered. 2581 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2582 if (!InsertResult.second) 2583 return InsertResult.first->second; 2584 2585 TypeIndex TI; 2586 switch (CTy->getTag()) { 2587 case dwarf::DW_TAG_class_type: 2588 case dwarf::DW_TAG_structure_type: 2589 TI = lowerCompleteTypeClass(CTy); 2590 break; 2591 case dwarf::DW_TAG_union_type: 2592 TI = lowerCompleteTypeUnion(CTy); 2593 break; 2594 default: 2595 llvm_unreachable("not a record"); 2596 } 2597 2598 // Update the type index associated with this CompositeType. This cannot 2599 // use the 'InsertResult' iterator above because it is potentially 2600 // invalidated by map insertions which can occur while lowering the class 2601 // type above. 2602 CompleteTypeIndices[CTy] = TI; 2603 return TI; 2604 } 2605 2606 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2607 /// and do this until fixpoint, as each complete record type typically 2608 /// references 2609 /// many other record types. 2610 void CodeViewDebug::emitDeferredCompleteTypes() { 2611 SmallVector<const DICompositeType *, 4> TypesToEmit; 2612 while (!DeferredCompleteTypes.empty()) { 2613 std::swap(DeferredCompleteTypes, TypesToEmit); 2614 for (const DICompositeType *RecordTy : TypesToEmit) 2615 getCompleteTypeIndex(RecordTy); 2616 TypesToEmit.clear(); 2617 } 2618 } 2619 2620 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2621 ArrayRef<LocalVariable> Locals) { 2622 // Get the sorted list of parameters and emit them first. 2623 SmallVector<const LocalVariable *, 6> Params; 2624 for (const LocalVariable &L : Locals) 2625 if (L.DIVar->isParameter()) 2626 Params.push_back(&L); 2627 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2628 return L->DIVar->getArg() < R->DIVar->getArg(); 2629 }); 2630 for (const LocalVariable *L : Params) 2631 emitLocalVariable(FI, *L); 2632 2633 // Next emit all non-parameters in the order that we found them. 2634 for (const LocalVariable &L : Locals) 2635 if (!L.DIVar->isParameter()) 2636 emitLocalVariable(FI, L); 2637 } 2638 2639 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2640 const LocalVariable &Var) { 2641 // LocalSym record, see SymbolRecord.h for more info. 2642 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2643 2644 LocalSymFlags Flags = LocalSymFlags::None; 2645 if (Var.DIVar->isParameter()) 2646 Flags |= LocalSymFlags::IsParameter; 2647 if (Var.DefRanges.empty()) 2648 Flags |= LocalSymFlags::IsOptimizedOut; 2649 2650 OS.AddComment("TypeIndex"); 2651 TypeIndex TI = Var.UseReferenceType 2652 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2653 : getCompleteTypeIndex(Var.DIVar->getType()); 2654 OS.emitInt32(TI.getIndex()); 2655 OS.AddComment("Flags"); 2656 OS.emitInt16(static_cast<uint16_t>(Flags)); 2657 // Truncate the name so we won't overflow the record length field. 2658 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2659 endSymbolRecord(LocalEnd); 2660 2661 // Calculate the on disk prefix of the appropriate def range record. The 2662 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2663 // should be big enough to hold all forms without memory allocation. 2664 SmallString<20> BytePrefix; 2665 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2666 BytePrefix.clear(); 2667 if (DefRange.InMemory) { 2668 int Offset = DefRange.DataOffset; 2669 unsigned Reg = DefRange.CVRegister; 2670 2671 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2672 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2673 // instead. In frames without stack realignment, $T0 will be the CFA. 2674 if (RegisterId(Reg) == RegisterId::ESP) { 2675 Reg = unsigned(RegisterId::VFRAME); 2676 Offset += FI.OffsetAdjustment; 2677 } 2678 2679 // If we can use the chosen frame pointer for the frame and this isn't a 2680 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2681 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2682 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2683 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2684 (bool(Flags & LocalSymFlags::IsParameter) 2685 ? (EncFP == FI.EncodedParamFramePtrReg) 2686 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2687 DefRangeFramePointerRelHeader DRHdr; 2688 DRHdr.Offset = Offset; 2689 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2690 } else { 2691 uint16_t RegRelFlags = 0; 2692 if (DefRange.IsSubfield) { 2693 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2694 (DefRange.StructOffset 2695 << DefRangeRegisterRelSym::OffsetInParentShift); 2696 } 2697 DefRangeRegisterRelHeader DRHdr; 2698 DRHdr.Register = Reg; 2699 DRHdr.Flags = RegRelFlags; 2700 DRHdr.BasePointerOffset = Offset; 2701 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2702 } 2703 } else { 2704 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2705 if (DefRange.IsSubfield) { 2706 DefRangeSubfieldRegisterHeader DRHdr; 2707 DRHdr.Register = DefRange.CVRegister; 2708 DRHdr.MayHaveNoName = 0; 2709 DRHdr.OffsetInParent = DefRange.StructOffset; 2710 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2711 } else { 2712 DefRangeRegisterHeader DRHdr; 2713 DRHdr.Register = DefRange.CVRegister; 2714 DRHdr.MayHaveNoName = 0; 2715 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2716 } 2717 } 2718 } 2719 } 2720 2721 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2722 const FunctionInfo& FI) { 2723 for (LexicalBlock *Block : Blocks) 2724 emitLexicalBlock(*Block, FI); 2725 } 2726 2727 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2728 /// lexical block scope. 2729 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2730 const FunctionInfo& FI) { 2731 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2732 OS.AddComment("PtrParent"); 2733 OS.emitInt32(0); // PtrParent 2734 OS.AddComment("PtrEnd"); 2735 OS.emitInt32(0); // PtrEnd 2736 OS.AddComment("Code size"); 2737 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2738 OS.AddComment("Function section relative address"); 2739 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2740 OS.AddComment("Function section index"); 2741 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2742 OS.AddComment("Lexical block name"); 2743 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2744 endSymbolRecord(RecordEnd); 2745 2746 // Emit variables local to this lexical block. 2747 emitLocalVariableList(FI, Block.Locals); 2748 emitGlobalVariableList(Block.Globals); 2749 2750 // Emit lexical blocks contained within this block. 2751 emitLexicalBlockList(Block.Children, FI); 2752 2753 // Close the lexical block scope. 2754 emitEndSymbolRecord(SymbolKind::S_END); 2755 } 2756 2757 /// Convenience routine for collecting lexical block information for a list 2758 /// of lexical scopes. 2759 void CodeViewDebug::collectLexicalBlockInfo( 2760 SmallVectorImpl<LexicalScope *> &Scopes, 2761 SmallVectorImpl<LexicalBlock *> &Blocks, 2762 SmallVectorImpl<LocalVariable> &Locals, 2763 SmallVectorImpl<CVGlobalVariable> &Globals) { 2764 for (LexicalScope *Scope : Scopes) 2765 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2766 } 2767 2768 /// Populate the lexical blocks and local variable lists of the parent with 2769 /// information about the specified lexical scope. 2770 void CodeViewDebug::collectLexicalBlockInfo( 2771 LexicalScope &Scope, 2772 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2773 SmallVectorImpl<LocalVariable> &ParentLocals, 2774 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2775 if (Scope.isAbstractScope()) 2776 return; 2777 2778 // Gather information about the lexical scope including local variables, 2779 // global variables, and address ranges. 2780 bool IgnoreScope = false; 2781 auto LI = ScopeVariables.find(&Scope); 2782 SmallVectorImpl<LocalVariable> *Locals = 2783 LI != ScopeVariables.end() ? &LI->second : nullptr; 2784 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2785 SmallVectorImpl<CVGlobalVariable> *Globals = 2786 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2787 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2788 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2789 2790 // Ignore lexical scopes which do not contain variables. 2791 if (!Locals && !Globals) 2792 IgnoreScope = true; 2793 2794 // Ignore lexical scopes which are not lexical blocks. 2795 if (!DILB) 2796 IgnoreScope = true; 2797 2798 // Ignore scopes which have too many address ranges to represent in the 2799 // current CodeView format or do not have a valid address range. 2800 // 2801 // For lexical scopes with multiple address ranges you may be tempted to 2802 // construct a single range covering every instruction where the block is 2803 // live and everything in between. Unfortunately, Visual Studio only 2804 // displays variables from the first matching lexical block scope. If the 2805 // first lexical block contains exception handling code or cold code which 2806 // is moved to the bottom of the routine creating a single range covering 2807 // nearly the entire routine, then it will hide all other lexical blocks 2808 // and the variables they contain. 2809 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2810 IgnoreScope = true; 2811 2812 if (IgnoreScope) { 2813 // This scope can be safely ignored and eliminating it will reduce the 2814 // size of the debug information. Be sure to collect any variable and scope 2815 // information from the this scope or any of its children and collapse them 2816 // into the parent scope. 2817 if (Locals) 2818 ParentLocals.append(Locals->begin(), Locals->end()); 2819 if (Globals) 2820 ParentGlobals.append(Globals->begin(), Globals->end()); 2821 collectLexicalBlockInfo(Scope.getChildren(), 2822 ParentBlocks, 2823 ParentLocals, 2824 ParentGlobals); 2825 return; 2826 } 2827 2828 // Create a new CodeView lexical block for this lexical scope. If we've 2829 // seen this DILexicalBlock before then the scope tree is malformed and 2830 // we can handle this gracefully by not processing it a second time. 2831 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2832 if (!BlockInsertion.second) 2833 return; 2834 2835 // Create a lexical block containing the variables and collect the the 2836 // lexical block information for the children. 2837 const InsnRange &Range = Ranges.front(); 2838 assert(Range.first && Range.second); 2839 LexicalBlock &Block = BlockInsertion.first->second; 2840 Block.Begin = getLabelBeforeInsn(Range.first); 2841 Block.End = getLabelAfterInsn(Range.second); 2842 assert(Block.Begin && "missing label for scope begin"); 2843 assert(Block.End && "missing label for scope end"); 2844 Block.Name = DILB->getName(); 2845 if (Locals) 2846 Block.Locals = std::move(*Locals); 2847 if (Globals) 2848 Block.Globals = std::move(*Globals); 2849 ParentBlocks.push_back(&Block); 2850 collectLexicalBlockInfo(Scope.getChildren(), 2851 Block.Children, 2852 Block.Locals, 2853 Block.Globals); 2854 } 2855 2856 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2857 const Function &GV = MF->getFunction(); 2858 assert(FnDebugInfo.count(&GV)); 2859 assert(CurFn == FnDebugInfo[&GV].get()); 2860 2861 collectVariableInfo(GV.getSubprogram()); 2862 2863 // Build the lexical block structure to emit for this routine. 2864 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2865 collectLexicalBlockInfo(*CFS, 2866 CurFn->ChildBlocks, 2867 CurFn->Locals, 2868 CurFn->Globals); 2869 2870 // Clear the scope and variable information from the map which will not be 2871 // valid after we have finished processing this routine. This also prepares 2872 // the map for the subsequent routine. 2873 ScopeVariables.clear(); 2874 2875 // Don't emit anything if we don't have any line tables. 2876 // Thunks are compiler-generated and probably won't have source correlation. 2877 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2878 FnDebugInfo.erase(&GV); 2879 CurFn = nullptr; 2880 return; 2881 } 2882 2883 // Find heap alloc sites and add to list. 2884 for (const auto &MBB : *MF) { 2885 for (const auto &MI : MBB) { 2886 if (MDNode *MD = MI.getHeapAllocMarker()) { 2887 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2888 getLabelAfterInsn(&MI), 2889 dyn_cast<DIType>(MD))); 2890 } 2891 } 2892 } 2893 2894 CurFn->Annotations = MF->getCodeViewAnnotations(); 2895 2896 CurFn->End = Asm->getFunctionEnd(); 2897 2898 CurFn = nullptr; 2899 } 2900 2901 // Usable locations are valid with non-zero line numbers. A line number of zero 2902 // corresponds to optimized code that doesn't have a distinct source location. 2903 // In this case, we try to use the previous or next source location depending on 2904 // the context. 2905 static bool isUsableDebugLoc(DebugLoc DL) { 2906 return DL && DL.getLine() != 0; 2907 } 2908 2909 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2910 DebugHandlerBase::beginInstruction(MI); 2911 2912 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2913 if (!Asm || !CurFn || MI->isDebugInstr() || 2914 MI->getFlag(MachineInstr::FrameSetup)) 2915 return; 2916 2917 // If the first instruction of a new MBB has no location, find the first 2918 // instruction with a location and use that. 2919 DebugLoc DL = MI->getDebugLoc(); 2920 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2921 for (const auto &NextMI : *MI->getParent()) { 2922 if (NextMI.isDebugInstr()) 2923 continue; 2924 DL = NextMI.getDebugLoc(); 2925 if (isUsableDebugLoc(DL)) 2926 break; 2927 } 2928 // FIXME: Handle the case where the BB has no valid locations. This would 2929 // probably require doing a real dataflow analysis. 2930 } 2931 PrevInstBB = MI->getParent(); 2932 2933 // If we still don't have a debug location, don't record a location. 2934 if (!isUsableDebugLoc(DL)) 2935 return; 2936 2937 maybeRecordLocation(DL, Asm->MF); 2938 } 2939 2940 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2941 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2942 *EndLabel = MMI->getContext().createTempSymbol(); 2943 OS.emitInt32(unsigned(Kind)); 2944 OS.AddComment("Subsection size"); 2945 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2946 OS.emitLabel(BeginLabel); 2947 return EndLabel; 2948 } 2949 2950 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2951 OS.emitLabel(EndLabel); 2952 // Every subsection must be aligned to a 4-byte boundary. 2953 OS.emitValueToAlignment(4); 2954 } 2955 2956 static StringRef getSymbolName(SymbolKind SymKind) { 2957 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2958 if (EE.Value == SymKind) 2959 return EE.Name; 2960 return ""; 2961 } 2962 2963 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2964 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2965 *EndLabel = MMI->getContext().createTempSymbol(); 2966 OS.AddComment("Record length"); 2967 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2968 OS.emitLabel(BeginLabel); 2969 if (OS.isVerboseAsm()) 2970 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2971 OS.emitInt16(unsigned(SymKind)); 2972 return EndLabel; 2973 } 2974 2975 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2976 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2977 // an extra copy of every symbol record in LLD. This increases object file 2978 // size by less than 1% in the clang build, and is compatible with the Visual 2979 // C++ linker. 2980 OS.emitValueToAlignment(4); 2981 OS.emitLabel(SymEnd); 2982 } 2983 2984 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2985 OS.AddComment("Record length"); 2986 OS.emitInt16(2); 2987 if (OS.isVerboseAsm()) 2988 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2989 OS.emitInt16(uint16_t(EndKind)); // Record Kind 2990 } 2991 2992 void CodeViewDebug::emitDebugInfoForUDTs( 2993 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 2994 #ifndef NDEBUG 2995 size_t OriginalSize = UDTs.size(); 2996 #endif 2997 for (const auto &UDT : UDTs) { 2998 const DIType *T = UDT.second; 2999 assert(shouldEmitUdt(T)); 3000 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 3001 OS.AddComment("Type"); 3002 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3003 assert(OriginalSize == UDTs.size() && 3004 "getCompleteTypeIndex found new UDTs!"); 3005 emitNullTerminatedSymbolName(OS, UDT.first); 3006 endSymbolRecord(UDTRecordEnd); 3007 } 3008 } 3009 3010 void CodeViewDebug::collectGlobalVariableInfo() { 3011 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3012 GlobalMap; 3013 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3014 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3015 GV.getDebugInfo(GVEs); 3016 for (const auto *GVE : GVEs) 3017 GlobalMap[GVE] = &GV; 3018 } 3019 3020 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3021 for (const MDNode *Node : CUs->operands()) { 3022 const auto *CU = cast<DICompileUnit>(Node); 3023 for (const auto *GVE : CU->getGlobalVariables()) { 3024 const DIGlobalVariable *DIGV = GVE->getVariable(); 3025 const DIExpression *DIE = GVE->getExpression(); 3026 3027 // Emit constant global variables in a global symbol section. 3028 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3029 CVGlobalVariable CVGV = {DIGV, DIE}; 3030 GlobalVariables.emplace_back(std::move(CVGV)); 3031 } 3032 3033 const auto *GV = GlobalMap.lookup(GVE); 3034 if (!GV || GV->isDeclarationForLinker()) 3035 continue; 3036 3037 DIScope *Scope = DIGV->getScope(); 3038 SmallVector<CVGlobalVariable, 1> *VariableList; 3039 if (Scope && isa<DILocalScope>(Scope)) { 3040 // Locate a global variable list for this scope, creating one if 3041 // necessary. 3042 auto Insertion = ScopeGlobals.insert( 3043 {Scope, std::unique_ptr<GlobalVariableList>()}); 3044 if (Insertion.second) 3045 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3046 VariableList = Insertion.first->second.get(); 3047 } else if (GV->hasComdat()) 3048 // Emit this global variable into a COMDAT section. 3049 VariableList = &ComdatVariables; 3050 else 3051 // Emit this global variable in a single global symbol section. 3052 VariableList = &GlobalVariables; 3053 CVGlobalVariable CVGV = {DIGV, GV}; 3054 VariableList->emplace_back(std::move(CVGV)); 3055 } 3056 } 3057 } 3058 3059 void CodeViewDebug::collectDebugInfoForGlobals() { 3060 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3061 const DIGlobalVariable *DIGV = CVGV.DIGV; 3062 const DIScope *Scope = DIGV->getScope(); 3063 getCompleteTypeIndex(DIGV->getType()); 3064 getFullyQualifiedName(Scope, DIGV->getName()); 3065 } 3066 3067 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3068 const DIGlobalVariable *DIGV = CVGV.DIGV; 3069 const DIScope *Scope = DIGV->getScope(); 3070 getCompleteTypeIndex(DIGV->getType()); 3071 getFullyQualifiedName(Scope, DIGV->getName()); 3072 } 3073 } 3074 3075 void CodeViewDebug::emitDebugInfoForGlobals() { 3076 // First, emit all globals that are not in a comdat in a single symbol 3077 // substream. MSVC doesn't like it if the substream is empty, so only open 3078 // it if we have at least one global to emit. 3079 switchToDebugSectionForSymbol(nullptr); 3080 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3081 OS.AddComment("Symbol subsection for globals"); 3082 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3083 emitGlobalVariableList(GlobalVariables); 3084 emitStaticConstMemberList(); 3085 endCVSubsection(EndLabel); 3086 } 3087 3088 // Second, emit each global that is in a comdat into its own .debug$S 3089 // section along with its own symbol substream. 3090 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3091 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3092 MCSymbol *GVSym = Asm->getSymbol(GV); 3093 OS.AddComment("Symbol subsection for " + 3094 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3095 switchToDebugSectionForSymbol(GVSym); 3096 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3097 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3098 emitDebugInfoForGlobal(CVGV); 3099 endCVSubsection(EndLabel); 3100 } 3101 } 3102 3103 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3104 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3105 for (const MDNode *Node : CUs->operands()) { 3106 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3107 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3108 getTypeIndex(RT); 3109 // FIXME: Add to global/local DTU list. 3110 } 3111 } 3112 } 3113 } 3114 3115 // Emit each global variable in the specified array. 3116 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3117 for (const CVGlobalVariable &CVGV : Globals) { 3118 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3119 emitDebugInfoForGlobal(CVGV); 3120 } 3121 } 3122 3123 void CodeViewDebug::emitStaticConstMemberList() { 3124 for (const DIDerivedType *DTy : StaticConstMembers) { 3125 const DIScope *Scope = DTy->getScope(); 3126 3127 APSInt Value; 3128 if (const ConstantInt *CI = 3129 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3130 Value = APSInt(CI->getValue(), 3131 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3132 else if (const ConstantFP *CFP = 3133 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3134 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3135 else 3136 continue; 3137 3138 std::string QualifiedName = getFullyQualifiedName(Scope, DTy->getName()); 3139 3140 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3141 OS.AddComment("Type"); 3142 OS.emitInt32(getTypeIndex(DTy->getBaseType()).getIndex()); 3143 OS.AddComment("Value"); 3144 3145 // Encoded integers shouldn't need more than 10 bytes. 3146 uint8_t Data[10]; 3147 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3148 CodeViewRecordIO IO(Writer); 3149 cantFail(IO.mapEncodedInteger(Value)); 3150 StringRef SRef((char *)Data, Writer.getOffset()); 3151 OS.emitBinaryData(SRef); 3152 3153 OS.AddComment("Name"); 3154 emitNullTerminatedSymbolName(OS, QualifiedName); 3155 endSymbolRecord(SConstantEnd); 3156 } 3157 } 3158 3159 static bool isFloatDIType(const DIType *Ty) { 3160 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) 3161 return false; 3162 3163 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3164 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3165 if (T == dwarf::DW_TAG_pointer_type || 3166 T == dwarf::DW_TAG_ptr_to_member_type || 3167 T == dwarf::DW_TAG_reference_type || 3168 T == dwarf::DW_TAG_rvalue_reference_type) 3169 return false; 3170 assert(DTy->getBaseType() && "Expected valid base type"); 3171 return isFloatDIType(DTy->getBaseType()); 3172 } 3173 3174 auto *BTy = cast<DIBasicType>(Ty); 3175 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3176 } 3177 3178 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3179 const DIGlobalVariable *DIGV = CVGV.DIGV; 3180 3181 const DIScope *Scope = DIGV->getScope(); 3182 // For static data members, get the scope from the declaration. 3183 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3184 DIGV->getRawStaticDataMemberDeclaration())) 3185 Scope = MemberDecl->getScope(); 3186 std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName()); 3187 3188 if (const GlobalVariable *GV = 3189 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3190 // DataSym record, see SymbolRecord.h for more info. Thread local data 3191 // happens to have the same format as global data. 3192 MCSymbol *GVSym = Asm->getSymbol(GV); 3193 SymbolKind DataSym = GV->isThreadLocal() 3194 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3195 : SymbolKind::S_GTHREAD32) 3196 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3197 : SymbolKind::S_GDATA32); 3198 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3199 OS.AddComment("Type"); 3200 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3201 OS.AddComment("DataOffset"); 3202 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3203 OS.AddComment("Segment"); 3204 OS.EmitCOFFSectionIndex(GVSym); 3205 OS.AddComment("Name"); 3206 const unsigned LengthOfDataRecord = 12; 3207 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3208 endSymbolRecord(DataEnd); 3209 } else { 3210 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3211 assert(DIE->isConstant() && 3212 "Global constant variables must contain a constant expression."); 3213 3214 // Use unsigned for floats. 3215 bool isUnsigned = isFloatDIType(DIGV->getType()) 3216 ? true 3217 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3218 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3219 3220 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3221 OS.AddComment("Type"); 3222 OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex()); 3223 OS.AddComment("Value"); 3224 3225 // Encoded integers shouldn't need more than 10 bytes. 3226 uint8_t data[10]; 3227 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3228 CodeViewRecordIO IO(Writer); 3229 cantFail(IO.mapEncodedInteger(Value)); 3230 StringRef SRef((char *)data, Writer.getOffset()); 3231 OS.emitBinaryData(SRef); 3232 3233 OS.AddComment("Name"); 3234 emitNullTerminatedSymbolName(OS, QualifiedName); 3235 endSymbolRecord(SConstantEnd); 3236 } 3237 } 3238