1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/Compiler.h" 71 #include "llvm/Support/Endian.h" 72 #include "llvm/Support/Error.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/SMLoc.h" 75 #include "llvm/Support/ScopedPrinter.h" 76 #include "llvm/Target/TargetMachine.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cctype> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <limits> 84 #include <string> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace llvm::codeview; 90 91 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 92 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 93 // If module doesn't have named metadata anchors or COFF debug section 94 // is not available, skip any debug info related stuff. 95 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 96 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 97 Asm = nullptr; 98 return; 99 } 100 101 // Tell MMI that we have debug info. 102 MMI->setDebugInfoAvailability(true); 103 } 104 105 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 106 std::string &Filepath = FileToFilepathMap[File]; 107 if (!Filepath.empty()) 108 return Filepath; 109 110 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 111 112 // Clang emits directory and relative filename info into the IR, but CodeView 113 // operates on full paths. We could change Clang to emit full paths too, but 114 // that would increase the IR size and probably not needed for other users. 115 // For now, just concatenate and canonicalize the path here. 116 if (Filename.find(':') == 1) 117 Filepath = Filename; 118 else 119 Filepath = (Dir + "\\" + Filename).str(); 120 121 // Canonicalize the path. We have to do it textually because we may no longer 122 // have access the file in the filesystem. 123 // First, replace all slashes with backslashes. 124 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 125 126 // Remove all "\.\" with "\". 127 size_t Cursor = 0; 128 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 129 Filepath.erase(Cursor, 2); 130 131 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 132 // path should be well-formatted, e.g. start with a drive letter, etc. 133 Cursor = 0; 134 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 135 // Something's wrong if the path starts with "\..\", abort. 136 if (Cursor == 0) 137 break; 138 139 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 140 if (PrevSlash == std::string::npos) 141 // Something's wrong, abort. 142 break; 143 144 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 145 // The next ".." might be following the one we've just erased. 146 Cursor = PrevSlash; 147 } 148 149 // Remove all duplicate backslashes. 150 Cursor = 0; 151 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 152 Filepath.erase(Cursor, 1); 153 154 return Filepath; 155 } 156 157 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 158 StringRef FullPath = getFullFilepath(F); 159 unsigned NextId = FileIdMap.size() + 1; 160 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 161 if (Insertion.second) { 162 // We have to compute the full filepath and emit a .cv_file directive. 163 std::string Checksum = fromHex(F->getChecksum()); 164 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 165 memcpy(CKMem, Checksum.data(), Checksum.size()); 166 ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem), 167 Checksum.size()); 168 DIFile::ChecksumKind ChecksumKind = F->getChecksumKind(); 169 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 170 static_cast<unsigned>(ChecksumKind)); 171 (void)Success; 172 assert(Success && ".cv_file directive failed"); 173 } 174 return Insertion.first->second; 175 } 176 177 CodeViewDebug::InlineSite & 178 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 179 const DISubprogram *Inlinee) { 180 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 181 InlineSite *Site = &SiteInsertion.first->second; 182 if (SiteInsertion.second) { 183 unsigned ParentFuncId = CurFn->FuncId; 184 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 185 ParentFuncId = 186 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 187 .SiteFuncId; 188 189 Site->SiteFuncId = NextFuncId++; 190 OS.EmitCVInlineSiteIdDirective( 191 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 192 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 193 Site->Inlinee = Inlinee; 194 InlinedSubprograms.insert(Inlinee); 195 getFuncIdForSubprogram(Inlinee); 196 } 197 return *Site; 198 } 199 200 static StringRef getPrettyScopeName(const DIScope *Scope) { 201 StringRef ScopeName = Scope->getName(); 202 if (!ScopeName.empty()) 203 return ScopeName; 204 205 switch (Scope->getTag()) { 206 case dwarf::DW_TAG_enumeration_type: 207 case dwarf::DW_TAG_class_type: 208 case dwarf::DW_TAG_structure_type: 209 case dwarf::DW_TAG_union_type: 210 return "<unnamed-tag>"; 211 case dwarf::DW_TAG_namespace: 212 return "`anonymous namespace'"; 213 } 214 215 return StringRef(); 216 } 217 218 static const DISubprogram *getQualifiedNameComponents( 219 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 220 const DISubprogram *ClosestSubprogram = nullptr; 221 while (Scope != nullptr) { 222 if (ClosestSubprogram == nullptr) 223 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 224 StringRef ScopeName = getPrettyScopeName(Scope); 225 if (!ScopeName.empty()) 226 QualifiedNameComponents.push_back(ScopeName); 227 Scope = Scope->getScope().resolve(); 228 } 229 return ClosestSubprogram; 230 } 231 232 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 233 StringRef TypeName) { 234 std::string FullyQualifiedName; 235 for (StringRef QualifiedNameComponent : 236 llvm::reverse(QualifiedNameComponents)) { 237 FullyQualifiedName.append(QualifiedNameComponent); 238 FullyQualifiedName.append("::"); 239 } 240 FullyQualifiedName.append(TypeName); 241 return FullyQualifiedName; 242 } 243 244 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 245 SmallVector<StringRef, 5> QualifiedNameComponents; 246 getQualifiedNameComponents(Scope, QualifiedNameComponents); 247 return getQualifiedName(QualifiedNameComponents, Name); 248 } 249 250 struct CodeViewDebug::TypeLoweringScope { 251 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 252 ~TypeLoweringScope() { 253 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 254 // inner TypeLoweringScopes don't attempt to emit deferred types. 255 if (CVD.TypeEmissionLevel == 1) 256 CVD.emitDeferredCompleteTypes(); 257 --CVD.TypeEmissionLevel; 258 } 259 CodeViewDebug &CVD; 260 }; 261 262 static std::string getFullyQualifiedName(const DIScope *Ty) { 263 const DIScope *Scope = Ty->getScope().resolve(); 264 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 265 } 266 267 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 268 // No scope means global scope and that uses the zero index. 269 if (!Scope || isa<DIFile>(Scope)) 270 return TypeIndex(); 271 272 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 273 274 // Check if we've already translated this scope. 275 auto I = TypeIndices.find({Scope, nullptr}); 276 if (I != TypeIndices.end()) 277 return I->second; 278 279 // Build the fully qualified name of the scope. 280 std::string ScopeName = getFullyQualifiedName(Scope); 281 StringIdRecord SID(TypeIndex(), ScopeName); 282 auto TI = TypeTable.writeLeafType(SID); 283 return recordTypeIndexForDINode(Scope, TI); 284 } 285 286 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 287 assert(SP); 288 289 // Check if we've already translated this subprogram. 290 auto I = TypeIndices.find({SP, nullptr}); 291 if (I != TypeIndices.end()) 292 return I->second; 293 294 // The display name includes function template arguments. Drop them to match 295 // MSVC. 296 StringRef DisplayName = SP->getName().split('<').first; 297 298 const DIScope *Scope = SP->getScope().resolve(); 299 TypeIndex TI; 300 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 301 // If the scope is a DICompositeType, then this must be a method. Member 302 // function types take some special handling, and require access to the 303 // subprogram. 304 TypeIndex ClassType = getTypeIndex(Class); 305 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 306 DisplayName); 307 TI = TypeTable.writeLeafType(MFuncId); 308 } else { 309 // Otherwise, this must be a free function. 310 TypeIndex ParentScope = getScopeIndex(Scope); 311 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 312 TI = TypeTable.writeLeafType(FuncId); 313 } 314 315 return recordTypeIndexForDINode(SP, TI); 316 } 317 318 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 319 const DICompositeType *Class) { 320 // Always use the method declaration as the key for the function type. The 321 // method declaration contains the this adjustment. 322 if (SP->getDeclaration()) 323 SP = SP->getDeclaration(); 324 assert(!SP->getDeclaration() && "should use declaration as key"); 325 326 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 327 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 328 auto I = TypeIndices.find({SP, Class}); 329 if (I != TypeIndices.end()) 330 return I->second; 331 332 // Make sure complete type info for the class is emitted *after* the member 333 // function type, as the complete class type is likely to reference this 334 // member function type. 335 TypeLoweringScope S(*this); 336 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 337 TypeIndex TI = lowerTypeMemberFunction( 338 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 339 return recordTypeIndexForDINode(SP, TI, Class); 340 } 341 342 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 343 TypeIndex TI, 344 const DIType *ClassTy) { 345 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 346 (void)InsertResult; 347 assert(InsertResult.second && "DINode was already assigned a type index"); 348 return TI; 349 } 350 351 unsigned CodeViewDebug::getPointerSizeInBytes() { 352 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 353 } 354 355 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 356 const DILocation *InlinedAt) { 357 if (InlinedAt) { 358 // This variable was inlined. Associate it with the InlineSite. 359 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 360 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 361 Site.InlinedLocals.emplace_back(Var); 362 } else { 363 // This variable goes in the main ProcSym. 364 CurFn->Locals.emplace_back(Var); 365 } 366 } 367 368 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 369 const DILocation *Loc) { 370 auto B = Locs.begin(), E = Locs.end(); 371 if (std::find(B, E, Loc) == E) 372 Locs.push_back(Loc); 373 } 374 375 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 376 const MachineFunction *MF) { 377 // Skip this instruction if it has the same location as the previous one. 378 if (!DL || DL == PrevInstLoc) 379 return; 380 381 const DIScope *Scope = DL.get()->getScope(); 382 if (!Scope) 383 return; 384 385 // Skip this line if it is longer than the maximum we can record. 386 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 387 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 388 LI.isNeverStepInto()) 389 return; 390 391 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 392 if (CI.getStartColumn() != DL.getCol()) 393 return; 394 395 if (!CurFn->HaveLineInfo) 396 CurFn->HaveLineInfo = true; 397 unsigned FileId = 0; 398 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 399 FileId = CurFn->LastFileId; 400 else 401 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 402 PrevInstLoc = DL; 403 404 unsigned FuncId = CurFn->FuncId; 405 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 406 const DILocation *Loc = DL.get(); 407 408 // If this location was actually inlined from somewhere else, give it the ID 409 // of the inline call site. 410 FuncId = 411 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 412 413 // Ensure we have links in the tree of inline call sites. 414 bool FirstLoc = true; 415 while ((SiteLoc = Loc->getInlinedAt())) { 416 InlineSite &Site = 417 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 418 if (!FirstLoc) 419 addLocIfNotPresent(Site.ChildSites, Loc); 420 FirstLoc = false; 421 Loc = SiteLoc; 422 } 423 addLocIfNotPresent(CurFn->ChildSites, Loc); 424 } 425 426 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 427 /*PrologueEnd=*/false, /*IsStmt=*/false, 428 DL->getFilename(), SMLoc()); 429 } 430 431 void CodeViewDebug::emitCodeViewMagicVersion() { 432 OS.EmitValueToAlignment(4); 433 OS.AddComment("Debug section magic"); 434 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 435 } 436 437 void CodeViewDebug::endModule() { 438 if (!Asm || !MMI->hasDebugInfo()) 439 return; 440 441 assert(Asm != nullptr); 442 443 // The COFF .debug$S section consists of several subsections, each starting 444 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 445 // of the payload followed by the payload itself. The subsections are 4-byte 446 // aligned. 447 448 // Use the generic .debug$S section, and make a subsection for all the inlined 449 // subprograms. 450 switchToDebugSectionForSymbol(nullptr); 451 452 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 453 emitCompilerInformation(); 454 endCVSubsection(CompilerInfo); 455 456 emitInlineeLinesSubsection(); 457 458 // Emit per-function debug information. 459 for (auto &P : FnDebugInfo) 460 if (!P.first->isDeclarationForLinker()) 461 emitDebugInfoForFunction(P.first, P.second); 462 463 // Emit global variable debug information. 464 setCurrentSubprogram(nullptr); 465 emitDebugInfoForGlobals(); 466 467 // Emit retained types. 468 emitDebugInfoForRetainedTypes(); 469 470 // Switch back to the generic .debug$S section after potentially processing 471 // comdat symbol sections. 472 switchToDebugSectionForSymbol(nullptr); 473 474 // Emit UDT records for any types used by global variables. 475 if (!GlobalUDTs.empty()) { 476 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 477 emitDebugInfoForUDTs(GlobalUDTs); 478 endCVSubsection(SymbolsEnd); 479 } 480 481 // This subsection holds a file index to offset in string table table. 482 OS.AddComment("File index to string table offset subsection"); 483 OS.EmitCVFileChecksumsDirective(); 484 485 // This subsection holds the string table. 486 OS.AddComment("String table"); 487 OS.EmitCVStringTableDirective(); 488 489 // Emit type information last, so that any types we translate while emitting 490 // function info are included. 491 emitTypeInformation(); 492 493 clear(); 494 } 495 496 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 497 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 498 // after a fixed length portion of the record. The fixed length portion should 499 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 500 // overall record size is less than the maximum allowed. 501 unsigned MaxFixedRecordLength = 0xF00; 502 SmallString<32> NullTerminatedString( 503 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 504 NullTerminatedString.push_back('\0'); 505 OS.EmitBytes(NullTerminatedString); 506 } 507 508 void CodeViewDebug::emitTypeInformation() { 509 // Do nothing if we have no debug info or if no non-trivial types were emitted 510 // to TypeTable during codegen. 511 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 512 if (!CU_Nodes) 513 return; 514 if (TypeTable.empty()) 515 return; 516 517 // Start the .debug$T section with 0x4. 518 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 519 emitCodeViewMagicVersion(); 520 521 SmallString<8> CommentPrefix; 522 if (OS.isVerboseAsm()) { 523 CommentPrefix += '\t'; 524 CommentPrefix += Asm->MAI->getCommentString(); 525 CommentPrefix += ' '; 526 } 527 528 TypeTableCollection Table(TypeTable.records()); 529 Optional<TypeIndex> B = Table.getFirst(); 530 while (B) { 531 // This will fail if the record data is invalid. 532 CVType Record = Table.getType(*B); 533 534 if (OS.isVerboseAsm()) { 535 // Emit a block comment describing the type record for readability. 536 SmallString<512> CommentBlock; 537 raw_svector_ostream CommentOS(CommentBlock); 538 ScopedPrinter SP(CommentOS); 539 SP.setPrefix(CommentPrefix); 540 TypeDumpVisitor TDV(Table, &SP, false); 541 542 Error E = codeview::visitTypeRecord(Record, *B, TDV); 543 if (E) { 544 logAllUnhandledErrors(std::move(E), errs(), "error: "); 545 llvm_unreachable("produced malformed type record"); 546 } 547 // emitRawComment will insert its own tab and comment string before 548 // the first line, so strip off our first one. It also prints its own 549 // newline. 550 OS.emitRawComment( 551 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 552 } 553 OS.EmitBinaryData(Record.str_data()); 554 B = Table.getNext(*B); 555 } 556 } 557 558 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 559 switch (DWLang) { 560 case dwarf::DW_LANG_C: 561 case dwarf::DW_LANG_C89: 562 case dwarf::DW_LANG_C99: 563 case dwarf::DW_LANG_C11: 564 case dwarf::DW_LANG_ObjC: 565 return SourceLanguage::C; 566 case dwarf::DW_LANG_C_plus_plus: 567 case dwarf::DW_LANG_C_plus_plus_03: 568 case dwarf::DW_LANG_C_plus_plus_11: 569 case dwarf::DW_LANG_C_plus_plus_14: 570 return SourceLanguage::Cpp; 571 case dwarf::DW_LANG_Fortran77: 572 case dwarf::DW_LANG_Fortran90: 573 case dwarf::DW_LANG_Fortran03: 574 case dwarf::DW_LANG_Fortran08: 575 return SourceLanguage::Fortran; 576 case dwarf::DW_LANG_Pascal83: 577 return SourceLanguage::Pascal; 578 case dwarf::DW_LANG_Cobol74: 579 case dwarf::DW_LANG_Cobol85: 580 return SourceLanguage::Cobol; 581 case dwarf::DW_LANG_Java: 582 return SourceLanguage::Java; 583 case dwarf::DW_LANG_D: 584 return SourceLanguage::D; 585 default: 586 // There's no CodeView representation for this language, and CV doesn't 587 // have an "unknown" option for the language field, so we'll use MASM, 588 // as it's very low level. 589 return SourceLanguage::Masm; 590 } 591 } 592 593 namespace { 594 struct Version { 595 int Part[4]; 596 }; 597 } // end anonymous namespace 598 599 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 600 // the version number. 601 static Version parseVersion(StringRef Name) { 602 Version V = {{0}}; 603 int N = 0; 604 for (const char C : Name) { 605 if (isdigit(C)) { 606 V.Part[N] *= 10; 607 V.Part[N] += C - '0'; 608 } else if (C == '.') { 609 ++N; 610 if (N >= 4) 611 return V; 612 } else if (N > 0) 613 return V; 614 } 615 return V; 616 } 617 618 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 619 switch (Type) { 620 case Triple::ArchType::x86: 621 return CPUType::Pentium3; 622 case Triple::ArchType::x86_64: 623 return CPUType::X64; 624 case Triple::ArchType::thumb: 625 return CPUType::Thumb; 626 case Triple::ArchType::aarch64: 627 return CPUType::ARM64; 628 default: 629 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 630 } 631 } 632 633 void CodeViewDebug::emitCompilerInformation() { 634 MCContext &Context = MMI->getContext(); 635 MCSymbol *CompilerBegin = Context.createTempSymbol(), 636 *CompilerEnd = Context.createTempSymbol(); 637 OS.AddComment("Record length"); 638 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 639 OS.EmitLabel(CompilerBegin); 640 OS.AddComment("Record kind: S_COMPILE3"); 641 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 642 uint32_t Flags = 0; 643 644 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 645 const MDNode *Node = *CUs->operands().begin(); 646 const auto *CU = cast<DICompileUnit>(Node); 647 648 // The low byte of the flags indicates the source language. 649 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 650 // TODO: Figure out which other flags need to be set. 651 652 OS.AddComment("Flags and language"); 653 OS.EmitIntValue(Flags, 4); 654 655 OS.AddComment("CPUType"); 656 CPUType CPU = 657 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 658 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 659 660 StringRef CompilerVersion = CU->getProducer(); 661 Version FrontVer = parseVersion(CompilerVersion); 662 OS.AddComment("Frontend version"); 663 for (int N = 0; N < 4; ++N) 664 OS.EmitIntValue(FrontVer.Part[N], 2); 665 666 // Some Microsoft tools, like Binscope, expect a backend version number of at 667 // least 8.something, so we'll coerce the LLVM version into a form that 668 // guarantees it'll be big enough without really lying about the version. 669 int Major = 1000 * LLVM_VERSION_MAJOR + 670 10 * LLVM_VERSION_MINOR + 671 LLVM_VERSION_PATCH; 672 // Clamp it for builds that use unusually large version numbers. 673 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 674 Version BackVer = {{ Major, 0, 0, 0 }}; 675 OS.AddComment("Backend version"); 676 for (int N = 0; N < 4; ++N) 677 OS.EmitIntValue(BackVer.Part[N], 2); 678 679 OS.AddComment("Null-terminated compiler version string"); 680 emitNullTerminatedSymbolName(OS, CompilerVersion); 681 682 OS.EmitLabel(CompilerEnd); 683 } 684 685 void CodeViewDebug::emitInlineeLinesSubsection() { 686 if (InlinedSubprograms.empty()) 687 return; 688 689 OS.AddComment("Inlinee lines subsection"); 690 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 691 692 // We emit the checksum info for files. This is used by debuggers to 693 // determine if a pdb matches the source before loading it. Visual Studio, 694 // for instance, will display a warning that the breakpoints are not valid if 695 // the pdb does not match the source. 696 OS.AddComment("Inlinee lines signature"); 697 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 698 699 for (const DISubprogram *SP : InlinedSubprograms) { 700 assert(TypeIndices.count({SP, nullptr})); 701 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 702 703 OS.AddBlankLine(); 704 unsigned FileId = maybeRecordFile(SP->getFile()); 705 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 706 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 707 OS.AddBlankLine(); 708 OS.AddComment("Type index of inlined function"); 709 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 710 OS.AddComment("Offset into filechecksum table"); 711 OS.EmitCVFileChecksumOffsetDirective(FileId); 712 OS.AddComment("Starting line number"); 713 OS.EmitIntValue(SP->getLine(), 4); 714 } 715 716 endCVSubsection(InlineEnd); 717 } 718 719 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 720 const DILocation *InlinedAt, 721 const InlineSite &Site) { 722 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 723 *InlineEnd = MMI->getContext().createTempSymbol(); 724 725 assert(TypeIndices.count({Site.Inlinee, nullptr})); 726 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 727 728 // SymbolRecord 729 OS.AddComment("Record length"); 730 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 731 OS.EmitLabel(InlineBegin); 732 OS.AddComment("Record kind: S_INLINESITE"); 733 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 734 735 OS.AddComment("PtrParent"); 736 OS.EmitIntValue(0, 4); 737 OS.AddComment("PtrEnd"); 738 OS.EmitIntValue(0, 4); 739 OS.AddComment("Inlinee type index"); 740 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 741 742 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 743 unsigned StartLineNum = Site.Inlinee->getLine(); 744 745 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 746 FI.Begin, FI.End); 747 748 OS.EmitLabel(InlineEnd); 749 750 emitLocalVariableList(Site.InlinedLocals); 751 752 // Recurse on child inlined call sites before closing the scope. 753 for (const DILocation *ChildSite : Site.ChildSites) { 754 auto I = FI.InlineSites.find(ChildSite); 755 assert(I != FI.InlineSites.end() && 756 "child site not in function inline site map"); 757 emitInlinedCallSite(FI, ChildSite, I->second); 758 } 759 760 // Close the scope. 761 OS.AddComment("Record length"); 762 OS.EmitIntValue(2, 2); // RecordLength 763 OS.AddComment("Record kind: S_INLINESITE_END"); 764 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 765 } 766 767 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 768 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 769 // comdat key. A section may be comdat because of -ffunction-sections or 770 // because it is comdat in the IR. 771 MCSectionCOFF *GVSec = 772 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 773 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 774 775 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 776 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 777 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 778 779 OS.SwitchSection(DebugSec); 780 781 // Emit the magic version number if this is the first time we've switched to 782 // this section. 783 if (ComdatDebugSections.insert(DebugSec).second) 784 emitCodeViewMagicVersion(); 785 } 786 787 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 788 FunctionInfo &FI) { 789 // For each function there is a separate subsection 790 // which holds the PC to file:line table. 791 const MCSymbol *Fn = Asm->getSymbol(GV); 792 assert(Fn); 793 794 // Switch to the to a comdat section, if appropriate. 795 switchToDebugSectionForSymbol(Fn); 796 797 std::string FuncName; 798 auto *SP = GV->getSubprogram(); 799 assert(SP); 800 setCurrentSubprogram(SP); 801 802 // If we have a display name, build the fully qualified name by walking the 803 // chain of scopes. 804 if (!SP->getName().empty()) 805 FuncName = 806 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 807 808 // If our DISubprogram name is empty, use the mangled name. 809 if (FuncName.empty()) 810 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 811 812 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 813 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 814 OS.EmitCVFPOData(Fn); 815 816 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 817 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 818 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 819 { 820 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 821 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 822 OS.AddComment("Record length"); 823 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 824 OS.EmitLabel(ProcRecordBegin); 825 826 if (GV->hasLocalLinkage()) { 827 OS.AddComment("Record kind: S_LPROC32_ID"); 828 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 829 } else { 830 OS.AddComment("Record kind: S_GPROC32_ID"); 831 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 832 } 833 834 // These fields are filled in by tools like CVPACK which run after the fact. 835 OS.AddComment("PtrParent"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("PtrEnd"); 838 OS.EmitIntValue(0, 4); 839 OS.AddComment("PtrNext"); 840 OS.EmitIntValue(0, 4); 841 // This is the important bit that tells the debugger where the function 842 // code is located and what's its size: 843 OS.AddComment("Code size"); 844 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 845 OS.AddComment("Offset after prologue"); 846 OS.EmitIntValue(0, 4); 847 OS.AddComment("Offset before epilogue"); 848 OS.EmitIntValue(0, 4); 849 OS.AddComment("Function type index"); 850 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 851 OS.AddComment("Function section relative address"); 852 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 853 OS.AddComment("Function section index"); 854 OS.EmitCOFFSectionIndex(Fn); 855 OS.AddComment("Flags"); 856 OS.EmitIntValue(0, 1); 857 // Emit the function display name as a null-terminated string. 858 OS.AddComment("Function name"); 859 // Truncate the name so we won't overflow the record length field. 860 emitNullTerminatedSymbolName(OS, FuncName); 861 OS.EmitLabel(ProcRecordEnd); 862 863 emitLocalVariableList(FI.Locals); 864 865 // Emit inlined call site information. Only emit functions inlined directly 866 // into the parent function. We'll emit the other sites recursively as part 867 // of their parent inline site. 868 for (const DILocation *InlinedAt : FI.ChildSites) { 869 auto I = FI.InlineSites.find(InlinedAt); 870 assert(I != FI.InlineSites.end() && 871 "child site not in function inline site map"); 872 emitInlinedCallSite(FI, InlinedAt, I->second); 873 } 874 875 for (auto Annot : FI.Annotations) { 876 MCSymbol *Label = Annot.first; 877 MDTuple *Strs = cast<MDTuple>(Annot.second); 878 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 879 *AnnotEnd = MMI->getContext().createTempSymbol(); 880 OS.AddComment("Record length"); 881 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 882 OS.EmitLabel(AnnotBegin); 883 OS.AddComment("Record kind: S_ANNOTATION"); 884 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 885 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 886 // FIXME: Make sure we don't overflow the max record size. 887 OS.EmitCOFFSectionIndex(Label); 888 OS.EmitIntValue(Strs->getNumOperands(), 2); 889 for (Metadata *MD : Strs->operands()) { 890 // MDStrings are null terminated, so we can do EmitBytes and get the 891 // nice .asciz directive. 892 StringRef Str = cast<MDString>(MD)->getString(); 893 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 894 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 895 } 896 OS.EmitLabel(AnnotEnd); 897 } 898 899 if (SP != nullptr) 900 emitDebugInfoForUDTs(LocalUDTs); 901 902 // We're done with this function. 903 OS.AddComment("Record length"); 904 OS.EmitIntValue(0x0002, 2); 905 OS.AddComment("Record kind: S_PROC_ID_END"); 906 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 907 } 908 endCVSubsection(SymbolsEnd); 909 910 // We have an assembler directive that takes care of the whole line table. 911 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 912 } 913 914 CodeViewDebug::LocalVarDefRange 915 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 916 LocalVarDefRange DR; 917 DR.InMemory = -1; 918 DR.DataOffset = Offset; 919 assert(DR.DataOffset == Offset && "truncation"); 920 DR.IsSubfield = 0; 921 DR.StructOffset = 0; 922 DR.CVRegister = CVRegister; 923 return DR; 924 } 925 926 CodeViewDebug::LocalVarDefRange 927 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 928 int Offset, bool IsSubfield, 929 uint16_t StructOffset) { 930 LocalVarDefRange DR; 931 DR.InMemory = InMemory; 932 DR.DataOffset = Offset; 933 DR.IsSubfield = IsSubfield; 934 DR.StructOffset = StructOffset; 935 DR.CVRegister = CVRegister; 936 return DR; 937 } 938 939 void CodeViewDebug::collectVariableInfoFromMFTable( 940 DenseSet<InlinedVariable> &Processed) { 941 const MachineFunction &MF = *Asm->MF; 942 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 943 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 944 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 945 946 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 947 if (!VI.Var) 948 continue; 949 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 950 "Expected inlined-at fields to agree"); 951 952 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 953 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 954 955 // If variable scope is not found then skip this variable. 956 if (!Scope) 957 continue; 958 959 // If the variable has an attached offset expression, extract it. 960 // FIXME: Try to handle DW_OP_deref as well. 961 int64_t ExprOffset = 0; 962 if (VI.Expr) 963 if (!VI.Expr->extractIfOffset(ExprOffset)) 964 continue; 965 966 // Get the frame register used and the offset. 967 unsigned FrameReg = 0; 968 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 969 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 970 971 // Calculate the label ranges. 972 LocalVarDefRange DefRange = 973 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 974 for (const InsnRange &Range : Scope->getRanges()) { 975 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 976 const MCSymbol *End = getLabelAfterInsn(Range.second); 977 End = End ? End : Asm->getFunctionEnd(); 978 DefRange.Ranges.emplace_back(Begin, End); 979 } 980 981 LocalVariable Var; 982 Var.DIVar = VI.Var; 983 Var.DefRanges.emplace_back(std::move(DefRange)); 984 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 985 } 986 } 987 988 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 989 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 990 } 991 992 static bool needsReferenceType(const DbgVariableLocation &Loc) { 993 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 994 } 995 996 void CodeViewDebug::calculateRanges( 997 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 998 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 999 1000 // Calculate the definition ranges. 1001 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1002 const InsnRange &Range = *I; 1003 const MachineInstr *DVInst = Range.first; 1004 assert(DVInst->isDebugValue() && "Invalid History entry"); 1005 // FIXME: Find a way to represent constant variables, since they are 1006 // relatively common. 1007 Optional<DbgVariableLocation> Location = 1008 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1009 if (!Location) 1010 continue; 1011 1012 // CodeView can only express variables in register and variables in memory 1013 // at a constant offset from a register. However, for variables passed 1014 // indirectly by pointer, it is common for that pointer to be spilled to a 1015 // stack location. For the special case of one offseted load followed by a 1016 // zero offset load (a pointer spilled to the stack), we change the type of 1017 // the local variable from a value type to a reference type. This tricks the 1018 // debugger into doing the load for us. 1019 if (Var.UseReferenceType) { 1020 // We're using a reference type. Drop the last zero offset load. 1021 if (canUseReferenceType(*Location)) 1022 Location->LoadChain.pop_back(); 1023 else 1024 continue; 1025 } else if (needsReferenceType(*Location)) { 1026 // This location can't be expressed without switching to a reference type. 1027 // Start over using that. 1028 Var.UseReferenceType = true; 1029 Var.DefRanges.clear(); 1030 calculateRanges(Var, Ranges); 1031 return; 1032 } 1033 1034 // We can only handle a register or an offseted load of a register. 1035 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1036 continue; 1037 { 1038 LocalVarDefRange DR; 1039 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1040 DR.InMemory = !Location->LoadChain.empty(); 1041 DR.DataOffset = 1042 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1043 if (Location->FragmentInfo) { 1044 DR.IsSubfield = true; 1045 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1046 } else { 1047 DR.IsSubfield = false; 1048 DR.StructOffset = 0; 1049 } 1050 1051 if (Var.DefRanges.empty() || 1052 Var.DefRanges.back().isDifferentLocation(DR)) { 1053 Var.DefRanges.emplace_back(std::move(DR)); 1054 } 1055 } 1056 1057 // Compute the label range. 1058 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1059 const MCSymbol *End = getLabelAfterInsn(Range.second); 1060 if (!End) { 1061 // This range is valid until the next overlapping bitpiece. In the 1062 // common case, ranges will not be bitpieces, so they will overlap. 1063 auto J = std::next(I); 1064 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1065 while (J != E && 1066 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1067 ++J; 1068 if (J != E) 1069 End = getLabelBeforeInsn(J->first); 1070 else 1071 End = Asm->getFunctionEnd(); 1072 } 1073 1074 // If the last range end is our begin, just extend the last range. 1075 // Otherwise make a new range. 1076 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1077 Var.DefRanges.back().Ranges; 1078 if (!R.empty() && R.back().second == Begin) 1079 R.back().second = End; 1080 else 1081 R.emplace_back(Begin, End); 1082 1083 // FIXME: Do more range combining. 1084 } 1085 } 1086 1087 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1088 DenseSet<InlinedVariable> Processed; 1089 // Grab the variable info that was squirreled away in the MMI side-table. 1090 collectVariableInfoFromMFTable(Processed); 1091 1092 for (const auto &I : DbgValues) { 1093 InlinedVariable IV = I.first; 1094 if (Processed.count(IV)) 1095 continue; 1096 const DILocalVariable *DIVar = IV.first; 1097 const DILocation *InlinedAt = IV.second; 1098 1099 // Instruction ranges, specifying where IV is accessible. 1100 const auto &Ranges = I.second; 1101 1102 LexicalScope *Scope = nullptr; 1103 if (InlinedAt) 1104 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1105 else 1106 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1107 // If variable scope is not found then skip this variable. 1108 if (!Scope) 1109 continue; 1110 1111 LocalVariable Var; 1112 Var.DIVar = DIVar; 1113 1114 calculateRanges(Var, Ranges); 1115 recordLocalVariable(std::move(Var), InlinedAt); 1116 } 1117 } 1118 1119 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1120 const Function *GV = MF->getFunction(); 1121 assert(FnDebugInfo.count(GV) == false); 1122 CurFn = &FnDebugInfo[GV]; 1123 CurFn->FuncId = NextFuncId++; 1124 CurFn->Begin = Asm->getFunctionBegin(); 1125 1126 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1127 1128 // Find the end of the function prolog. First known non-DBG_VALUE and 1129 // non-frame setup location marks the beginning of the function body. 1130 // FIXME: is there a simpler a way to do this? Can we just search 1131 // for the first instruction of the function, not the last of the prolog? 1132 DebugLoc PrologEndLoc; 1133 bool EmptyPrologue = true; 1134 for (const auto &MBB : *MF) { 1135 for (const auto &MI : MBB) { 1136 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1137 MI.getDebugLoc()) { 1138 PrologEndLoc = MI.getDebugLoc(); 1139 break; 1140 } else if (!MI.isMetaInstruction()) { 1141 EmptyPrologue = false; 1142 } 1143 } 1144 } 1145 1146 // Record beginning of function if we have a non-empty prologue. 1147 if (PrologEndLoc && !EmptyPrologue) { 1148 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1149 maybeRecordLocation(FnStartDL, MF); 1150 } 1151 } 1152 1153 static bool shouldEmitUdt(const DIType *T) { 1154 if (!T) 1155 return false; 1156 1157 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1158 if (T->getTag() == dwarf::DW_TAG_typedef) { 1159 if (DIScope *Scope = T->getScope().resolve()) { 1160 switch (Scope->getTag()) { 1161 case dwarf::DW_TAG_structure_type: 1162 case dwarf::DW_TAG_class_type: 1163 case dwarf::DW_TAG_union_type: 1164 return false; 1165 } 1166 } 1167 } 1168 1169 while (true) { 1170 if (!T || T->isForwardDecl()) 1171 return false; 1172 1173 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1174 if (!DT) 1175 return true; 1176 T = DT->getBaseType().resolve(); 1177 } 1178 return true; 1179 } 1180 1181 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1182 // Don't record empty UDTs. 1183 if (Ty->getName().empty()) 1184 return; 1185 if (!shouldEmitUdt(Ty)) 1186 return; 1187 1188 SmallVector<StringRef, 5> QualifiedNameComponents; 1189 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1190 Ty->getScope().resolve(), QualifiedNameComponents); 1191 1192 std::string FullyQualifiedName = 1193 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1194 1195 if (ClosestSubprogram == nullptr) { 1196 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1197 } else if (ClosestSubprogram == CurrentSubprogram) { 1198 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1199 } 1200 1201 // TODO: What if the ClosestSubprogram is neither null or the current 1202 // subprogram? Currently, the UDT just gets dropped on the floor. 1203 // 1204 // The current behavior is not desirable. To get maximal fidelity, we would 1205 // need to perform all type translation before beginning emission of .debug$S 1206 // and then make LocalUDTs a member of FunctionInfo 1207 } 1208 1209 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1210 // Generic dispatch for lowering an unknown type. 1211 switch (Ty->getTag()) { 1212 case dwarf::DW_TAG_array_type: 1213 return lowerTypeArray(cast<DICompositeType>(Ty)); 1214 case dwarf::DW_TAG_typedef: 1215 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1216 case dwarf::DW_TAG_base_type: 1217 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1218 case dwarf::DW_TAG_pointer_type: 1219 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1220 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1221 LLVM_FALLTHROUGH; 1222 case dwarf::DW_TAG_reference_type: 1223 case dwarf::DW_TAG_rvalue_reference_type: 1224 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1225 case dwarf::DW_TAG_ptr_to_member_type: 1226 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1227 case dwarf::DW_TAG_const_type: 1228 case dwarf::DW_TAG_volatile_type: 1229 // TODO: add support for DW_TAG_atomic_type here 1230 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1231 case dwarf::DW_TAG_subroutine_type: 1232 if (ClassTy) { 1233 // The member function type of a member function pointer has no 1234 // ThisAdjustment. 1235 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1236 /*ThisAdjustment=*/0, 1237 /*IsStaticMethod=*/false); 1238 } 1239 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1240 case dwarf::DW_TAG_enumeration_type: 1241 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1242 case dwarf::DW_TAG_class_type: 1243 case dwarf::DW_TAG_structure_type: 1244 return lowerTypeClass(cast<DICompositeType>(Ty)); 1245 case dwarf::DW_TAG_union_type: 1246 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1247 default: 1248 // Use the null type index. 1249 return TypeIndex(); 1250 } 1251 } 1252 1253 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1254 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1255 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1256 StringRef TypeName = Ty->getName(); 1257 1258 addToUDTs(Ty); 1259 1260 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1261 TypeName == "HRESULT") 1262 return TypeIndex(SimpleTypeKind::HResult); 1263 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1264 TypeName == "wchar_t") 1265 return TypeIndex(SimpleTypeKind::WideCharacter); 1266 1267 return UnderlyingTypeIndex; 1268 } 1269 1270 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1271 DITypeRef ElementTypeRef = Ty->getBaseType(); 1272 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1273 // IndexType is size_t, which depends on the bitness of the target. 1274 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1275 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1276 : TypeIndex(SimpleTypeKind::UInt32Long); 1277 1278 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1279 1280 // Add subranges to array type. 1281 DINodeArray Elements = Ty->getElements(); 1282 for (int i = Elements.size() - 1; i >= 0; --i) { 1283 const DINode *Element = Elements[i]; 1284 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1285 1286 const DISubrange *Subrange = cast<DISubrange>(Element); 1287 assert(Subrange->getLowerBound() == 0 && 1288 "codeview doesn't support subranges with lower bounds"); 1289 int64_t Count = Subrange->getCount(); 1290 1291 // Forward declarations of arrays without a size and VLAs use a count of -1. 1292 // Emit a count of zero in these cases to match what MSVC does for arrays 1293 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1294 // should do for them even if we could distinguish them. 1295 if (Count == -1) 1296 Count = 0; 1297 1298 // Update the element size and element type index for subsequent subranges. 1299 ElementSize *= Count; 1300 1301 // If this is the outermost array, use the size from the array. It will be 1302 // more accurate if we had a VLA or an incomplete element type size. 1303 uint64_t ArraySize = 1304 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1305 1306 StringRef Name = (i == 0) ? Ty->getName() : ""; 1307 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1308 ElementTypeIndex = TypeTable.writeLeafType(AR); 1309 } 1310 1311 return ElementTypeIndex; 1312 } 1313 1314 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1315 TypeIndex Index; 1316 dwarf::TypeKind Kind; 1317 uint32_t ByteSize; 1318 1319 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1320 ByteSize = Ty->getSizeInBits() / 8; 1321 1322 SimpleTypeKind STK = SimpleTypeKind::None; 1323 switch (Kind) { 1324 case dwarf::DW_ATE_address: 1325 // FIXME: Translate 1326 break; 1327 case dwarf::DW_ATE_boolean: 1328 switch (ByteSize) { 1329 case 1: STK = SimpleTypeKind::Boolean8; break; 1330 case 2: STK = SimpleTypeKind::Boolean16; break; 1331 case 4: STK = SimpleTypeKind::Boolean32; break; 1332 case 8: STK = SimpleTypeKind::Boolean64; break; 1333 case 16: STK = SimpleTypeKind::Boolean128; break; 1334 } 1335 break; 1336 case dwarf::DW_ATE_complex_float: 1337 switch (ByteSize) { 1338 case 2: STK = SimpleTypeKind::Complex16; break; 1339 case 4: STK = SimpleTypeKind::Complex32; break; 1340 case 8: STK = SimpleTypeKind::Complex64; break; 1341 case 10: STK = SimpleTypeKind::Complex80; break; 1342 case 16: STK = SimpleTypeKind::Complex128; break; 1343 } 1344 break; 1345 case dwarf::DW_ATE_float: 1346 switch (ByteSize) { 1347 case 2: STK = SimpleTypeKind::Float16; break; 1348 case 4: STK = SimpleTypeKind::Float32; break; 1349 case 6: STK = SimpleTypeKind::Float48; break; 1350 case 8: STK = SimpleTypeKind::Float64; break; 1351 case 10: STK = SimpleTypeKind::Float80; break; 1352 case 16: STK = SimpleTypeKind::Float128; break; 1353 } 1354 break; 1355 case dwarf::DW_ATE_signed: 1356 switch (ByteSize) { 1357 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1358 case 2: STK = SimpleTypeKind::Int16Short; break; 1359 case 4: STK = SimpleTypeKind::Int32; break; 1360 case 8: STK = SimpleTypeKind::Int64Quad; break; 1361 case 16: STK = SimpleTypeKind::Int128Oct; break; 1362 } 1363 break; 1364 case dwarf::DW_ATE_unsigned: 1365 switch (ByteSize) { 1366 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1367 case 2: STK = SimpleTypeKind::UInt16Short; break; 1368 case 4: STK = SimpleTypeKind::UInt32; break; 1369 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1370 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1371 } 1372 break; 1373 case dwarf::DW_ATE_UTF: 1374 switch (ByteSize) { 1375 case 2: STK = SimpleTypeKind::Character16; break; 1376 case 4: STK = SimpleTypeKind::Character32; break; 1377 } 1378 break; 1379 case dwarf::DW_ATE_signed_char: 1380 if (ByteSize == 1) 1381 STK = SimpleTypeKind::SignedCharacter; 1382 break; 1383 case dwarf::DW_ATE_unsigned_char: 1384 if (ByteSize == 1) 1385 STK = SimpleTypeKind::UnsignedCharacter; 1386 break; 1387 default: 1388 break; 1389 } 1390 1391 // Apply some fixups based on the source-level type name. 1392 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1393 STK = SimpleTypeKind::Int32Long; 1394 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1395 STK = SimpleTypeKind::UInt32Long; 1396 if (STK == SimpleTypeKind::UInt16Short && 1397 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1398 STK = SimpleTypeKind::WideCharacter; 1399 if ((STK == SimpleTypeKind::SignedCharacter || 1400 STK == SimpleTypeKind::UnsignedCharacter) && 1401 Ty->getName() == "char") 1402 STK = SimpleTypeKind::NarrowCharacter; 1403 1404 return TypeIndex(STK); 1405 } 1406 1407 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1408 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1409 1410 // Pointers to simple types can use SimpleTypeMode, rather than having a 1411 // dedicated pointer type record. 1412 if (PointeeTI.isSimple() && 1413 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1414 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1415 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1416 ? SimpleTypeMode::NearPointer64 1417 : SimpleTypeMode::NearPointer32; 1418 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1419 } 1420 1421 PointerKind PK = 1422 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1423 PointerMode PM = PointerMode::Pointer; 1424 switch (Ty->getTag()) { 1425 default: llvm_unreachable("not a pointer tag type"); 1426 case dwarf::DW_TAG_pointer_type: 1427 PM = PointerMode::Pointer; 1428 break; 1429 case dwarf::DW_TAG_reference_type: 1430 PM = PointerMode::LValueReference; 1431 break; 1432 case dwarf::DW_TAG_rvalue_reference_type: 1433 PM = PointerMode::RValueReference; 1434 break; 1435 } 1436 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1437 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1438 // do. 1439 PointerOptions PO = PointerOptions::None; 1440 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1441 return TypeTable.writeLeafType(PR); 1442 } 1443 1444 static PointerToMemberRepresentation 1445 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1446 // SizeInBytes being zero generally implies that the member pointer type was 1447 // incomplete, which can happen if it is part of a function prototype. In this 1448 // case, use the unknown model instead of the general model. 1449 if (IsPMF) { 1450 switch (Flags & DINode::FlagPtrToMemberRep) { 1451 case 0: 1452 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1453 : PointerToMemberRepresentation::GeneralFunction; 1454 case DINode::FlagSingleInheritance: 1455 return PointerToMemberRepresentation::SingleInheritanceFunction; 1456 case DINode::FlagMultipleInheritance: 1457 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1458 case DINode::FlagVirtualInheritance: 1459 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1460 } 1461 } else { 1462 switch (Flags & DINode::FlagPtrToMemberRep) { 1463 case 0: 1464 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1465 : PointerToMemberRepresentation::GeneralData; 1466 case DINode::FlagSingleInheritance: 1467 return PointerToMemberRepresentation::SingleInheritanceData; 1468 case DINode::FlagMultipleInheritance: 1469 return PointerToMemberRepresentation::MultipleInheritanceData; 1470 case DINode::FlagVirtualInheritance: 1471 return PointerToMemberRepresentation::VirtualInheritanceData; 1472 } 1473 } 1474 llvm_unreachable("invalid ptr to member representation"); 1475 } 1476 1477 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1478 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1479 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1480 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1481 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1482 : PointerKind::Near32; 1483 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1484 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1485 : PointerMode::PointerToDataMember; 1486 PointerOptions PO = PointerOptions::None; // FIXME 1487 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1488 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1489 MemberPointerInfo MPI( 1490 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1491 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1492 return TypeTable.writeLeafType(PR); 1493 } 1494 1495 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1496 /// have a translation, use the NearC convention. 1497 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1498 switch (DwarfCC) { 1499 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1500 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1501 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1502 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1503 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1504 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1505 } 1506 return CallingConvention::NearC; 1507 } 1508 1509 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1510 ModifierOptions Mods = ModifierOptions::None; 1511 bool IsModifier = true; 1512 const DIType *BaseTy = Ty; 1513 while (IsModifier && BaseTy) { 1514 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1515 switch (BaseTy->getTag()) { 1516 case dwarf::DW_TAG_const_type: 1517 Mods |= ModifierOptions::Const; 1518 break; 1519 case dwarf::DW_TAG_volatile_type: 1520 Mods |= ModifierOptions::Volatile; 1521 break; 1522 default: 1523 IsModifier = false; 1524 break; 1525 } 1526 if (IsModifier) 1527 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1528 } 1529 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1530 ModifierRecord MR(ModifiedTI, Mods); 1531 return TypeTable.writeLeafType(MR); 1532 } 1533 1534 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1535 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1536 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1537 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1538 1539 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1540 ArrayRef<TypeIndex> ArgTypeIndices = None; 1541 if (!ReturnAndArgTypeIndices.empty()) { 1542 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1543 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1544 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1545 } 1546 1547 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1548 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1549 1550 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1551 1552 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1553 ArgTypeIndices.size(), ArgListIndex); 1554 return TypeTable.writeLeafType(Procedure); 1555 } 1556 1557 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1558 const DIType *ClassTy, 1559 int ThisAdjustment, 1560 bool IsStaticMethod) { 1561 // Lower the containing class type. 1562 TypeIndex ClassType = getTypeIndex(ClassTy); 1563 1564 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1565 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1566 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1567 1568 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1569 ArrayRef<TypeIndex> ArgTypeIndices = None; 1570 if (!ReturnAndArgTypeIndices.empty()) { 1571 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1572 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1573 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1574 } 1575 TypeIndex ThisTypeIndex; 1576 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1577 ThisTypeIndex = ArgTypeIndices.front(); 1578 ArgTypeIndices = ArgTypeIndices.drop_front(); 1579 } 1580 1581 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1582 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1583 1584 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1585 1586 // TODO: Need to use the correct values for FunctionOptions. 1587 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1588 FunctionOptions::None, ArgTypeIndices.size(), 1589 ArgListIndex, ThisAdjustment); 1590 return TypeTable.writeLeafType(MFR); 1591 } 1592 1593 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1594 unsigned VSlotCount = 1595 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1596 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1597 1598 VFTableShapeRecord VFTSR(Slots); 1599 return TypeTable.writeLeafType(VFTSR); 1600 } 1601 1602 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1603 switch (Flags & DINode::FlagAccessibility) { 1604 case DINode::FlagPrivate: return MemberAccess::Private; 1605 case DINode::FlagPublic: return MemberAccess::Public; 1606 case DINode::FlagProtected: return MemberAccess::Protected; 1607 case 0: 1608 // If there was no explicit access control, provide the default for the tag. 1609 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1610 : MemberAccess::Public; 1611 } 1612 llvm_unreachable("access flags are exclusive"); 1613 } 1614 1615 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1616 if (SP->isArtificial()) 1617 return MethodOptions::CompilerGenerated; 1618 1619 // FIXME: Handle other MethodOptions. 1620 1621 return MethodOptions::None; 1622 } 1623 1624 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1625 bool Introduced) { 1626 if (SP->getFlags() & DINode::FlagStaticMember) 1627 return MethodKind::Static; 1628 1629 switch (SP->getVirtuality()) { 1630 case dwarf::DW_VIRTUALITY_none: 1631 break; 1632 case dwarf::DW_VIRTUALITY_virtual: 1633 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1634 case dwarf::DW_VIRTUALITY_pure_virtual: 1635 return Introduced ? MethodKind::PureIntroducingVirtual 1636 : MethodKind::PureVirtual; 1637 default: 1638 llvm_unreachable("unhandled virtuality case"); 1639 } 1640 1641 return MethodKind::Vanilla; 1642 } 1643 1644 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1645 switch (Ty->getTag()) { 1646 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1647 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1648 } 1649 llvm_unreachable("unexpected tag"); 1650 } 1651 1652 /// Return ClassOptions that should be present on both the forward declaration 1653 /// and the defintion of a tag type. 1654 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1655 ClassOptions CO = ClassOptions::None; 1656 1657 // MSVC always sets this flag, even for local types. Clang doesn't always 1658 // appear to give every type a linkage name, which may be problematic for us. 1659 // FIXME: Investigate the consequences of not following them here. 1660 if (!Ty->getIdentifier().empty()) 1661 CO |= ClassOptions::HasUniqueName; 1662 1663 // Put the Nested flag on a type if it appears immediately inside a tag type. 1664 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1665 // here. That flag is only set on definitions, and not forward declarations. 1666 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1667 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1668 CO |= ClassOptions::Nested; 1669 1670 // Put the Scoped flag on function-local types. 1671 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1672 Scope = Scope->getScope().resolve()) { 1673 if (isa<DISubprogram>(Scope)) { 1674 CO |= ClassOptions::Scoped; 1675 break; 1676 } 1677 } 1678 1679 return CO; 1680 } 1681 1682 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1683 ClassOptions CO = getCommonClassOptions(Ty); 1684 TypeIndex FTI; 1685 unsigned EnumeratorCount = 0; 1686 1687 if (Ty->isForwardDecl()) { 1688 CO |= ClassOptions::ForwardReference; 1689 } else { 1690 ContinuationRecordBuilder ContinuationBuilder; 1691 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1692 for (const DINode *Element : Ty->getElements()) { 1693 // We assume that the frontend provides all members in source declaration 1694 // order, which is what MSVC does. 1695 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1696 EnumeratorRecord ER(MemberAccess::Public, 1697 APSInt::getUnsigned(Enumerator->getValue()), 1698 Enumerator->getName()); 1699 ContinuationBuilder.writeMemberType(ER); 1700 EnumeratorCount++; 1701 } 1702 } 1703 FTI = TypeTable.insertRecord(ContinuationBuilder); 1704 } 1705 1706 std::string FullName = getFullyQualifiedName(Ty); 1707 1708 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1709 getTypeIndex(Ty->getBaseType())); 1710 return TypeTable.writeLeafType(ER); 1711 } 1712 1713 //===----------------------------------------------------------------------===// 1714 // ClassInfo 1715 //===----------------------------------------------------------------------===// 1716 1717 struct llvm::ClassInfo { 1718 struct MemberInfo { 1719 const DIDerivedType *MemberTypeNode; 1720 uint64_t BaseOffset; 1721 }; 1722 // [MemberInfo] 1723 using MemberList = std::vector<MemberInfo>; 1724 1725 using MethodsList = TinyPtrVector<const DISubprogram *>; 1726 // MethodName -> MethodsList 1727 using MethodsMap = MapVector<MDString *, MethodsList>; 1728 1729 /// Base classes. 1730 std::vector<const DIDerivedType *> Inheritance; 1731 1732 /// Direct members. 1733 MemberList Members; 1734 // Direct overloaded methods gathered by name. 1735 MethodsMap Methods; 1736 1737 TypeIndex VShapeTI; 1738 1739 std::vector<const DIType *> NestedTypes; 1740 }; 1741 1742 void CodeViewDebug::clear() { 1743 assert(CurFn == nullptr); 1744 FileIdMap.clear(); 1745 FnDebugInfo.clear(); 1746 FileToFilepathMap.clear(); 1747 LocalUDTs.clear(); 1748 GlobalUDTs.clear(); 1749 TypeIndices.clear(); 1750 CompleteTypeIndices.clear(); 1751 } 1752 1753 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1754 const DIDerivedType *DDTy) { 1755 if (!DDTy->getName().empty()) { 1756 Info.Members.push_back({DDTy, 0}); 1757 return; 1758 } 1759 // An unnamed member must represent a nested struct or union. Add all the 1760 // indirect fields to the current record. 1761 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1762 uint64_t Offset = DDTy->getOffsetInBits(); 1763 const DIType *Ty = DDTy->getBaseType().resolve(); 1764 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1765 ClassInfo NestedInfo = collectClassInfo(DCTy); 1766 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1767 Info.Members.push_back( 1768 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1769 } 1770 1771 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1772 ClassInfo Info; 1773 // Add elements to structure type. 1774 DINodeArray Elements = Ty->getElements(); 1775 for (auto *Element : Elements) { 1776 // We assume that the frontend provides all members in source declaration 1777 // order, which is what MSVC does. 1778 if (!Element) 1779 continue; 1780 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1781 Info.Methods[SP->getRawName()].push_back(SP); 1782 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1783 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1784 collectMemberInfo(Info, DDTy); 1785 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1786 Info.Inheritance.push_back(DDTy); 1787 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1788 DDTy->getName() == "__vtbl_ptr_type") { 1789 Info.VShapeTI = getTypeIndex(DDTy); 1790 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1791 Info.NestedTypes.push_back(DDTy); 1792 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1793 // Ignore friend members. It appears that MSVC emitted info about 1794 // friends in the past, but modern versions do not. 1795 } 1796 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1797 Info.NestedTypes.push_back(Composite); 1798 } 1799 // Skip other unrecognized kinds of elements. 1800 } 1801 return Info; 1802 } 1803 1804 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1805 // First, construct the forward decl. Don't look into Ty to compute the 1806 // forward decl options, since it might not be available in all TUs. 1807 TypeRecordKind Kind = getRecordKind(Ty); 1808 ClassOptions CO = 1809 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1810 std::string FullName = getFullyQualifiedName(Ty); 1811 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1812 FullName, Ty->getIdentifier()); 1813 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 1814 if (!Ty->isForwardDecl()) 1815 DeferredCompleteTypes.push_back(Ty); 1816 return FwdDeclTI; 1817 } 1818 1819 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1820 // Construct the field list and complete type record. 1821 TypeRecordKind Kind = getRecordKind(Ty); 1822 ClassOptions CO = getCommonClassOptions(Ty); 1823 TypeIndex FieldTI; 1824 TypeIndex VShapeTI; 1825 unsigned FieldCount; 1826 bool ContainsNestedClass; 1827 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1828 lowerRecordFieldList(Ty); 1829 1830 if (ContainsNestedClass) 1831 CO |= ClassOptions::ContainsNestedClass; 1832 1833 std::string FullName = getFullyQualifiedName(Ty); 1834 1835 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1836 1837 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1838 SizeInBytes, FullName, Ty->getIdentifier()); 1839 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 1840 1841 if (const auto *File = Ty->getFile()) { 1842 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1843 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1844 1845 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1846 TypeTable.writeLeafType(USLR); 1847 } 1848 1849 addToUDTs(Ty); 1850 1851 return ClassTI; 1852 } 1853 1854 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1855 ClassOptions CO = 1856 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1857 std::string FullName = getFullyQualifiedName(Ty); 1858 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1859 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 1860 if (!Ty->isForwardDecl()) 1861 DeferredCompleteTypes.push_back(Ty); 1862 return FwdDeclTI; 1863 } 1864 1865 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1866 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1867 TypeIndex FieldTI; 1868 unsigned FieldCount; 1869 bool ContainsNestedClass; 1870 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1871 lowerRecordFieldList(Ty); 1872 1873 if (ContainsNestedClass) 1874 CO |= ClassOptions::ContainsNestedClass; 1875 1876 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1877 std::string FullName = getFullyQualifiedName(Ty); 1878 1879 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1880 Ty->getIdentifier()); 1881 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 1882 1883 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1884 TypeIndex SIRI = TypeTable.writeLeafType(SIR); 1885 1886 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1887 TypeTable.writeLeafType(USLR); 1888 1889 addToUDTs(Ty); 1890 1891 return UnionTI; 1892 } 1893 1894 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1895 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1896 // Manually count members. MSVC appears to count everything that generates a 1897 // field list record. Each individual overload in a method overload group 1898 // contributes to this count, even though the overload group is a single field 1899 // list record. 1900 unsigned MemberCount = 0; 1901 ClassInfo Info = collectClassInfo(Ty); 1902 ContinuationRecordBuilder ContinuationBuilder; 1903 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1904 1905 // Create base classes. 1906 for (const DIDerivedType *I : Info.Inheritance) { 1907 if (I->getFlags() & DINode::FlagVirtual) { 1908 // Virtual base. 1909 // FIXME: Emit VBPtrOffset when the frontend provides it. 1910 unsigned VBPtrOffset = 0; 1911 // FIXME: Despite the accessor name, the offset is really in bytes. 1912 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1913 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1914 ? TypeRecordKind::IndirectVirtualBaseClass 1915 : TypeRecordKind::VirtualBaseClass; 1916 VirtualBaseClassRecord VBCR( 1917 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1918 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1919 VBTableIndex); 1920 1921 ContinuationBuilder.writeMemberType(VBCR); 1922 } else { 1923 assert(I->getOffsetInBits() % 8 == 0 && 1924 "bases must be on byte boundaries"); 1925 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1926 getTypeIndex(I->getBaseType()), 1927 I->getOffsetInBits() / 8); 1928 ContinuationBuilder.writeMemberType(BCR); 1929 } 1930 } 1931 1932 // Create members. 1933 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1934 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1935 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1936 StringRef MemberName = Member->getName(); 1937 MemberAccess Access = 1938 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1939 1940 if (Member->isStaticMember()) { 1941 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1942 ContinuationBuilder.writeMemberType(SDMR); 1943 MemberCount++; 1944 continue; 1945 } 1946 1947 // Virtual function pointer member. 1948 if ((Member->getFlags() & DINode::FlagArtificial) && 1949 Member->getName().startswith("_vptr$")) { 1950 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1951 ContinuationBuilder.writeMemberType(VFPR); 1952 MemberCount++; 1953 continue; 1954 } 1955 1956 // Data member. 1957 uint64_t MemberOffsetInBits = 1958 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1959 if (Member->isBitField()) { 1960 uint64_t StartBitOffset = MemberOffsetInBits; 1961 if (const auto *CI = 1962 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1963 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1964 } 1965 StartBitOffset -= MemberOffsetInBits; 1966 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1967 StartBitOffset); 1968 MemberBaseType = TypeTable.writeLeafType(BFR); 1969 } 1970 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1971 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1972 MemberName); 1973 ContinuationBuilder.writeMemberType(DMR); 1974 MemberCount++; 1975 } 1976 1977 // Create methods 1978 for (auto &MethodItr : Info.Methods) { 1979 StringRef Name = MethodItr.first->getString(); 1980 1981 std::vector<OneMethodRecord> Methods; 1982 for (const DISubprogram *SP : MethodItr.second) { 1983 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1984 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1985 1986 unsigned VFTableOffset = -1; 1987 if (Introduced) 1988 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1989 1990 Methods.push_back(OneMethodRecord( 1991 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1992 translateMethodKindFlags(SP, Introduced), 1993 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1994 MemberCount++; 1995 } 1996 assert(!Methods.empty() && "Empty methods map entry"); 1997 if (Methods.size() == 1) 1998 ContinuationBuilder.writeMemberType(Methods[0]); 1999 else { 2000 // FIXME: Make this use its own ContinuationBuilder so that 2001 // MethodOverloadList can be split correctly. 2002 MethodOverloadListRecord MOLR(Methods); 2003 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2004 2005 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2006 ContinuationBuilder.writeMemberType(OMR); 2007 } 2008 } 2009 2010 // Create nested classes. 2011 for (const DIType *Nested : Info.NestedTypes) { 2012 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2013 ContinuationBuilder.writeMemberType(R); 2014 MemberCount++; 2015 } 2016 2017 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2018 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2019 !Info.NestedTypes.empty()); 2020 } 2021 2022 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2023 if (!VBPType.getIndex()) { 2024 // Make a 'const int *' type. 2025 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2026 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2027 2028 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2029 : PointerKind::Near32; 2030 PointerMode PM = PointerMode::Pointer; 2031 PointerOptions PO = PointerOptions::None; 2032 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2033 VBPType = TypeTable.writeLeafType(PR); 2034 } 2035 2036 return VBPType; 2037 } 2038 2039 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2040 const DIType *Ty = TypeRef.resolve(); 2041 const DIType *ClassTy = ClassTyRef.resolve(); 2042 2043 // The null DIType is the void type. Don't try to hash it. 2044 if (!Ty) 2045 return TypeIndex::Void(); 2046 2047 // Check if we've already translated this type. Don't try to do a 2048 // get-or-create style insertion that caches the hash lookup across the 2049 // lowerType call. It will update the TypeIndices map. 2050 auto I = TypeIndices.find({Ty, ClassTy}); 2051 if (I != TypeIndices.end()) 2052 return I->second; 2053 2054 TypeLoweringScope S(*this); 2055 TypeIndex TI = lowerType(Ty, ClassTy); 2056 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2057 } 2058 2059 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2060 DIType *Ty = TypeRef.resolve(); 2061 PointerRecord PR(getTypeIndex(Ty), 2062 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2063 : PointerKind::Near32, 2064 PointerMode::LValueReference, PointerOptions::None, 2065 Ty->getSizeInBits() / 8); 2066 return TypeTable.writeLeafType(PR); 2067 } 2068 2069 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2070 const DIType *Ty = TypeRef.resolve(); 2071 2072 // The null DIType is the void type. Don't try to hash it. 2073 if (!Ty) 2074 return TypeIndex::Void(); 2075 2076 // If this is a non-record type, the complete type index is the same as the 2077 // normal type index. Just call getTypeIndex. 2078 switch (Ty->getTag()) { 2079 case dwarf::DW_TAG_class_type: 2080 case dwarf::DW_TAG_structure_type: 2081 case dwarf::DW_TAG_union_type: 2082 break; 2083 default: 2084 return getTypeIndex(Ty); 2085 } 2086 2087 // Check if we've already translated the complete record type. Lowering a 2088 // complete type should never trigger lowering another complete type, so we 2089 // can reuse the hash table lookup result. 2090 const auto *CTy = cast<DICompositeType>(Ty); 2091 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2092 if (!InsertResult.second) 2093 return InsertResult.first->second; 2094 2095 TypeLoweringScope S(*this); 2096 2097 // Make sure the forward declaration is emitted first. It's unclear if this 2098 // is necessary, but MSVC does it, and we should follow suit until we can show 2099 // otherwise. 2100 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2101 2102 // Just use the forward decl if we don't have complete type info. This might 2103 // happen if the frontend is using modules and expects the complete definition 2104 // to be emitted elsewhere. 2105 if (CTy->isForwardDecl()) 2106 return FwdDeclTI; 2107 2108 TypeIndex TI; 2109 switch (CTy->getTag()) { 2110 case dwarf::DW_TAG_class_type: 2111 case dwarf::DW_TAG_structure_type: 2112 TI = lowerCompleteTypeClass(CTy); 2113 break; 2114 case dwarf::DW_TAG_union_type: 2115 TI = lowerCompleteTypeUnion(CTy); 2116 break; 2117 default: 2118 llvm_unreachable("not a record"); 2119 } 2120 2121 InsertResult.first->second = TI; 2122 return TI; 2123 } 2124 2125 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2126 /// and do this until fixpoint, as each complete record type typically 2127 /// references 2128 /// many other record types. 2129 void CodeViewDebug::emitDeferredCompleteTypes() { 2130 SmallVector<const DICompositeType *, 4> TypesToEmit; 2131 while (!DeferredCompleteTypes.empty()) { 2132 std::swap(DeferredCompleteTypes, TypesToEmit); 2133 for (const DICompositeType *RecordTy : TypesToEmit) 2134 getCompleteTypeIndex(RecordTy); 2135 TypesToEmit.clear(); 2136 } 2137 } 2138 2139 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2140 // Get the sorted list of parameters and emit them first. 2141 SmallVector<const LocalVariable *, 6> Params; 2142 for (const LocalVariable &L : Locals) 2143 if (L.DIVar->isParameter()) 2144 Params.push_back(&L); 2145 std::sort(Params.begin(), Params.end(), 2146 [](const LocalVariable *L, const LocalVariable *R) { 2147 return L->DIVar->getArg() < R->DIVar->getArg(); 2148 }); 2149 for (const LocalVariable *L : Params) 2150 emitLocalVariable(*L); 2151 2152 // Next emit all non-parameters in the order that we found them. 2153 for (const LocalVariable &L : Locals) 2154 if (!L.DIVar->isParameter()) 2155 emitLocalVariable(L); 2156 } 2157 2158 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2159 // LocalSym record, see SymbolRecord.h for more info. 2160 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2161 *LocalEnd = MMI->getContext().createTempSymbol(); 2162 OS.AddComment("Record length"); 2163 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2164 OS.EmitLabel(LocalBegin); 2165 2166 OS.AddComment("Record kind: S_LOCAL"); 2167 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2168 2169 LocalSymFlags Flags = LocalSymFlags::None; 2170 if (Var.DIVar->isParameter()) 2171 Flags |= LocalSymFlags::IsParameter; 2172 if (Var.DefRanges.empty()) 2173 Flags |= LocalSymFlags::IsOptimizedOut; 2174 2175 OS.AddComment("TypeIndex"); 2176 TypeIndex TI = Var.UseReferenceType 2177 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2178 : getCompleteTypeIndex(Var.DIVar->getType()); 2179 OS.EmitIntValue(TI.getIndex(), 4); 2180 OS.AddComment("Flags"); 2181 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2182 // Truncate the name so we won't overflow the record length field. 2183 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2184 OS.EmitLabel(LocalEnd); 2185 2186 // Calculate the on disk prefix of the appropriate def range record. The 2187 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2188 // should be big enough to hold all forms without memory allocation. 2189 SmallString<20> BytePrefix; 2190 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2191 BytePrefix.clear(); 2192 if (DefRange.InMemory) { 2193 uint16_t RegRelFlags = 0; 2194 if (DefRange.IsSubfield) { 2195 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2196 (DefRange.StructOffset 2197 << DefRangeRegisterRelSym::OffsetInParentShift); 2198 } 2199 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2200 Sym.Hdr.Register = DefRange.CVRegister; 2201 Sym.Hdr.Flags = RegRelFlags; 2202 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2203 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2204 BytePrefix += 2205 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2206 BytePrefix += 2207 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2208 } else { 2209 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2210 if (DefRange.IsSubfield) { 2211 // Unclear what matters here. 2212 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2213 Sym.Hdr.Register = DefRange.CVRegister; 2214 Sym.Hdr.MayHaveNoName = 0; 2215 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2216 2217 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2218 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2219 sizeof(SymKind)); 2220 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2221 sizeof(Sym.Hdr)); 2222 } else { 2223 // Unclear what matters here. 2224 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2225 Sym.Hdr.Register = DefRange.CVRegister; 2226 Sym.Hdr.MayHaveNoName = 0; 2227 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2228 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2229 sizeof(SymKind)); 2230 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2231 sizeof(Sym.Hdr)); 2232 } 2233 } 2234 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2235 } 2236 } 2237 2238 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2239 const Function *GV = MF->getFunction(); 2240 assert(FnDebugInfo.count(GV)); 2241 assert(CurFn == &FnDebugInfo[GV]); 2242 2243 collectVariableInfo(GV->getSubprogram()); 2244 2245 // Don't emit anything if we don't have any line tables. 2246 if (!CurFn->HaveLineInfo) { 2247 FnDebugInfo.erase(GV); 2248 CurFn = nullptr; 2249 return; 2250 } 2251 2252 CurFn->Annotations = MF->getCodeViewAnnotations(); 2253 2254 CurFn->End = Asm->getFunctionEnd(); 2255 2256 CurFn = nullptr; 2257 } 2258 2259 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2260 DebugHandlerBase::beginInstruction(MI); 2261 2262 // Ignore DBG_VALUE locations and function prologue. 2263 if (!Asm || !CurFn || MI->isDebugValue() || 2264 MI->getFlag(MachineInstr::FrameSetup)) 2265 return; 2266 2267 // If the first instruction of a new MBB has no location, find the first 2268 // instruction with a location and use that. 2269 DebugLoc DL = MI->getDebugLoc(); 2270 if (!DL && MI->getParent() != PrevInstBB) { 2271 for (const auto &NextMI : *MI->getParent()) { 2272 if (NextMI.isDebugValue()) 2273 continue; 2274 DL = NextMI.getDebugLoc(); 2275 if (DL) 2276 break; 2277 } 2278 } 2279 PrevInstBB = MI->getParent(); 2280 2281 // If we still don't have a debug location, don't record a location. 2282 if (!DL) 2283 return; 2284 2285 maybeRecordLocation(DL, Asm->MF); 2286 } 2287 2288 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2289 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2290 *EndLabel = MMI->getContext().createTempSymbol(); 2291 OS.EmitIntValue(unsigned(Kind), 4); 2292 OS.AddComment("Subsection size"); 2293 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2294 OS.EmitLabel(BeginLabel); 2295 return EndLabel; 2296 } 2297 2298 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2299 OS.EmitLabel(EndLabel); 2300 // Every subsection must be aligned to a 4-byte boundary. 2301 OS.EmitValueToAlignment(4); 2302 } 2303 2304 void CodeViewDebug::emitDebugInfoForUDTs( 2305 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2306 for (const auto &UDT : UDTs) { 2307 const DIType *T = UDT.second; 2308 assert(shouldEmitUdt(T)); 2309 2310 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2311 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2312 OS.AddComment("Record length"); 2313 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2314 OS.EmitLabel(UDTRecordBegin); 2315 2316 OS.AddComment("Record kind: S_UDT"); 2317 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2318 2319 OS.AddComment("Type"); 2320 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2321 2322 emitNullTerminatedSymbolName(OS, UDT.first); 2323 OS.EmitLabel(UDTRecordEnd); 2324 } 2325 } 2326 2327 void CodeViewDebug::emitDebugInfoForGlobals() { 2328 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2329 GlobalMap; 2330 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2331 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2332 GV.getDebugInfo(GVEs); 2333 for (const auto *GVE : GVEs) 2334 GlobalMap[GVE] = &GV; 2335 } 2336 2337 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2338 for (const MDNode *Node : CUs->operands()) { 2339 const auto *CU = cast<DICompileUnit>(Node); 2340 2341 // First, emit all globals that are not in a comdat in a single symbol 2342 // substream. MSVC doesn't like it if the substream is empty, so only open 2343 // it if we have at least one global to emit. 2344 switchToDebugSectionForSymbol(nullptr); 2345 MCSymbol *EndLabel = nullptr; 2346 for (const auto *GVE : CU->getGlobalVariables()) { 2347 if (const auto *GV = GlobalMap.lookup(GVE)) 2348 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2349 if (!EndLabel) { 2350 OS.AddComment("Symbol subsection for globals"); 2351 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2352 } 2353 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2354 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2355 } 2356 } 2357 if (EndLabel) 2358 endCVSubsection(EndLabel); 2359 2360 // Second, emit each global that is in a comdat into its own .debug$S 2361 // section along with its own symbol substream. 2362 for (const auto *GVE : CU->getGlobalVariables()) { 2363 if (const auto *GV = GlobalMap.lookup(GVE)) { 2364 if (GV->hasComdat()) { 2365 MCSymbol *GVSym = Asm->getSymbol(GV); 2366 OS.AddComment("Symbol subsection for " + 2367 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2368 switchToDebugSectionForSymbol(GVSym); 2369 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2370 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2371 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2372 endCVSubsection(EndLabel); 2373 } 2374 } 2375 } 2376 } 2377 } 2378 2379 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2380 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2381 for (const MDNode *Node : CUs->operands()) { 2382 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2383 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2384 getTypeIndex(RT); 2385 // FIXME: Add to global/local DTU list. 2386 } 2387 } 2388 } 2389 } 2390 2391 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2392 const GlobalVariable *GV, 2393 MCSymbol *GVSym) { 2394 // DataSym record, see SymbolRecord.h for more info. 2395 // FIXME: Thread local data, etc 2396 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2397 *DataEnd = MMI->getContext().createTempSymbol(); 2398 OS.AddComment("Record length"); 2399 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2400 OS.EmitLabel(DataBegin); 2401 if (DIGV->isLocalToUnit()) { 2402 if (GV->isThreadLocal()) { 2403 OS.AddComment("Record kind: S_LTHREAD32"); 2404 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2405 } else { 2406 OS.AddComment("Record kind: S_LDATA32"); 2407 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2408 } 2409 } else { 2410 if (GV->isThreadLocal()) { 2411 OS.AddComment("Record kind: S_GTHREAD32"); 2412 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2413 } else { 2414 OS.AddComment("Record kind: S_GDATA32"); 2415 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2416 } 2417 } 2418 OS.AddComment("Type"); 2419 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2420 OS.AddComment("DataOffset"); 2421 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2422 OS.AddComment("Segment"); 2423 OS.EmitCOFFSectionIndex(GVSym); 2424 OS.AddComment("Name"); 2425 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2426 OS.EmitLabel(DataEnd); 2427 } 2428