1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/BinaryFormat/Dwarf.h" 26 #include "llvm/CodeGen/AsmPrinter.h" 27 #include "llvm/CodeGen/LexicalScopes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/TargetFrameLowering.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/Config/llvm-config.h" 37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/EnumTables.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/BinaryStreamWriter.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/SMLoc.h" 72 #include "llvm/Support/ScopedPrinter.h" 73 #include "llvm/Target/TargetLoweringObjectFile.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <iterator> 80 #include <limits> 81 82 using namespace llvm; 83 using namespace llvm::codeview; 84 85 namespace { 86 class CVMCAdapter : public CodeViewRecordStreamer { 87 public: 88 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 89 : OS(&OS), TypeTable(TypeTable) {} 90 91 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 92 93 void emitIntValue(uint64_t Value, unsigned Size) override { 94 OS->emitIntValueInHex(Value, Size); 95 } 96 97 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 98 99 void AddComment(const Twine &T) override { OS->AddComment(T); } 100 101 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 102 103 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 104 105 std::string getTypeName(TypeIndex TI) override { 106 std::string TypeName; 107 if (!TI.isNoneType()) { 108 if (TI.isSimple()) 109 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 110 else 111 TypeName = std::string(TypeTable.getTypeName(TI)); 112 } 113 return TypeName; 114 } 115 116 private: 117 MCStreamer *OS = nullptr; 118 TypeCollection &TypeTable; 119 }; 120 } // namespace 121 122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 123 switch (Type) { 124 case Triple::ArchType::x86: 125 return CPUType::Pentium3; 126 case Triple::ArchType::x86_64: 127 return CPUType::X64; 128 case Triple::ArchType::thumb: 129 // LLVM currently doesn't support Windows CE and so thumb 130 // here is indiscriminately mapped to ARMNT specifically. 131 return CPUType::ARMNT; 132 case Triple::ArchType::aarch64: 133 return CPUType::ARM64; 134 default: 135 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 136 } 137 } 138 139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 140 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} 141 142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 143 std::string &Filepath = FileToFilepathMap[File]; 144 if (!Filepath.empty()) 145 return Filepath; 146 147 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 148 149 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 150 // it textually because one of the path components could be a symlink. 151 if (Dir.startswith("/") || Filename.startswith("/")) { 152 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 153 return Filename; 154 Filepath = std::string(Dir); 155 if (Dir.back() != '/') 156 Filepath += '/'; 157 Filepath += Filename; 158 return Filepath; 159 } 160 161 // Clang emits directory and relative filename info into the IR, but CodeView 162 // operates on full paths. We could change Clang to emit full paths too, but 163 // that would increase the IR size and probably not needed for other users. 164 // For now, just concatenate and canonicalize the path here. 165 if (Filename.find(':') == 1) 166 Filepath = std::string(Filename); 167 else 168 Filepath = (Dir + "\\" + Filename).str(); 169 170 // Canonicalize the path. We have to do it textually because we may no longer 171 // have access the file in the filesystem. 172 // First, replace all slashes with backslashes. 173 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 174 175 // Remove all "\.\" with "\". 176 size_t Cursor = 0; 177 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 178 Filepath.erase(Cursor, 2); 179 180 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 181 // path should be well-formatted, e.g. start with a drive letter, etc. 182 Cursor = 0; 183 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 184 // Something's wrong if the path starts with "\..\", abort. 185 if (Cursor == 0) 186 break; 187 188 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 189 if (PrevSlash == std::string::npos) 190 // Something's wrong, abort. 191 break; 192 193 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 194 // The next ".." might be following the one we've just erased. 195 Cursor = PrevSlash; 196 } 197 198 // Remove all duplicate backslashes. 199 Cursor = 0; 200 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 201 Filepath.erase(Cursor, 1); 202 203 return Filepath; 204 } 205 206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 207 StringRef FullPath = getFullFilepath(F); 208 unsigned NextId = FileIdMap.size() + 1; 209 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 210 if (Insertion.second) { 211 // We have to compute the full filepath and emit a .cv_file directive. 212 ArrayRef<uint8_t> ChecksumAsBytes; 213 FileChecksumKind CSKind = FileChecksumKind::None; 214 if (F->getChecksum()) { 215 std::string Checksum = fromHex(F->getChecksum()->Value); 216 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 217 memcpy(CKMem, Checksum.data(), Checksum.size()); 218 ChecksumAsBytes = ArrayRef<uint8_t>( 219 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 220 switch (F->getChecksum()->Kind) { 221 case DIFile::CSK_MD5: 222 CSKind = FileChecksumKind::MD5; 223 break; 224 case DIFile::CSK_SHA1: 225 CSKind = FileChecksumKind::SHA1; 226 break; 227 case DIFile::CSK_SHA256: 228 CSKind = FileChecksumKind::SHA256; 229 break; 230 } 231 } 232 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 233 static_cast<unsigned>(CSKind)); 234 (void)Success; 235 assert(Success && ".cv_file directive failed"); 236 } 237 return Insertion.first->second; 238 } 239 240 CodeViewDebug::InlineSite & 241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 242 const DISubprogram *Inlinee) { 243 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 244 InlineSite *Site = &SiteInsertion.first->second; 245 if (SiteInsertion.second) { 246 unsigned ParentFuncId = CurFn->FuncId; 247 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 248 ParentFuncId = 249 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 250 .SiteFuncId; 251 252 Site->SiteFuncId = NextFuncId++; 253 OS.EmitCVInlineSiteIdDirective( 254 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 255 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 256 Site->Inlinee = Inlinee; 257 InlinedSubprograms.insert(Inlinee); 258 getFuncIdForSubprogram(Inlinee); 259 } 260 return *Site; 261 } 262 263 static StringRef getPrettyScopeName(const DIScope *Scope) { 264 StringRef ScopeName = Scope->getName(); 265 if (!ScopeName.empty()) 266 return ScopeName; 267 268 switch (Scope->getTag()) { 269 case dwarf::DW_TAG_enumeration_type: 270 case dwarf::DW_TAG_class_type: 271 case dwarf::DW_TAG_structure_type: 272 case dwarf::DW_TAG_union_type: 273 return "<unnamed-tag>"; 274 case dwarf::DW_TAG_namespace: 275 return "`anonymous namespace'"; 276 default: 277 return StringRef(); 278 } 279 } 280 281 const DISubprogram *CodeViewDebug::collectParentScopeNames( 282 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 283 const DISubprogram *ClosestSubprogram = nullptr; 284 while (Scope != nullptr) { 285 if (ClosestSubprogram == nullptr) 286 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 287 288 // If a type appears in a scope chain, make sure it gets emitted. The 289 // frontend will be responsible for deciding if this should be a forward 290 // declaration or a complete type. 291 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 292 DeferredCompleteTypes.push_back(Ty); 293 294 StringRef ScopeName = getPrettyScopeName(Scope); 295 if (!ScopeName.empty()) 296 QualifiedNameComponents.push_back(ScopeName); 297 Scope = Scope->getScope(); 298 } 299 return ClosestSubprogram; 300 } 301 302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 303 StringRef TypeName) { 304 std::string FullyQualifiedName; 305 for (StringRef QualifiedNameComponent : 306 llvm::reverse(QualifiedNameComponents)) { 307 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 308 FullyQualifiedName.append("::"); 309 } 310 FullyQualifiedName.append(std::string(TypeName)); 311 return FullyQualifiedName; 312 } 313 314 struct CodeViewDebug::TypeLoweringScope { 315 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 316 ~TypeLoweringScope() { 317 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 318 // inner TypeLoweringScopes don't attempt to emit deferred types. 319 if (CVD.TypeEmissionLevel == 1) 320 CVD.emitDeferredCompleteTypes(); 321 --CVD.TypeEmissionLevel; 322 } 323 CodeViewDebug &CVD; 324 }; 325 326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 327 StringRef Name) { 328 // Ensure types in the scope chain are emitted as soon as possible. 329 // This can create otherwise a situation where S_UDTs are emitted while 330 // looping in emitDebugInfoForUDTs. 331 TypeLoweringScope S(*this); 332 SmallVector<StringRef, 5> QualifiedNameComponents; 333 collectParentScopeNames(Scope, QualifiedNameComponents); 334 return formatNestedName(QualifiedNameComponents, Name); 335 } 336 337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 338 const DIScope *Scope = Ty->getScope(); 339 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 340 } 341 342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 343 // No scope means global scope and that uses the zero index. 344 // 345 // We also use zero index when the scope is a DISubprogram 346 // to suppress the emission of LF_STRING_ID for the function, 347 // which can trigger a link-time error with the linker in 348 // VS2019 version 16.11.2 or newer. 349 // Note, however, skipping the debug info emission for the DISubprogram 350 // is a temporary fix. The root issue here is that we need to figure out 351 // the proper way to encode a function nested in another function 352 // (as introduced by the Fortran 'contains' keyword) in CodeView. 353 if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope)) 354 return TypeIndex(); 355 356 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 357 358 // Check if we've already translated this scope. 359 auto I = TypeIndices.find({Scope, nullptr}); 360 if (I != TypeIndices.end()) 361 return I->second; 362 363 // Build the fully qualified name of the scope. 364 std::string ScopeName = getFullyQualifiedName(Scope); 365 StringIdRecord SID(TypeIndex(), ScopeName); 366 auto TI = TypeTable.writeLeafType(SID); 367 return recordTypeIndexForDINode(Scope, TI); 368 } 369 370 static StringRef removeTemplateArgs(StringRef Name) { 371 // Remove template args from the display name. Assume that the template args 372 // are the last thing in the name. 373 if (Name.empty() || Name.back() != '>') 374 return Name; 375 376 int OpenBrackets = 0; 377 for (int i = Name.size() - 1; i >= 0; --i) { 378 if (Name[i] == '>') 379 ++OpenBrackets; 380 else if (Name[i] == '<') { 381 --OpenBrackets; 382 if (OpenBrackets == 0) 383 return Name.substr(0, i); 384 } 385 } 386 return Name; 387 } 388 389 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 390 assert(SP); 391 392 // Check if we've already translated this subprogram. 393 auto I = TypeIndices.find({SP, nullptr}); 394 if (I != TypeIndices.end()) 395 return I->second; 396 397 // The display name includes function template arguments. Drop them to match 398 // MSVC. We need to have the template arguments in the DISubprogram name 399 // because they are used in other symbol records, such as S_GPROC32_IDs. 400 StringRef DisplayName = removeTemplateArgs(SP->getName()); 401 402 const DIScope *Scope = SP->getScope(); 403 TypeIndex TI; 404 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 405 // If the scope is a DICompositeType, then this must be a method. Member 406 // function types take some special handling, and require access to the 407 // subprogram. 408 TypeIndex ClassType = getTypeIndex(Class); 409 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 410 DisplayName); 411 TI = TypeTable.writeLeafType(MFuncId); 412 } else { 413 // Otherwise, this must be a free function. 414 TypeIndex ParentScope = getScopeIndex(Scope); 415 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 416 TI = TypeTable.writeLeafType(FuncId); 417 } 418 419 return recordTypeIndexForDINode(SP, TI); 420 } 421 422 static bool isNonTrivial(const DICompositeType *DCTy) { 423 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 424 } 425 426 static FunctionOptions 427 getFunctionOptions(const DISubroutineType *Ty, 428 const DICompositeType *ClassTy = nullptr, 429 StringRef SPName = StringRef("")) { 430 FunctionOptions FO = FunctionOptions::None; 431 const DIType *ReturnTy = nullptr; 432 if (auto TypeArray = Ty->getTypeArray()) { 433 if (TypeArray.size()) 434 ReturnTy = TypeArray[0]; 435 } 436 437 // Add CxxReturnUdt option to functions that return nontrivial record types 438 // or methods that return record types. 439 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 440 if (isNonTrivial(ReturnDCTy) || ClassTy) 441 FO |= FunctionOptions::CxxReturnUdt; 442 443 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 444 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 445 FO |= FunctionOptions::Constructor; 446 447 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 448 449 } 450 return FO; 451 } 452 453 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 454 const DICompositeType *Class) { 455 // Always use the method declaration as the key for the function type. The 456 // method declaration contains the this adjustment. 457 if (SP->getDeclaration()) 458 SP = SP->getDeclaration(); 459 assert(!SP->getDeclaration() && "should use declaration as key"); 460 461 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 462 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 463 auto I = TypeIndices.find({SP, Class}); 464 if (I != TypeIndices.end()) 465 return I->second; 466 467 // Make sure complete type info for the class is emitted *after* the member 468 // function type, as the complete class type is likely to reference this 469 // member function type. 470 TypeLoweringScope S(*this); 471 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 472 473 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 474 TypeIndex TI = lowerTypeMemberFunction( 475 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 476 return recordTypeIndexForDINode(SP, TI, Class); 477 } 478 479 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 480 TypeIndex TI, 481 const DIType *ClassTy) { 482 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 483 (void)InsertResult; 484 assert(InsertResult.second && "DINode was already assigned a type index"); 485 return TI; 486 } 487 488 unsigned CodeViewDebug::getPointerSizeInBytes() { 489 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 490 } 491 492 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 493 const LexicalScope *LS) { 494 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 495 // This variable was inlined. Associate it with the InlineSite. 496 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 497 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 498 Site.InlinedLocals.emplace_back(Var); 499 } else { 500 // This variable goes into the corresponding lexical scope. 501 ScopeVariables[LS].emplace_back(Var); 502 } 503 } 504 505 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 506 const DILocation *Loc) { 507 if (!llvm::is_contained(Locs, Loc)) 508 Locs.push_back(Loc); 509 } 510 511 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 512 const MachineFunction *MF) { 513 // Skip this instruction if it has the same location as the previous one. 514 if (!DL || DL == PrevInstLoc) 515 return; 516 517 const DIScope *Scope = DL.get()->getScope(); 518 if (!Scope) 519 return; 520 521 // Skip this line if it is longer than the maximum we can record. 522 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 523 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 524 LI.isNeverStepInto()) 525 return; 526 527 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 528 if (CI.getStartColumn() != DL.getCol()) 529 return; 530 531 if (!CurFn->HaveLineInfo) 532 CurFn->HaveLineInfo = true; 533 unsigned FileId = 0; 534 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 535 FileId = CurFn->LastFileId; 536 else 537 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 538 PrevInstLoc = DL; 539 540 unsigned FuncId = CurFn->FuncId; 541 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 542 const DILocation *Loc = DL.get(); 543 544 // If this location was actually inlined from somewhere else, give it the ID 545 // of the inline call site. 546 FuncId = 547 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 548 549 // Ensure we have links in the tree of inline call sites. 550 bool FirstLoc = true; 551 while ((SiteLoc = Loc->getInlinedAt())) { 552 InlineSite &Site = 553 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 554 if (!FirstLoc) 555 addLocIfNotPresent(Site.ChildSites, Loc); 556 FirstLoc = false; 557 Loc = SiteLoc; 558 } 559 addLocIfNotPresent(CurFn->ChildSites, Loc); 560 } 561 562 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 563 /*PrologueEnd=*/false, /*IsStmt=*/false, 564 DL->getFilename(), SMLoc()); 565 } 566 567 void CodeViewDebug::emitCodeViewMagicVersion() { 568 OS.emitValueToAlignment(4); 569 OS.AddComment("Debug section magic"); 570 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 571 } 572 573 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 574 switch (DWLang) { 575 case dwarf::DW_LANG_C: 576 case dwarf::DW_LANG_C89: 577 case dwarf::DW_LANG_C99: 578 case dwarf::DW_LANG_C11: 579 case dwarf::DW_LANG_ObjC: 580 return SourceLanguage::C; 581 case dwarf::DW_LANG_C_plus_plus: 582 case dwarf::DW_LANG_C_plus_plus_03: 583 case dwarf::DW_LANG_C_plus_plus_11: 584 case dwarf::DW_LANG_C_plus_plus_14: 585 return SourceLanguage::Cpp; 586 case dwarf::DW_LANG_Fortran77: 587 case dwarf::DW_LANG_Fortran90: 588 case dwarf::DW_LANG_Fortran95: 589 case dwarf::DW_LANG_Fortran03: 590 case dwarf::DW_LANG_Fortran08: 591 return SourceLanguage::Fortran; 592 case dwarf::DW_LANG_Pascal83: 593 return SourceLanguage::Pascal; 594 case dwarf::DW_LANG_Cobol74: 595 case dwarf::DW_LANG_Cobol85: 596 return SourceLanguage::Cobol; 597 case dwarf::DW_LANG_Java: 598 return SourceLanguage::Java; 599 case dwarf::DW_LANG_D: 600 return SourceLanguage::D; 601 case dwarf::DW_LANG_Swift: 602 return SourceLanguage::Swift; 603 default: 604 // There's no CodeView representation for this language, and CV doesn't 605 // have an "unknown" option for the language field, so we'll use MASM, 606 // as it's very low level. 607 return SourceLanguage::Masm; 608 } 609 } 610 611 void CodeViewDebug::beginModule(Module *M) { 612 // If module doesn't have named metadata anchors or COFF debug section 613 // is not available, skip any debug info related stuff. 614 NamedMDNode *CUs = M->getNamedMetadata("llvm.dbg.cu"); 615 if (!CUs || !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { 616 Asm = nullptr; 617 return; 618 } 619 // Tell MMI that we have and need debug info. 620 MMI->setDebugInfoAvailability(true); 621 622 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); 623 624 // Get the current source language. 625 const MDNode *Node = *CUs->operands().begin(); 626 const auto *CU = cast<DICompileUnit>(Node); 627 628 CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage()); 629 630 collectGlobalVariableInfo(); 631 632 // Check if we should emit type record hashes. 633 ConstantInt *GH = 634 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); 635 EmitDebugGlobalHashes = GH && !GH->isZero(); 636 } 637 638 void CodeViewDebug::endModule() { 639 if (!Asm || !MMI->hasDebugInfo()) 640 return; 641 642 // The COFF .debug$S section consists of several subsections, each starting 643 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 644 // of the payload followed by the payload itself. The subsections are 4-byte 645 // aligned. 646 647 // Use the generic .debug$S section, and make a subsection for all the inlined 648 // subprograms. 649 switchToDebugSectionForSymbol(nullptr); 650 651 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 652 emitCompilerInformation(); 653 endCVSubsection(CompilerInfo); 654 655 emitInlineeLinesSubsection(); 656 657 // Emit per-function debug information. 658 for (auto &P : FnDebugInfo) 659 if (!P.first->isDeclarationForLinker()) 660 emitDebugInfoForFunction(P.first, *P.second); 661 662 // Get types used by globals without emitting anything. 663 // This is meant to collect all static const data members so they can be 664 // emitted as globals. 665 collectDebugInfoForGlobals(); 666 667 // Emit retained types. 668 emitDebugInfoForRetainedTypes(); 669 670 // Emit global variable debug information. 671 setCurrentSubprogram(nullptr); 672 emitDebugInfoForGlobals(); 673 674 // Switch back to the generic .debug$S section after potentially processing 675 // comdat symbol sections. 676 switchToDebugSectionForSymbol(nullptr); 677 678 // Emit UDT records for any types used by global variables. 679 if (!GlobalUDTs.empty()) { 680 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 681 emitDebugInfoForUDTs(GlobalUDTs); 682 endCVSubsection(SymbolsEnd); 683 } 684 685 // This subsection holds a file index to offset in string table table. 686 OS.AddComment("File index to string table offset subsection"); 687 OS.emitCVFileChecksumsDirective(); 688 689 // This subsection holds the string table. 690 OS.AddComment("String table"); 691 OS.emitCVStringTableDirective(); 692 693 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 694 // subsection in the generic .debug$S section at the end. There is no 695 // particular reason for this ordering other than to match MSVC. 696 emitBuildInfo(); 697 698 // Emit type information and hashes last, so that any types we translate while 699 // emitting function info are included. 700 emitTypeInformation(); 701 702 if (EmitDebugGlobalHashes) 703 emitTypeGlobalHashes(); 704 705 clear(); 706 } 707 708 static void 709 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 710 unsigned MaxFixedRecordLength = 0xF00) { 711 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 712 // after a fixed length portion of the record. The fixed length portion should 713 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 714 // overall record size is less than the maximum allowed. 715 SmallString<32> NullTerminatedString( 716 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 717 NullTerminatedString.push_back('\0'); 718 OS.emitBytes(NullTerminatedString); 719 } 720 721 void CodeViewDebug::emitTypeInformation() { 722 if (TypeTable.empty()) 723 return; 724 725 // Start the .debug$T or .debug$P section with 0x4. 726 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 727 emitCodeViewMagicVersion(); 728 729 TypeTableCollection Table(TypeTable.records()); 730 TypeVisitorCallbackPipeline Pipeline; 731 732 // To emit type record using Codeview MCStreamer adapter 733 CVMCAdapter CVMCOS(OS, Table); 734 TypeRecordMapping typeMapping(CVMCOS); 735 Pipeline.addCallbackToPipeline(typeMapping); 736 737 Optional<TypeIndex> B = Table.getFirst(); 738 while (B) { 739 // This will fail if the record data is invalid. 740 CVType Record = Table.getType(*B); 741 742 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 743 744 if (E) { 745 logAllUnhandledErrors(std::move(E), errs(), "error: "); 746 llvm_unreachable("produced malformed type record"); 747 } 748 749 B = Table.getNext(*B); 750 } 751 } 752 753 void CodeViewDebug::emitTypeGlobalHashes() { 754 if (TypeTable.empty()) 755 return; 756 757 // Start the .debug$H section with the version and hash algorithm, currently 758 // hardcoded to version 0, SHA1. 759 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 760 761 OS.emitValueToAlignment(4); 762 OS.AddComment("Magic"); 763 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 764 OS.AddComment("Section Version"); 765 OS.emitInt16(0); 766 OS.AddComment("Hash Algorithm"); 767 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 768 769 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 770 for (const auto &GHR : TypeTable.hashes()) { 771 if (OS.isVerboseAsm()) { 772 // Emit an EOL-comment describing which TypeIndex this hash corresponds 773 // to, as well as the stringified SHA1 hash. 774 SmallString<32> Comment; 775 raw_svector_ostream CommentOS(Comment); 776 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 777 OS.AddComment(Comment); 778 ++TI; 779 } 780 assert(GHR.Hash.size() == 8); 781 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 782 GHR.Hash.size()); 783 OS.emitBinaryData(S); 784 } 785 } 786 787 namespace { 788 struct Version { 789 int Part[4]; 790 }; 791 } // end anonymous namespace 792 793 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 794 // the version number. 795 static Version parseVersion(StringRef Name) { 796 Version V = {{0}}; 797 int N = 0; 798 for (const char C : Name) { 799 if (isdigit(C)) { 800 V.Part[N] *= 10; 801 V.Part[N] += C - '0'; 802 } else if (C == '.') { 803 ++N; 804 if (N >= 4) 805 return V; 806 } else if (N > 0) 807 return V; 808 } 809 return V; 810 } 811 812 void CodeViewDebug::emitCompilerInformation() { 813 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 814 uint32_t Flags = 0; 815 816 // The low byte of the flags indicates the source language. 817 Flags = CurrentSourceLanguage; 818 // TODO: Figure out which other flags need to be set. 819 if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) { 820 Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO); 821 } 822 823 OS.AddComment("Flags and language"); 824 OS.emitInt32(Flags); 825 826 OS.AddComment("CPUType"); 827 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 828 829 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 830 const MDNode *Node = *CUs->operands().begin(); 831 const auto *CU = cast<DICompileUnit>(Node); 832 833 StringRef CompilerVersion = CU->getProducer(); 834 Version FrontVer = parseVersion(CompilerVersion); 835 OS.AddComment("Frontend version"); 836 for (int N : FrontVer.Part) 837 OS.emitInt16(N); 838 839 // Some Microsoft tools, like Binscope, expect a backend version number of at 840 // least 8.something, so we'll coerce the LLVM version into a form that 841 // guarantees it'll be big enough without really lying about the version. 842 int Major = 1000 * LLVM_VERSION_MAJOR + 843 10 * LLVM_VERSION_MINOR + 844 LLVM_VERSION_PATCH; 845 // Clamp it for builds that use unusually large version numbers. 846 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 847 Version BackVer = {{ Major, 0, 0, 0 }}; 848 OS.AddComment("Backend version"); 849 for (int N : BackVer.Part) 850 OS.emitInt16(N); 851 852 OS.AddComment("Null-terminated compiler version string"); 853 emitNullTerminatedSymbolName(OS, CompilerVersion); 854 855 endSymbolRecord(CompilerEnd); 856 } 857 858 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 859 StringRef S) { 860 StringIdRecord SIR(TypeIndex(0x0), S); 861 return TypeTable.writeLeafType(SIR); 862 } 863 864 void CodeViewDebug::emitBuildInfo() { 865 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 866 // build info. The known prefix is: 867 // - Absolute path of current directory 868 // - Compiler path 869 // - Main source file path, relative to CWD or absolute 870 // - Type server PDB file 871 // - Canonical compiler command line 872 // If frontend and backend compilation are separated (think llc or LTO), it's 873 // not clear if the compiler path should refer to the executable for the 874 // frontend or the backend. Leave it blank for now. 875 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 876 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 877 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 878 const auto *CU = cast<DICompileUnit>(Node); 879 const DIFile *MainSourceFile = CU->getFile(); 880 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 881 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 882 BuildInfoArgs[BuildInfoRecord::SourceFile] = 883 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 884 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 885 // we implement /Zi type servers. 886 BuildInfoRecord BIR(BuildInfoArgs); 887 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 888 889 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 890 // from the module symbols into the type stream. 891 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 892 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 893 OS.AddComment("LF_BUILDINFO index"); 894 OS.emitInt32(BuildInfoIndex.getIndex()); 895 endSymbolRecord(BIEnd); 896 endCVSubsection(BISubsecEnd); 897 } 898 899 void CodeViewDebug::emitInlineeLinesSubsection() { 900 if (InlinedSubprograms.empty()) 901 return; 902 903 OS.AddComment("Inlinee lines subsection"); 904 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 905 906 // We emit the checksum info for files. This is used by debuggers to 907 // determine if a pdb matches the source before loading it. Visual Studio, 908 // for instance, will display a warning that the breakpoints are not valid if 909 // the pdb does not match the source. 910 OS.AddComment("Inlinee lines signature"); 911 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 912 913 for (const DISubprogram *SP : InlinedSubprograms) { 914 assert(TypeIndices.count({SP, nullptr})); 915 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 916 917 OS.AddBlankLine(); 918 unsigned FileId = maybeRecordFile(SP->getFile()); 919 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 920 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 921 OS.AddBlankLine(); 922 OS.AddComment("Type index of inlined function"); 923 OS.emitInt32(InlineeIdx.getIndex()); 924 OS.AddComment("Offset into filechecksum table"); 925 OS.emitCVFileChecksumOffsetDirective(FileId); 926 OS.AddComment("Starting line number"); 927 OS.emitInt32(SP->getLine()); 928 } 929 930 endCVSubsection(InlineEnd); 931 } 932 933 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 934 const DILocation *InlinedAt, 935 const InlineSite &Site) { 936 assert(TypeIndices.count({Site.Inlinee, nullptr})); 937 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 938 939 // SymbolRecord 940 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 941 942 OS.AddComment("PtrParent"); 943 OS.emitInt32(0); 944 OS.AddComment("PtrEnd"); 945 OS.emitInt32(0); 946 OS.AddComment("Inlinee type index"); 947 OS.emitInt32(InlineeIdx.getIndex()); 948 949 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 950 unsigned StartLineNum = Site.Inlinee->getLine(); 951 952 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 953 FI.Begin, FI.End); 954 955 endSymbolRecord(InlineEnd); 956 957 emitLocalVariableList(FI, Site.InlinedLocals); 958 959 // Recurse on child inlined call sites before closing the scope. 960 for (const DILocation *ChildSite : Site.ChildSites) { 961 auto I = FI.InlineSites.find(ChildSite); 962 assert(I != FI.InlineSites.end() && 963 "child site not in function inline site map"); 964 emitInlinedCallSite(FI, ChildSite, I->second); 965 } 966 967 // Close the scope. 968 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 969 } 970 971 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 972 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 973 // comdat key. A section may be comdat because of -ffunction-sections or 974 // because it is comdat in the IR. 975 MCSectionCOFF *GVSec = 976 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 977 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 978 979 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 980 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 981 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 982 983 OS.SwitchSection(DebugSec); 984 985 // Emit the magic version number if this is the first time we've switched to 986 // this section. 987 if (ComdatDebugSections.insert(DebugSec).second) 988 emitCodeViewMagicVersion(); 989 } 990 991 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 992 // The only supported thunk ordinal is currently the standard type. 993 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 994 FunctionInfo &FI, 995 const MCSymbol *Fn) { 996 std::string FuncName = 997 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 998 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 999 1000 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1001 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1002 1003 // Emit S_THUNK32 1004 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 1005 OS.AddComment("PtrParent"); 1006 OS.emitInt32(0); 1007 OS.AddComment("PtrEnd"); 1008 OS.emitInt32(0); 1009 OS.AddComment("PtrNext"); 1010 OS.emitInt32(0); 1011 OS.AddComment("Thunk section relative address"); 1012 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1013 OS.AddComment("Thunk section index"); 1014 OS.EmitCOFFSectionIndex(Fn); 1015 OS.AddComment("Code size"); 1016 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 1017 OS.AddComment("Ordinal"); 1018 OS.emitInt8(unsigned(ordinal)); 1019 OS.AddComment("Function name"); 1020 emitNullTerminatedSymbolName(OS, FuncName); 1021 // Additional fields specific to the thunk ordinal would go here. 1022 endSymbolRecord(ThunkRecordEnd); 1023 1024 // Local variables/inlined routines are purposely omitted here. The point of 1025 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 1026 1027 // Emit S_PROC_ID_END 1028 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1029 1030 endCVSubsection(SymbolsEnd); 1031 } 1032 1033 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 1034 FunctionInfo &FI) { 1035 // For each function there is a separate subsection which holds the PC to 1036 // file:line table. 1037 const MCSymbol *Fn = Asm->getSymbol(GV); 1038 assert(Fn); 1039 1040 // Switch to the to a comdat section, if appropriate. 1041 switchToDebugSectionForSymbol(Fn); 1042 1043 std::string FuncName; 1044 auto *SP = GV->getSubprogram(); 1045 assert(SP); 1046 setCurrentSubprogram(SP); 1047 1048 if (SP->isThunk()) { 1049 emitDebugInfoForThunk(GV, FI, Fn); 1050 return; 1051 } 1052 1053 // If we have a display name, build the fully qualified name by walking the 1054 // chain of scopes. 1055 if (!SP->getName().empty()) 1056 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1057 1058 // If our DISubprogram name is empty, use the mangled name. 1059 if (FuncName.empty()) 1060 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1061 1062 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1063 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1064 OS.EmitCVFPOData(Fn); 1065 1066 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1067 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1068 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1069 { 1070 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1071 : SymbolKind::S_GPROC32_ID; 1072 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1073 1074 // These fields are filled in by tools like CVPACK which run after the fact. 1075 OS.AddComment("PtrParent"); 1076 OS.emitInt32(0); 1077 OS.AddComment("PtrEnd"); 1078 OS.emitInt32(0); 1079 OS.AddComment("PtrNext"); 1080 OS.emitInt32(0); 1081 // This is the important bit that tells the debugger where the function 1082 // code is located and what's its size: 1083 OS.AddComment("Code size"); 1084 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1085 OS.AddComment("Offset after prologue"); 1086 OS.emitInt32(0); 1087 OS.AddComment("Offset before epilogue"); 1088 OS.emitInt32(0); 1089 OS.AddComment("Function type index"); 1090 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1091 OS.AddComment("Function section relative address"); 1092 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1093 OS.AddComment("Function section index"); 1094 OS.EmitCOFFSectionIndex(Fn); 1095 OS.AddComment("Flags"); 1096 OS.emitInt8(0); 1097 // Emit the function display name as a null-terminated string. 1098 OS.AddComment("Function name"); 1099 // Truncate the name so we won't overflow the record length field. 1100 emitNullTerminatedSymbolName(OS, FuncName); 1101 endSymbolRecord(ProcRecordEnd); 1102 1103 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1104 // Subtract out the CSR size since MSVC excludes that and we include it. 1105 OS.AddComment("FrameSize"); 1106 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1107 OS.AddComment("Padding"); 1108 OS.emitInt32(0); 1109 OS.AddComment("Offset of padding"); 1110 OS.emitInt32(0); 1111 OS.AddComment("Bytes of callee saved registers"); 1112 OS.emitInt32(FI.CSRSize); 1113 OS.AddComment("Exception handler offset"); 1114 OS.emitInt32(0); 1115 OS.AddComment("Exception handler section"); 1116 OS.emitInt16(0); 1117 OS.AddComment("Flags (defines frame register)"); 1118 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1119 endSymbolRecord(FrameProcEnd); 1120 1121 emitLocalVariableList(FI, FI.Locals); 1122 emitGlobalVariableList(FI.Globals); 1123 emitLexicalBlockList(FI.ChildBlocks, FI); 1124 1125 // Emit inlined call site information. Only emit functions inlined directly 1126 // into the parent function. We'll emit the other sites recursively as part 1127 // of their parent inline site. 1128 for (const DILocation *InlinedAt : FI.ChildSites) { 1129 auto I = FI.InlineSites.find(InlinedAt); 1130 assert(I != FI.InlineSites.end() && 1131 "child site not in function inline site map"); 1132 emitInlinedCallSite(FI, InlinedAt, I->second); 1133 } 1134 1135 for (auto Annot : FI.Annotations) { 1136 MCSymbol *Label = Annot.first; 1137 MDTuple *Strs = cast<MDTuple>(Annot.second); 1138 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1139 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1140 // FIXME: Make sure we don't overflow the max record size. 1141 OS.EmitCOFFSectionIndex(Label); 1142 OS.emitInt16(Strs->getNumOperands()); 1143 for (Metadata *MD : Strs->operands()) { 1144 // MDStrings are null terminated, so we can do EmitBytes and get the 1145 // nice .asciz directive. 1146 StringRef Str = cast<MDString>(MD)->getString(); 1147 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1148 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1149 } 1150 endSymbolRecord(AnnotEnd); 1151 } 1152 1153 for (auto HeapAllocSite : FI.HeapAllocSites) { 1154 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1155 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1156 const DIType *DITy = std::get<2>(HeapAllocSite); 1157 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1158 OS.AddComment("Call site offset"); 1159 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1160 OS.AddComment("Call site section index"); 1161 OS.EmitCOFFSectionIndex(BeginLabel); 1162 OS.AddComment("Call instruction length"); 1163 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1164 OS.AddComment("Type index"); 1165 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1166 endSymbolRecord(HeapAllocEnd); 1167 } 1168 1169 if (SP != nullptr) 1170 emitDebugInfoForUDTs(LocalUDTs); 1171 1172 // We're done with this function. 1173 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1174 } 1175 endCVSubsection(SymbolsEnd); 1176 1177 // We have an assembler directive that takes care of the whole line table. 1178 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1179 } 1180 1181 CodeViewDebug::LocalVarDefRange 1182 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1183 LocalVarDefRange DR; 1184 DR.InMemory = -1; 1185 DR.DataOffset = Offset; 1186 assert(DR.DataOffset == Offset && "truncation"); 1187 DR.IsSubfield = 0; 1188 DR.StructOffset = 0; 1189 DR.CVRegister = CVRegister; 1190 return DR; 1191 } 1192 1193 void CodeViewDebug::collectVariableInfoFromMFTable( 1194 DenseSet<InlinedEntity> &Processed) { 1195 const MachineFunction &MF = *Asm->MF; 1196 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1197 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1198 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1199 1200 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1201 if (!VI.Var) 1202 continue; 1203 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1204 "Expected inlined-at fields to agree"); 1205 1206 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1207 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1208 1209 // If variable scope is not found then skip this variable. 1210 if (!Scope) 1211 continue; 1212 1213 // If the variable has an attached offset expression, extract it. 1214 // FIXME: Try to handle DW_OP_deref as well. 1215 int64_t ExprOffset = 0; 1216 bool Deref = false; 1217 if (VI.Expr) { 1218 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1219 if (VI.Expr->getNumElements() == 1 && 1220 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1221 Deref = true; 1222 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1223 continue; 1224 } 1225 1226 // Get the frame register used and the offset. 1227 Register FrameReg; 1228 StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1229 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1230 1231 assert(!FrameOffset.getScalable() && 1232 "Frame offsets with a scalable component are not supported"); 1233 1234 // Calculate the label ranges. 1235 LocalVarDefRange DefRange = 1236 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); 1237 1238 for (const InsnRange &Range : Scope->getRanges()) { 1239 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1240 const MCSymbol *End = getLabelAfterInsn(Range.second); 1241 End = End ? End : Asm->getFunctionEnd(); 1242 DefRange.Ranges.emplace_back(Begin, End); 1243 } 1244 1245 LocalVariable Var; 1246 Var.DIVar = VI.Var; 1247 Var.DefRanges.emplace_back(std::move(DefRange)); 1248 if (Deref) 1249 Var.UseReferenceType = true; 1250 1251 recordLocalVariable(std::move(Var), Scope); 1252 } 1253 } 1254 1255 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1256 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1257 } 1258 1259 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1260 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1261 } 1262 1263 void CodeViewDebug::calculateRanges( 1264 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1265 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1266 1267 // Calculate the definition ranges. 1268 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1269 const auto &Entry = *I; 1270 if (!Entry.isDbgValue()) 1271 continue; 1272 const MachineInstr *DVInst = Entry.getInstr(); 1273 assert(DVInst->isDebugValue() && "Invalid History entry"); 1274 // FIXME: Find a way to represent constant variables, since they are 1275 // relatively common. 1276 Optional<DbgVariableLocation> Location = 1277 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1278 if (!Location) 1279 continue; 1280 1281 // CodeView can only express variables in register and variables in memory 1282 // at a constant offset from a register. However, for variables passed 1283 // indirectly by pointer, it is common for that pointer to be spilled to a 1284 // stack location. For the special case of one offseted load followed by a 1285 // zero offset load (a pointer spilled to the stack), we change the type of 1286 // the local variable from a value type to a reference type. This tricks the 1287 // debugger into doing the load for us. 1288 if (Var.UseReferenceType) { 1289 // We're using a reference type. Drop the last zero offset load. 1290 if (canUseReferenceType(*Location)) 1291 Location->LoadChain.pop_back(); 1292 else 1293 continue; 1294 } else if (needsReferenceType(*Location)) { 1295 // This location can't be expressed without switching to a reference type. 1296 // Start over using that. 1297 Var.UseReferenceType = true; 1298 Var.DefRanges.clear(); 1299 calculateRanges(Var, Entries); 1300 return; 1301 } 1302 1303 // We can only handle a register or an offseted load of a register. 1304 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1305 continue; 1306 { 1307 LocalVarDefRange DR; 1308 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1309 DR.InMemory = !Location->LoadChain.empty(); 1310 DR.DataOffset = 1311 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1312 if (Location->FragmentInfo) { 1313 DR.IsSubfield = true; 1314 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1315 } else { 1316 DR.IsSubfield = false; 1317 DR.StructOffset = 0; 1318 } 1319 1320 if (Var.DefRanges.empty() || 1321 Var.DefRanges.back().isDifferentLocation(DR)) { 1322 Var.DefRanges.emplace_back(std::move(DR)); 1323 } 1324 } 1325 1326 // Compute the label range. 1327 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1328 const MCSymbol *End; 1329 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1330 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1331 End = EndingEntry.isDbgValue() 1332 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1333 : getLabelAfterInsn(EndingEntry.getInstr()); 1334 } else 1335 End = Asm->getFunctionEnd(); 1336 1337 // If the last range end is our begin, just extend the last range. 1338 // Otherwise make a new range. 1339 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1340 Var.DefRanges.back().Ranges; 1341 if (!R.empty() && R.back().second == Begin) 1342 R.back().second = End; 1343 else 1344 R.emplace_back(Begin, End); 1345 1346 // FIXME: Do more range combining. 1347 } 1348 } 1349 1350 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1351 DenseSet<InlinedEntity> Processed; 1352 // Grab the variable info that was squirreled away in the MMI side-table. 1353 collectVariableInfoFromMFTable(Processed); 1354 1355 for (const auto &I : DbgValues) { 1356 InlinedEntity IV = I.first; 1357 if (Processed.count(IV)) 1358 continue; 1359 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1360 const DILocation *InlinedAt = IV.second; 1361 1362 // Instruction ranges, specifying where IV is accessible. 1363 const auto &Entries = I.second; 1364 1365 LexicalScope *Scope = nullptr; 1366 if (InlinedAt) 1367 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1368 else 1369 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1370 // If variable scope is not found then skip this variable. 1371 if (!Scope) 1372 continue; 1373 1374 LocalVariable Var; 1375 Var.DIVar = DIVar; 1376 1377 calculateRanges(Var, Entries); 1378 recordLocalVariable(std::move(Var), Scope); 1379 } 1380 } 1381 1382 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1383 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1384 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1385 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1386 const Function &GV = MF->getFunction(); 1387 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1388 assert(Insertion.second && "function already has info"); 1389 CurFn = Insertion.first->second.get(); 1390 CurFn->FuncId = NextFuncId++; 1391 CurFn->Begin = Asm->getFunctionBegin(); 1392 1393 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1394 // callee-saved registers were used. For targets that don't use a PUSH 1395 // instruction (AArch64), this will be zero. 1396 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1397 CurFn->FrameSize = MFI.getStackSize(); 1398 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1399 CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF); 1400 1401 // For this function S_FRAMEPROC record, figure out which codeview register 1402 // will be the frame pointer. 1403 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1404 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1405 if (CurFn->FrameSize > 0) { 1406 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1407 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1408 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1409 } else { 1410 // If there is an FP, parameters are always relative to it. 1411 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1412 if (CurFn->HasStackRealignment) { 1413 // If the stack needs realignment, locals are relative to SP or VFRAME. 1414 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1415 } else { 1416 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1417 // other stack adjustments. 1418 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1419 } 1420 } 1421 } 1422 1423 // Compute other frame procedure options. 1424 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1425 if (MFI.hasVarSizedObjects()) 1426 FPO |= FrameProcedureOptions::HasAlloca; 1427 if (MF->exposesReturnsTwice()) 1428 FPO |= FrameProcedureOptions::HasSetJmp; 1429 // FIXME: Set HasLongJmp if we ever track that info. 1430 if (MF->hasInlineAsm()) 1431 FPO |= FrameProcedureOptions::HasInlineAssembly; 1432 if (GV.hasPersonalityFn()) { 1433 if (isAsynchronousEHPersonality( 1434 classifyEHPersonality(GV.getPersonalityFn()))) 1435 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1436 else 1437 FPO |= FrameProcedureOptions::HasExceptionHandling; 1438 } 1439 if (GV.hasFnAttribute(Attribute::InlineHint)) 1440 FPO |= FrameProcedureOptions::MarkedInline; 1441 if (GV.hasFnAttribute(Attribute::Naked)) 1442 FPO |= FrameProcedureOptions::Naked; 1443 if (MFI.hasStackProtectorIndex()) 1444 FPO |= FrameProcedureOptions::SecurityChecks; 1445 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1446 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1447 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1448 !GV.hasOptSize() && !GV.hasOptNone()) 1449 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1450 if (GV.hasProfileData()) { 1451 FPO |= FrameProcedureOptions::ValidProfileCounts; 1452 FPO |= FrameProcedureOptions::ProfileGuidedOptimization; 1453 } 1454 // FIXME: Set GuardCfg when it is implemented. 1455 CurFn->FrameProcOpts = FPO; 1456 1457 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1458 1459 // Find the end of the function prolog. First known non-DBG_VALUE and 1460 // non-frame setup location marks the beginning of the function body. 1461 // FIXME: is there a simpler a way to do this? Can we just search 1462 // for the first instruction of the function, not the last of the prolog? 1463 DebugLoc PrologEndLoc; 1464 bool EmptyPrologue = true; 1465 for (const auto &MBB : *MF) { 1466 for (const auto &MI : MBB) { 1467 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1468 MI.getDebugLoc()) { 1469 PrologEndLoc = MI.getDebugLoc(); 1470 break; 1471 } else if (!MI.isMetaInstruction()) { 1472 EmptyPrologue = false; 1473 } 1474 } 1475 } 1476 1477 // Record beginning of function if we have a non-empty prologue. 1478 if (PrologEndLoc && !EmptyPrologue) { 1479 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1480 maybeRecordLocation(FnStartDL, MF); 1481 } 1482 1483 // Find heap alloc sites and emit labels around them. 1484 for (const auto &MBB : *MF) { 1485 for (const auto &MI : MBB) { 1486 if (MI.getHeapAllocMarker()) { 1487 requestLabelBeforeInsn(&MI); 1488 requestLabelAfterInsn(&MI); 1489 } 1490 } 1491 } 1492 } 1493 1494 static bool shouldEmitUdt(const DIType *T) { 1495 if (!T) 1496 return false; 1497 1498 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1499 if (T->getTag() == dwarf::DW_TAG_typedef) { 1500 if (DIScope *Scope = T->getScope()) { 1501 switch (Scope->getTag()) { 1502 case dwarf::DW_TAG_structure_type: 1503 case dwarf::DW_TAG_class_type: 1504 case dwarf::DW_TAG_union_type: 1505 return false; 1506 default: 1507 // do nothing. 1508 ; 1509 } 1510 } 1511 } 1512 1513 while (true) { 1514 if (!T || T->isForwardDecl()) 1515 return false; 1516 1517 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1518 if (!DT) 1519 return true; 1520 T = DT->getBaseType(); 1521 } 1522 return true; 1523 } 1524 1525 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1526 // Don't record empty UDTs. 1527 if (Ty->getName().empty()) 1528 return; 1529 if (!shouldEmitUdt(Ty)) 1530 return; 1531 1532 SmallVector<StringRef, 5> ParentScopeNames; 1533 const DISubprogram *ClosestSubprogram = 1534 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1535 1536 std::string FullyQualifiedName = 1537 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1538 1539 if (ClosestSubprogram == nullptr) { 1540 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1541 } else if (ClosestSubprogram == CurrentSubprogram) { 1542 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1543 } 1544 1545 // TODO: What if the ClosestSubprogram is neither null or the current 1546 // subprogram? Currently, the UDT just gets dropped on the floor. 1547 // 1548 // The current behavior is not desirable. To get maximal fidelity, we would 1549 // need to perform all type translation before beginning emission of .debug$S 1550 // and then make LocalUDTs a member of FunctionInfo 1551 } 1552 1553 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1554 // Generic dispatch for lowering an unknown type. 1555 switch (Ty->getTag()) { 1556 case dwarf::DW_TAG_array_type: 1557 return lowerTypeArray(cast<DICompositeType>(Ty)); 1558 case dwarf::DW_TAG_typedef: 1559 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1560 case dwarf::DW_TAG_base_type: 1561 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1562 case dwarf::DW_TAG_pointer_type: 1563 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1564 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1565 LLVM_FALLTHROUGH; 1566 case dwarf::DW_TAG_reference_type: 1567 case dwarf::DW_TAG_rvalue_reference_type: 1568 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1569 case dwarf::DW_TAG_ptr_to_member_type: 1570 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1571 case dwarf::DW_TAG_restrict_type: 1572 case dwarf::DW_TAG_const_type: 1573 case dwarf::DW_TAG_volatile_type: 1574 // TODO: add support for DW_TAG_atomic_type here 1575 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1576 case dwarf::DW_TAG_subroutine_type: 1577 if (ClassTy) { 1578 // The member function type of a member function pointer has no 1579 // ThisAdjustment. 1580 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1581 /*ThisAdjustment=*/0, 1582 /*IsStaticMethod=*/false); 1583 } 1584 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1585 case dwarf::DW_TAG_enumeration_type: 1586 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1587 case dwarf::DW_TAG_class_type: 1588 case dwarf::DW_TAG_structure_type: 1589 return lowerTypeClass(cast<DICompositeType>(Ty)); 1590 case dwarf::DW_TAG_union_type: 1591 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1592 case dwarf::DW_TAG_string_type: 1593 return lowerTypeString(cast<DIStringType>(Ty)); 1594 case dwarf::DW_TAG_unspecified_type: 1595 if (Ty->getName() == "decltype(nullptr)") 1596 return TypeIndex::NullptrT(); 1597 return TypeIndex::None(); 1598 default: 1599 // Use the null type index. 1600 return TypeIndex(); 1601 } 1602 } 1603 1604 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1605 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1606 StringRef TypeName = Ty->getName(); 1607 1608 addToUDTs(Ty); 1609 1610 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1611 TypeName == "HRESULT") 1612 return TypeIndex(SimpleTypeKind::HResult); 1613 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1614 TypeName == "wchar_t") 1615 return TypeIndex(SimpleTypeKind::WideCharacter); 1616 1617 return UnderlyingTypeIndex; 1618 } 1619 1620 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1621 const DIType *ElementType = Ty->getBaseType(); 1622 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1623 // IndexType is size_t, which depends on the bitness of the target. 1624 TypeIndex IndexType = getPointerSizeInBytes() == 8 1625 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1626 : TypeIndex(SimpleTypeKind::UInt32Long); 1627 1628 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1629 1630 // Add subranges to array type. 1631 DINodeArray Elements = Ty->getElements(); 1632 for (int i = Elements.size() - 1; i >= 0; --i) { 1633 const DINode *Element = Elements[i]; 1634 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1635 1636 const DISubrange *Subrange = cast<DISubrange>(Element); 1637 int64_t Count = -1; 1638 1639 // If Subrange has a Count field, use it. 1640 // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1), 1641 // where lowerbound is from the LowerBound field of the Subrange, 1642 // or the language default lowerbound if that field is unspecified. 1643 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt *>()) 1644 Count = CI->getSExtValue(); 1645 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt *>()) { 1646 // Fortran uses 1 as the default lowerbound; other languages use 0. 1647 int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0; 1648 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1649 Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound; 1650 Count = UI->getSExtValue() - Lowerbound + 1; 1651 } 1652 1653 // Forward declarations of arrays without a size and VLAs use a count of -1. 1654 // Emit a count of zero in these cases to match what MSVC does for arrays 1655 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1656 // should do for them even if we could distinguish them. 1657 if (Count == -1) 1658 Count = 0; 1659 1660 // Update the element size and element type index for subsequent subranges. 1661 ElementSize *= Count; 1662 1663 // If this is the outermost array, use the size from the array. It will be 1664 // more accurate if we had a VLA or an incomplete element type size. 1665 uint64_t ArraySize = 1666 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1667 1668 StringRef Name = (i == 0) ? Ty->getName() : ""; 1669 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1670 ElementTypeIndex = TypeTable.writeLeafType(AR); 1671 } 1672 1673 return ElementTypeIndex; 1674 } 1675 1676 // This function lowers a Fortran character type (DIStringType). 1677 // Note that it handles only the character*n variant (using SizeInBits 1678 // field in DIString to describe the type size) at the moment. 1679 // Other variants (leveraging the StringLength and StringLengthExp 1680 // fields in DIStringType) remain TBD. 1681 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) { 1682 TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter); 1683 uint64_t ArraySize = Ty->getSizeInBits() >> 3; 1684 StringRef Name = Ty->getName(); 1685 // IndexType is size_t, which depends on the bitness of the target. 1686 TypeIndex IndexType = getPointerSizeInBytes() == 8 1687 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1688 : TypeIndex(SimpleTypeKind::UInt32Long); 1689 1690 // Create a type of character array of ArraySize. 1691 ArrayRecord AR(CharType, IndexType, ArraySize, Name); 1692 1693 return TypeTable.writeLeafType(AR); 1694 } 1695 1696 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1697 TypeIndex Index; 1698 dwarf::TypeKind Kind; 1699 uint32_t ByteSize; 1700 1701 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1702 ByteSize = Ty->getSizeInBits() / 8; 1703 1704 SimpleTypeKind STK = SimpleTypeKind::None; 1705 switch (Kind) { 1706 case dwarf::DW_ATE_address: 1707 // FIXME: Translate 1708 break; 1709 case dwarf::DW_ATE_boolean: 1710 switch (ByteSize) { 1711 case 1: STK = SimpleTypeKind::Boolean8; break; 1712 case 2: STK = SimpleTypeKind::Boolean16; break; 1713 case 4: STK = SimpleTypeKind::Boolean32; break; 1714 case 8: STK = SimpleTypeKind::Boolean64; break; 1715 case 16: STK = SimpleTypeKind::Boolean128; break; 1716 } 1717 break; 1718 case dwarf::DW_ATE_complex_float: 1719 switch (ByteSize) { 1720 case 2: STK = SimpleTypeKind::Complex16; break; 1721 case 4: STK = SimpleTypeKind::Complex32; break; 1722 case 8: STK = SimpleTypeKind::Complex64; break; 1723 case 10: STK = SimpleTypeKind::Complex80; break; 1724 case 16: STK = SimpleTypeKind::Complex128; break; 1725 } 1726 break; 1727 case dwarf::DW_ATE_float: 1728 switch (ByteSize) { 1729 case 2: STK = SimpleTypeKind::Float16; break; 1730 case 4: STK = SimpleTypeKind::Float32; break; 1731 case 6: STK = SimpleTypeKind::Float48; break; 1732 case 8: STK = SimpleTypeKind::Float64; break; 1733 case 10: STK = SimpleTypeKind::Float80; break; 1734 case 16: STK = SimpleTypeKind::Float128; break; 1735 } 1736 break; 1737 case dwarf::DW_ATE_signed: 1738 switch (ByteSize) { 1739 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1740 case 2: STK = SimpleTypeKind::Int16Short; break; 1741 case 4: STK = SimpleTypeKind::Int32; break; 1742 case 8: STK = SimpleTypeKind::Int64Quad; break; 1743 case 16: STK = SimpleTypeKind::Int128Oct; break; 1744 } 1745 break; 1746 case dwarf::DW_ATE_unsigned: 1747 switch (ByteSize) { 1748 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1749 case 2: STK = SimpleTypeKind::UInt16Short; break; 1750 case 4: STK = SimpleTypeKind::UInt32; break; 1751 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1752 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1753 } 1754 break; 1755 case dwarf::DW_ATE_UTF: 1756 switch (ByteSize) { 1757 case 2: STK = SimpleTypeKind::Character16; break; 1758 case 4: STK = SimpleTypeKind::Character32; break; 1759 } 1760 break; 1761 case dwarf::DW_ATE_signed_char: 1762 if (ByteSize == 1) 1763 STK = SimpleTypeKind::SignedCharacter; 1764 break; 1765 case dwarf::DW_ATE_unsigned_char: 1766 if (ByteSize == 1) 1767 STK = SimpleTypeKind::UnsignedCharacter; 1768 break; 1769 default: 1770 break; 1771 } 1772 1773 // Apply some fixups based on the source-level type name. 1774 // Include some amount of canonicalization from an old naming scheme Clang 1775 // used to use for integer types (in an outdated effort to be compatible with 1776 // GCC's debug info/GDB's behavior, which has since been addressed). 1777 if (STK == SimpleTypeKind::Int32 && 1778 (Ty->getName() == "long int" || Ty->getName() == "long")) 1779 STK = SimpleTypeKind::Int32Long; 1780 if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" || 1781 Ty->getName() == "unsigned long")) 1782 STK = SimpleTypeKind::UInt32Long; 1783 if (STK == SimpleTypeKind::UInt16Short && 1784 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1785 STK = SimpleTypeKind::WideCharacter; 1786 if ((STK == SimpleTypeKind::SignedCharacter || 1787 STK == SimpleTypeKind::UnsignedCharacter) && 1788 Ty->getName() == "char") 1789 STK = SimpleTypeKind::NarrowCharacter; 1790 1791 return TypeIndex(STK); 1792 } 1793 1794 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1795 PointerOptions PO) { 1796 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1797 1798 // Pointers to simple types without any options can use SimpleTypeMode, rather 1799 // than having a dedicated pointer type record. 1800 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1801 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1802 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1803 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1804 ? SimpleTypeMode::NearPointer64 1805 : SimpleTypeMode::NearPointer32; 1806 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1807 } 1808 1809 PointerKind PK = 1810 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1811 PointerMode PM = PointerMode::Pointer; 1812 switch (Ty->getTag()) { 1813 default: llvm_unreachable("not a pointer tag type"); 1814 case dwarf::DW_TAG_pointer_type: 1815 PM = PointerMode::Pointer; 1816 break; 1817 case dwarf::DW_TAG_reference_type: 1818 PM = PointerMode::LValueReference; 1819 break; 1820 case dwarf::DW_TAG_rvalue_reference_type: 1821 PM = PointerMode::RValueReference; 1822 break; 1823 } 1824 1825 if (Ty->isObjectPointer()) 1826 PO |= PointerOptions::Const; 1827 1828 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1829 return TypeTable.writeLeafType(PR); 1830 } 1831 1832 static PointerToMemberRepresentation 1833 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1834 // SizeInBytes being zero generally implies that the member pointer type was 1835 // incomplete, which can happen if it is part of a function prototype. In this 1836 // case, use the unknown model instead of the general model. 1837 if (IsPMF) { 1838 switch (Flags & DINode::FlagPtrToMemberRep) { 1839 case 0: 1840 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1841 : PointerToMemberRepresentation::GeneralFunction; 1842 case DINode::FlagSingleInheritance: 1843 return PointerToMemberRepresentation::SingleInheritanceFunction; 1844 case DINode::FlagMultipleInheritance: 1845 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1846 case DINode::FlagVirtualInheritance: 1847 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1848 } 1849 } else { 1850 switch (Flags & DINode::FlagPtrToMemberRep) { 1851 case 0: 1852 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1853 : PointerToMemberRepresentation::GeneralData; 1854 case DINode::FlagSingleInheritance: 1855 return PointerToMemberRepresentation::SingleInheritanceData; 1856 case DINode::FlagMultipleInheritance: 1857 return PointerToMemberRepresentation::MultipleInheritanceData; 1858 case DINode::FlagVirtualInheritance: 1859 return PointerToMemberRepresentation::VirtualInheritanceData; 1860 } 1861 } 1862 llvm_unreachable("invalid ptr to member representation"); 1863 } 1864 1865 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1866 PointerOptions PO) { 1867 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1868 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1869 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1870 TypeIndex PointeeTI = 1871 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1872 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1873 : PointerKind::Near32; 1874 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1875 : PointerMode::PointerToDataMember; 1876 1877 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1878 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1879 MemberPointerInfo MPI( 1880 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1881 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1882 return TypeTable.writeLeafType(PR); 1883 } 1884 1885 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1886 /// have a translation, use the NearC convention. 1887 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1888 switch (DwarfCC) { 1889 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1890 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1891 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1892 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1893 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1894 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1895 } 1896 return CallingConvention::NearC; 1897 } 1898 1899 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1900 ModifierOptions Mods = ModifierOptions::None; 1901 PointerOptions PO = PointerOptions::None; 1902 bool IsModifier = true; 1903 const DIType *BaseTy = Ty; 1904 while (IsModifier && BaseTy) { 1905 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1906 switch (BaseTy->getTag()) { 1907 case dwarf::DW_TAG_const_type: 1908 Mods |= ModifierOptions::Const; 1909 PO |= PointerOptions::Const; 1910 break; 1911 case dwarf::DW_TAG_volatile_type: 1912 Mods |= ModifierOptions::Volatile; 1913 PO |= PointerOptions::Volatile; 1914 break; 1915 case dwarf::DW_TAG_restrict_type: 1916 // Only pointer types be marked with __restrict. There is no known flag 1917 // for __restrict in LF_MODIFIER records. 1918 PO |= PointerOptions::Restrict; 1919 break; 1920 default: 1921 IsModifier = false; 1922 break; 1923 } 1924 if (IsModifier) 1925 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1926 } 1927 1928 // Check if the inner type will use an LF_POINTER record. If so, the 1929 // qualifiers will go in the LF_POINTER record. This comes up for types like 1930 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1931 // char *'. 1932 if (BaseTy) { 1933 switch (BaseTy->getTag()) { 1934 case dwarf::DW_TAG_pointer_type: 1935 case dwarf::DW_TAG_reference_type: 1936 case dwarf::DW_TAG_rvalue_reference_type: 1937 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1938 case dwarf::DW_TAG_ptr_to_member_type: 1939 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1940 default: 1941 break; 1942 } 1943 } 1944 1945 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1946 1947 // Return the base type index if there aren't any modifiers. For example, the 1948 // metadata could contain restrict wrappers around non-pointer types. 1949 if (Mods == ModifierOptions::None) 1950 return ModifiedTI; 1951 1952 ModifierRecord MR(ModifiedTI, Mods); 1953 return TypeTable.writeLeafType(MR); 1954 } 1955 1956 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1957 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1958 for (const DIType *ArgType : Ty->getTypeArray()) 1959 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1960 1961 // MSVC uses type none for variadic argument. 1962 if (ReturnAndArgTypeIndices.size() > 1 && 1963 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1964 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1965 } 1966 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1967 ArrayRef<TypeIndex> ArgTypeIndices = None; 1968 if (!ReturnAndArgTypeIndices.empty()) { 1969 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1970 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1971 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1972 } 1973 1974 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1975 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1976 1977 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1978 1979 FunctionOptions FO = getFunctionOptions(Ty); 1980 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1981 ArgListIndex); 1982 return TypeTable.writeLeafType(Procedure); 1983 } 1984 1985 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1986 const DIType *ClassTy, 1987 int ThisAdjustment, 1988 bool IsStaticMethod, 1989 FunctionOptions FO) { 1990 // Lower the containing class type. 1991 TypeIndex ClassType = getTypeIndex(ClassTy); 1992 1993 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1994 1995 unsigned Index = 0; 1996 SmallVector<TypeIndex, 8> ArgTypeIndices; 1997 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1998 if (ReturnAndArgs.size() > Index) { 1999 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 2000 } 2001 2002 // If the first argument is a pointer type and this isn't a static method, 2003 // treat it as the special 'this' parameter, which is encoded separately from 2004 // the arguments. 2005 TypeIndex ThisTypeIndex; 2006 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 2007 if (const DIDerivedType *PtrTy = 2008 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 2009 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 2010 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 2011 Index++; 2012 } 2013 } 2014 } 2015 2016 while (Index < ReturnAndArgs.size()) 2017 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 2018 2019 // MSVC uses type none for variadic argument. 2020 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 2021 ArgTypeIndices.back() = TypeIndex::None(); 2022 2023 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 2024 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 2025 2026 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 2027 2028 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 2029 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 2030 return TypeTable.writeLeafType(MFR); 2031 } 2032 2033 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 2034 unsigned VSlotCount = 2035 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 2036 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 2037 2038 VFTableShapeRecord VFTSR(Slots); 2039 return TypeTable.writeLeafType(VFTSR); 2040 } 2041 2042 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 2043 switch (Flags & DINode::FlagAccessibility) { 2044 case DINode::FlagPrivate: return MemberAccess::Private; 2045 case DINode::FlagPublic: return MemberAccess::Public; 2046 case DINode::FlagProtected: return MemberAccess::Protected; 2047 case 0: 2048 // If there was no explicit access control, provide the default for the tag. 2049 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 2050 : MemberAccess::Public; 2051 } 2052 llvm_unreachable("access flags are exclusive"); 2053 } 2054 2055 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 2056 if (SP->isArtificial()) 2057 return MethodOptions::CompilerGenerated; 2058 2059 // FIXME: Handle other MethodOptions. 2060 2061 return MethodOptions::None; 2062 } 2063 2064 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 2065 bool Introduced) { 2066 if (SP->getFlags() & DINode::FlagStaticMember) 2067 return MethodKind::Static; 2068 2069 switch (SP->getVirtuality()) { 2070 case dwarf::DW_VIRTUALITY_none: 2071 break; 2072 case dwarf::DW_VIRTUALITY_virtual: 2073 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 2074 case dwarf::DW_VIRTUALITY_pure_virtual: 2075 return Introduced ? MethodKind::PureIntroducingVirtual 2076 : MethodKind::PureVirtual; 2077 default: 2078 llvm_unreachable("unhandled virtuality case"); 2079 } 2080 2081 return MethodKind::Vanilla; 2082 } 2083 2084 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2085 switch (Ty->getTag()) { 2086 case dwarf::DW_TAG_class_type: 2087 return TypeRecordKind::Class; 2088 case dwarf::DW_TAG_structure_type: 2089 return TypeRecordKind::Struct; 2090 default: 2091 llvm_unreachable("unexpected tag"); 2092 } 2093 } 2094 2095 /// Return ClassOptions that should be present on both the forward declaration 2096 /// and the defintion of a tag type. 2097 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2098 ClassOptions CO = ClassOptions::None; 2099 2100 // MSVC always sets this flag, even for local types. Clang doesn't always 2101 // appear to give every type a linkage name, which may be problematic for us. 2102 // FIXME: Investigate the consequences of not following them here. 2103 if (!Ty->getIdentifier().empty()) 2104 CO |= ClassOptions::HasUniqueName; 2105 2106 // Put the Nested flag on a type if it appears immediately inside a tag type. 2107 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2108 // here. That flag is only set on definitions, and not forward declarations. 2109 const DIScope *ImmediateScope = Ty->getScope(); 2110 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2111 CO |= ClassOptions::Nested; 2112 2113 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2114 // type only when it has an immediate function scope. Clang never puts enums 2115 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2116 // always in function, class, or file scopes. 2117 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2118 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2119 CO |= ClassOptions::Scoped; 2120 } else { 2121 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2122 Scope = Scope->getScope()) { 2123 if (isa<DISubprogram>(Scope)) { 2124 CO |= ClassOptions::Scoped; 2125 break; 2126 } 2127 } 2128 } 2129 2130 return CO; 2131 } 2132 2133 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2134 switch (Ty->getTag()) { 2135 case dwarf::DW_TAG_class_type: 2136 case dwarf::DW_TAG_structure_type: 2137 case dwarf::DW_TAG_union_type: 2138 case dwarf::DW_TAG_enumeration_type: 2139 break; 2140 default: 2141 return; 2142 } 2143 2144 if (const auto *File = Ty->getFile()) { 2145 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2146 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2147 2148 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2149 TypeTable.writeLeafType(USLR); 2150 } 2151 } 2152 2153 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2154 ClassOptions CO = getCommonClassOptions(Ty); 2155 TypeIndex FTI; 2156 unsigned EnumeratorCount = 0; 2157 2158 if (Ty->isForwardDecl()) { 2159 CO |= ClassOptions::ForwardReference; 2160 } else { 2161 ContinuationRecordBuilder ContinuationBuilder; 2162 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2163 for (const DINode *Element : Ty->getElements()) { 2164 // We assume that the frontend provides all members in source declaration 2165 // order, which is what MSVC does. 2166 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2167 // FIXME: Is it correct to always emit these as unsigned here? 2168 EnumeratorRecord ER(MemberAccess::Public, 2169 APSInt(Enumerator->getValue(), true), 2170 Enumerator->getName()); 2171 ContinuationBuilder.writeMemberType(ER); 2172 EnumeratorCount++; 2173 } 2174 } 2175 FTI = TypeTable.insertRecord(ContinuationBuilder); 2176 } 2177 2178 std::string FullName = getFullyQualifiedName(Ty); 2179 2180 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2181 getTypeIndex(Ty->getBaseType())); 2182 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2183 2184 addUDTSrcLine(Ty, EnumTI); 2185 2186 return EnumTI; 2187 } 2188 2189 //===----------------------------------------------------------------------===// 2190 // ClassInfo 2191 //===----------------------------------------------------------------------===// 2192 2193 struct llvm::ClassInfo { 2194 struct MemberInfo { 2195 const DIDerivedType *MemberTypeNode; 2196 uint64_t BaseOffset; 2197 }; 2198 // [MemberInfo] 2199 using MemberList = std::vector<MemberInfo>; 2200 2201 using MethodsList = TinyPtrVector<const DISubprogram *>; 2202 // MethodName -> MethodsList 2203 using MethodsMap = MapVector<MDString *, MethodsList>; 2204 2205 /// Base classes. 2206 std::vector<const DIDerivedType *> Inheritance; 2207 2208 /// Direct members. 2209 MemberList Members; 2210 // Direct overloaded methods gathered by name. 2211 MethodsMap Methods; 2212 2213 TypeIndex VShapeTI; 2214 2215 std::vector<const DIType *> NestedTypes; 2216 }; 2217 2218 void CodeViewDebug::clear() { 2219 assert(CurFn == nullptr); 2220 FileIdMap.clear(); 2221 FnDebugInfo.clear(); 2222 FileToFilepathMap.clear(); 2223 LocalUDTs.clear(); 2224 GlobalUDTs.clear(); 2225 TypeIndices.clear(); 2226 CompleteTypeIndices.clear(); 2227 ScopeGlobals.clear(); 2228 CVGlobalVariableOffsets.clear(); 2229 } 2230 2231 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2232 const DIDerivedType *DDTy) { 2233 if (!DDTy->getName().empty()) { 2234 Info.Members.push_back({DDTy, 0}); 2235 2236 // Collect static const data members with values. 2237 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2238 DINode::FlagStaticMember) { 2239 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) || 2240 isa<ConstantFP>(DDTy->getConstant()))) 2241 StaticConstMembers.push_back(DDTy); 2242 } 2243 2244 return; 2245 } 2246 2247 // An unnamed member may represent a nested struct or union. Attempt to 2248 // interpret the unnamed member as a DICompositeType possibly wrapped in 2249 // qualifier types. Add all the indirect fields to the current record if that 2250 // succeeds, and drop the member if that fails. 2251 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2252 uint64_t Offset = DDTy->getOffsetInBits(); 2253 const DIType *Ty = DDTy->getBaseType(); 2254 bool FullyResolved = false; 2255 while (!FullyResolved) { 2256 switch (Ty->getTag()) { 2257 case dwarf::DW_TAG_const_type: 2258 case dwarf::DW_TAG_volatile_type: 2259 // FIXME: we should apply the qualifier types to the indirect fields 2260 // rather than dropping them. 2261 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2262 break; 2263 default: 2264 FullyResolved = true; 2265 break; 2266 } 2267 } 2268 2269 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2270 if (!DCTy) 2271 return; 2272 2273 ClassInfo NestedInfo = collectClassInfo(DCTy); 2274 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2275 Info.Members.push_back( 2276 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2277 } 2278 2279 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2280 ClassInfo Info; 2281 // Add elements to structure type. 2282 DINodeArray Elements = Ty->getElements(); 2283 for (auto *Element : Elements) { 2284 // We assume that the frontend provides all members in source declaration 2285 // order, which is what MSVC does. 2286 if (!Element) 2287 continue; 2288 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2289 Info.Methods[SP->getRawName()].push_back(SP); 2290 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2291 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2292 collectMemberInfo(Info, DDTy); 2293 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2294 Info.Inheritance.push_back(DDTy); 2295 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2296 DDTy->getName() == "__vtbl_ptr_type") { 2297 Info.VShapeTI = getTypeIndex(DDTy); 2298 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2299 Info.NestedTypes.push_back(DDTy); 2300 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2301 // Ignore friend members. It appears that MSVC emitted info about 2302 // friends in the past, but modern versions do not. 2303 } 2304 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2305 Info.NestedTypes.push_back(Composite); 2306 } 2307 // Skip other unrecognized kinds of elements. 2308 } 2309 return Info; 2310 } 2311 2312 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2313 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2314 // if a complete type should be emitted instead of a forward reference. 2315 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2316 !Ty->isForwardDecl(); 2317 } 2318 2319 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2320 // Emit the complete type for unnamed structs. C++ classes with methods 2321 // which have a circular reference back to the class type are expected to 2322 // be named by the front-end and should not be "unnamed". C unnamed 2323 // structs should not have circular references. 2324 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2325 // If this unnamed complete type is already in the process of being defined 2326 // then the description of the type is malformed and cannot be emitted 2327 // into CodeView correctly so report a fatal error. 2328 auto I = CompleteTypeIndices.find(Ty); 2329 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2330 report_fatal_error("cannot debug circular reference to unnamed type"); 2331 return getCompleteTypeIndex(Ty); 2332 } 2333 2334 // First, construct the forward decl. Don't look into Ty to compute the 2335 // forward decl options, since it might not be available in all TUs. 2336 TypeRecordKind Kind = getRecordKind(Ty); 2337 ClassOptions CO = 2338 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2339 std::string FullName = getFullyQualifiedName(Ty); 2340 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2341 FullName, Ty->getIdentifier()); 2342 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2343 if (!Ty->isForwardDecl()) 2344 DeferredCompleteTypes.push_back(Ty); 2345 return FwdDeclTI; 2346 } 2347 2348 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2349 // Construct the field list and complete type record. 2350 TypeRecordKind Kind = getRecordKind(Ty); 2351 ClassOptions CO = getCommonClassOptions(Ty); 2352 TypeIndex FieldTI; 2353 TypeIndex VShapeTI; 2354 unsigned FieldCount; 2355 bool ContainsNestedClass; 2356 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2357 lowerRecordFieldList(Ty); 2358 2359 if (ContainsNestedClass) 2360 CO |= ClassOptions::ContainsNestedClass; 2361 2362 // MSVC appears to set this flag by searching any destructor or method with 2363 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2364 // the members, however special member functions are not yet emitted into 2365 // debug information. For now checking a class's non-triviality seems enough. 2366 // FIXME: not true for a nested unnamed struct. 2367 if (isNonTrivial(Ty)) 2368 CO |= ClassOptions::HasConstructorOrDestructor; 2369 2370 std::string FullName = getFullyQualifiedName(Ty); 2371 2372 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2373 2374 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2375 SizeInBytes, FullName, Ty->getIdentifier()); 2376 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2377 2378 addUDTSrcLine(Ty, ClassTI); 2379 2380 addToUDTs(Ty); 2381 2382 return ClassTI; 2383 } 2384 2385 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2386 // Emit the complete type for unnamed unions. 2387 if (shouldAlwaysEmitCompleteClassType(Ty)) 2388 return getCompleteTypeIndex(Ty); 2389 2390 ClassOptions CO = 2391 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2392 std::string FullName = getFullyQualifiedName(Ty); 2393 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2394 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2395 if (!Ty->isForwardDecl()) 2396 DeferredCompleteTypes.push_back(Ty); 2397 return FwdDeclTI; 2398 } 2399 2400 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2401 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2402 TypeIndex FieldTI; 2403 unsigned FieldCount; 2404 bool ContainsNestedClass; 2405 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2406 lowerRecordFieldList(Ty); 2407 2408 if (ContainsNestedClass) 2409 CO |= ClassOptions::ContainsNestedClass; 2410 2411 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2412 std::string FullName = getFullyQualifiedName(Ty); 2413 2414 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2415 Ty->getIdentifier()); 2416 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2417 2418 addUDTSrcLine(Ty, UnionTI); 2419 2420 addToUDTs(Ty); 2421 2422 return UnionTI; 2423 } 2424 2425 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2426 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2427 // Manually count members. MSVC appears to count everything that generates a 2428 // field list record. Each individual overload in a method overload group 2429 // contributes to this count, even though the overload group is a single field 2430 // list record. 2431 unsigned MemberCount = 0; 2432 ClassInfo Info = collectClassInfo(Ty); 2433 ContinuationRecordBuilder ContinuationBuilder; 2434 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2435 2436 // Create base classes. 2437 for (const DIDerivedType *I : Info.Inheritance) { 2438 if (I->getFlags() & DINode::FlagVirtual) { 2439 // Virtual base. 2440 unsigned VBPtrOffset = I->getVBPtrOffset(); 2441 // FIXME: Despite the accessor name, the offset is really in bytes. 2442 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2443 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2444 ? TypeRecordKind::IndirectVirtualBaseClass 2445 : TypeRecordKind::VirtualBaseClass; 2446 VirtualBaseClassRecord VBCR( 2447 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2448 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2449 VBTableIndex); 2450 2451 ContinuationBuilder.writeMemberType(VBCR); 2452 MemberCount++; 2453 } else { 2454 assert(I->getOffsetInBits() % 8 == 0 && 2455 "bases must be on byte boundaries"); 2456 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2457 getTypeIndex(I->getBaseType()), 2458 I->getOffsetInBits() / 8); 2459 ContinuationBuilder.writeMemberType(BCR); 2460 MemberCount++; 2461 } 2462 } 2463 2464 // Create members. 2465 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2466 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2467 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2468 StringRef MemberName = Member->getName(); 2469 MemberAccess Access = 2470 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2471 2472 if (Member->isStaticMember()) { 2473 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2474 ContinuationBuilder.writeMemberType(SDMR); 2475 MemberCount++; 2476 continue; 2477 } 2478 2479 // Virtual function pointer member. 2480 if ((Member->getFlags() & DINode::FlagArtificial) && 2481 Member->getName().startswith("_vptr$")) { 2482 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2483 ContinuationBuilder.writeMemberType(VFPR); 2484 MemberCount++; 2485 continue; 2486 } 2487 2488 // Data member. 2489 uint64_t MemberOffsetInBits = 2490 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2491 if (Member->isBitField()) { 2492 uint64_t StartBitOffset = MemberOffsetInBits; 2493 if (const auto *CI = 2494 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2495 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2496 } 2497 StartBitOffset -= MemberOffsetInBits; 2498 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2499 StartBitOffset); 2500 MemberBaseType = TypeTable.writeLeafType(BFR); 2501 } 2502 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2503 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2504 MemberName); 2505 ContinuationBuilder.writeMemberType(DMR); 2506 MemberCount++; 2507 } 2508 2509 // Create methods 2510 for (auto &MethodItr : Info.Methods) { 2511 StringRef Name = MethodItr.first->getString(); 2512 2513 std::vector<OneMethodRecord> Methods; 2514 for (const DISubprogram *SP : MethodItr.second) { 2515 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2516 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2517 2518 unsigned VFTableOffset = -1; 2519 if (Introduced) 2520 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2521 2522 Methods.push_back(OneMethodRecord( 2523 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2524 translateMethodKindFlags(SP, Introduced), 2525 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2526 MemberCount++; 2527 } 2528 assert(!Methods.empty() && "Empty methods map entry"); 2529 if (Methods.size() == 1) 2530 ContinuationBuilder.writeMemberType(Methods[0]); 2531 else { 2532 // FIXME: Make this use its own ContinuationBuilder so that 2533 // MethodOverloadList can be split correctly. 2534 MethodOverloadListRecord MOLR(Methods); 2535 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2536 2537 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2538 ContinuationBuilder.writeMemberType(OMR); 2539 } 2540 } 2541 2542 // Create nested classes. 2543 for (const DIType *Nested : Info.NestedTypes) { 2544 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2545 ContinuationBuilder.writeMemberType(R); 2546 MemberCount++; 2547 } 2548 2549 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2550 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2551 !Info.NestedTypes.empty()); 2552 } 2553 2554 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2555 if (!VBPType.getIndex()) { 2556 // Make a 'const int *' type. 2557 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2558 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2559 2560 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2561 : PointerKind::Near32; 2562 PointerMode PM = PointerMode::Pointer; 2563 PointerOptions PO = PointerOptions::None; 2564 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2565 VBPType = TypeTable.writeLeafType(PR); 2566 } 2567 2568 return VBPType; 2569 } 2570 2571 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2572 // The null DIType is the void type. Don't try to hash it. 2573 if (!Ty) 2574 return TypeIndex::Void(); 2575 2576 // Check if we've already translated this type. Don't try to do a 2577 // get-or-create style insertion that caches the hash lookup across the 2578 // lowerType call. It will update the TypeIndices map. 2579 auto I = TypeIndices.find({Ty, ClassTy}); 2580 if (I != TypeIndices.end()) 2581 return I->second; 2582 2583 TypeLoweringScope S(*this); 2584 TypeIndex TI = lowerType(Ty, ClassTy); 2585 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2586 } 2587 2588 codeview::TypeIndex 2589 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2590 const DISubroutineType *SubroutineTy) { 2591 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2592 "this type must be a pointer type"); 2593 2594 PointerOptions Options = PointerOptions::None; 2595 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2596 Options = PointerOptions::LValueRefThisPointer; 2597 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2598 Options = PointerOptions::RValueRefThisPointer; 2599 2600 // Check if we've already translated this type. If there is no ref qualifier 2601 // on the function then we look up this pointer type with no associated class 2602 // so that the TypeIndex for the this pointer can be shared with the type 2603 // index for other pointers to this class type. If there is a ref qualifier 2604 // then we lookup the pointer using the subroutine as the parent type. 2605 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2606 if (I != TypeIndices.end()) 2607 return I->second; 2608 2609 TypeLoweringScope S(*this); 2610 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2611 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2612 } 2613 2614 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2615 PointerRecord PR(getTypeIndex(Ty), 2616 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2617 : PointerKind::Near32, 2618 PointerMode::LValueReference, PointerOptions::None, 2619 Ty->getSizeInBits() / 8); 2620 return TypeTable.writeLeafType(PR); 2621 } 2622 2623 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2624 // The null DIType is the void type. Don't try to hash it. 2625 if (!Ty) 2626 return TypeIndex::Void(); 2627 2628 // Look through typedefs when getting the complete type index. Call 2629 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2630 // emitted only once. 2631 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2632 (void)getTypeIndex(Ty); 2633 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2634 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2635 2636 // If this is a non-record type, the complete type index is the same as the 2637 // normal type index. Just call getTypeIndex. 2638 switch (Ty->getTag()) { 2639 case dwarf::DW_TAG_class_type: 2640 case dwarf::DW_TAG_structure_type: 2641 case dwarf::DW_TAG_union_type: 2642 break; 2643 default: 2644 return getTypeIndex(Ty); 2645 } 2646 2647 const auto *CTy = cast<DICompositeType>(Ty); 2648 2649 TypeLoweringScope S(*this); 2650 2651 // Make sure the forward declaration is emitted first. It's unclear if this 2652 // is necessary, but MSVC does it, and we should follow suit until we can show 2653 // otherwise. 2654 // We only emit a forward declaration for named types. 2655 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2656 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2657 2658 // Just use the forward decl if we don't have complete type info. This 2659 // might happen if the frontend is using modules and expects the complete 2660 // definition to be emitted elsewhere. 2661 if (CTy->isForwardDecl()) 2662 return FwdDeclTI; 2663 } 2664 2665 // Check if we've already translated the complete record type. 2666 // Insert the type with a null TypeIndex to signify that the type is currently 2667 // being lowered. 2668 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2669 if (!InsertResult.second) 2670 return InsertResult.first->second; 2671 2672 TypeIndex TI; 2673 switch (CTy->getTag()) { 2674 case dwarf::DW_TAG_class_type: 2675 case dwarf::DW_TAG_structure_type: 2676 TI = lowerCompleteTypeClass(CTy); 2677 break; 2678 case dwarf::DW_TAG_union_type: 2679 TI = lowerCompleteTypeUnion(CTy); 2680 break; 2681 default: 2682 llvm_unreachable("not a record"); 2683 } 2684 2685 // Update the type index associated with this CompositeType. This cannot 2686 // use the 'InsertResult' iterator above because it is potentially 2687 // invalidated by map insertions which can occur while lowering the class 2688 // type above. 2689 CompleteTypeIndices[CTy] = TI; 2690 return TI; 2691 } 2692 2693 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2694 /// and do this until fixpoint, as each complete record type typically 2695 /// references 2696 /// many other record types. 2697 void CodeViewDebug::emitDeferredCompleteTypes() { 2698 SmallVector<const DICompositeType *, 4> TypesToEmit; 2699 while (!DeferredCompleteTypes.empty()) { 2700 std::swap(DeferredCompleteTypes, TypesToEmit); 2701 for (const DICompositeType *RecordTy : TypesToEmit) 2702 getCompleteTypeIndex(RecordTy); 2703 TypesToEmit.clear(); 2704 } 2705 } 2706 2707 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2708 ArrayRef<LocalVariable> Locals) { 2709 // Get the sorted list of parameters and emit them first. 2710 SmallVector<const LocalVariable *, 6> Params; 2711 for (const LocalVariable &L : Locals) 2712 if (L.DIVar->isParameter()) 2713 Params.push_back(&L); 2714 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2715 return L->DIVar->getArg() < R->DIVar->getArg(); 2716 }); 2717 for (const LocalVariable *L : Params) 2718 emitLocalVariable(FI, *L); 2719 2720 // Next emit all non-parameters in the order that we found them. 2721 for (const LocalVariable &L : Locals) 2722 if (!L.DIVar->isParameter()) 2723 emitLocalVariable(FI, L); 2724 } 2725 2726 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2727 const LocalVariable &Var) { 2728 // LocalSym record, see SymbolRecord.h for more info. 2729 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2730 2731 LocalSymFlags Flags = LocalSymFlags::None; 2732 if (Var.DIVar->isParameter()) 2733 Flags |= LocalSymFlags::IsParameter; 2734 if (Var.DefRanges.empty()) 2735 Flags |= LocalSymFlags::IsOptimizedOut; 2736 2737 OS.AddComment("TypeIndex"); 2738 TypeIndex TI = Var.UseReferenceType 2739 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2740 : getCompleteTypeIndex(Var.DIVar->getType()); 2741 OS.emitInt32(TI.getIndex()); 2742 OS.AddComment("Flags"); 2743 OS.emitInt16(static_cast<uint16_t>(Flags)); 2744 // Truncate the name so we won't overflow the record length field. 2745 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2746 endSymbolRecord(LocalEnd); 2747 2748 // Calculate the on disk prefix of the appropriate def range record. The 2749 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2750 // should be big enough to hold all forms without memory allocation. 2751 SmallString<20> BytePrefix; 2752 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2753 BytePrefix.clear(); 2754 if (DefRange.InMemory) { 2755 int Offset = DefRange.DataOffset; 2756 unsigned Reg = DefRange.CVRegister; 2757 2758 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2759 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2760 // instead. In frames without stack realignment, $T0 will be the CFA. 2761 if (RegisterId(Reg) == RegisterId::ESP) { 2762 Reg = unsigned(RegisterId::VFRAME); 2763 Offset += FI.OffsetAdjustment; 2764 } 2765 2766 // If we can use the chosen frame pointer for the frame and this isn't a 2767 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2768 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2769 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2770 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2771 (bool(Flags & LocalSymFlags::IsParameter) 2772 ? (EncFP == FI.EncodedParamFramePtrReg) 2773 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2774 DefRangeFramePointerRelHeader DRHdr; 2775 DRHdr.Offset = Offset; 2776 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2777 } else { 2778 uint16_t RegRelFlags = 0; 2779 if (DefRange.IsSubfield) { 2780 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2781 (DefRange.StructOffset 2782 << DefRangeRegisterRelSym::OffsetInParentShift); 2783 } 2784 DefRangeRegisterRelHeader DRHdr; 2785 DRHdr.Register = Reg; 2786 DRHdr.Flags = RegRelFlags; 2787 DRHdr.BasePointerOffset = Offset; 2788 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2789 } 2790 } else { 2791 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2792 if (DefRange.IsSubfield) { 2793 DefRangeSubfieldRegisterHeader DRHdr; 2794 DRHdr.Register = DefRange.CVRegister; 2795 DRHdr.MayHaveNoName = 0; 2796 DRHdr.OffsetInParent = DefRange.StructOffset; 2797 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2798 } else { 2799 DefRangeRegisterHeader DRHdr; 2800 DRHdr.Register = DefRange.CVRegister; 2801 DRHdr.MayHaveNoName = 0; 2802 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2803 } 2804 } 2805 } 2806 } 2807 2808 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2809 const FunctionInfo& FI) { 2810 for (LexicalBlock *Block : Blocks) 2811 emitLexicalBlock(*Block, FI); 2812 } 2813 2814 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2815 /// lexical block scope. 2816 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2817 const FunctionInfo& FI) { 2818 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2819 OS.AddComment("PtrParent"); 2820 OS.emitInt32(0); // PtrParent 2821 OS.AddComment("PtrEnd"); 2822 OS.emitInt32(0); // PtrEnd 2823 OS.AddComment("Code size"); 2824 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2825 OS.AddComment("Function section relative address"); 2826 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2827 OS.AddComment("Function section index"); 2828 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2829 OS.AddComment("Lexical block name"); 2830 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2831 endSymbolRecord(RecordEnd); 2832 2833 // Emit variables local to this lexical block. 2834 emitLocalVariableList(FI, Block.Locals); 2835 emitGlobalVariableList(Block.Globals); 2836 2837 // Emit lexical blocks contained within this block. 2838 emitLexicalBlockList(Block.Children, FI); 2839 2840 // Close the lexical block scope. 2841 emitEndSymbolRecord(SymbolKind::S_END); 2842 } 2843 2844 /// Convenience routine for collecting lexical block information for a list 2845 /// of lexical scopes. 2846 void CodeViewDebug::collectLexicalBlockInfo( 2847 SmallVectorImpl<LexicalScope *> &Scopes, 2848 SmallVectorImpl<LexicalBlock *> &Blocks, 2849 SmallVectorImpl<LocalVariable> &Locals, 2850 SmallVectorImpl<CVGlobalVariable> &Globals) { 2851 for (LexicalScope *Scope : Scopes) 2852 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2853 } 2854 2855 /// Populate the lexical blocks and local variable lists of the parent with 2856 /// information about the specified lexical scope. 2857 void CodeViewDebug::collectLexicalBlockInfo( 2858 LexicalScope &Scope, 2859 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2860 SmallVectorImpl<LocalVariable> &ParentLocals, 2861 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2862 if (Scope.isAbstractScope()) 2863 return; 2864 2865 // Gather information about the lexical scope including local variables, 2866 // global variables, and address ranges. 2867 bool IgnoreScope = false; 2868 auto LI = ScopeVariables.find(&Scope); 2869 SmallVectorImpl<LocalVariable> *Locals = 2870 LI != ScopeVariables.end() ? &LI->second : nullptr; 2871 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2872 SmallVectorImpl<CVGlobalVariable> *Globals = 2873 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2874 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2875 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2876 2877 // Ignore lexical scopes which do not contain variables. 2878 if (!Locals && !Globals) 2879 IgnoreScope = true; 2880 2881 // Ignore lexical scopes which are not lexical blocks. 2882 if (!DILB) 2883 IgnoreScope = true; 2884 2885 // Ignore scopes which have too many address ranges to represent in the 2886 // current CodeView format or do not have a valid address range. 2887 // 2888 // For lexical scopes with multiple address ranges you may be tempted to 2889 // construct a single range covering every instruction where the block is 2890 // live and everything in between. Unfortunately, Visual Studio only 2891 // displays variables from the first matching lexical block scope. If the 2892 // first lexical block contains exception handling code or cold code which 2893 // is moved to the bottom of the routine creating a single range covering 2894 // nearly the entire routine, then it will hide all other lexical blocks 2895 // and the variables they contain. 2896 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2897 IgnoreScope = true; 2898 2899 if (IgnoreScope) { 2900 // This scope can be safely ignored and eliminating it will reduce the 2901 // size of the debug information. Be sure to collect any variable and scope 2902 // information from the this scope or any of its children and collapse them 2903 // into the parent scope. 2904 if (Locals) 2905 ParentLocals.append(Locals->begin(), Locals->end()); 2906 if (Globals) 2907 ParentGlobals.append(Globals->begin(), Globals->end()); 2908 collectLexicalBlockInfo(Scope.getChildren(), 2909 ParentBlocks, 2910 ParentLocals, 2911 ParentGlobals); 2912 return; 2913 } 2914 2915 // Create a new CodeView lexical block for this lexical scope. If we've 2916 // seen this DILexicalBlock before then the scope tree is malformed and 2917 // we can handle this gracefully by not processing it a second time. 2918 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2919 if (!BlockInsertion.second) 2920 return; 2921 2922 // Create a lexical block containing the variables and collect the the 2923 // lexical block information for the children. 2924 const InsnRange &Range = Ranges.front(); 2925 assert(Range.first && Range.second); 2926 LexicalBlock &Block = BlockInsertion.first->second; 2927 Block.Begin = getLabelBeforeInsn(Range.first); 2928 Block.End = getLabelAfterInsn(Range.second); 2929 assert(Block.Begin && "missing label for scope begin"); 2930 assert(Block.End && "missing label for scope end"); 2931 Block.Name = DILB->getName(); 2932 if (Locals) 2933 Block.Locals = std::move(*Locals); 2934 if (Globals) 2935 Block.Globals = std::move(*Globals); 2936 ParentBlocks.push_back(&Block); 2937 collectLexicalBlockInfo(Scope.getChildren(), 2938 Block.Children, 2939 Block.Locals, 2940 Block.Globals); 2941 } 2942 2943 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2944 const Function &GV = MF->getFunction(); 2945 assert(FnDebugInfo.count(&GV)); 2946 assert(CurFn == FnDebugInfo[&GV].get()); 2947 2948 collectVariableInfo(GV.getSubprogram()); 2949 2950 // Build the lexical block structure to emit for this routine. 2951 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2952 collectLexicalBlockInfo(*CFS, 2953 CurFn->ChildBlocks, 2954 CurFn->Locals, 2955 CurFn->Globals); 2956 2957 // Clear the scope and variable information from the map which will not be 2958 // valid after we have finished processing this routine. This also prepares 2959 // the map for the subsequent routine. 2960 ScopeVariables.clear(); 2961 2962 // Don't emit anything if we don't have any line tables. 2963 // Thunks are compiler-generated and probably won't have source correlation. 2964 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2965 FnDebugInfo.erase(&GV); 2966 CurFn = nullptr; 2967 return; 2968 } 2969 2970 // Find heap alloc sites and add to list. 2971 for (const auto &MBB : *MF) { 2972 for (const auto &MI : MBB) { 2973 if (MDNode *MD = MI.getHeapAllocMarker()) { 2974 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2975 getLabelAfterInsn(&MI), 2976 dyn_cast<DIType>(MD))); 2977 } 2978 } 2979 } 2980 2981 CurFn->Annotations = MF->getCodeViewAnnotations(); 2982 2983 CurFn->End = Asm->getFunctionEnd(); 2984 2985 CurFn = nullptr; 2986 } 2987 2988 // Usable locations are valid with non-zero line numbers. A line number of zero 2989 // corresponds to optimized code that doesn't have a distinct source location. 2990 // In this case, we try to use the previous or next source location depending on 2991 // the context. 2992 static bool isUsableDebugLoc(DebugLoc DL) { 2993 return DL && DL.getLine() != 0; 2994 } 2995 2996 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2997 DebugHandlerBase::beginInstruction(MI); 2998 2999 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 3000 if (!Asm || !CurFn || MI->isDebugInstr() || 3001 MI->getFlag(MachineInstr::FrameSetup)) 3002 return; 3003 3004 // If the first instruction of a new MBB has no location, find the first 3005 // instruction with a location and use that. 3006 DebugLoc DL = MI->getDebugLoc(); 3007 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 3008 for (const auto &NextMI : *MI->getParent()) { 3009 if (NextMI.isDebugInstr()) 3010 continue; 3011 DL = NextMI.getDebugLoc(); 3012 if (isUsableDebugLoc(DL)) 3013 break; 3014 } 3015 // FIXME: Handle the case where the BB has no valid locations. This would 3016 // probably require doing a real dataflow analysis. 3017 } 3018 PrevInstBB = MI->getParent(); 3019 3020 // If we still don't have a debug location, don't record a location. 3021 if (!isUsableDebugLoc(DL)) 3022 return; 3023 3024 maybeRecordLocation(DL, Asm->MF); 3025 } 3026 3027 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 3028 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 3029 *EndLabel = MMI->getContext().createTempSymbol(); 3030 OS.emitInt32(unsigned(Kind)); 3031 OS.AddComment("Subsection size"); 3032 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 3033 OS.emitLabel(BeginLabel); 3034 return EndLabel; 3035 } 3036 3037 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 3038 OS.emitLabel(EndLabel); 3039 // Every subsection must be aligned to a 4-byte boundary. 3040 OS.emitValueToAlignment(4); 3041 } 3042 3043 static StringRef getSymbolName(SymbolKind SymKind) { 3044 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 3045 if (EE.Value == SymKind) 3046 return EE.Name; 3047 return ""; 3048 } 3049 3050 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 3051 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 3052 *EndLabel = MMI->getContext().createTempSymbol(); 3053 OS.AddComment("Record length"); 3054 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 3055 OS.emitLabel(BeginLabel); 3056 if (OS.isVerboseAsm()) 3057 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 3058 OS.emitInt16(unsigned(SymKind)); 3059 return EndLabel; 3060 } 3061 3062 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 3063 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 3064 // an extra copy of every symbol record in LLD. This increases object file 3065 // size by less than 1% in the clang build, and is compatible with the Visual 3066 // C++ linker. 3067 OS.emitValueToAlignment(4); 3068 OS.emitLabel(SymEnd); 3069 } 3070 3071 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 3072 OS.AddComment("Record length"); 3073 OS.emitInt16(2); 3074 if (OS.isVerboseAsm()) 3075 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 3076 OS.emitInt16(uint16_t(EndKind)); // Record Kind 3077 } 3078 3079 void CodeViewDebug::emitDebugInfoForUDTs( 3080 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 3081 #ifndef NDEBUG 3082 size_t OriginalSize = UDTs.size(); 3083 #endif 3084 for (const auto &UDT : UDTs) { 3085 const DIType *T = UDT.second; 3086 assert(shouldEmitUdt(T)); 3087 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 3088 OS.AddComment("Type"); 3089 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3090 assert(OriginalSize == UDTs.size() && 3091 "getCompleteTypeIndex found new UDTs!"); 3092 emitNullTerminatedSymbolName(OS, UDT.first); 3093 endSymbolRecord(UDTRecordEnd); 3094 } 3095 } 3096 3097 void CodeViewDebug::collectGlobalVariableInfo() { 3098 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3099 GlobalMap; 3100 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3101 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3102 GV.getDebugInfo(GVEs); 3103 for (const auto *GVE : GVEs) 3104 GlobalMap[GVE] = &GV; 3105 } 3106 3107 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3108 for (const MDNode *Node : CUs->operands()) { 3109 const auto *CU = cast<DICompileUnit>(Node); 3110 for (const auto *GVE : CU->getGlobalVariables()) { 3111 const DIGlobalVariable *DIGV = GVE->getVariable(); 3112 const DIExpression *DIE = GVE->getExpression(); 3113 3114 if ((DIE->getNumElements() == 2) && 3115 (DIE->getElement(0) == dwarf::DW_OP_plus_uconst)) 3116 // Record the constant offset for the variable. 3117 // 3118 // A Fortran common block uses this idiom to encode the offset 3119 // of a variable from the common block's starting address. 3120 CVGlobalVariableOffsets.insert( 3121 std::make_pair(DIGV, DIE->getElement(1))); 3122 3123 // Emit constant global variables in a global symbol section. 3124 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3125 CVGlobalVariable CVGV = {DIGV, DIE}; 3126 GlobalVariables.emplace_back(std::move(CVGV)); 3127 } 3128 3129 const auto *GV = GlobalMap.lookup(GVE); 3130 if (!GV || GV->isDeclarationForLinker()) 3131 continue; 3132 3133 DIScope *Scope = DIGV->getScope(); 3134 SmallVector<CVGlobalVariable, 1> *VariableList; 3135 if (Scope && isa<DILocalScope>(Scope)) { 3136 // Locate a global variable list for this scope, creating one if 3137 // necessary. 3138 auto Insertion = ScopeGlobals.insert( 3139 {Scope, std::unique_ptr<GlobalVariableList>()}); 3140 if (Insertion.second) 3141 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3142 VariableList = Insertion.first->second.get(); 3143 } else if (GV->hasComdat()) 3144 // Emit this global variable into a COMDAT section. 3145 VariableList = &ComdatVariables; 3146 else 3147 // Emit this global variable in a single global symbol section. 3148 VariableList = &GlobalVariables; 3149 CVGlobalVariable CVGV = {DIGV, GV}; 3150 VariableList->emplace_back(std::move(CVGV)); 3151 } 3152 } 3153 } 3154 3155 void CodeViewDebug::collectDebugInfoForGlobals() { 3156 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3157 const DIGlobalVariable *DIGV = CVGV.DIGV; 3158 const DIScope *Scope = DIGV->getScope(); 3159 getCompleteTypeIndex(DIGV->getType()); 3160 getFullyQualifiedName(Scope, DIGV->getName()); 3161 } 3162 3163 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3164 const DIGlobalVariable *DIGV = CVGV.DIGV; 3165 const DIScope *Scope = DIGV->getScope(); 3166 getCompleteTypeIndex(DIGV->getType()); 3167 getFullyQualifiedName(Scope, DIGV->getName()); 3168 } 3169 } 3170 3171 void CodeViewDebug::emitDebugInfoForGlobals() { 3172 // First, emit all globals that are not in a comdat in a single symbol 3173 // substream. MSVC doesn't like it if the substream is empty, so only open 3174 // it if we have at least one global to emit. 3175 switchToDebugSectionForSymbol(nullptr); 3176 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3177 OS.AddComment("Symbol subsection for globals"); 3178 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3179 emitGlobalVariableList(GlobalVariables); 3180 emitStaticConstMemberList(); 3181 endCVSubsection(EndLabel); 3182 } 3183 3184 // Second, emit each global that is in a comdat into its own .debug$S 3185 // section along with its own symbol substream. 3186 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3187 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3188 MCSymbol *GVSym = Asm->getSymbol(GV); 3189 OS.AddComment("Symbol subsection for " + 3190 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3191 switchToDebugSectionForSymbol(GVSym); 3192 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3193 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3194 emitDebugInfoForGlobal(CVGV); 3195 endCVSubsection(EndLabel); 3196 } 3197 } 3198 3199 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3200 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3201 for (const MDNode *Node : CUs->operands()) { 3202 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3203 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3204 getTypeIndex(RT); 3205 // FIXME: Add to global/local DTU list. 3206 } 3207 } 3208 } 3209 } 3210 3211 // Emit each global variable in the specified array. 3212 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3213 for (const CVGlobalVariable &CVGV : Globals) { 3214 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3215 emitDebugInfoForGlobal(CVGV); 3216 } 3217 } 3218 3219 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value, 3220 const std::string &QualifiedName) { 3221 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3222 OS.AddComment("Type"); 3223 OS.emitInt32(getTypeIndex(DTy).getIndex()); 3224 3225 OS.AddComment("Value"); 3226 3227 // Encoded integers shouldn't need more than 10 bytes. 3228 uint8_t Data[10]; 3229 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3230 CodeViewRecordIO IO(Writer); 3231 cantFail(IO.mapEncodedInteger(Value)); 3232 StringRef SRef((char *)Data, Writer.getOffset()); 3233 OS.emitBinaryData(SRef); 3234 3235 OS.AddComment("Name"); 3236 emitNullTerminatedSymbolName(OS, QualifiedName); 3237 endSymbolRecord(SConstantEnd); 3238 } 3239 3240 void CodeViewDebug::emitStaticConstMemberList() { 3241 for (const DIDerivedType *DTy : StaticConstMembers) { 3242 const DIScope *Scope = DTy->getScope(); 3243 3244 APSInt Value; 3245 if (const ConstantInt *CI = 3246 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3247 Value = APSInt(CI->getValue(), 3248 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3249 else if (const ConstantFP *CFP = 3250 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3251 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3252 else 3253 llvm_unreachable("cannot emit a constant without a value"); 3254 3255 emitConstantSymbolRecord(DTy->getBaseType(), Value, 3256 getFullyQualifiedName(Scope, DTy->getName())); 3257 } 3258 } 3259 3260 static bool isFloatDIType(const DIType *Ty) { 3261 if (isa<DICompositeType>(Ty)) 3262 return false; 3263 3264 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3265 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3266 if (T == dwarf::DW_TAG_pointer_type || 3267 T == dwarf::DW_TAG_ptr_to_member_type || 3268 T == dwarf::DW_TAG_reference_type || 3269 T == dwarf::DW_TAG_rvalue_reference_type) 3270 return false; 3271 assert(DTy->getBaseType() && "Expected valid base type"); 3272 return isFloatDIType(DTy->getBaseType()); 3273 } 3274 3275 auto *BTy = cast<DIBasicType>(Ty); 3276 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3277 } 3278 3279 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3280 const DIGlobalVariable *DIGV = CVGV.DIGV; 3281 3282 const DIScope *Scope = DIGV->getScope(); 3283 // For static data members, get the scope from the declaration. 3284 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3285 DIGV->getRawStaticDataMemberDeclaration())) 3286 Scope = MemberDecl->getScope(); 3287 // For Fortran, the scoping portion is elided in its name so that we can 3288 // reference the variable in the command line of the VS debugger. 3289 std::string QualifiedName = 3290 (moduleIsInFortran()) ? std::string(DIGV->getName()) 3291 : getFullyQualifiedName(Scope, DIGV->getName()); 3292 3293 if (const GlobalVariable *GV = 3294 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3295 // DataSym record, see SymbolRecord.h for more info. Thread local data 3296 // happens to have the same format as global data. 3297 MCSymbol *GVSym = Asm->getSymbol(GV); 3298 SymbolKind DataSym = GV->isThreadLocal() 3299 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3300 : SymbolKind::S_GTHREAD32) 3301 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3302 : SymbolKind::S_GDATA32); 3303 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3304 OS.AddComment("Type"); 3305 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3306 OS.AddComment("DataOffset"); 3307 3308 uint64_t Offset = 0; 3309 if (CVGlobalVariableOffsets.find(DIGV) != CVGlobalVariableOffsets.end()) 3310 // Use the offset seen while collecting info on globals. 3311 Offset = CVGlobalVariableOffsets[DIGV]; 3312 OS.EmitCOFFSecRel32(GVSym, Offset); 3313 3314 OS.AddComment("Segment"); 3315 OS.EmitCOFFSectionIndex(GVSym); 3316 OS.AddComment("Name"); 3317 const unsigned LengthOfDataRecord = 12; 3318 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3319 endSymbolRecord(DataEnd); 3320 } else { 3321 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3322 assert(DIE->isConstant() && 3323 "Global constant variables must contain a constant expression."); 3324 3325 // Use unsigned for floats. 3326 bool isUnsigned = isFloatDIType(DIGV->getType()) 3327 ? true 3328 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3329 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3330 emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName); 3331 } 3332 } 3333