xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision 26fa1bf4da3cbae98251ebd2db2dcee37b89120c)
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
40 #include "llvm/DebugInfo/CodeView/CodeView.h"
41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
46 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/MC/MCAsmInfo.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSectionCOFF.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/BinaryByteStream.h"
63 #include "llvm/Support/BinaryStreamReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Target/TargetFrameLowering.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetRegisterInfo.h"
75 #include "llvm/Target/TargetSubtargetInfo.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <limits>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace llvm::codeview;
89 
90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
91     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
92   // If module doesn't have named metadata anchors or COFF debug section
93   // is not available, skip any debug info related stuff.
94   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
95       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
96     Asm = nullptr;
97     return;
98   }
99 
100   // Tell MMI that we have debug info.
101   MMI->setDebugInfoAvailability(true);
102 }
103 
104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
105   std::string &Filepath = FileToFilepathMap[File];
106   if (!Filepath.empty())
107     return Filepath;
108 
109   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
110 
111   // Clang emits directory and relative filename info into the IR, but CodeView
112   // operates on full paths.  We could change Clang to emit full paths too, but
113   // that would increase the IR size and probably not needed for other users.
114   // For now, just concatenate and canonicalize the path here.
115   if (Filename.find(':') == 1)
116     Filepath = Filename;
117   else
118     Filepath = (Dir + "\\" + Filename).str();
119 
120   // Canonicalize the path.  We have to do it textually because we may no longer
121   // have access the file in the filesystem.
122   // First, replace all slashes with backslashes.
123   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
124 
125   // Remove all "\.\" with "\".
126   size_t Cursor = 0;
127   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
128     Filepath.erase(Cursor, 2);
129 
130   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
131   // path should be well-formatted, e.g. start with a drive letter, etc.
132   Cursor = 0;
133   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
134     // Something's wrong if the path starts with "\..\", abort.
135     if (Cursor == 0)
136       break;
137 
138     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
139     if (PrevSlash == std::string::npos)
140       // Something's wrong, abort.
141       break;
142 
143     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
144     // The next ".." might be following the one we've just erased.
145     Cursor = PrevSlash;
146   }
147 
148   // Remove all duplicate backslashes.
149   Cursor = 0;
150   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
151     Filepath.erase(Cursor, 1);
152 
153   return Filepath;
154 }
155 
156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
157   unsigned NextId = FileIdMap.size() + 1;
158   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
159   if (Insertion.second) {
160     // We have to compute the full filepath and emit a .cv_file directive.
161     StringRef FullPath = getFullFilepath(F);
162     std::string Checksum = fromHex(F->getChecksum());
163     void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
164     memcpy(CKMem, Checksum.data(), Checksum.size());
165     ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem),
166                                       Checksum.size());
167     DIFile::ChecksumKind ChecksumKind = F->getChecksumKind();
168     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
169                                           static_cast<unsigned>(ChecksumKind));
170     (void)Success;
171     assert(Success && ".cv_file directive failed");
172   }
173   return Insertion.first->second;
174 }
175 
176 CodeViewDebug::InlineSite &
177 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
178                              const DISubprogram *Inlinee) {
179   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
180   InlineSite *Site = &SiteInsertion.first->second;
181   if (SiteInsertion.second) {
182     unsigned ParentFuncId = CurFn->FuncId;
183     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
184       ParentFuncId =
185           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
186               .SiteFuncId;
187 
188     Site->SiteFuncId = NextFuncId++;
189     OS.EmitCVInlineSiteIdDirective(
190         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
191         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
192     Site->Inlinee = Inlinee;
193     InlinedSubprograms.insert(Inlinee);
194     getFuncIdForSubprogram(Inlinee);
195   }
196   return *Site;
197 }
198 
199 static StringRef getPrettyScopeName(const DIScope *Scope) {
200   StringRef ScopeName = Scope->getName();
201   if (!ScopeName.empty())
202     return ScopeName;
203 
204   switch (Scope->getTag()) {
205   case dwarf::DW_TAG_enumeration_type:
206   case dwarf::DW_TAG_class_type:
207   case dwarf::DW_TAG_structure_type:
208   case dwarf::DW_TAG_union_type:
209     return "<unnamed-tag>";
210   case dwarf::DW_TAG_namespace:
211     return "`anonymous namespace'";
212   }
213 
214   return StringRef();
215 }
216 
217 static const DISubprogram *getQualifiedNameComponents(
218     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
219   const DISubprogram *ClosestSubprogram = nullptr;
220   while (Scope != nullptr) {
221     if (ClosestSubprogram == nullptr)
222       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
223     StringRef ScopeName = getPrettyScopeName(Scope);
224     if (!ScopeName.empty())
225       QualifiedNameComponents.push_back(ScopeName);
226     Scope = Scope->getScope().resolve();
227   }
228   return ClosestSubprogram;
229 }
230 
231 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
232                                     StringRef TypeName) {
233   std::string FullyQualifiedName;
234   for (StringRef QualifiedNameComponent :
235        llvm::reverse(QualifiedNameComponents)) {
236     FullyQualifiedName.append(QualifiedNameComponent);
237     FullyQualifiedName.append("::");
238   }
239   FullyQualifiedName.append(TypeName);
240   return FullyQualifiedName;
241 }
242 
243 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
244   SmallVector<StringRef, 5> QualifiedNameComponents;
245   getQualifiedNameComponents(Scope, QualifiedNameComponents);
246   return getQualifiedName(QualifiedNameComponents, Name);
247 }
248 
249 struct CodeViewDebug::TypeLoweringScope {
250   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
251   ~TypeLoweringScope() {
252     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
253     // inner TypeLoweringScopes don't attempt to emit deferred types.
254     if (CVD.TypeEmissionLevel == 1)
255       CVD.emitDeferredCompleteTypes();
256     --CVD.TypeEmissionLevel;
257   }
258   CodeViewDebug &CVD;
259 };
260 
261 static std::string getFullyQualifiedName(const DIScope *Ty) {
262   const DIScope *Scope = Ty->getScope().resolve();
263   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
264 }
265 
266 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
267   // No scope means global scope and that uses the zero index.
268   if (!Scope || isa<DIFile>(Scope))
269     return TypeIndex();
270 
271   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
272 
273   // Check if we've already translated this scope.
274   auto I = TypeIndices.find({Scope, nullptr});
275   if (I != TypeIndices.end())
276     return I->second;
277 
278   // Build the fully qualified name of the scope.
279   std::string ScopeName = getFullyQualifiedName(Scope);
280   StringIdRecord SID(TypeIndex(), ScopeName);
281   auto TI = TypeTable.writeKnownType(SID);
282   return recordTypeIndexForDINode(Scope, TI);
283 }
284 
285 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
286   assert(SP);
287 
288   // Check if we've already translated this subprogram.
289   auto I = TypeIndices.find({SP, nullptr});
290   if (I != TypeIndices.end())
291     return I->second;
292 
293   // The display name includes function template arguments. Drop them to match
294   // MSVC.
295   StringRef DisplayName = SP->getName().split('<').first;
296 
297   const DIScope *Scope = SP->getScope().resolve();
298   TypeIndex TI;
299   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
300     // If the scope is a DICompositeType, then this must be a method. Member
301     // function types take some special handling, and require access to the
302     // subprogram.
303     TypeIndex ClassType = getTypeIndex(Class);
304     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
305                                DisplayName);
306     TI = TypeTable.writeKnownType(MFuncId);
307   } else {
308     // Otherwise, this must be a free function.
309     TypeIndex ParentScope = getScopeIndex(Scope);
310     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
311     TI = TypeTable.writeKnownType(FuncId);
312   }
313 
314   return recordTypeIndexForDINode(SP, TI);
315 }
316 
317 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
318                                                const DICompositeType *Class) {
319   // Always use the method declaration as the key for the function type. The
320   // method declaration contains the this adjustment.
321   if (SP->getDeclaration())
322     SP = SP->getDeclaration();
323   assert(!SP->getDeclaration() && "should use declaration as key");
324 
325   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
326   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
327   auto I = TypeIndices.find({SP, Class});
328   if (I != TypeIndices.end())
329     return I->second;
330 
331   // Make sure complete type info for the class is emitted *after* the member
332   // function type, as the complete class type is likely to reference this
333   // member function type.
334   TypeLoweringScope S(*this);
335   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
336   TypeIndex TI = lowerTypeMemberFunction(
337       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod);
338   return recordTypeIndexForDINode(SP, TI, Class);
339 }
340 
341 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
342                                                   TypeIndex TI,
343                                                   const DIType *ClassTy) {
344   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
345   (void)InsertResult;
346   assert(InsertResult.second && "DINode was already assigned a type index");
347   return TI;
348 }
349 
350 unsigned CodeViewDebug::getPointerSizeInBytes() {
351   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
352 }
353 
354 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
355                                         const DILocation *InlinedAt) {
356   if (InlinedAt) {
357     // This variable was inlined. Associate it with the InlineSite.
358     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
359     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
360     Site.InlinedLocals.emplace_back(Var);
361   } else {
362     // This variable goes in the main ProcSym.
363     CurFn->Locals.emplace_back(Var);
364   }
365 }
366 
367 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
368                                const DILocation *Loc) {
369   auto B = Locs.begin(), E = Locs.end();
370   if (std::find(B, E, Loc) == E)
371     Locs.push_back(Loc);
372 }
373 
374 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
375                                         const MachineFunction *MF) {
376   // Skip this instruction if it has the same location as the previous one.
377   if (!DL || DL == PrevInstLoc)
378     return;
379 
380   const DIScope *Scope = DL.get()->getScope();
381   if (!Scope)
382     return;
383 
384   // Skip this line if it is longer than the maximum we can record.
385   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
386   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
387       LI.isNeverStepInto())
388     return;
389 
390   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
391   if (CI.getStartColumn() != DL.getCol())
392     return;
393 
394   if (!CurFn->HaveLineInfo)
395     CurFn->HaveLineInfo = true;
396   unsigned FileId = 0;
397   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
398     FileId = CurFn->LastFileId;
399   else
400     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
401   PrevInstLoc = DL;
402 
403   unsigned FuncId = CurFn->FuncId;
404   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
405     const DILocation *Loc = DL.get();
406 
407     // If this location was actually inlined from somewhere else, give it the ID
408     // of the inline call site.
409     FuncId =
410         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
411 
412     // Ensure we have links in the tree of inline call sites.
413     bool FirstLoc = true;
414     while ((SiteLoc = Loc->getInlinedAt())) {
415       InlineSite &Site =
416           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
417       if (!FirstLoc)
418         addLocIfNotPresent(Site.ChildSites, Loc);
419       FirstLoc = false;
420       Loc = SiteLoc;
421     }
422     addLocIfNotPresent(CurFn->ChildSites, Loc);
423   }
424 
425   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
426                         /*PrologueEnd=*/false, /*IsStmt=*/false,
427                         DL->getFilename(), SMLoc());
428 }
429 
430 void CodeViewDebug::emitCodeViewMagicVersion() {
431   OS.EmitValueToAlignment(4);
432   OS.AddComment("Debug section magic");
433   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
434 }
435 
436 void CodeViewDebug::endModule() {
437   if (!Asm || !MMI->hasDebugInfo())
438     return;
439 
440   assert(Asm != nullptr);
441 
442   // The COFF .debug$S section consists of several subsections, each starting
443   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
444   // of the payload followed by the payload itself.  The subsections are 4-byte
445   // aligned.
446 
447   // Use the generic .debug$S section, and make a subsection for all the inlined
448   // subprograms.
449   switchToDebugSectionForSymbol(nullptr);
450 
451   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
452   emitCompilerInformation();
453   endCVSubsection(CompilerInfo);
454 
455   emitInlineeLinesSubsection();
456 
457   // Emit per-function debug information.
458   for (auto &P : FnDebugInfo)
459     if (!P.first->isDeclarationForLinker())
460       emitDebugInfoForFunction(P.first, P.second);
461 
462   // Emit global variable debug information.
463   setCurrentSubprogram(nullptr);
464   emitDebugInfoForGlobals();
465 
466   // Emit retained types.
467   emitDebugInfoForRetainedTypes();
468 
469   // Switch back to the generic .debug$S section after potentially processing
470   // comdat symbol sections.
471   switchToDebugSectionForSymbol(nullptr);
472 
473   // Emit UDT records for any types used by global variables.
474   if (!GlobalUDTs.empty()) {
475     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
476     emitDebugInfoForUDTs(GlobalUDTs);
477     endCVSubsection(SymbolsEnd);
478   }
479 
480   // This subsection holds a file index to offset in string table table.
481   OS.AddComment("File index to string table offset subsection");
482   OS.EmitCVFileChecksumsDirective();
483 
484   // This subsection holds the string table.
485   OS.AddComment("String table");
486   OS.EmitCVStringTableDirective();
487 
488   // Emit type information last, so that any types we translate while emitting
489   // function info are included.
490   emitTypeInformation();
491 
492   clear();
493 }
494 
495 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
496   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
497   // after a fixed length portion of the record. The fixed length portion should
498   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
499   // overall record size is less than the maximum allowed.
500   unsigned MaxFixedRecordLength = 0xF00;
501   SmallString<32> NullTerminatedString(
502       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
503   NullTerminatedString.push_back('\0');
504   OS.EmitBytes(NullTerminatedString);
505 }
506 
507 void CodeViewDebug::emitTypeInformation() {
508   // Do nothing if we have no debug info or if no non-trivial types were emitted
509   // to TypeTable during codegen.
510   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
511   if (!CU_Nodes)
512     return;
513   if (TypeTable.empty())
514     return;
515 
516   // Start the .debug$T section with 0x4.
517   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
518   emitCodeViewMagicVersion();
519 
520   SmallString<8> CommentPrefix;
521   if (OS.isVerboseAsm()) {
522     CommentPrefix += '\t';
523     CommentPrefix += Asm->MAI->getCommentString();
524     CommentPrefix += ' ';
525   }
526 
527   TypeTableCollection Table(TypeTable.records());
528   Optional<TypeIndex> B = Table.getFirst();
529   while (B) {
530     // This will fail if the record data is invalid.
531     CVType Record = Table.getType(*B);
532 
533     if (OS.isVerboseAsm()) {
534       // Emit a block comment describing the type record for readability.
535       SmallString<512> CommentBlock;
536       raw_svector_ostream CommentOS(CommentBlock);
537       ScopedPrinter SP(CommentOS);
538       SP.setPrefix(CommentPrefix);
539       TypeDumpVisitor TDV(Table, &SP, false);
540 
541       Error E = codeview::visitTypeRecord(Record, *B, TDV);
542       if (E) {
543         logAllUnhandledErrors(std::move(E), errs(), "error: ");
544         llvm_unreachable("produced malformed type record");
545       }
546       // emitRawComment will insert its own tab and comment string before
547       // the first line, so strip off our first one. It also prints its own
548       // newline.
549       OS.emitRawComment(
550           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
551     }
552     OS.EmitBinaryData(Record.str_data());
553     B = Table.getNext(*B);
554   }
555 }
556 
557 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
558   switch (DWLang) {
559   case dwarf::DW_LANG_C:
560   case dwarf::DW_LANG_C89:
561   case dwarf::DW_LANG_C99:
562   case dwarf::DW_LANG_C11:
563   case dwarf::DW_LANG_ObjC:
564     return SourceLanguage::C;
565   case dwarf::DW_LANG_C_plus_plus:
566   case dwarf::DW_LANG_C_plus_plus_03:
567   case dwarf::DW_LANG_C_plus_plus_11:
568   case dwarf::DW_LANG_C_plus_plus_14:
569     return SourceLanguage::Cpp;
570   case dwarf::DW_LANG_Fortran77:
571   case dwarf::DW_LANG_Fortran90:
572   case dwarf::DW_LANG_Fortran03:
573   case dwarf::DW_LANG_Fortran08:
574     return SourceLanguage::Fortran;
575   case dwarf::DW_LANG_Pascal83:
576     return SourceLanguage::Pascal;
577   case dwarf::DW_LANG_Cobol74:
578   case dwarf::DW_LANG_Cobol85:
579     return SourceLanguage::Cobol;
580   case dwarf::DW_LANG_Java:
581     return SourceLanguage::Java;
582   case dwarf::DW_LANG_D:
583     return SourceLanguage::D;
584   default:
585     // There's no CodeView representation for this language, and CV doesn't
586     // have an "unknown" option for the language field, so we'll use MASM,
587     // as it's very low level.
588     return SourceLanguage::Masm;
589   }
590 }
591 
592 namespace {
593 struct Version {
594   int Part[4];
595 };
596 } // end anonymous namespace
597 
598 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
599 // the version number.
600 static Version parseVersion(StringRef Name) {
601   Version V = {{0}};
602   int N = 0;
603   for (const char C : Name) {
604     if (isdigit(C)) {
605       V.Part[N] *= 10;
606       V.Part[N] += C - '0';
607     } else if (C == '.') {
608       ++N;
609       if (N >= 4)
610         return V;
611     } else if (N > 0)
612       return V;
613   }
614   return V;
615 }
616 
617 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
618   switch (Type) {
619   case Triple::ArchType::x86:
620     return CPUType::Pentium3;
621   case Triple::ArchType::x86_64:
622     return CPUType::X64;
623   case Triple::ArchType::thumb:
624     return CPUType::Thumb;
625   case Triple::ArchType::aarch64:
626     return CPUType::ARM64;
627   default:
628     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
629   }
630 }
631 
632 void CodeViewDebug::emitCompilerInformation() {
633   MCContext &Context = MMI->getContext();
634   MCSymbol *CompilerBegin = Context.createTempSymbol(),
635            *CompilerEnd = Context.createTempSymbol();
636   OS.AddComment("Record length");
637   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
638   OS.EmitLabel(CompilerBegin);
639   OS.AddComment("Record kind: S_COMPILE3");
640   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
641   uint32_t Flags = 0;
642 
643   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
644   const MDNode *Node = *CUs->operands().begin();
645   const auto *CU = cast<DICompileUnit>(Node);
646 
647   // The low byte of the flags indicates the source language.
648   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
649   // TODO:  Figure out which other flags need to be set.
650 
651   OS.AddComment("Flags and language");
652   OS.EmitIntValue(Flags, 4);
653 
654   OS.AddComment("CPUType");
655   CPUType CPU =
656       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
657   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
658 
659   StringRef CompilerVersion = CU->getProducer();
660   Version FrontVer = parseVersion(CompilerVersion);
661   OS.AddComment("Frontend version");
662   for (int N = 0; N < 4; ++N)
663     OS.EmitIntValue(FrontVer.Part[N], 2);
664 
665   // Some Microsoft tools, like Binscope, expect a backend version number of at
666   // least 8.something, so we'll coerce the LLVM version into a form that
667   // guarantees it'll be big enough without really lying about the version.
668   int Major = 1000 * LLVM_VERSION_MAJOR +
669               10 * LLVM_VERSION_MINOR +
670               LLVM_VERSION_PATCH;
671   // Clamp it for builds that use unusually large version numbers.
672   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
673   Version BackVer = {{ Major, 0, 0, 0 }};
674   OS.AddComment("Backend version");
675   for (int N = 0; N < 4; ++N)
676     OS.EmitIntValue(BackVer.Part[N], 2);
677 
678   OS.AddComment("Null-terminated compiler version string");
679   emitNullTerminatedSymbolName(OS, CompilerVersion);
680 
681   OS.EmitLabel(CompilerEnd);
682 }
683 
684 void CodeViewDebug::emitInlineeLinesSubsection() {
685   if (InlinedSubprograms.empty())
686     return;
687 
688   OS.AddComment("Inlinee lines subsection");
689   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
690 
691   // We emit the checksum info for files.  This is used by debuggers to
692   // determine if a pdb matches the source before loading it.  Visual Studio,
693   // for instance, will display a warning that the breakpoints are not valid if
694   // the pdb does not match the source.
695   OS.AddComment("Inlinee lines signature");
696   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
697 
698   for (const DISubprogram *SP : InlinedSubprograms) {
699     assert(TypeIndices.count({SP, nullptr}));
700     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
701 
702     OS.AddBlankLine();
703     unsigned FileId = maybeRecordFile(SP->getFile());
704     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
705                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
706     OS.AddBlankLine();
707     OS.AddComment("Type index of inlined function");
708     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
709     OS.AddComment("Offset into filechecksum table");
710     OS.EmitCVFileChecksumOffsetDirective(FileId);
711     OS.AddComment("Starting line number");
712     OS.EmitIntValue(SP->getLine(), 4);
713   }
714 
715   endCVSubsection(InlineEnd);
716 }
717 
718 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
719                                         const DILocation *InlinedAt,
720                                         const InlineSite &Site) {
721   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
722            *InlineEnd = MMI->getContext().createTempSymbol();
723 
724   assert(TypeIndices.count({Site.Inlinee, nullptr}));
725   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
726 
727   // SymbolRecord
728   OS.AddComment("Record length");
729   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
730   OS.EmitLabel(InlineBegin);
731   OS.AddComment("Record kind: S_INLINESITE");
732   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
733 
734   OS.AddComment("PtrParent");
735   OS.EmitIntValue(0, 4);
736   OS.AddComment("PtrEnd");
737   OS.EmitIntValue(0, 4);
738   OS.AddComment("Inlinee type index");
739   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
740 
741   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
742   unsigned StartLineNum = Site.Inlinee->getLine();
743 
744   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
745                                     FI.Begin, FI.End);
746 
747   OS.EmitLabel(InlineEnd);
748 
749   emitLocalVariableList(Site.InlinedLocals);
750 
751   // Recurse on child inlined call sites before closing the scope.
752   for (const DILocation *ChildSite : Site.ChildSites) {
753     auto I = FI.InlineSites.find(ChildSite);
754     assert(I != FI.InlineSites.end() &&
755            "child site not in function inline site map");
756     emitInlinedCallSite(FI, ChildSite, I->second);
757   }
758 
759   // Close the scope.
760   OS.AddComment("Record length");
761   OS.EmitIntValue(2, 2);                                  // RecordLength
762   OS.AddComment("Record kind: S_INLINESITE_END");
763   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
764 }
765 
766 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
767   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
768   // comdat key. A section may be comdat because of -ffunction-sections or
769   // because it is comdat in the IR.
770   MCSectionCOFF *GVSec =
771       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
772   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
773 
774   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
775       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
776   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
777 
778   OS.SwitchSection(DebugSec);
779 
780   // Emit the magic version number if this is the first time we've switched to
781   // this section.
782   if (ComdatDebugSections.insert(DebugSec).second)
783     emitCodeViewMagicVersion();
784 }
785 
786 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
787                                              FunctionInfo &FI) {
788   // For each function there is a separate subsection
789   // which holds the PC to file:line table.
790   const MCSymbol *Fn = Asm->getSymbol(GV);
791   assert(Fn);
792 
793   // Switch to the to a comdat section, if appropriate.
794   switchToDebugSectionForSymbol(Fn);
795 
796   std::string FuncName;
797   auto *SP = GV->getSubprogram();
798   assert(SP);
799   setCurrentSubprogram(SP);
800 
801   // If we have a display name, build the fully qualified name by walking the
802   // chain of scopes.
803   if (!SP->getName().empty())
804     FuncName =
805         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
806 
807   // If our DISubprogram name is empty, use the mangled name.
808   if (FuncName.empty())
809     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
810 
811   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
812   OS.AddComment("Symbol subsection for " + Twine(FuncName));
813   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
814   {
815     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
816              *ProcRecordEnd = MMI->getContext().createTempSymbol();
817     OS.AddComment("Record length");
818     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
819     OS.EmitLabel(ProcRecordBegin);
820 
821     if (GV->hasLocalLinkage()) {
822       OS.AddComment("Record kind: S_LPROC32_ID");
823       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
824     } else {
825       OS.AddComment("Record kind: S_GPROC32_ID");
826       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
827     }
828 
829     // These fields are filled in by tools like CVPACK which run after the fact.
830     OS.AddComment("PtrParent");
831     OS.EmitIntValue(0, 4);
832     OS.AddComment("PtrEnd");
833     OS.EmitIntValue(0, 4);
834     OS.AddComment("PtrNext");
835     OS.EmitIntValue(0, 4);
836     // This is the important bit that tells the debugger where the function
837     // code is located and what's its size:
838     OS.AddComment("Code size");
839     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
840     OS.AddComment("Offset after prologue");
841     OS.EmitIntValue(0, 4);
842     OS.AddComment("Offset before epilogue");
843     OS.EmitIntValue(0, 4);
844     OS.AddComment("Function type index");
845     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
846     OS.AddComment("Function section relative address");
847     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
848     OS.AddComment("Function section index");
849     OS.EmitCOFFSectionIndex(Fn);
850     OS.AddComment("Flags");
851     OS.EmitIntValue(0, 1);
852     // Emit the function display name as a null-terminated string.
853     OS.AddComment("Function name");
854     // Truncate the name so we won't overflow the record length field.
855     emitNullTerminatedSymbolName(OS, FuncName);
856     OS.EmitLabel(ProcRecordEnd);
857 
858     emitLocalVariableList(FI.Locals);
859 
860     // Emit inlined call site information. Only emit functions inlined directly
861     // into the parent function. We'll emit the other sites recursively as part
862     // of their parent inline site.
863     for (const DILocation *InlinedAt : FI.ChildSites) {
864       auto I = FI.InlineSites.find(InlinedAt);
865       assert(I != FI.InlineSites.end() &&
866              "child site not in function inline site map");
867       emitInlinedCallSite(FI, InlinedAt, I->second);
868     }
869 
870     for (auto Annot : FI.Annotations) {
871       MCSymbol *Label = Annot.first;
872       MDTuple *Strs = cast<MDTuple>(Annot.second);
873       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
874                *AnnotEnd = MMI->getContext().createTempSymbol();
875       OS.AddComment("Record length");
876       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
877       OS.EmitLabel(AnnotBegin);
878       OS.AddComment("Record kind: S_ANNOTATION");
879       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
880       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
881       // FIXME: Make sure we don't overflow the max record size.
882       OS.EmitCOFFSectionIndex(Label);
883       OS.EmitIntValue(Strs->getNumOperands(), 2);
884       for (Metadata *MD : Strs->operands()) {
885         // MDStrings are null terminated, so we can do EmitBytes and get the
886         // nice .asciz directive.
887         StringRef Str = cast<MDString>(MD)->getString();
888         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
889         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
890       }
891       OS.EmitLabel(AnnotEnd);
892     }
893 
894     if (SP != nullptr)
895       emitDebugInfoForUDTs(LocalUDTs);
896 
897     // We're done with this function.
898     OS.AddComment("Record length");
899     OS.EmitIntValue(0x0002, 2);
900     OS.AddComment("Record kind: S_PROC_ID_END");
901     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
902   }
903   endCVSubsection(SymbolsEnd);
904 
905   // We have an assembler directive that takes care of the whole line table.
906   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
907 }
908 
909 CodeViewDebug::LocalVarDefRange
910 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
911   LocalVarDefRange DR;
912   DR.InMemory = -1;
913   DR.DataOffset = Offset;
914   assert(DR.DataOffset == Offset && "truncation");
915   DR.IsSubfield = 0;
916   DR.StructOffset = 0;
917   DR.CVRegister = CVRegister;
918   return DR;
919 }
920 
921 CodeViewDebug::LocalVarDefRange
922 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
923                                      int Offset, bool IsSubfield,
924                                      uint16_t StructOffset) {
925   LocalVarDefRange DR;
926   DR.InMemory = InMemory;
927   DR.DataOffset = Offset;
928   DR.IsSubfield = IsSubfield;
929   DR.StructOffset = StructOffset;
930   DR.CVRegister = CVRegister;
931   return DR;
932 }
933 
934 void CodeViewDebug::collectVariableInfoFromMFTable(
935     DenseSet<InlinedVariable> &Processed) {
936   const MachineFunction &MF = *Asm->MF;
937   const TargetSubtargetInfo &TSI = MF.getSubtarget();
938   const TargetFrameLowering *TFI = TSI.getFrameLowering();
939   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
940 
941   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
942     if (!VI.Var)
943       continue;
944     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
945            "Expected inlined-at fields to agree");
946 
947     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
948     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
949 
950     // If variable scope is not found then skip this variable.
951     if (!Scope)
952       continue;
953 
954     // If the variable has an attached offset expression, extract it.
955     // FIXME: Try to handle DW_OP_deref as well.
956     int64_t ExprOffset = 0;
957     if (VI.Expr)
958       if (!VI.Expr->extractIfOffset(ExprOffset))
959         continue;
960 
961     // Get the frame register used and the offset.
962     unsigned FrameReg = 0;
963     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
964     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
965 
966     // Calculate the label ranges.
967     LocalVarDefRange DefRange =
968         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
969     for (const InsnRange &Range : Scope->getRanges()) {
970       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
971       const MCSymbol *End = getLabelAfterInsn(Range.second);
972       End = End ? End : Asm->getFunctionEnd();
973       DefRange.Ranges.emplace_back(Begin, End);
974     }
975 
976     LocalVariable Var;
977     Var.DIVar = VI.Var;
978     Var.DefRanges.emplace_back(std::move(DefRange));
979     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
980   }
981 }
982 
983 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
984   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
985 }
986 
987 static bool needsReferenceType(const DbgVariableLocation &Loc) {
988   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
989 }
990 
991 void CodeViewDebug::calculateRanges(
992     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
993   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
994 
995   // Calculate the definition ranges.
996   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
997     const InsnRange &Range = *I;
998     const MachineInstr *DVInst = Range.first;
999     assert(DVInst->isDebugValue() && "Invalid History entry");
1000     // FIXME: Find a way to represent constant variables, since they are
1001     // relatively common.
1002     Optional<DbgVariableLocation> Location =
1003         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1004     if (!Location)
1005       continue;
1006 
1007     // CodeView can only express variables in register and variables in memory
1008     // at a constant offset from a register. However, for variables passed
1009     // indirectly by pointer, it is common for that pointer to be spilled to a
1010     // stack location. For the special case of one offseted load followed by a
1011     // zero offset load (a pointer spilled to the stack), we change the type of
1012     // the local variable from a value type to a reference type. This tricks the
1013     // debugger into doing the load for us.
1014     if (Var.UseReferenceType) {
1015       // We're using a reference type. Drop the last zero offset load.
1016       if (canUseReferenceType(*Location))
1017         Location->LoadChain.pop_back();
1018       else
1019         continue;
1020     } else if (needsReferenceType(*Location)) {
1021       // This location can't be expressed without switching to a reference type.
1022       // Start over using that.
1023       Var.UseReferenceType = true;
1024       Var.DefRanges.clear();
1025       calculateRanges(Var, Ranges);
1026       return;
1027     }
1028 
1029     // We can only handle a register or an offseted load of a register.
1030     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1031       continue;
1032     {
1033       LocalVarDefRange DR;
1034       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1035       DR.InMemory = !Location->LoadChain.empty();
1036       DR.DataOffset =
1037           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1038       if (Location->FragmentInfo) {
1039         DR.IsSubfield = true;
1040         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1041       } else {
1042         DR.IsSubfield = false;
1043         DR.StructOffset = 0;
1044       }
1045 
1046       if (Var.DefRanges.empty() ||
1047           Var.DefRanges.back().isDifferentLocation(DR)) {
1048         Var.DefRanges.emplace_back(std::move(DR));
1049       }
1050     }
1051 
1052     // Compute the label range.
1053     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1054     const MCSymbol *End = getLabelAfterInsn(Range.second);
1055     if (!End) {
1056       // This range is valid until the next overlapping bitpiece. In the
1057       // common case, ranges will not be bitpieces, so they will overlap.
1058       auto J = std::next(I);
1059       const DIExpression *DIExpr = DVInst->getDebugExpression();
1060       while (J != E &&
1061              !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1062         ++J;
1063       if (J != E)
1064         End = getLabelBeforeInsn(J->first);
1065       else
1066         End = Asm->getFunctionEnd();
1067     }
1068 
1069     // If the last range end is our begin, just extend the last range.
1070     // Otherwise make a new range.
1071     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1072         Var.DefRanges.back().Ranges;
1073     if (!R.empty() && R.back().second == Begin)
1074       R.back().second = End;
1075     else
1076       R.emplace_back(Begin, End);
1077 
1078     // FIXME: Do more range combining.
1079   }
1080 }
1081 
1082 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1083   DenseSet<InlinedVariable> Processed;
1084   // Grab the variable info that was squirreled away in the MMI side-table.
1085   collectVariableInfoFromMFTable(Processed);
1086 
1087   for (const auto &I : DbgValues) {
1088     InlinedVariable IV = I.first;
1089     if (Processed.count(IV))
1090       continue;
1091     const DILocalVariable *DIVar = IV.first;
1092     const DILocation *InlinedAt = IV.second;
1093 
1094     // Instruction ranges, specifying where IV is accessible.
1095     const auto &Ranges = I.second;
1096 
1097     LexicalScope *Scope = nullptr;
1098     if (InlinedAt)
1099       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1100     else
1101       Scope = LScopes.findLexicalScope(DIVar->getScope());
1102     // If variable scope is not found then skip this variable.
1103     if (!Scope)
1104       continue;
1105 
1106     LocalVariable Var;
1107     Var.DIVar = DIVar;
1108 
1109     calculateRanges(Var, Ranges);
1110     recordLocalVariable(std::move(Var), InlinedAt);
1111   }
1112 }
1113 
1114 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1115   const Function *GV = MF->getFunction();
1116   assert(FnDebugInfo.count(GV) == false);
1117   CurFn = &FnDebugInfo[GV];
1118   CurFn->FuncId = NextFuncId++;
1119   CurFn->Begin = Asm->getFunctionBegin();
1120 
1121   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1122 
1123   // Find the end of the function prolog.  First known non-DBG_VALUE and
1124   // non-frame setup location marks the beginning of the function body.
1125   // FIXME: is there a simpler a way to do this? Can we just search
1126   // for the first instruction of the function, not the last of the prolog?
1127   DebugLoc PrologEndLoc;
1128   bool EmptyPrologue = true;
1129   for (const auto &MBB : *MF) {
1130     for (const auto &MI : MBB) {
1131       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1132           MI.getDebugLoc()) {
1133         PrologEndLoc = MI.getDebugLoc();
1134         break;
1135       } else if (!MI.isMetaInstruction()) {
1136         EmptyPrologue = false;
1137       }
1138     }
1139   }
1140 
1141   // Record beginning of function if we have a non-empty prologue.
1142   if (PrologEndLoc && !EmptyPrologue) {
1143     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1144     maybeRecordLocation(FnStartDL, MF);
1145   }
1146 }
1147 
1148 static bool shouldEmitUdt(const DIType *T) {
1149   if (!T)
1150     return false;
1151 
1152   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1153   if (T->getTag() == dwarf::DW_TAG_typedef) {
1154     if (DIScope *Scope = T->getScope().resolve()) {
1155       switch (Scope->getTag()) {
1156       case dwarf::DW_TAG_structure_type:
1157       case dwarf::DW_TAG_class_type:
1158       case dwarf::DW_TAG_union_type:
1159         return false;
1160       }
1161     }
1162   }
1163 
1164   while (true) {
1165     if (!T || T->isForwardDecl())
1166       return false;
1167 
1168     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1169     if (!DT)
1170       return true;
1171     T = DT->getBaseType().resolve();
1172   }
1173   return true;
1174 }
1175 
1176 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1177   // Don't record empty UDTs.
1178   if (Ty->getName().empty())
1179     return;
1180   if (!shouldEmitUdt(Ty))
1181     return;
1182 
1183   SmallVector<StringRef, 5> QualifiedNameComponents;
1184   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1185       Ty->getScope().resolve(), QualifiedNameComponents);
1186 
1187   std::string FullyQualifiedName =
1188       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1189 
1190   if (ClosestSubprogram == nullptr) {
1191     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1192   } else if (ClosestSubprogram == CurrentSubprogram) {
1193     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1194   }
1195 
1196   // TODO: What if the ClosestSubprogram is neither null or the current
1197   // subprogram?  Currently, the UDT just gets dropped on the floor.
1198   //
1199   // The current behavior is not desirable.  To get maximal fidelity, we would
1200   // need to perform all type translation before beginning emission of .debug$S
1201   // and then make LocalUDTs a member of FunctionInfo
1202 }
1203 
1204 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1205   // Generic dispatch for lowering an unknown type.
1206   switch (Ty->getTag()) {
1207   case dwarf::DW_TAG_array_type:
1208     return lowerTypeArray(cast<DICompositeType>(Ty));
1209   case dwarf::DW_TAG_typedef:
1210     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1211   case dwarf::DW_TAG_base_type:
1212     return lowerTypeBasic(cast<DIBasicType>(Ty));
1213   case dwarf::DW_TAG_pointer_type:
1214     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1215       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1216     LLVM_FALLTHROUGH;
1217   case dwarf::DW_TAG_reference_type:
1218   case dwarf::DW_TAG_rvalue_reference_type:
1219     return lowerTypePointer(cast<DIDerivedType>(Ty));
1220   case dwarf::DW_TAG_ptr_to_member_type:
1221     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1222   case dwarf::DW_TAG_const_type:
1223   case dwarf::DW_TAG_volatile_type:
1224   // TODO: add support for DW_TAG_atomic_type here
1225     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1226   case dwarf::DW_TAG_subroutine_type:
1227     if (ClassTy) {
1228       // The member function type of a member function pointer has no
1229       // ThisAdjustment.
1230       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1231                                      /*ThisAdjustment=*/0,
1232                                      /*IsStaticMethod=*/false);
1233     }
1234     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1235   case dwarf::DW_TAG_enumeration_type:
1236     return lowerTypeEnum(cast<DICompositeType>(Ty));
1237   case dwarf::DW_TAG_class_type:
1238   case dwarf::DW_TAG_structure_type:
1239     return lowerTypeClass(cast<DICompositeType>(Ty));
1240   case dwarf::DW_TAG_union_type:
1241     return lowerTypeUnion(cast<DICompositeType>(Ty));
1242   default:
1243     // Use the null type index.
1244     return TypeIndex();
1245   }
1246 }
1247 
1248 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1249   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1250   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1251   StringRef TypeName = Ty->getName();
1252 
1253   addToUDTs(Ty);
1254 
1255   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1256       TypeName == "HRESULT")
1257     return TypeIndex(SimpleTypeKind::HResult);
1258   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1259       TypeName == "wchar_t")
1260     return TypeIndex(SimpleTypeKind::WideCharacter);
1261 
1262   return UnderlyingTypeIndex;
1263 }
1264 
1265 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1266   DITypeRef ElementTypeRef = Ty->getBaseType();
1267   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1268   // IndexType is size_t, which depends on the bitness of the target.
1269   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1270                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1271                             : TypeIndex(SimpleTypeKind::UInt32Long);
1272 
1273   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1274 
1275   // Add subranges to array type.
1276   DINodeArray Elements = Ty->getElements();
1277   for (int i = Elements.size() - 1; i >= 0; --i) {
1278     const DINode *Element = Elements[i];
1279     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1280 
1281     const DISubrange *Subrange = cast<DISubrange>(Element);
1282     assert(Subrange->getLowerBound() == 0 &&
1283            "codeview doesn't support subranges with lower bounds");
1284     int64_t Count = Subrange->getCount();
1285 
1286     // Forward declarations of arrays without a size and VLAs use a count of -1.
1287     // Emit a count of zero in these cases to match what MSVC does for arrays
1288     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1289     // should do for them even if we could distinguish them.
1290     if (Count == -1)
1291       Count = 0;
1292 
1293     // Update the element size and element type index for subsequent subranges.
1294     ElementSize *= Count;
1295 
1296     // If this is the outermost array, use the size from the array. It will be
1297     // more accurate if we had a VLA or an incomplete element type size.
1298     uint64_t ArraySize =
1299         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1300 
1301     StringRef Name = (i == 0) ? Ty->getName() : "";
1302     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1303     ElementTypeIndex = TypeTable.writeKnownType(AR);
1304   }
1305 
1306   return ElementTypeIndex;
1307 }
1308 
1309 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1310   TypeIndex Index;
1311   dwarf::TypeKind Kind;
1312   uint32_t ByteSize;
1313 
1314   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1315   ByteSize = Ty->getSizeInBits() / 8;
1316 
1317   SimpleTypeKind STK = SimpleTypeKind::None;
1318   switch (Kind) {
1319   case dwarf::DW_ATE_address:
1320     // FIXME: Translate
1321     break;
1322   case dwarf::DW_ATE_boolean:
1323     switch (ByteSize) {
1324     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1325     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1326     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1327     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1328     case 16: STK = SimpleTypeKind::Boolean128; break;
1329     }
1330     break;
1331   case dwarf::DW_ATE_complex_float:
1332     switch (ByteSize) {
1333     case 2:  STK = SimpleTypeKind::Complex16;  break;
1334     case 4:  STK = SimpleTypeKind::Complex32;  break;
1335     case 8:  STK = SimpleTypeKind::Complex64;  break;
1336     case 10: STK = SimpleTypeKind::Complex80;  break;
1337     case 16: STK = SimpleTypeKind::Complex128; break;
1338     }
1339     break;
1340   case dwarf::DW_ATE_float:
1341     switch (ByteSize) {
1342     case 2:  STK = SimpleTypeKind::Float16;  break;
1343     case 4:  STK = SimpleTypeKind::Float32;  break;
1344     case 6:  STK = SimpleTypeKind::Float48;  break;
1345     case 8:  STK = SimpleTypeKind::Float64;  break;
1346     case 10: STK = SimpleTypeKind::Float80;  break;
1347     case 16: STK = SimpleTypeKind::Float128; break;
1348     }
1349     break;
1350   case dwarf::DW_ATE_signed:
1351     switch (ByteSize) {
1352     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1353     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1354     case 4:  STK = SimpleTypeKind::Int32;           break;
1355     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1356     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1357     }
1358     break;
1359   case dwarf::DW_ATE_unsigned:
1360     switch (ByteSize) {
1361     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1362     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1363     case 4:  STK = SimpleTypeKind::UInt32;            break;
1364     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1365     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1366     }
1367     break;
1368   case dwarf::DW_ATE_UTF:
1369     switch (ByteSize) {
1370     case 2: STK = SimpleTypeKind::Character16; break;
1371     case 4: STK = SimpleTypeKind::Character32; break;
1372     }
1373     break;
1374   case dwarf::DW_ATE_signed_char:
1375     if (ByteSize == 1)
1376       STK = SimpleTypeKind::SignedCharacter;
1377     break;
1378   case dwarf::DW_ATE_unsigned_char:
1379     if (ByteSize == 1)
1380       STK = SimpleTypeKind::UnsignedCharacter;
1381     break;
1382   default:
1383     break;
1384   }
1385 
1386   // Apply some fixups based on the source-level type name.
1387   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1388     STK = SimpleTypeKind::Int32Long;
1389   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1390     STK = SimpleTypeKind::UInt32Long;
1391   if (STK == SimpleTypeKind::UInt16Short &&
1392       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1393     STK = SimpleTypeKind::WideCharacter;
1394   if ((STK == SimpleTypeKind::SignedCharacter ||
1395        STK == SimpleTypeKind::UnsignedCharacter) &&
1396       Ty->getName() == "char")
1397     STK = SimpleTypeKind::NarrowCharacter;
1398 
1399   return TypeIndex(STK);
1400 }
1401 
1402 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1403   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1404 
1405   // Pointers to simple types can use SimpleTypeMode, rather than having a
1406   // dedicated pointer type record.
1407   if (PointeeTI.isSimple() &&
1408       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1409       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1410     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1411                               ? SimpleTypeMode::NearPointer64
1412                               : SimpleTypeMode::NearPointer32;
1413     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1414   }
1415 
1416   PointerKind PK =
1417       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1418   PointerMode PM = PointerMode::Pointer;
1419   switch (Ty->getTag()) {
1420   default: llvm_unreachable("not a pointer tag type");
1421   case dwarf::DW_TAG_pointer_type:
1422     PM = PointerMode::Pointer;
1423     break;
1424   case dwarf::DW_TAG_reference_type:
1425     PM = PointerMode::LValueReference;
1426     break;
1427   case dwarf::DW_TAG_rvalue_reference_type:
1428     PM = PointerMode::RValueReference;
1429     break;
1430   }
1431   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1432   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1433   // do.
1434   PointerOptions PO = PointerOptions::None;
1435   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1436   return TypeTable.writeKnownType(PR);
1437 }
1438 
1439 static PointerToMemberRepresentation
1440 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1441   // SizeInBytes being zero generally implies that the member pointer type was
1442   // incomplete, which can happen if it is part of a function prototype. In this
1443   // case, use the unknown model instead of the general model.
1444   if (IsPMF) {
1445     switch (Flags & DINode::FlagPtrToMemberRep) {
1446     case 0:
1447       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1448                               : PointerToMemberRepresentation::GeneralFunction;
1449     case DINode::FlagSingleInheritance:
1450       return PointerToMemberRepresentation::SingleInheritanceFunction;
1451     case DINode::FlagMultipleInheritance:
1452       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1453     case DINode::FlagVirtualInheritance:
1454       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1455     }
1456   } else {
1457     switch (Flags & DINode::FlagPtrToMemberRep) {
1458     case 0:
1459       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1460                               : PointerToMemberRepresentation::GeneralData;
1461     case DINode::FlagSingleInheritance:
1462       return PointerToMemberRepresentation::SingleInheritanceData;
1463     case DINode::FlagMultipleInheritance:
1464       return PointerToMemberRepresentation::MultipleInheritanceData;
1465     case DINode::FlagVirtualInheritance:
1466       return PointerToMemberRepresentation::VirtualInheritanceData;
1467     }
1468   }
1469   llvm_unreachable("invalid ptr to member representation");
1470 }
1471 
1472 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1473   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1474   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1475   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1476   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1477                                                  : PointerKind::Near32;
1478   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1479   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1480                          : PointerMode::PointerToDataMember;
1481   PointerOptions PO = PointerOptions::None; // FIXME
1482   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1483   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1484   MemberPointerInfo MPI(
1485       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1486   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1487   return TypeTable.writeKnownType(PR);
1488 }
1489 
1490 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1491 /// have a translation, use the NearC convention.
1492 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1493   switch (DwarfCC) {
1494   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1495   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1496   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1497   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1498   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1499   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1500   }
1501   return CallingConvention::NearC;
1502 }
1503 
1504 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1505   ModifierOptions Mods = ModifierOptions::None;
1506   bool IsModifier = true;
1507   const DIType *BaseTy = Ty;
1508   while (IsModifier && BaseTy) {
1509     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1510     switch (BaseTy->getTag()) {
1511     case dwarf::DW_TAG_const_type:
1512       Mods |= ModifierOptions::Const;
1513       break;
1514     case dwarf::DW_TAG_volatile_type:
1515       Mods |= ModifierOptions::Volatile;
1516       break;
1517     default:
1518       IsModifier = false;
1519       break;
1520     }
1521     if (IsModifier)
1522       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1523   }
1524   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1525   ModifierRecord MR(ModifiedTI, Mods);
1526   return TypeTable.writeKnownType(MR);
1527 }
1528 
1529 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1530   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1531   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1532     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1533 
1534   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1535   ArrayRef<TypeIndex> ArgTypeIndices = None;
1536   if (!ReturnAndArgTypeIndices.empty()) {
1537     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1538     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1539     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1540   }
1541 
1542   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1543   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1544 
1545   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1546 
1547   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1548                             ArgTypeIndices.size(), ArgListIndex);
1549   return TypeTable.writeKnownType(Procedure);
1550 }
1551 
1552 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1553                                                  const DIType *ClassTy,
1554                                                  int ThisAdjustment,
1555                                                  bool IsStaticMethod) {
1556   // Lower the containing class type.
1557   TypeIndex ClassType = getTypeIndex(ClassTy);
1558 
1559   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1560   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1561     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1562 
1563   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1564   ArrayRef<TypeIndex> ArgTypeIndices = None;
1565   if (!ReturnAndArgTypeIndices.empty()) {
1566     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1567     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1568     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1569   }
1570   TypeIndex ThisTypeIndex;
1571   if (!IsStaticMethod && !ArgTypeIndices.empty()) {
1572     ThisTypeIndex = ArgTypeIndices.front();
1573     ArgTypeIndices = ArgTypeIndices.drop_front();
1574   }
1575 
1576   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1577   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1578 
1579   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1580 
1581   // TODO: Need to use the correct values for FunctionOptions.
1582   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1583                            FunctionOptions::None, ArgTypeIndices.size(),
1584                            ArgListIndex, ThisAdjustment);
1585   TypeIndex TI = TypeTable.writeKnownType(MFR);
1586 
1587   return TI;
1588 }
1589 
1590 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1591   unsigned VSlotCount =
1592       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1593   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1594 
1595   VFTableShapeRecord VFTSR(Slots);
1596   return TypeTable.writeKnownType(VFTSR);
1597 }
1598 
1599 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1600   switch (Flags & DINode::FlagAccessibility) {
1601   case DINode::FlagPrivate:   return MemberAccess::Private;
1602   case DINode::FlagPublic:    return MemberAccess::Public;
1603   case DINode::FlagProtected: return MemberAccess::Protected;
1604   case 0:
1605     // If there was no explicit access control, provide the default for the tag.
1606     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1607                                                  : MemberAccess::Public;
1608   }
1609   llvm_unreachable("access flags are exclusive");
1610 }
1611 
1612 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1613   if (SP->isArtificial())
1614     return MethodOptions::CompilerGenerated;
1615 
1616   // FIXME: Handle other MethodOptions.
1617 
1618   return MethodOptions::None;
1619 }
1620 
1621 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1622                                            bool Introduced) {
1623   if (SP->getFlags() & DINode::FlagStaticMember)
1624     return MethodKind::Static;
1625 
1626   switch (SP->getVirtuality()) {
1627   case dwarf::DW_VIRTUALITY_none:
1628     break;
1629   case dwarf::DW_VIRTUALITY_virtual:
1630     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1631   case dwarf::DW_VIRTUALITY_pure_virtual:
1632     return Introduced ? MethodKind::PureIntroducingVirtual
1633                       : MethodKind::PureVirtual;
1634   default:
1635     llvm_unreachable("unhandled virtuality case");
1636   }
1637 
1638   return MethodKind::Vanilla;
1639 }
1640 
1641 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1642   switch (Ty->getTag()) {
1643   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1644   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1645   }
1646   llvm_unreachable("unexpected tag");
1647 }
1648 
1649 /// Return ClassOptions that should be present on both the forward declaration
1650 /// and the defintion of a tag type.
1651 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1652   ClassOptions CO = ClassOptions::None;
1653 
1654   // MSVC always sets this flag, even for local types. Clang doesn't always
1655   // appear to give every type a linkage name, which may be problematic for us.
1656   // FIXME: Investigate the consequences of not following them here.
1657   if (!Ty->getIdentifier().empty())
1658     CO |= ClassOptions::HasUniqueName;
1659 
1660   // Put the Nested flag on a type if it appears immediately inside a tag type.
1661   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1662   // here. That flag is only set on definitions, and not forward declarations.
1663   const DIScope *ImmediateScope = Ty->getScope().resolve();
1664   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1665     CO |= ClassOptions::Nested;
1666 
1667   // Put the Scoped flag on function-local types.
1668   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1669        Scope = Scope->getScope().resolve()) {
1670     if (isa<DISubprogram>(Scope)) {
1671       CO |= ClassOptions::Scoped;
1672       break;
1673     }
1674   }
1675 
1676   return CO;
1677 }
1678 
1679 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1680   ClassOptions CO = getCommonClassOptions(Ty);
1681   TypeIndex FTI;
1682   unsigned EnumeratorCount = 0;
1683 
1684   if (Ty->isForwardDecl()) {
1685     CO |= ClassOptions::ForwardReference;
1686   } else {
1687     FieldListRecordBuilder FLRB(TypeTable);
1688 
1689     FLRB.begin();
1690     for (const DINode *Element : Ty->getElements()) {
1691       // We assume that the frontend provides all members in source declaration
1692       // order, which is what MSVC does.
1693       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1694         EnumeratorRecord ER(MemberAccess::Public,
1695                             APSInt::getUnsigned(Enumerator->getValue()),
1696                             Enumerator->getName());
1697         FLRB.writeMemberType(ER);
1698         EnumeratorCount++;
1699       }
1700     }
1701     FTI = FLRB.end(true);
1702   }
1703 
1704   std::string FullName = getFullyQualifiedName(Ty);
1705 
1706   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1707                 getTypeIndex(Ty->getBaseType()));
1708   return TypeTable.writeKnownType(ER);
1709 }
1710 
1711 //===----------------------------------------------------------------------===//
1712 // ClassInfo
1713 //===----------------------------------------------------------------------===//
1714 
1715 struct llvm::ClassInfo {
1716   struct MemberInfo {
1717     const DIDerivedType *MemberTypeNode;
1718     uint64_t BaseOffset;
1719   };
1720   // [MemberInfo]
1721   using MemberList = std::vector<MemberInfo>;
1722 
1723   using MethodsList = TinyPtrVector<const DISubprogram *>;
1724   // MethodName -> MethodsList
1725   using MethodsMap = MapVector<MDString *, MethodsList>;
1726 
1727   /// Base classes.
1728   std::vector<const DIDerivedType *> Inheritance;
1729 
1730   /// Direct members.
1731   MemberList Members;
1732   // Direct overloaded methods gathered by name.
1733   MethodsMap Methods;
1734 
1735   TypeIndex VShapeTI;
1736 
1737   std::vector<const DIType *> NestedTypes;
1738 };
1739 
1740 void CodeViewDebug::clear() {
1741   assert(CurFn == nullptr);
1742   FileIdMap.clear();
1743   FnDebugInfo.clear();
1744   FileToFilepathMap.clear();
1745   LocalUDTs.clear();
1746   GlobalUDTs.clear();
1747   TypeIndices.clear();
1748   CompleteTypeIndices.clear();
1749 }
1750 
1751 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1752                                       const DIDerivedType *DDTy) {
1753   if (!DDTy->getName().empty()) {
1754     Info.Members.push_back({DDTy, 0});
1755     return;
1756   }
1757   // An unnamed member must represent a nested struct or union. Add all the
1758   // indirect fields to the current record.
1759   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1760   uint64_t Offset = DDTy->getOffsetInBits();
1761   const DIType *Ty = DDTy->getBaseType().resolve();
1762   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1763   ClassInfo NestedInfo = collectClassInfo(DCTy);
1764   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1765     Info.Members.push_back(
1766         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1767 }
1768 
1769 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1770   ClassInfo Info;
1771   // Add elements to structure type.
1772   DINodeArray Elements = Ty->getElements();
1773   for (auto *Element : Elements) {
1774     // We assume that the frontend provides all members in source declaration
1775     // order, which is what MSVC does.
1776     if (!Element)
1777       continue;
1778     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1779       Info.Methods[SP->getRawName()].push_back(SP);
1780     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1781       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1782         collectMemberInfo(Info, DDTy);
1783       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1784         Info.Inheritance.push_back(DDTy);
1785       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1786                  DDTy->getName() == "__vtbl_ptr_type") {
1787         Info.VShapeTI = getTypeIndex(DDTy);
1788       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1789         Info.NestedTypes.push_back(DDTy);
1790       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1791         // Ignore friend members. It appears that MSVC emitted info about
1792         // friends in the past, but modern versions do not.
1793       }
1794     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1795       Info.NestedTypes.push_back(Composite);
1796     }
1797     // Skip other unrecognized kinds of elements.
1798   }
1799   return Info;
1800 }
1801 
1802 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1803   // First, construct the forward decl.  Don't look into Ty to compute the
1804   // forward decl options, since it might not be available in all TUs.
1805   TypeRecordKind Kind = getRecordKind(Ty);
1806   ClassOptions CO =
1807       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1808   std::string FullName = getFullyQualifiedName(Ty);
1809   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1810                  FullName, Ty->getIdentifier());
1811   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1812   if (!Ty->isForwardDecl())
1813     DeferredCompleteTypes.push_back(Ty);
1814   return FwdDeclTI;
1815 }
1816 
1817 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1818   // Construct the field list and complete type record.
1819   TypeRecordKind Kind = getRecordKind(Ty);
1820   ClassOptions CO = getCommonClassOptions(Ty);
1821   TypeIndex FieldTI;
1822   TypeIndex VShapeTI;
1823   unsigned FieldCount;
1824   bool ContainsNestedClass;
1825   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1826       lowerRecordFieldList(Ty);
1827 
1828   if (ContainsNestedClass)
1829     CO |= ClassOptions::ContainsNestedClass;
1830 
1831   std::string FullName = getFullyQualifiedName(Ty);
1832 
1833   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1834 
1835   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1836                  SizeInBytes, FullName, Ty->getIdentifier());
1837   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1838 
1839   if (const auto *File = Ty->getFile()) {
1840     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1841     TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1842     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1843     TypeTable.writeKnownType(USLR);
1844   }
1845 
1846   addToUDTs(Ty);
1847 
1848   return ClassTI;
1849 }
1850 
1851 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1852   ClassOptions CO =
1853       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1854   std::string FullName = getFullyQualifiedName(Ty);
1855   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1856   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1857   if (!Ty->isForwardDecl())
1858     DeferredCompleteTypes.push_back(Ty);
1859   return FwdDeclTI;
1860 }
1861 
1862 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1863   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1864   TypeIndex FieldTI;
1865   unsigned FieldCount;
1866   bool ContainsNestedClass;
1867   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1868       lowerRecordFieldList(Ty);
1869 
1870   if (ContainsNestedClass)
1871     CO |= ClassOptions::ContainsNestedClass;
1872 
1873   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1874   std::string FullName = getFullyQualifiedName(Ty);
1875 
1876   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1877                  Ty->getIdentifier());
1878   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1879 
1880   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1881   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1882   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1883   TypeTable.writeKnownType(USLR);
1884 
1885   addToUDTs(Ty);
1886 
1887   return UnionTI;
1888 }
1889 
1890 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1891 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1892   // Manually count members. MSVC appears to count everything that generates a
1893   // field list record. Each individual overload in a method overload group
1894   // contributes to this count, even though the overload group is a single field
1895   // list record.
1896   unsigned MemberCount = 0;
1897   ClassInfo Info = collectClassInfo(Ty);
1898   FieldListRecordBuilder FLBR(TypeTable);
1899   FLBR.begin();
1900 
1901   // Create base classes.
1902   for (const DIDerivedType *I : Info.Inheritance) {
1903     if (I->getFlags() & DINode::FlagVirtual) {
1904       // Virtual base.
1905       // FIXME: Emit VBPtrOffset when the frontend provides it.
1906       unsigned VBPtrOffset = 0;
1907       // FIXME: Despite the accessor name, the offset is really in bytes.
1908       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1909       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1910                             ? TypeRecordKind::IndirectVirtualBaseClass
1911                             : TypeRecordKind::VirtualBaseClass;
1912       VirtualBaseClassRecord VBCR(
1913           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1914           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1915           VBTableIndex);
1916 
1917       FLBR.writeMemberType(VBCR);
1918     } else {
1919       assert(I->getOffsetInBits() % 8 == 0 &&
1920              "bases must be on byte boundaries");
1921       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1922                           getTypeIndex(I->getBaseType()),
1923                           I->getOffsetInBits() / 8);
1924       FLBR.writeMemberType(BCR);
1925     }
1926   }
1927 
1928   // Create members.
1929   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1930     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1931     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1932     StringRef MemberName = Member->getName();
1933     MemberAccess Access =
1934         translateAccessFlags(Ty->getTag(), Member->getFlags());
1935 
1936     if (Member->isStaticMember()) {
1937       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1938       FLBR.writeMemberType(SDMR);
1939       MemberCount++;
1940       continue;
1941     }
1942 
1943     // Virtual function pointer member.
1944     if ((Member->getFlags() & DINode::FlagArtificial) &&
1945         Member->getName().startswith("_vptr$")) {
1946       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1947       FLBR.writeMemberType(VFPR);
1948       MemberCount++;
1949       continue;
1950     }
1951 
1952     // Data member.
1953     uint64_t MemberOffsetInBits =
1954         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1955     if (Member->isBitField()) {
1956       uint64_t StartBitOffset = MemberOffsetInBits;
1957       if (const auto *CI =
1958               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1959         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1960       }
1961       StartBitOffset -= MemberOffsetInBits;
1962       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1963                          StartBitOffset);
1964       MemberBaseType = TypeTable.writeKnownType(BFR);
1965     }
1966     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1967     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1968                          MemberName);
1969     FLBR.writeMemberType(DMR);
1970     MemberCount++;
1971   }
1972 
1973   // Create methods
1974   for (auto &MethodItr : Info.Methods) {
1975     StringRef Name = MethodItr.first->getString();
1976 
1977     std::vector<OneMethodRecord> Methods;
1978     for (const DISubprogram *SP : MethodItr.second) {
1979       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1980       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1981 
1982       unsigned VFTableOffset = -1;
1983       if (Introduced)
1984         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1985 
1986       Methods.push_back(OneMethodRecord(
1987           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1988           translateMethodKindFlags(SP, Introduced),
1989           translateMethodOptionFlags(SP), VFTableOffset, Name));
1990       MemberCount++;
1991     }
1992     assert(!Methods.empty() && "Empty methods map entry");
1993     if (Methods.size() == 1)
1994       FLBR.writeMemberType(Methods[0]);
1995     else {
1996       MethodOverloadListRecord MOLR(Methods);
1997       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1998       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1999       FLBR.writeMemberType(OMR);
2000     }
2001   }
2002 
2003   // Create nested classes.
2004   for (const DIType *Nested : Info.NestedTypes) {
2005     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2006     FLBR.writeMemberType(R);
2007     MemberCount++;
2008   }
2009 
2010   TypeIndex FieldTI = FLBR.end(true);
2011   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2012                          !Info.NestedTypes.empty());
2013 }
2014 
2015 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2016   if (!VBPType.getIndex()) {
2017     // Make a 'const int *' type.
2018     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2019     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
2020 
2021     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2022                                                   : PointerKind::Near32;
2023     PointerMode PM = PointerMode::Pointer;
2024     PointerOptions PO = PointerOptions::None;
2025     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2026 
2027     VBPType = TypeTable.writeKnownType(PR);
2028   }
2029 
2030   return VBPType;
2031 }
2032 
2033 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2034   const DIType *Ty = TypeRef.resolve();
2035   const DIType *ClassTy = ClassTyRef.resolve();
2036 
2037   // The null DIType is the void type. Don't try to hash it.
2038   if (!Ty)
2039     return TypeIndex::Void();
2040 
2041   // Check if we've already translated this type. Don't try to do a
2042   // get-or-create style insertion that caches the hash lookup across the
2043   // lowerType call. It will update the TypeIndices map.
2044   auto I = TypeIndices.find({Ty, ClassTy});
2045   if (I != TypeIndices.end())
2046     return I->second;
2047 
2048   TypeLoweringScope S(*this);
2049   TypeIndex TI = lowerType(Ty, ClassTy);
2050   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2051 }
2052 
2053 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2054   DIType *Ty = TypeRef.resolve();
2055   PointerRecord PR(getTypeIndex(Ty),
2056                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2057                                                 : PointerKind::Near32,
2058                    PointerMode::LValueReference, PointerOptions::None,
2059                    Ty->getSizeInBits() / 8);
2060   return TypeTable.writeKnownType(PR);
2061 }
2062 
2063 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2064   const DIType *Ty = TypeRef.resolve();
2065 
2066   // The null DIType is the void type. Don't try to hash it.
2067   if (!Ty)
2068     return TypeIndex::Void();
2069 
2070   // If this is a non-record type, the complete type index is the same as the
2071   // normal type index. Just call getTypeIndex.
2072   switch (Ty->getTag()) {
2073   case dwarf::DW_TAG_class_type:
2074   case dwarf::DW_TAG_structure_type:
2075   case dwarf::DW_TAG_union_type:
2076     break;
2077   default:
2078     return getTypeIndex(Ty);
2079   }
2080 
2081   // Check if we've already translated the complete record type.  Lowering a
2082   // complete type should never trigger lowering another complete type, so we
2083   // can reuse the hash table lookup result.
2084   const auto *CTy = cast<DICompositeType>(Ty);
2085   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2086   if (!InsertResult.second)
2087     return InsertResult.first->second;
2088 
2089   TypeLoweringScope S(*this);
2090 
2091   // Make sure the forward declaration is emitted first. It's unclear if this
2092   // is necessary, but MSVC does it, and we should follow suit until we can show
2093   // otherwise.
2094   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2095 
2096   // Just use the forward decl if we don't have complete type info. This might
2097   // happen if the frontend is using modules and expects the complete definition
2098   // to be emitted elsewhere.
2099   if (CTy->isForwardDecl())
2100     return FwdDeclTI;
2101 
2102   TypeIndex TI;
2103   switch (CTy->getTag()) {
2104   case dwarf::DW_TAG_class_type:
2105   case dwarf::DW_TAG_structure_type:
2106     TI = lowerCompleteTypeClass(CTy);
2107     break;
2108   case dwarf::DW_TAG_union_type:
2109     TI = lowerCompleteTypeUnion(CTy);
2110     break;
2111   default:
2112     llvm_unreachable("not a record");
2113   }
2114 
2115   InsertResult.first->second = TI;
2116   return TI;
2117 }
2118 
2119 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2120 /// and do this until fixpoint, as each complete record type typically
2121 /// references
2122 /// many other record types.
2123 void CodeViewDebug::emitDeferredCompleteTypes() {
2124   SmallVector<const DICompositeType *, 4> TypesToEmit;
2125   while (!DeferredCompleteTypes.empty()) {
2126     std::swap(DeferredCompleteTypes, TypesToEmit);
2127     for (const DICompositeType *RecordTy : TypesToEmit)
2128       getCompleteTypeIndex(RecordTy);
2129     TypesToEmit.clear();
2130   }
2131 }
2132 
2133 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2134   // Get the sorted list of parameters and emit them first.
2135   SmallVector<const LocalVariable *, 6> Params;
2136   for (const LocalVariable &L : Locals)
2137     if (L.DIVar->isParameter())
2138       Params.push_back(&L);
2139   std::sort(Params.begin(), Params.end(),
2140             [](const LocalVariable *L, const LocalVariable *R) {
2141               return L->DIVar->getArg() < R->DIVar->getArg();
2142             });
2143   for (const LocalVariable *L : Params)
2144     emitLocalVariable(*L);
2145 
2146   // Next emit all non-parameters in the order that we found them.
2147   for (const LocalVariable &L : Locals)
2148     if (!L.DIVar->isParameter())
2149       emitLocalVariable(L);
2150 }
2151 
2152 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2153   // LocalSym record, see SymbolRecord.h for more info.
2154   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2155            *LocalEnd = MMI->getContext().createTempSymbol();
2156   OS.AddComment("Record length");
2157   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2158   OS.EmitLabel(LocalBegin);
2159 
2160   OS.AddComment("Record kind: S_LOCAL");
2161   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2162 
2163   LocalSymFlags Flags = LocalSymFlags::None;
2164   if (Var.DIVar->isParameter())
2165     Flags |= LocalSymFlags::IsParameter;
2166   if (Var.DefRanges.empty())
2167     Flags |= LocalSymFlags::IsOptimizedOut;
2168 
2169   OS.AddComment("TypeIndex");
2170   TypeIndex TI = Var.UseReferenceType
2171                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2172                      : getCompleteTypeIndex(Var.DIVar->getType());
2173   OS.EmitIntValue(TI.getIndex(), 4);
2174   OS.AddComment("Flags");
2175   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2176   // Truncate the name so we won't overflow the record length field.
2177   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2178   OS.EmitLabel(LocalEnd);
2179 
2180   // Calculate the on disk prefix of the appropriate def range record. The
2181   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2182   // should be big enough to hold all forms without memory allocation.
2183   SmallString<20> BytePrefix;
2184   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2185     BytePrefix.clear();
2186     if (DefRange.InMemory) {
2187       uint16_t RegRelFlags = 0;
2188       if (DefRange.IsSubfield) {
2189         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2190                       (DefRange.StructOffset
2191                        << DefRangeRegisterRelSym::OffsetInParentShift);
2192       }
2193       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2194       Sym.Hdr.Register = DefRange.CVRegister;
2195       Sym.Hdr.Flags = RegRelFlags;
2196       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2197       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2198       BytePrefix +=
2199           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2200       BytePrefix +=
2201           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2202     } else {
2203       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2204       if (DefRange.IsSubfield) {
2205         // Unclear what matters here.
2206         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2207         Sym.Hdr.Register = DefRange.CVRegister;
2208         Sym.Hdr.MayHaveNoName = 0;
2209         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2210 
2211         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2212         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2213                                 sizeof(SymKind));
2214         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2215                                 sizeof(Sym.Hdr));
2216       } else {
2217         // Unclear what matters here.
2218         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2219         Sym.Hdr.Register = DefRange.CVRegister;
2220         Sym.Hdr.MayHaveNoName = 0;
2221         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2222         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2223                                 sizeof(SymKind));
2224         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2225                                 sizeof(Sym.Hdr));
2226       }
2227     }
2228     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2229   }
2230 }
2231 
2232 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2233   const Function *GV = MF->getFunction();
2234   assert(FnDebugInfo.count(GV));
2235   assert(CurFn == &FnDebugInfo[GV]);
2236 
2237   collectVariableInfo(GV->getSubprogram());
2238 
2239   // Don't emit anything if we don't have any line tables.
2240   if (!CurFn->HaveLineInfo) {
2241     FnDebugInfo.erase(GV);
2242     CurFn = nullptr;
2243     return;
2244   }
2245 
2246   CurFn->Annotations = MF->getCodeViewAnnotations();
2247 
2248   CurFn->End = Asm->getFunctionEnd();
2249 
2250   CurFn = nullptr;
2251 }
2252 
2253 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2254   DebugHandlerBase::beginInstruction(MI);
2255 
2256   // Ignore DBG_VALUE locations and function prologue.
2257   if (!Asm || !CurFn || MI->isDebugValue() ||
2258       MI->getFlag(MachineInstr::FrameSetup))
2259     return;
2260 
2261   // If the first instruction of a new MBB has no location, find the first
2262   // instruction with a location and use that.
2263   DebugLoc DL = MI->getDebugLoc();
2264   if (!DL && MI->getParent() != PrevInstBB) {
2265     for (const auto &NextMI : *MI->getParent()) {
2266       if (NextMI.isDebugValue())
2267         continue;
2268       DL = NextMI.getDebugLoc();
2269       if (DL)
2270         break;
2271     }
2272   }
2273   PrevInstBB = MI->getParent();
2274 
2275   // If we still don't have a debug location, don't record a location.
2276   if (!DL)
2277     return;
2278 
2279   maybeRecordLocation(DL, Asm->MF);
2280 }
2281 
2282 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2283   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2284            *EndLabel = MMI->getContext().createTempSymbol();
2285   OS.EmitIntValue(unsigned(Kind), 4);
2286   OS.AddComment("Subsection size");
2287   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2288   OS.EmitLabel(BeginLabel);
2289   return EndLabel;
2290 }
2291 
2292 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2293   OS.EmitLabel(EndLabel);
2294   // Every subsection must be aligned to a 4-byte boundary.
2295   OS.EmitValueToAlignment(4);
2296 }
2297 
2298 void CodeViewDebug::emitDebugInfoForUDTs(
2299     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2300   for (const auto &UDT : UDTs) {
2301     const DIType *T = UDT.second;
2302     assert(shouldEmitUdt(T));
2303 
2304     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2305              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2306     OS.AddComment("Record length");
2307     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2308     OS.EmitLabel(UDTRecordBegin);
2309 
2310     OS.AddComment("Record kind: S_UDT");
2311     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2312 
2313     OS.AddComment("Type");
2314     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2315 
2316     emitNullTerminatedSymbolName(OS, UDT.first);
2317     OS.EmitLabel(UDTRecordEnd);
2318   }
2319 }
2320 
2321 void CodeViewDebug::emitDebugInfoForGlobals() {
2322   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2323       GlobalMap;
2324   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2325     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2326     GV.getDebugInfo(GVEs);
2327     for (const auto *GVE : GVEs)
2328       GlobalMap[GVE] = &GV;
2329   }
2330 
2331   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2332   for (const MDNode *Node : CUs->operands()) {
2333     const auto *CU = cast<DICompileUnit>(Node);
2334 
2335     // First, emit all globals that are not in a comdat in a single symbol
2336     // substream. MSVC doesn't like it if the substream is empty, so only open
2337     // it if we have at least one global to emit.
2338     switchToDebugSectionForSymbol(nullptr);
2339     MCSymbol *EndLabel = nullptr;
2340     for (const auto *GVE : CU->getGlobalVariables()) {
2341       if (const auto *GV = GlobalMap.lookup(GVE))
2342         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2343           if (!EndLabel) {
2344             OS.AddComment("Symbol subsection for globals");
2345             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2346           }
2347           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2348           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2349         }
2350     }
2351     if (EndLabel)
2352       endCVSubsection(EndLabel);
2353 
2354     // Second, emit each global that is in a comdat into its own .debug$S
2355     // section along with its own symbol substream.
2356     for (const auto *GVE : CU->getGlobalVariables()) {
2357       if (const auto *GV = GlobalMap.lookup(GVE)) {
2358         if (GV->hasComdat()) {
2359           MCSymbol *GVSym = Asm->getSymbol(GV);
2360           OS.AddComment("Symbol subsection for " +
2361                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2362           switchToDebugSectionForSymbol(GVSym);
2363           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2364           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2365           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2366           endCVSubsection(EndLabel);
2367         }
2368       }
2369     }
2370   }
2371 }
2372 
2373 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2374   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2375   for (const MDNode *Node : CUs->operands()) {
2376     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2377       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2378         getTypeIndex(RT);
2379         // FIXME: Add to global/local DTU list.
2380       }
2381     }
2382   }
2383 }
2384 
2385 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2386                                            const GlobalVariable *GV,
2387                                            MCSymbol *GVSym) {
2388   // DataSym record, see SymbolRecord.h for more info.
2389   // FIXME: Thread local data, etc
2390   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2391            *DataEnd = MMI->getContext().createTempSymbol();
2392   OS.AddComment("Record length");
2393   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2394   OS.EmitLabel(DataBegin);
2395   if (DIGV->isLocalToUnit()) {
2396     if (GV->isThreadLocal()) {
2397       OS.AddComment("Record kind: S_LTHREAD32");
2398       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2399     } else {
2400       OS.AddComment("Record kind: S_LDATA32");
2401       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2402     }
2403   } else {
2404     if (GV->isThreadLocal()) {
2405       OS.AddComment("Record kind: S_GTHREAD32");
2406       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2407     } else {
2408       OS.AddComment("Record kind: S_GDATA32");
2409       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2410     }
2411   }
2412   OS.AddComment("Type");
2413   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2414   OS.AddComment("DataOffset");
2415   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2416   OS.AddComment("Segment");
2417   OS.EmitCOFFSectionIndex(GVSym);
2418   OS.AddComment("Name");
2419   emitNullTerminatedSymbolName(OS, DIGV->getName());
2420   OS.EmitLabel(DataEnd);
2421 }
2422