1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CodeView.h" 17 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 18 #include "llvm/DebugInfo/CodeView/Line.h" 19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 20 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 21 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 22 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCSectionCOFF.h" 25 #include "llvm/MC/MCSymbol.h" 26 #include "llvm/Support/COFF.h" 27 #include "llvm/Support/ScopedPrinter.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetRegisterInfo.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 32 using namespace llvm; 33 using namespace llvm::codeview; 34 35 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 36 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 37 // If module doesn't have named metadata anchors or COFF debug section 38 // is not available, skip any debug info related stuff. 39 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 40 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 41 Asm = nullptr; 42 return; 43 } 44 45 // Tell MMI that we have debug info. 46 MMI->setDebugInfoAvailability(true); 47 } 48 49 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 50 std::string &Filepath = FileToFilepathMap[File]; 51 if (!Filepath.empty()) 52 return Filepath; 53 54 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 55 56 // Clang emits directory and relative filename info into the IR, but CodeView 57 // operates on full paths. We could change Clang to emit full paths too, but 58 // that would increase the IR size and probably not needed for other users. 59 // For now, just concatenate and canonicalize the path here. 60 if (Filename.find(':') == 1) 61 Filepath = Filename; 62 else 63 Filepath = (Dir + "\\" + Filename).str(); 64 65 // Canonicalize the path. We have to do it textually because we may no longer 66 // have access the file in the filesystem. 67 // First, replace all slashes with backslashes. 68 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 69 70 // Remove all "\.\" with "\". 71 size_t Cursor = 0; 72 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 73 Filepath.erase(Cursor, 2); 74 75 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 76 // path should be well-formatted, e.g. start with a drive letter, etc. 77 Cursor = 0; 78 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 79 // Something's wrong if the path starts with "\..\", abort. 80 if (Cursor == 0) 81 break; 82 83 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 84 if (PrevSlash == std::string::npos) 85 // Something's wrong, abort. 86 break; 87 88 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 89 // The next ".." might be following the one we've just erased. 90 Cursor = PrevSlash; 91 } 92 93 // Remove all duplicate backslashes. 94 Cursor = 0; 95 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 96 Filepath.erase(Cursor, 1); 97 98 return Filepath; 99 } 100 101 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 102 unsigned NextId = FileIdMap.size() + 1; 103 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 104 if (Insertion.second) { 105 // We have to compute the full filepath and emit a .cv_file directive. 106 StringRef FullPath = getFullFilepath(F); 107 NextId = OS.EmitCVFileDirective(NextId, FullPath); 108 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 109 } 110 return Insertion.first->second; 111 } 112 113 CodeViewDebug::InlineSite & 114 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 115 const DISubprogram *Inlinee) { 116 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 117 InlineSite *Site = &SiteInsertion.first->second; 118 if (SiteInsertion.second) { 119 Site->SiteFuncId = NextFuncId++; 120 Site->Inlinee = Inlinee; 121 InlinedSubprograms.insert(Inlinee); 122 getFuncIdForSubprogram(Inlinee); 123 } 124 return *Site; 125 } 126 127 static const DISubprogram *getQualifiedNameComponents( 128 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 129 const DISubprogram *ClosestSubprogram = nullptr; 130 while (Scope != nullptr) { 131 if (ClosestSubprogram == nullptr) 132 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 133 StringRef ScopeName = Scope->getName(); 134 if (!ScopeName.empty()) 135 QualifiedNameComponents.push_back(ScopeName); 136 Scope = Scope->getScope().resolve(); 137 } 138 return ClosestSubprogram; 139 } 140 141 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 142 StringRef TypeName) { 143 std::string FullyQualifiedName; 144 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 145 FullyQualifiedName.append(QualifiedNameComponent); 146 FullyQualifiedName.append("::"); 147 } 148 FullyQualifiedName.append(TypeName); 149 return FullyQualifiedName; 150 } 151 152 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 153 SmallVector<StringRef, 5> QualifiedNameComponents; 154 getQualifiedNameComponents(Scope, QualifiedNameComponents); 155 return getQualifiedName(QualifiedNameComponents, Name); 156 } 157 158 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 159 // No scope means global scope and that uses the zero index. 160 if (!Scope || isa<DIFile>(Scope)) 161 return TypeIndex(); 162 163 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 164 165 // Check if we've already translated this scope. 166 auto I = TypeIndices.find({Scope, nullptr}); 167 if (I != TypeIndices.end()) 168 return I->second; 169 170 // Build the fully qualified name of the scope. 171 std::string ScopeName = 172 getFullyQualifiedName(Scope->getScope().resolve(), Scope->getName()); 173 TypeIndex TI = 174 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 175 return recordTypeIndexForDINode(Scope, TI); 176 } 177 178 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 179 // It's possible to ask for the FuncId of a function which doesn't have a 180 // subprogram: inlining a function with debug info into a function with none. 181 if (!SP) 182 return TypeIndex::None(); 183 184 // Check if we've already translated this subprogram. 185 auto I = TypeIndices.find({SP, nullptr}); 186 if (I != TypeIndices.end()) 187 return I->second; 188 189 // The display name includes function template arguments. Drop them to match 190 // MSVC. 191 StringRef DisplayName = SP->getDisplayName().split('<').first; 192 193 const DIScope *Scope = SP->getScope().resolve(); 194 TypeIndex TI; 195 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 196 // If the scope is a DICompositeType, then this must be a method. Member 197 // function types take some special handling, and require access to the 198 // subprogram. 199 TypeIndex ClassType = getTypeIndex(Class); 200 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 201 DisplayName); 202 TI = TypeTable.writeMemberFuncId(MFuncId); 203 } else { 204 // Otherwise, this must be a free function. 205 TypeIndex ParentScope = getScopeIndex(Scope); 206 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 207 TI = TypeTable.writeFuncId(FuncId); 208 } 209 210 return recordTypeIndexForDINode(SP, TI); 211 } 212 213 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 214 const DICompositeType *Class) { 215 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 216 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 217 auto I = TypeIndices.find({SP, nullptr}); 218 if (I != TypeIndices.end()) 219 return I->second; 220 221 // FIXME: Get the ThisAdjustment off of SP when it is available. 222 TypeIndex TI = 223 lowerTypeMemberFunction(SP->getType(), Class, /*ThisAdjustment=*/0); 224 225 return recordTypeIndexForDINode(SP, TI, Class); 226 } 227 228 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, 229 const DIType *ClassTy) { 230 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 231 (void)InsertResult; 232 assert(InsertResult.second && "DINode was already assigned a type index"); 233 return TI; 234 } 235 236 unsigned CodeViewDebug::getPointerSizeInBytes() { 237 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 238 } 239 240 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 241 const DILocation *InlinedAt) { 242 if (InlinedAt) { 243 // This variable was inlined. Associate it with the InlineSite. 244 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 245 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 246 Site.InlinedLocals.emplace_back(Var); 247 } else { 248 // This variable goes in the main ProcSym. 249 CurFn->Locals.emplace_back(Var); 250 } 251 } 252 253 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 254 const DILocation *Loc) { 255 auto B = Locs.begin(), E = Locs.end(); 256 if (std::find(B, E, Loc) == E) 257 Locs.push_back(Loc); 258 } 259 260 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 261 const MachineFunction *MF) { 262 // Skip this instruction if it has the same location as the previous one. 263 if (DL == CurFn->LastLoc) 264 return; 265 266 const DIScope *Scope = DL.get()->getScope(); 267 if (!Scope) 268 return; 269 270 // Skip this line if it is longer than the maximum we can record. 271 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 272 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 273 LI.isNeverStepInto()) 274 return; 275 276 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 277 if (CI.getStartColumn() != DL.getCol()) 278 return; 279 280 if (!CurFn->HaveLineInfo) 281 CurFn->HaveLineInfo = true; 282 unsigned FileId = 0; 283 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 284 FileId = CurFn->LastFileId; 285 else 286 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 287 CurFn->LastLoc = DL; 288 289 unsigned FuncId = CurFn->FuncId; 290 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 291 const DILocation *Loc = DL.get(); 292 293 // If this location was actually inlined from somewhere else, give it the ID 294 // of the inline call site. 295 FuncId = 296 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 297 298 // Ensure we have links in the tree of inline call sites. 299 bool FirstLoc = true; 300 while ((SiteLoc = Loc->getInlinedAt())) { 301 InlineSite &Site = 302 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 303 if (!FirstLoc) 304 addLocIfNotPresent(Site.ChildSites, Loc); 305 FirstLoc = false; 306 Loc = SiteLoc; 307 } 308 addLocIfNotPresent(CurFn->ChildSites, Loc); 309 } 310 311 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 312 /*PrologueEnd=*/false, 313 /*IsStmt=*/false, DL->getFilename()); 314 } 315 316 void CodeViewDebug::emitCodeViewMagicVersion() { 317 OS.EmitValueToAlignment(4); 318 OS.AddComment("Debug section magic"); 319 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 320 } 321 322 void CodeViewDebug::endModule() { 323 if (!Asm || !MMI->hasDebugInfo()) 324 return; 325 326 assert(Asm != nullptr); 327 328 // The COFF .debug$S section consists of several subsections, each starting 329 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 330 // of the payload followed by the payload itself. The subsections are 4-byte 331 // aligned. 332 333 // Use the generic .debug$S section, and make a subsection for all the inlined 334 // subprograms. 335 switchToDebugSectionForSymbol(nullptr); 336 emitInlineeLinesSubsection(); 337 338 // Emit per-function debug information. 339 for (auto &P : FnDebugInfo) 340 if (!P.first->isDeclarationForLinker()) 341 emitDebugInfoForFunction(P.first, P.second); 342 343 // Emit global variable debug information. 344 setCurrentSubprogram(nullptr); 345 emitDebugInfoForGlobals(); 346 347 // Switch back to the generic .debug$S section after potentially processing 348 // comdat symbol sections. 349 switchToDebugSectionForSymbol(nullptr); 350 351 // Emit UDT records for any types used by global variables. 352 if (!GlobalUDTs.empty()) { 353 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 354 emitDebugInfoForUDTs(GlobalUDTs); 355 endCVSubsection(SymbolsEnd); 356 } 357 358 // This subsection holds a file index to offset in string table table. 359 OS.AddComment("File index to string table offset subsection"); 360 OS.EmitCVFileChecksumsDirective(); 361 362 // This subsection holds the string table. 363 OS.AddComment("String table"); 364 OS.EmitCVStringTableDirective(); 365 366 // Emit type information last, so that any types we translate while emitting 367 // function info are included. 368 emitTypeInformation(); 369 370 clear(); 371 } 372 373 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 374 // Microsoft's linker seems to have trouble with symbol names longer than 375 // 0xffd8 bytes. 376 S = S.substr(0, 0xffd8); 377 SmallString<32> NullTerminatedString(S); 378 NullTerminatedString.push_back('\0'); 379 OS.EmitBytes(NullTerminatedString); 380 } 381 382 void CodeViewDebug::emitTypeInformation() { 383 // Do nothing if we have no debug info or if no non-trivial types were emitted 384 // to TypeTable during codegen. 385 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 386 if (!CU_Nodes) 387 return; 388 if (TypeTable.empty()) 389 return; 390 391 // Start the .debug$T section with 0x4. 392 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 393 emitCodeViewMagicVersion(); 394 395 SmallString<8> CommentPrefix; 396 if (OS.isVerboseAsm()) { 397 CommentPrefix += '\t'; 398 CommentPrefix += Asm->MAI->getCommentString(); 399 CommentPrefix += ' '; 400 } 401 402 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 403 TypeTable.ForEachRecord( 404 [&](TypeIndex Index, StringRef Record) { 405 if (OS.isVerboseAsm()) { 406 // Emit a block comment describing the type record for readability. 407 SmallString<512> CommentBlock; 408 raw_svector_ostream CommentOS(CommentBlock); 409 ScopedPrinter SP(CommentOS); 410 SP.setPrefix(CommentPrefix); 411 CVTD.setPrinter(&SP); 412 Error EC = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 413 assert(!EC && "produced malformed type record"); 414 consumeError(std::move(EC)); 415 // emitRawComment will insert its own tab and comment string before 416 // the first line, so strip off our first one. It also prints its own 417 // newline. 418 OS.emitRawComment( 419 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 420 } 421 OS.EmitBinaryData(Record); 422 }); 423 } 424 425 void CodeViewDebug::emitInlineeLinesSubsection() { 426 if (InlinedSubprograms.empty()) 427 return; 428 429 OS.AddComment("Inlinee lines subsection"); 430 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 431 432 // We don't provide any extra file info. 433 // FIXME: Find out if debuggers use this info. 434 OS.AddComment("Inlinee lines signature"); 435 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 436 437 for (const DISubprogram *SP : InlinedSubprograms) { 438 assert(TypeIndices.count({SP, nullptr})); 439 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 440 441 OS.AddBlankLine(); 442 unsigned FileId = maybeRecordFile(SP->getFile()); 443 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 444 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 445 OS.AddBlankLine(); 446 // The filechecksum table uses 8 byte entries for now, and file ids start at 447 // 1. 448 unsigned FileOffset = (FileId - 1) * 8; 449 OS.AddComment("Type index of inlined function"); 450 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 451 OS.AddComment("Offset into filechecksum table"); 452 OS.EmitIntValue(FileOffset, 4); 453 OS.AddComment("Starting line number"); 454 OS.EmitIntValue(SP->getLine(), 4); 455 } 456 457 endCVSubsection(InlineEnd); 458 } 459 460 void CodeViewDebug::collectInlineSiteChildren( 461 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 462 const InlineSite &Site) { 463 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 464 auto I = FI.InlineSites.find(ChildSiteLoc); 465 const InlineSite &ChildSite = I->second; 466 Children.push_back(ChildSite.SiteFuncId); 467 collectInlineSiteChildren(Children, FI, ChildSite); 468 } 469 } 470 471 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 472 const DILocation *InlinedAt, 473 const InlineSite &Site) { 474 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 475 *InlineEnd = MMI->getContext().createTempSymbol(); 476 477 assert(TypeIndices.count({Site.Inlinee, nullptr})); 478 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 479 480 // SymbolRecord 481 OS.AddComment("Record length"); 482 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 483 OS.EmitLabel(InlineBegin); 484 OS.AddComment("Record kind: S_INLINESITE"); 485 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 486 487 OS.AddComment("PtrParent"); 488 OS.EmitIntValue(0, 4); 489 OS.AddComment("PtrEnd"); 490 OS.EmitIntValue(0, 4); 491 OS.AddComment("Inlinee type index"); 492 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 493 494 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 495 unsigned StartLineNum = Site.Inlinee->getLine(); 496 SmallVector<unsigned, 3> SecondaryFuncIds; 497 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 498 499 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 500 FI.Begin, FI.End, SecondaryFuncIds); 501 502 OS.EmitLabel(InlineEnd); 503 504 for (const LocalVariable &Var : Site.InlinedLocals) 505 emitLocalVariable(Var); 506 507 // Recurse on child inlined call sites before closing the scope. 508 for (const DILocation *ChildSite : Site.ChildSites) { 509 auto I = FI.InlineSites.find(ChildSite); 510 assert(I != FI.InlineSites.end() && 511 "child site not in function inline site map"); 512 emitInlinedCallSite(FI, ChildSite, I->second); 513 } 514 515 // Close the scope. 516 OS.AddComment("Record length"); 517 OS.EmitIntValue(2, 2); // RecordLength 518 OS.AddComment("Record kind: S_INLINESITE_END"); 519 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 520 } 521 522 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 523 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 524 // comdat key. A section may be comdat because of -ffunction-sections or 525 // because it is comdat in the IR. 526 MCSectionCOFF *GVSec = 527 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 528 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 529 530 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 531 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 532 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 533 534 OS.SwitchSection(DebugSec); 535 536 // Emit the magic version number if this is the first time we've switched to 537 // this section. 538 if (ComdatDebugSections.insert(DebugSec).second) 539 emitCodeViewMagicVersion(); 540 } 541 542 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 543 FunctionInfo &FI) { 544 // For each function there is a separate subsection 545 // which holds the PC to file:line table. 546 const MCSymbol *Fn = Asm->getSymbol(GV); 547 assert(Fn); 548 549 // Switch to the to a comdat section, if appropriate. 550 switchToDebugSectionForSymbol(Fn); 551 552 std::string FuncName; 553 auto *SP = GV->getSubprogram(); 554 setCurrentSubprogram(SP); 555 556 // If we have a display name, build the fully qualified name by walking the 557 // chain of scopes. 558 if (SP != nullptr && !SP->getDisplayName().empty()) 559 FuncName = 560 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 561 562 // If our DISubprogram name is empty, use the mangled name. 563 if (FuncName.empty()) 564 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 565 566 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 567 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 568 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 569 { 570 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 571 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 572 OS.AddComment("Record length"); 573 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 574 OS.EmitLabel(ProcRecordBegin); 575 576 OS.AddComment("Record kind: S_GPROC32_ID"); 577 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 578 579 // These fields are filled in by tools like CVPACK which run after the fact. 580 OS.AddComment("PtrParent"); 581 OS.EmitIntValue(0, 4); 582 OS.AddComment("PtrEnd"); 583 OS.EmitIntValue(0, 4); 584 OS.AddComment("PtrNext"); 585 OS.EmitIntValue(0, 4); 586 // This is the important bit that tells the debugger where the function 587 // code is located and what's its size: 588 OS.AddComment("Code size"); 589 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 590 OS.AddComment("Offset after prologue"); 591 OS.EmitIntValue(0, 4); 592 OS.AddComment("Offset before epilogue"); 593 OS.EmitIntValue(0, 4); 594 OS.AddComment("Function type index"); 595 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 596 OS.AddComment("Function section relative address"); 597 OS.EmitCOFFSecRel32(Fn); 598 OS.AddComment("Function section index"); 599 OS.EmitCOFFSectionIndex(Fn); 600 OS.AddComment("Flags"); 601 OS.EmitIntValue(0, 1); 602 // Emit the function display name as a null-terminated string. 603 OS.AddComment("Function name"); 604 // Truncate the name so we won't overflow the record length field. 605 emitNullTerminatedSymbolName(OS, FuncName); 606 OS.EmitLabel(ProcRecordEnd); 607 608 for (const LocalVariable &Var : FI.Locals) 609 emitLocalVariable(Var); 610 611 // Emit inlined call site information. Only emit functions inlined directly 612 // into the parent function. We'll emit the other sites recursively as part 613 // of their parent inline site. 614 for (const DILocation *InlinedAt : FI.ChildSites) { 615 auto I = FI.InlineSites.find(InlinedAt); 616 assert(I != FI.InlineSites.end() && 617 "child site not in function inline site map"); 618 emitInlinedCallSite(FI, InlinedAt, I->second); 619 } 620 621 if (SP != nullptr) 622 emitDebugInfoForUDTs(LocalUDTs); 623 624 // We're done with this function. 625 OS.AddComment("Record length"); 626 OS.EmitIntValue(0x0002, 2); 627 OS.AddComment("Record kind: S_PROC_ID_END"); 628 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 629 } 630 endCVSubsection(SymbolsEnd); 631 632 // We have an assembler directive that takes care of the whole line table. 633 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 634 } 635 636 CodeViewDebug::LocalVarDefRange 637 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 638 LocalVarDefRange DR; 639 DR.InMemory = -1; 640 DR.DataOffset = Offset; 641 assert(DR.DataOffset == Offset && "truncation"); 642 DR.StructOffset = 0; 643 DR.CVRegister = CVRegister; 644 return DR; 645 } 646 647 CodeViewDebug::LocalVarDefRange 648 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 649 LocalVarDefRange DR; 650 DR.InMemory = 0; 651 DR.DataOffset = 0; 652 DR.StructOffset = 0; 653 DR.CVRegister = CVRegister; 654 return DR; 655 } 656 657 void CodeViewDebug::collectVariableInfoFromMMITable( 658 DenseSet<InlinedVariable> &Processed) { 659 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 660 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 661 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 662 663 for (const MachineModuleInfo::VariableDbgInfo &VI : 664 MMI->getVariableDbgInfo()) { 665 if (!VI.Var) 666 continue; 667 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 668 "Expected inlined-at fields to agree"); 669 670 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 671 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 672 673 // If variable scope is not found then skip this variable. 674 if (!Scope) 675 continue; 676 677 // Get the frame register used and the offset. 678 unsigned FrameReg = 0; 679 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 680 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 681 682 // Calculate the label ranges. 683 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 684 for (const InsnRange &Range : Scope->getRanges()) { 685 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 686 const MCSymbol *End = getLabelAfterInsn(Range.second); 687 End = End ? End : Asm->getFunctionEnd(); 688 DefRange.Ranges.emplace_back(Begin, End); 689 } 690 691 LocalVariable Var; 692 Var.DIVar = VI.Var; 693 Var.DefRanges.emplace_back(std::move(DefRange)); 694 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 695 } 696 } 697 698 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 699 DenseSet<InlinedVariable> Processed; 700 // Grab the variable info that was squirreled away in the MMI side-table. 701 collectVariableInfoFromMMITable(Processed); 702 703 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 704 705 for (const auto &I : DbgValues) { 706 InlinedVariable IV = I.first; 707 if (Processed.count(IV)) 708 continue; 709 const DILocalVariable *DIVar = IV.first; 710 const DILocation *InlinedAt = IV.second; 711 712 // Instruction ranges, specifying where IV is accessible. 713 const auto &Ranges = I.second; 714 715 LexicalScope *Scope = nullptr; 716 if (InlinedAt) 717 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 718 else 719 Scope = LScopes.findLexicalScope(DIVar->getScope()); 720 // If variable scope is not found then skip this variable. 721 if (!Scope) 722 continue; 723 724 LocalVariable Var; 725 Var.DIVar = DIVar; 726 727 // Calculate the definition ranges. 728 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 729 const InsnRange &Range = *I; 730 const MachineInstr *DVInst = Range.first; 731 assert(DVInst->isDebugValue() && "Invalid History entry"); 732 const DIExpression *DIExpr = DVInst->getDebugExpression(); 733 734 // Bail if there is a complex DWARF expression for now. 735 if (DIExpr && DIExpr->getNumElements() > 0) 736 continue; 737 738 // Bail if operand 0 is not a valid register. This means the variable is a 739 // simple constant, or is described by a complex expression. 740 // FIXME: Find a way to represent constant variables, since they are 741 // relatively common. 742 unsigned Reg = 743 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 744 if (Reg == 0) 745 continue; 746 747 // Handle the two cases we can handle: indirect in memory and in register. 748 bool IsIndirect = DVInst->getOperand(1).isImm(); 749 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 750 { 751 LocalVarDefRange DefRange; 752 if (IsIndirect) { 753 int64_t Offset = DVInst->getOperand(1).getImm(); 754 DefRange = createDefRangeMem(CVReg, Offset); 755 } else { 756 DefRange = createDefRangeReg(CVReg); 757 } 758 if (Var.DefRanges.empty() || 759 Var.DefRanges.back().isDifferentLocation(DefRange)) { 760 Var.DefRanges.emplace_back(std::move(DefRange)); 761 } 762 } 763 764 // Compute the label range. 765 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 766 const MCSymbol *End = getLabelAfterInsn(Range.second); 767 if (!End) { 768 if (std::next(I) != E) 769 End = getLabelBeforeInsn(std::next(I)->first); 770 else 771 End = Asm->getFunctionEnd(); 772 } 773 774 // If the last range end is our begin, just extend the last range. 775 // Otherwise make a new range. 776 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 777 Var.DefRanges.back().Ranges; 778 if (!Ranges.empty() && Ranges.back().second == Begin) 779 Ranges.back().second = End; 780 else 781 Ranges.emplace_back(Begin, End); 782 783 // FIXME: Do more range combining. 784 } 785 786 recordLocalVariable(std::move(Var), InlinedAt); 787 } 788 } 789 790 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 791 assert(!CurFn && "Can't process two functions at once!"); 792 793 if (!Asm || !MMI->hasDebugInfo()) 794 return; 795 796 DebugHandlerBase::beginFunction(MF); 797 798 const Function *GV = MF->getFunction(); 799 assert(FnDebugInfo.count(GV) == false); 800 CurFn = &FnDebugInfo[GV]; 801 CurFn->FuncId = NextFuncId++; 802 CurFn->Begin = Asm->getFunctionBegin(); 803 804 // Find the end of the function prolog. First known non-DBG_VALUE and 805 // non-frame setup location marks the beginning of the function body. 806 // FIXME: is there a simpler a way to do this? Can we just search 807 // for the first instruction of the function, not the last of the prolog? 808 DebugLoc PrologEndLoc; 809 bool EmptyPrologue = true; 810 for (const auto &MBB : *MF) { 811 for (const auto &MI : MBB) { 812 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 813 MI.getDebugLoc()) { 814 PrologEndLoc = MI.getDebugLoc(); 815 break; 816 } else if (!MI.isDebugValue()) { 817 EmptyPrologue = false; 818 } 819 } 820 } 821 822 // Record beginning of function if we have a non-empty prologue. 823 if (PrologEndLoc && !EmptyPrologue) { 824 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 825 maybeRecordLocation(FnStartDL, MF); 826 } 827 } 828 829 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 830 // Generic dispatch for lowering an unknown type. 831 switch (Ty->getTag()) { 832 case dwarf::DW_TAG_array_type: 833 return lowerTypeArray(cast<DICompositeType>(Ty)); 834 case dwarf::DW_TAG_typedef: 835 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 836 case dwarf::DW_TAG_base_type: 837 return lowerTypeBasic(cast<DIBasicType>(Ty)); 838 case dwarf::DW_TAG_pointer_type: 839 case dwarf::DW_TAG_reference_type: 840 case dwarf::DW_TAG_rvalue_reference_type: 841 return lowerTypePointer(cast<DIDerivedType>(Ty)); 842 case dwarf::DW_TAG_ptr_to_member_type: 843 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 844 case dwarf::DW_TAG_const_type: 845 case dwarf::DW_TAG_volatile_type: 846 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 847 case dwarf::DW_TAG_subroutine_type: 848 if (ClassTy) { 849 // The member function type of a member function pointer has no 850 // ThisAdjustment. 851 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 852 /*ThisAdjustment=*/0); 853 } 854 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 855 case dwarf::DW_TAG_enumeration_type: 856 return lowerTypeEnum(cast<DICompositeType>(Ty)); 857 case dwarf::DW_TAG_class_type: 858 case dwarf::DW_TAG_structure_type: 859 return lowerTypeClass(cast<DICompositeType>(Ty)); 860 case dwarf::DW_TAG_union_type: 861 return lowerTypeUnion(cast<DICompositeType>(Ty)); 862 default: 863 // Use the null type index. 864 return TypeIndex(); 865 } 866 } 867 868 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 869 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 870 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 871 StringRef TypeName = Ty->getName(); 872 873 SmallVector<StringRef, 5> QualifiedNameComponents; 874 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 875 Ty->getScope().resolve(), QualifiedNameComponents); 876 877 if (ClosestSubprogram == nullptr) { 878 std::string FullyQualifiedName = 879 getQualifiedName(QualifiedNameComponents, TypeName); 880 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), UnderlyingTypeIndex); 881 } else if (ClosestSubprogram == CurrentSubprogram) { 882 std::string FullyQualifiedName = 883 getQualifiedName(QualifiedNameComponents, TypeName); 884 LocalUDTs.emplace_back(std::move(FullyQualifiedName), UnderlyingTypeIndex); 885 } 886 // TODO: What if the ClosestSubprogram is neither null or the current 887 // subprogram? Currently, the UDT just gets dropped on the floor. 888 // 889 // The current behavior is not desirable. To get maximal fidelity, we would 890 // need to perform all type translation before beginning emission of .debug$S 891 // and then make LocalUDTs a member of FunctionInfo 892 893 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 894 TypeName == "HRESULT") 895 return TypeIndex(SimpleTypeKind::HResult); 896 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 897 TypeName == "wchar_t") 898 return TypeIndex(SimpleTypeKind::WideCharacter); 899 return UnderlyingTypeIndex; 900 } 901 902 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 903 DITypeRef ElementTypeRef = Ty->getBaseType(); 904 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 905 // IndexType is size_t, which depends on the bitness of the target. 906 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 907 ? TypeIndex(SimpleTypeKind::UInt64Quad) 908 : TypeIndex(SimpleTypeKind::UInt32Long); 909 uint64_t Size = Ty->getSizeInBits() / 8; 910 ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName()); 911 return TypeTable.writeArray(Record); 912 } 913 914 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 915 TypeIndex Index; 916 dwarf::TypeKind Kind; 917 uint32_t ByteSize; 918 919 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 920 ByteSize = Ty->getSizeInBits() / 8; 921 922 SimpleTypeKind STK = SimpleTypeKind::None; 923 switch (Kind) { 924 case dwarf::DW_ATE_address: 925 // FIXME: Translate 926 break; 927 case dwarf::DW_ATE_boolean: 928 switch (ByteSize) { 929 case 1: STK = SimpleTypeKind::Boolean8; break; 930 case 2: STK = SimpleTypeKind::Boolean16; break; 931 case 4: STK = SimpleTypeKind::Boolean32; break; 932 case 8: STK = SimpleTypeKind::Boolean64; break; 933 case 16: STK = SimpleTypeKind::Boolean128; break; 934 } 935 break; 936 case dwarf::DW_ATE_complex_float: 937 switch (ByteSize) { 938 case 2: STK = SimpleTypeKind::Complex16; break; 939 case 4: STK = SimpleTypeKind::Complex32; break; 940 case 8: STK = SimpleTypeKind::Complex64; break; 941 case 10: STK = SimpleTypeKind::Complex80; break; 942 case 16: STK = SimpleTypeKind::Complex128; break; 943 } 944 break; 945 case dwarf::DW_ATE_float: 946 switch (ByteSize) { 947 case 2: STK = SimpleTypeKind::Float16; break; 948 case 4: STK = SimpleTypeKind::Float32; break; 949 case 6: STK = SimpleTypeKind::Float48; break; 950 case 8: STK = SimpleTypeKind::Float64; break; 951 case 10: STK = SimpleTypeKind::Float80; break; 952 case 16: STK = SimpleTypeKind::Float128; break; 953 } 954 break; 955 case dwarf::DW_ATE_signed: 956 switch (ByteSize) { 957 case 1: STK = SimpleTypeKind::SByte; break; 958 case 2: STK = SimpleTypeKind::Int16Short; break; 959 case 4: STK = SimpleTypeKind::Int32; break; 960 case 8: STK = SimpleTypeKind::Int64Quad; break; 961 case 16: STK = SimpleTypeKind::Int128Oct; break; 962 } 963 break; 964 case dwarf::DW_ATE_unsigned: 965 switch (ByteSize) { 966 case 1: STK = SimpleTypeKind::Byte; break; 967 case 2: STK = SimpleTypeKind::UInt16Short; break; 968 case 4: STK = SimpleTypeKind::UInt32; break; 969 case 8: STK = SimpleTypeKind::UInt64Quad; break; 970 case 16: STK = SimpleTypeKind::UInt128Oct; break; 971 } 972 break; 973 case dwarf::DW_ATE_UTF: 974 switch (ByteSize) { 975 case 2: STK = SimpleTypeKind::Character16; break; 976 case 4: STK = SimpleTypeKind::Character32; break; 977 } 978 break; 979 case dwarf::DW_ATE_signed_char: 980 if (ByteSize == 1) 981 STK = SimpleTypeKind::SignedCharacter; 982 break; 983 case dwarf::DW_ATE_unsigned_char: 984 if (ByteSize == 1) 985 STK = SimpleTypeKind::UnsignedCharacter; 986 break; 987 default: 988 break; 989 } 990 991 // Apply some fixups based on the source-level type name. 992 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 993 STK = SimpleTypeKind::Int32Long; 994 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 995 STK = SimpleTypeKind::UInt32Long; 996 if (STK == SimpleTypeKind::UInt16Short && 997 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 998 STK = SimpleTypeKind::WideCharacter; 999 if ((STK == SimpleTypeKind::SignedCharacter || 1000 STK == SimpleTypeKind::UnsignedCharacter) && 1001 Ty->getName() == "char") 1002 STK = SimpleTypeKind::NarrowCharacter; 1003 1004 return TypeIndex(STK); 1005 } 1006 1007 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1008 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1009 1010 // While processing the type being pointed to it is possible we already 1011 // created this pointer type. If so, we check here and return the existing 1012 // pointer type. 1013 auto I = TypeIndices.find({Ty, nullptr}); 1014 if (I != TypeIndices.end()) 1015 return I->second; 1016 1017 // Pointers to simple types can use SimpleTypeMode, rather than having a 1018 // dedicated pointer type record. 1019 if (PointeeTI.isSimple() && 1020 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1021 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1022 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1023 ? SimpleTypeMode::NearPointer64 1024 : SimpleTypeMode::NearPointer32; 1025 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1026 } 1027 1028 PointerKind PK = 1029 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1030 PointerMode PM = PointerMode::Pointer; 1031 switch (Ty->getTag()) { 1032 default: llvm_unreachable("not a pointer tag type"); 1033 case dwarf::DW_TAG_pointer_type: 1034 PM = PointerMode::Pointer; 1035 break; 1036 case dwarf::DW_TAG_reference_type: 1037 PM = PointerMode::LValueReference; 1038 break; 1039 case dwarf::DW_TAG_rvalue_reference_type: 1040 PM = PointerMode::RValueReference; 1041 break; 1042 } 1043 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1044 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1045 // do. 1046 PointerOptions PO = PointerOptions::None; 1047 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1048 return TypeTable.writePointer(PR); 1049 } 1050 1051 static PointerToMemberRepresentation 1052 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1053 // SizeInBytes being zero generally implies that the member pointer type was 1054 // incomplete, which can happen if it is part of a function prototype. In this 1055 // case, use the unknown model instead of the general model. 1056 if (IsPMF) { 1057 switch (Flags & DINode::FlagPtrToMemberRep) { 1058 case 0: 1059 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1060 : PointerToMemberRepresentation::GeneralFunction; 1061 case DINode::FlagSingleInheritance: 1062 return PointerToMemberRepresentation::SingleInheritanceFunction; 1063 case DINode::FlagMultipleInheritance: 1064 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1065 case DINode::FlagVirtualInheritance: 1066 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1067 } 1068 } else { 1069 switch (Flags & DINode::FlagPtrToMemberRep) { 1070 case 0: 1071 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1072 : PointerToMemberRepresentation::GeneralData; 1073 case DINode::FlagSingleInheritance: 1074 return PointerToMemberRepresentation::SingleInheritanceData; 1075 case DINode::FlagMultipleInheritance: 1076 return PointerToMemberRepresentation::MultipleInheritanceData; 1077 case DINode::FlagVirtualInheritance: 1078 return PointerToMemberRepresentation::VirtualInheritanceData; 1079 } 1080 } 1081 llvm_unreachable("invalid ptr to member representation"); 1082 } 1083 1084 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1085 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1086 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1087 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1088 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1089 : PointerKind::Near32; 1090 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1091 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1092 : PointerMode::PointerToDataMember; 1093 PointerOptions PO = PointerOptions::None; // FIXME 1094 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1095 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1096 MemberPointerInfo MPI( 1097 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1098 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1099 return TypeTable.writePointer(PR); 1100 } 1101 1102 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1103 /// have a translation, use the NearC convention. 1104 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1105 switch (DwarfCC) { 1106 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1107 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1108 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1109 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1110 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1111 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1112 } 1113 return CallingConvention::NearC; 1114 } 1115 1116 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1117 ModifierOptions Mods = ModifierOptions::None; 1118 bool IsModifier = true; 1119 const DIType *BaseTy = Ty; 1120 while (IsModifier && BaseTy) { 1121 // FIXME: Need to add DWARF tag for __unaligned. 1122 switch (BaseTy->getTag()) { 1123 case dwarf::DW_TAG_const_type: 1124 Mods |= ModifierOptions::Const; 1125 break; 1126 case dwarf::DW_TAG_volatile_type: 1127 Mods |= ModifierOptions::Volatile; 1128 break; 1129 default: 1130 IsModifier = false; 1131 break; 1132 } 1133 if (IsModifier) 1134 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1135 } 1136 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1137 1138 // While processing the type being pointed to, it is possible we already 1139 // created this modifier type. If so, we check here and return the existing 1140 // modifier type. 1141 auto I = TypeIndices.find({Ty, nullptr}); 1142 if (I != TypeIndices.end()) 1143 return I->second; 1144 1145 ModifierRecord MR(ModifiedTI, Mods); 1146 return TypeTable.writeModifier(MR); 1147 } 1148 1149 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1150 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1151 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1152 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1153 1154 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1155 ArrayRef<TypeIndex> ArgTypeIndices = None; 1156 if (!ReturnAndArgTypeIndices.empty()) { 1157 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1158 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1159 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1160 } 1161 1162 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1163 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1164 1165 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1166 1167 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1168 ArgTypeIndices.size(), ArgListIndex); 1169 return TypeTable.writeProcedure(Procedure); 1170 } 1171 1172 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1173 const DIType *ClassTy, 1174 int ThisAdjustment) { 1175 // Lower the containing class type. 1176 TypeIndex ClassType = getTypeIndex(ClassTy); 1177 1178 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1179 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1180 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1181 1182 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1183 ArrayRef<TypeIndex> ArgTypeIndices = None; 1184 if (!ReturnAndArgTypeIndices.empty()) { 1185 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1186 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1187 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1188 } 1189 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1190 if (!ArgTypeIndices.empty()) { 1191 ThisTypeIndex = ArgTypeIndices.front(); 1192 ArgTypeIndices = ArgTypeIndices.drop_front(); 1193 } 1194 1195 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1196 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1197 1198 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1199 1200 // TODO: Need to use the correct values for: 1201 // FunctionOptions 1202 // ThisPointerAdjustment. 1203 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1204 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1205 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1206 1207 return TI; 1208 } 1209 1210 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1211 switch (Flags & DINode::FlagAccessibility) { 1212 case DINode::FlagPrivate: return MemberAccess::Private; 1213 case DINode::FlagPublic: return MemberAccess::Public; 1214 case DINode::FlagProtected: return MemberAccess::Protected; 1215 case 0: 1216 // If there was no explicit access control, provide the default for the tag. 1217 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1218 : MemberAccess::Public; 1219 } 1220 llvm_unreachable("access flags are exclusive"); 1221 } 1222 1223 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1224 if (SP->isArtificial()) 1225 return MethodOptions::CompilerGenerated; 1226 1227 // FIXME: Handle other MethodOptions. 1228 1229 return MethodOptions::None; 1230 } 1231 1232 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1233 bool Introduced) { 1234 switch (SP->getVirtuality()) { 1235 case dwarf::DW_VIRTUALITY_none: 1236 break; 1237 case dwarf::DW_VIRTUALITY_virtual: 1238 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1239 case dwarf::DW_VIRTUALITY_pure_virtual: 1240 return Introduced ? MethodKind::PureIntroducingVirtual 1241 : MethodKind::PureVirtual; 1242 default: 1243 llvm_unreachable("unhandled virtuality case"); 1244 } 1245 1246 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1247 1248 return MethodKind::Vanilla; 1249 } 1250 1251 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1252 switch (Ty->getTag()) { 1253 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1254 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1255 } 1256 llvm_unreachable("unexpected tag"); 1257 } 1258 1259 /// Return the HasUniqueName option if it should be present in ClassOptions, or 1260 /// None otherwise. 1261 static ClassOptions getRecordUniqueNameOption(const DICompositeType *Ty) { 1262 // MSVC always sets this flag now, even for local types. Clang doesn't always 1263 // appear to give every type a linkage name, which may be problematic for us. 1264 // FIXME: Investigate the consequences of not following them here. 1265 return !Ty->getIdentifier().empty() ? ClassOptions::HasUniqueName 1266 : ClassOptions::None; 1267 } 1268 1269 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1270 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1271 TypeIndex FTI; 1272 unsigned EnumeratorCount = 0; 1273 1274 if (Ty->isForwardDecl()) { 1275 CO |= ClassOptions::ForwardReference; 1276 } else { 1277 FieldListRecordBuilder Fields; 1278 for (const DINode *Element : Ty->getElements()) { 1279 // We assume that the frontend provides all members in source declaration 1280 // order, which is what MSVC does. 1281 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1282 Fields.writeEnumerator(EnumeratorRecord( 1283 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1284 Enumerator->getName())); 1285 EnumeratorCount++; 1286 } 1287 } 1288 FTI = TypeTable.writeFieldList(Fields); 1289 } 1290 1291 std::string FullName = 1292 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1293 1294 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1295 Ty->getIdentifier(), 1296 getTypeIndex(Ty->getBaseType()))); 1297 } 1298 1299 //===----------------------------------------------------------------------===// 1300 // ClassInfo 1301 //===----------------------------------------------------------------------===// 1302 1303 struct llvm::ClassInfo { 1304 struct MemberInfo { 1305 const DIDerivedType *MemberTypeNode; 1306 unsigned BaseOffset; 1307 }; 1308 // [MemberInfo] 1309 typedef std::vector<MemberInfo> MemberList; 1310 1311 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1312 // MethodName -> MethodsList 1313 typedef MapVector<MDString *, MethodsList> MethodsMap; 1314 1315 /// Direct members. 1316 MemberList Members; 1317 // Direct overloaded methods gathered by name. 1318 MethodsMap Methods; 1319 }; 1320 1321 void CodeViewDebug::clear() { 1322 assert(CurFn == nullptr); 1323 FileIdMap.clear(); 1324 FnDebugInfo.clear(); 1325 FileToFilepathMap.clear(); 1326 LocalUDTs.clear(); 1327 GlobalUDTs.clear(); 1328 TypeIndices.clear(); 1329 CompleteTypeIndices.clear(); 1330 } 1331 1332 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1333 const DIDerivedType *DDTy) { 1334 if (!DDTy->getName().empty()) { 1335 Info.Members.push_back({DDTy, 0}); 1336 return; 1337 } 1338 // An unnamed member must represent a nested struct or union. Add all the 1339 // indirect fields to the current record. 1340 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1341 unsigned Offset = DDTy->getOffsetInBits() / 8; 1342 const DIType *Ty = DDTy->getBaseType().resolve(); 1343 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1344 ClassInfo NestedInfo = collectClassInfo(DCTy); 1345 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1346 Info.Members.push_back( 1347 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1348 } 1349 1350 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1351 ClassInfo Info; 1352 // Add elements to structure type. 1353 DINodeArray Elements = Ty->getElements(); 1354 for (auto *Element : Elements) { 1355 // We assume that the frontend provides all members in source declaration 1356 // order, which is what MSVC does. 1357 if (!Element) 1358 continue; 1359 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1360 Info.Methods[SP->getRawName()].push_back(SP); 1361 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1362 if (DDTy->getTag() == dwarf::DW_TAG_member) 1363 collectMemberInfo(Info, DDTy); 1364 else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1365 // FIXME: collect class info from inheritance. 1366 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1367 // Ignore friend members. It appears that MSVC emitted info about 1368 // friends in the past, but modern versions do not. 1369 } 1370 // FIXME: Get Clang to emit function virtual table here and handle it. 1371 // FIXME: Get clang to emit nested types here and do something with 1372 // them. 1373 } 1374 // Skip other unrecognized kinds of elements. 1375 } 1376 return Info; 1377 } 1378 1379 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1380 // First, construct the forward decl. Don't look into Ty to compute the 1381 // forward decl options, since it might not be available in all TUs. 1382 TypeRecordKind Kind = getRecordKind(Ty); 1383 ClassOptions CO = 1384 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1385 std::string FullName = 1386 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1387 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1388 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1389 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1390 if (!Ty->isForwardDecl()) 1391 DeferredCompleteTypes.push_back(Ty); 1392 return FwdDeclTI; 1393 } 1394 1395 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1396 // Construct the field list and complete type record. 1397 TypeRecordKind Kind = getRecordKind(Ty); 1398 // FIXME: Other ClassOptions, like ContainsNestedClass and NestedClass. 1399 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1400 TypeIndex FieldTI; 1401 TypeIndex VShapeTI; 1402 unsigned FieldCount; 1403 std::tie(FieldTI, VShapeTI, FieldCount) = lowerRecordFieldList(Ty); 1404 1405 std::string FullName = 1406 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1407 1408 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1409 return TypeTable.writeClass(ClassRecord( 1410 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1411 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1412 // FIXME: Make an LF_UDT_SRC_LINE record. 1413 } 1414 1415 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1416 ClassOptions CO = 1417 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1418 std::string FullName = 1419 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1420 TypeIndex FwdDeclTI = 1421 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1422 FullName, Ty->getIdentifier())); 1423 if (!Ty->isForwardDecl()) 1424 DeferredCompleteTypes.push_back(Ty); 1425 return FwdDeclTI; 1426 } 1427 1428 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1429 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1430 TypeIndex FieldTI; 1431 unsigned FieldCount; 1432 std::tie(FieldTI, std::ignore, FieldCount) = lowerRecordFieldList(Ty); 1433 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1434 std::string FullName = 1435 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1436 return TypeTable.writeUnion(UnionRecord(FieldCount, CO, HfaKind::None, 1437 FieldTI, SizeInBytes, FullName, 1438 Ty->getIdentifier())); 1439 // FIXME: Make an LF_UDT_SRC_LINE record. 1440 } 1441 1442 std::tuple<TypeIndex, TypeIndex, unsigned> 1443 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1444 // Manually count members. MSVC appears to count everything that generates a 1445 // field list record. Each individual overload in a method overload group 1446 // contributes to this count, even though the overload group is a single field 1447 // list record. 1448 unsigned MemberCount = 0; 1449 ClassInfo Info = collectClassInfo(Ty); 1450 FieldListRecordBuilder Fields; 1451 1452 // Create members. 1453 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1454 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1455 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1456 1457 if (Member->isStaticMember()) { 1458 Fields.writeStaticDataMember(StaticDataMemberRecord( 1459 translateAccessFlags(Ty->getTag(), Member->getFlags()), 1460 MemberBaseType, Member->getName())); 1461 MemberCount++; 1462 continue; 1463 } 1464 1465 uint64_t OffsetInBytes = MemberInfo.BaseOffset; 1466 1467 // FIXME: Handle bitfield type memeber. 1468 OffsetInBytes += Member->getOffsetInBits() / 8; 1469 1470 Fields.writeDataMember( 1471 DataMemberRecord(translateAccessFlags(Ty->getTag(), Member->getFlags()), 1472 MemberBaseType, OffsetInBytes, Member->getName())); 1473 MemberCount++; 1474 } 1475 1476 // Create methods 1477 for (auto &MethodItr : Info.Methods) { 1478 StringRef Name = MethodItr.first->getString(); 1479 1480 std::vector<OneMethodRecord> Methods; 1481 for (const DISubprogram *SP : MethodItr.second) { 1482 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1483 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1484 1485 unsigned VFTableOffset = -1; 1486 if (Introduced) 1487 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1488 1489 Methods.push_back( 1490 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1491 translateMethodOptionFlags(SP), 1492 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1493 VFTableOffset, Name)); 1494 MemberCount++; 1495 } 1496 assert(Methods.size() > 0 && "Empty methods map entry"); 1497 if (Methods.size() == 1) 1498 Fields.writeOneMethod(Methods[0]); 1499 else { 1500 TypeIndex MethodList = 1501 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1502 Fields.writeOverloadedMethod( 1503 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1504 } 1505 } 1506 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1507 return std::make_tuple(FieldTI, TypeIndex(), MemberCount); 1508 } 1509 1510 struct CodeViewDebug::TypeLoweringScope { 1511 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 1512 ~TypeLoweringScope() { 1513 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 1514 // inner TypeLoweringScopes don't attempt to emit deferred types. 1515 if (CVD.TypeEmissionLevel == 1) 1516 CVD.emitDeferredCompleteTypes(); 1517 --CVD.TypeEmissionLevel; 1518 } 1519 CodeViewDebug &CVD; 1520 }; 1521 1522 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1523 const DIType *Ty = TypeRef.resolve(); 1524 const DIType *ClassTy = ClassTyRef.resolve(); 1525 1526 // The null DIType is the void type. Don't try to hash it. 1527 if (!Ty) 1528 return TypeIndex::Void(); 1529 1530 // Check if we've already translated this type. Don't try to do a 1531 // get-or-create style insertion that caches the hash lookup across the 1532 // lowerType call. It will update the TypeIndices map. 1533 auto I = TypeIndices.find({Ty, ClassTy}); 1534 if (I != TypeIndices.end()) 1535 return I->second; 1536 1537 TypeIndex TI; 1538 { 1539 TypeLoweringScope S(*this); 1540 TI = lowerType(Ty, ClassTy); 1541 recordTypeIndexForDINode(Ty, TI, ClassTy); 1542 } 1543 1544 return TI; 1545 } 1546 1547 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1548 const DIType *Ty = TypeRef.resolve(); 1549 1550 // The null DIType is the void type. Don't try to hash it. 1551 if (!Ty) 1552 return TypeIndex::Void(); 1553 1554 // If this is a non-record type, the complete type index is the same as the 1555 // normal type index. Just call getTypeIndex. 1556 switch (Ty->getTag()) { 1557 case dwarf::DW_TAG_class_type: 1558 case dwarf::DW_TAG_structure_type: 1559 case dwarf::DW_TAG_union_type: 1560 break; 1561 default: 1562 return getTypeIndex(Ty); 1563 } 1564 1565 // Check if we've already translated the complete record type. Lowering a 1566 // complete type should never trigger lowering another complete type, so we 1567 // can reuse the hash table lookup result. 1568 const auto *CTy = cast<DICompositeType>(Ty); 1569 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1570 if (!InsertResult.second) 1571 return InsertResult.first->second; 1572 1573 TypeLoweringScope S(*this); 1574 1575 // Make sure the forward declaration is emitted first. It's unclear if this 1576 // is necessary, but MSVC does it, and we should follow suit until we can show 1577 // otherwise. 1578 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1579 1580 // Just use the forward decl if we don't have complete type info. This might 1581 // happen if the frontend is using modules and expects the complete definition 1582 // to be emitted elsewhere. 1583 if (CTy->isForwardDecl()) 1584 return FwdDeclTI; 1585 1586 TypeIndex TI; 1587 switch (CTy->getTag()) { 1588 case dwarf::DW_TAG_class_type: 1589 case dwarf::DW_TAG_structure_type: 1590 TI = lowerCompleteTypeClass(CTy); 1591 break; 1592 case dwarf::DW_TAG_union_type: 1593 TI = lowerCompleteTypeUnion(CTy); 1594 break; 1595 default: 1596 llvm_unreachable("not a record"); 1597 } 1598 1599 InsertResult.first->second = TI; 1600 return TI; 1601 } 1602 1603 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1604 /// and do this until fixpoint, as each complete record type typically references 1605 /// many other record types. 1606 void CodeViewDebug::emitDeferredCompleteTypes() { 1607 SmallVector<const DICompositeType *, 4> TypesToEmit; 1608 while (!DeferredCompleteTypes.empty()) { 1609 std::swap(DeferredCompleteTypes, TypesToEmit); 1610 for (const DICompositeType *RecordTy : TypesToEmit) 1611 getCompleteTypeIndex(RecordTy); 1612 TypesToEmit.clear(); 1613 } 1614 } 1615 1616 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1617 // LocalSym record, see SymbolRecord.h for more info. 1618 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1619 *LocalEnd = MMI->getContext().createTempSymbol(); 1620 OS.AddComment("Record length"); 1621 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1622 OS.EmitLabel(LocalBegin); 1623 1624 OS.AddComment("Record kind: S_LOCAL"); 1625 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1626 1627 LocalSymFlags Flags = LocalSymFlags::None; 1628 if (Var.DIVar->isParameter()) 1629 Flags |= LocalSymFlags::IsParameter; 1630 if (Var.DefRanges.empty()) 1631 Flags |= LocalSymFlags::IsOptimizedOut; 1632 1633 OS.AddComment("TypeIndex"); 1634 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1635 OS.EmitIntValue(TI.getIndex(), 4); 1636 OS.AddComment("Flags"); 1637 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1638 // Truncate the name so we won't overflow the record length field. 1639 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1640 OS.EmitLabel(LocalEnd); 1641 1642 // Calculate the on disk prefix of the appropriate def range record. The 1643 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1644 // should be big enough to hold all forms without memory allocation. 1645 SmallString<20> BytePrefix; 1646 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1647 BytePrefix.clear(); 1648 // FIXME: Handle bitpieces. 1649 if (DefRange.StructOffset != 0) 1650 continue; 1651 1652 if (DefRange.InMemory) { 1653 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1654 0, 0, ArrayRef<LocalVariableAddrGap>()); 1655 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1656 BytePrefix += 1657 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1658 BytePrefix += 1659 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1660 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1661 } else { 1662 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1663 // Unclear what matters here. 1664 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1665 ArrayRef<LocalVariableAddrGap>()); 1666 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1667 BytePrefix += 1668 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1669 BytePrefix += 1670 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1671 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1672 } 1673 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1674 } 1675 } 1676 1677 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1678 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1679 return; 1680 1681 const Function *GV = MF->getFunction(); 1682 assert(FnDebugInfo.count(GV)); 1683 assert(CurFn == &FnDebugInfo[GV]); 1684 1685 collectVariableInfo(GV->getSubprogram()); 1686 1687 DebugHandlerBase::endFunction(MF); 1688 1689 // Don't emit anything if we don't have any line tables. 1690 if (!CurFn->HaveLineInfo) { 1691 FnDebugInfo.erase(GV); 1692 CurFn = nullptr; 1693 return; 1694 } 1695 1696 CurFn->End = Asm->getFunctionEnd(); 1697 1698 CurFn = nullptr; 1699 } 1700 1701 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1702 DebugHandlerBase::beginInstruction(MI); 1703 1704 // Ignore DBG_VALUE locations and function prologue. 1705 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1706 return; 1707 DebugLoc DL = MI->getDebugLoc(); 1708 if (DL == PrevInstLoc || !DL) 1709 return; 1710 maybeRecordLocation(DL, Asm->MF); 1711 } 1712 1713 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1714 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1715 *EndLabel = MMI->getContext().createTempSymbol(); 1716 OS.EmitIntValue(unsigned(Kind), 4); 1717 OS.AddComment("Subsection size"); 1718 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1719 OS.EmitLabel(BeginLabel); 1720 return EndLabel; 1721 } 1722 1723 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1724 OS.EmitLabel(EndLabel); 1725 // Every subsection must be aligned to a 4-byte boundary. 1726 OS.EmitValueToAlignment(4); 1727 } 1728 1729 void CodeViewDebug::emitDebugInfoForUDTs( 1730 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1731 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1732 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1733 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1734 OS.AddComment("Record length"); 1735 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1736 OS.EmitLabel(UDTRecordBegin); 1737 1738 OS.AddComment("Record kind: S_UDT"); 1739 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1740 1741 OS.AddComment("Type"); 1742 OS.EmitIntValue(UDT.second.getIndex(), 4); 1743 1744 emitNullTerminatedSymbolName(OS, UDT.first); 1745 OS.EmitLabel(UDTRecordEnd); 1746 } 1747 } 1748 1749 void CodeViewDebug::emitDebugInfoForGlobals() { 1750 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1751 for (const MDNode *Node : CUs->operands()) { 1752 const auto *CU = cast<DICompileUnit>(Node); 1753 1754 // First, emit all globals that are not in a comdat in a single symbol 1755 // substream. MSVC doesn't like it if the substream is empty, so only open 1756 // it if we have at least one global to emit. 1757 switchToDebugSectionForSymbol(nullptr); 1758 MCSymbol *EndLabel = nullptr; 1759 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1760 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1761 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1762 if (!EndLabel) { 1763 OS.AddComment("Symbol subsection for globals"); 1764 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1765 } 1766 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1767 } 1768 } 1769 } 1770 if (EndLabel) 1771 endCVSubsection(EndLabel); 1772 1773 // Second, emit each global that is in a comdat into its own .debug$S 1774 // section along with its own symbol substream. 1775 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1776 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1777 if (GV->hasComdat()) { 1778 MCSymbol *GVSym = Asm->getSymbol(GV); 1779 OS.AddComment("Symbol subsection for " + 1780 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 1781 switchToDebugSectionForSymbol(GVSym); 1782 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1783 emitDebugInfoForGlobal(G, GVSym); 1784 endCVSubsection(EndLabel); 1785 } 1786 } 1787 } 1788 } 1789 } 1790 1791 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 1792 MCSymbol *GVSym) { 1793 // DataSym record, see SymbolRecord.h for more info. 1794 // FIXME: Thread local data, etc 1795 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 1796 *DataEnd = MMI->getContext().createTempSymbol(); 1797 OS.AddComment("Record length"); 1798 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 1799 OS.EmitLabel(DataBegin); 1800 OS.AddComment("Record kind: S_GDATA32"); 1801 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 1802 OS.AddComment("Type"); 1803 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 1804 OS.AddComment("DataOffset"); 1805 OS.EmitCOFFSecRel32(GVSym); 1806 OS.AddComment("Segment"); 1807 OS.EmitCOFFSectionIndex(GVSym); 1808 OS.AddComment("Name"); 1809 emitNullTerminatedSymbolName(OS, DIGV->getName()); 1810 OS.EmitLabel(DataEnd); 1811 } 1812