1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 43 #include "llvm/DebugInfo/CodeView/CodeView.h" 44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 46 #include "llvm/DebugInfo/CodeView/Line.h" 47 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 48 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 49 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 50 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 51 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugInfoMetadata.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalValue.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/MC/MCAsmInfo.h" 62 #include "llvm/MC/MCContext.h" 63 #include "llvm/MC/MCSectionCOFF.h" 64 #include "llvm/MC/MCStreamer.h" 65 #include "llvm/MC/MCSymbol.h" 66 #include "llvm/Support/BinaryByteStream.h" 67 #include "llvm/Support/BinaryStreamReader.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Compiler.h" 71 #include "llvm/Support/Endian.h" 72 #include "llvm/Support/Error.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/FormatVariadic.h" 75 #include "llvm/Support/SMLoc.h" 76 #include "llvm/Support/ScopedPrinter.h" 77 #include "llvm/Target/TargetLoweringObjectFile.h" 78 #include "llvm/Target/TargetMachine.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cctype> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iterator> 85 #include <limits> 86 #include <string> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace llvm::codeview; 92 93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 94 cl::ReallyHidden, cl::init(false)); 95 96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 97 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 98 // If module doesn't have named metadata anchors or COFF debug section 99 // is not available, skip any debug info related stuff. 100 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 101 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 102 Asm = nullptr; 103 return; 104 } 105 106 // Tell MMI that we have debug info. 107 MMI->setDebugInfoAvailability(true); 108 } 109 110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 111 std::string &Filepath = FileToFilepathMap[File]; 112 if (!Filepath.empty()) 113 return Filepath; 114 115 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 116 117 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 118 // it textually because one of the path components could be a symlink. 119 if (!Dir.empty() && Dir[0] == '/') { 120 Filepath = Dir; 121 if (Dir.back() != '/') 122 Filepath += '/'; 123 Filepath += Filename; 124 return Filepath; 125 } 126 127 // Clang emits directory and relative filename info into the IR, but CodeView 128 // operates on full paths. We could change Clang to emit full paths too, but 129 // that would increase the IR size and probably not needed for other users. 130 // For now, just concatenate and canonicalize the path here. 131 if (Filename.find(':') == 1) 132 Filepath = Filename; 133 else 134 Filepath = (Dir + "\\" + Filename).str(); 135 136 // Canonicalize the path. We have to do it textually because we may no longer 137 // have access the file in the filesystem. 138 // First, replace all slashes with backslashes. 139 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 140 141 // Remove all "\.\" with "\". 142 size_t Cursor = 0; 143 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 144 Filepath.erase(Cursor, 2); 145 146 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 147 // path should be well-formatted, e.g. start with a drive letter, etc. 148 Cursor = 0; 149 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 150 // Something's wrong if the path starts with "\..\", abort. 151 if (Cursor == 0) 152 break; 153 154 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 155 if (PrevSlash == std::string::npos) 156 // Something's wrong, abort. 157 break; 158 159 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 160 // The next ".." might be following the one we've just erased. 161 Cursor = PrevSlash; 162 } 163 164 // Remove all duplicate backslashes. 165 Cursor = 0; 166 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 167 Filepath.erase(Cursor, 1); 168 169 return Filepath; 170 } 171 172 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 173 StringRef FullPath = getFullFilepath(F); 174 unsigned NextId = FileIdMap.size() + 1; 175 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 176 if (Insertion.second) { 177 // We have to compute the full filepath and emit a .cv_file directive. 178 ArrayRef<uint8_t> ChecksumAsBytes; 179 FileChecksumKind CSKind = FileChecksumKind::None; 180 if (F->getChecksum()) { 181 std::string Checksum = fromHex(F->getChecksum()->Value); 182 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 183 memcpy(CKMem, Checksum.data(), Checksum.size()); 184 ChecksumAsBytes = ArrayRef<uint8_t>( 185 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 186 switch (F->getChecksum()->Kind) { 187 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 188 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 189 } 190 } 191 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 192 static_cast<unsigned>(CSKind)); 193 (void)Success; 194 assert(Success && ".cv_file directive failed"); 195 } 196 return Insertion.first->second; 197 } 198 199 CodeViewDebug::InlineSite & 200 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 201 const DISubprogram *Inlinee) { 202 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 203 InlineSite *Site = &SiteInsertion.first->second; 204 if (SiteInsertion.second) { 205 unsigned ParentFuncId = CurFn->FuncId; 206 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 207 ParentFuncId = 208 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 209 .SiteFuncId; 210 211 Site->SiteFuncId = NextFuncId++; 212 OS.EmitCVInlineSiteIdDirective( 213 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 214 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 215 Site->Inlinee = Inlinee; 216 InlinedSubprograms.insert(Inlinee); 217 getFuncIdForSubprogram(Inlinee); 218 } 219 return *Site; 220 } 221 222 static StringRef getPrettyScopeName(const DIScope *Scope) { 223 StringRef ScopeName = Scope->getName(); 224 if (!ScopeName.empty()) 225 return ScopeName; 226 227 switch (Scope->getTag()) { 228 case dwarf::DW_TAG_enumeration_type: 229 case dwarf::DW_TAG_class_type: 230 case dwarf::DW_TAG_structure_type: 231 case dwarf::DW_TAG_union_type: 232 return "<unnamed-tag>"; 233 case dwarf::DW_TAG_namespace: 234 return "`anonymous namespace'"; 235 } 236 237 return StringRef(); 238 } 239 240 static const DISubprogram *getQualifiedNameComponents( 241 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 242 const DISubprogram *ClosestSubprogram = nullptr; 243 while (Scope != nullptr) { 244 if (ClosestSubprogram == nullptr) 245 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 246 StringRef ScopeName = getPrettyScopeName(Scope); 247 if (!ScopeName.empty()) 248 QualifiedNameComponents.push_back(ScopeName); 249 Scope = Scope->getScope().resolve(); 250 } 251 return ClosestSubprogram; 252 } 253 254 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 255 StringRef TypeName) { 256 std::string FullyQualifiedName; 257 for (StringRef QualifiedNameComponent : 258 llvm::reverse(QualifiedNameComponents)) { 259 FullyQualifiedName.append(QualifiedNameComponent); 260 FullyQualifiedName.append("::"); 261 } 262 FullyQualifiedName.append(TypeName); 263 return FullyQualifiedName; 264 } 265 266 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 267 SmallVector<StringRef, 5> QualifiedNameComponents; 268 getQualifiedNameComponents(Scope, QualifiedNameComponents); 269 return getQualifiedName(QualifiedNameComponents, Name); 270 } 271 272 struct CodeViewDebug::TypeLoweringScope { 273 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 274 ~TypeLoweringScope() { 275 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 276 // inner TypeLoweringScopes don't attempt to emit deferred types. 277 if (CVD.TypeEmissionLevel == 1) 278 CVD.emitDeferredCompleteTypes(); 279 --CVD.TypeEmissionLevel; 280 } 281 CodeViewDebug &CVD; 282 }; 283 284 static std::string getFullyQualifiedName(const DIScope *Ty) { 285 const DIScope *Scope = Ty->getScope().resolve(); 286 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 287 } 288 289 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 290 // No scope means global scope and that uses the zero index. 291 if (!Scope || isa<DIFile>(Scope)) 292 return TypeIndex(); 293 294 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 295 296 // Check if we've already translated this scope. 297 auto I = TypeIndices.find({Scope, nullptr}); 298 if (I != TypeIndices.end()) 299 return I->second; 300 301 // Build the fully qualified name of the scope. 302 std::string ScopeName = getFullyQualifiedName(Scope); 303 StringIdRecord SID(TypeIndex(), ScopeName); 304 auto TI = TypeTable.writeLeafType(SID); 305 return recordTypeIndexForDINode(Scope, TI); 306 } 307 308 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 309 assert(SP); 310 311 // Check if we've already translated this subprogram. 312 auto I = TypeIndices.find({SP, nullptr}); 313 if (I != TypeIndices.end()) 314 return I->second; 315 316 // The display name includes function template arguments. Drop them to match 317 // MSVC. 318 StringRef DisplayName = SP->getName().split('<').first; 319 320 const DIScope *Scope = SP->getScope().resolve(); 321 TypeIndex TI; 322 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 323 // If the scope is a DICompositeType, then this must be a method. Member 324 // function types take some special handling, and require access to the 325 // subprogram. 326 TypeIndex ClassType = getTypeIndex(Class); 327 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 328 DisplayName); 329 TI = TypeTable.writeLeafType(MFuncId); 330 } else { 331 // Otherwise, this must be a free function. 332 TypeIndex ParentScope = getScopeIndex(Scope); 333 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 334 TI = TypeTable.writeLeafType(FuncId); 335 } 336 337 return recordTypeIndexForDINode(SP, TI); 338 } 339 340 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 341 const DICompositeType *Class) { 342 // Always use the method declaration as the key for the function type. The 343 // method declaration contains the this adjustment. 344 if (SP->getDeclaration()) 345 SP = SP->getDeclaration(); 346 assert(!SP->getDeclaration() && "should use declaration as key"); 347 348 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 349 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 350 auto I = TypeIndices.find({SP, Class}); 351 if (I != TypeIndices.end()) 352 return I->second; 353 354 // Make sure complete type info for the class is emitted *after* the member 355 // function type, as the complete class type is likely to reference this 356 // member function type. 357 TypeLoweringScope S(*this); 358 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 359 TypeIndex TI = lowerTypeMemberFunction( 360 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 361 return recordTypeIndexForDINode(SP, TI, Class); 362 } 363 364 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 365 TypeIndex TI, 366 const DIType *ClassTy) { 367 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 368 (void)InsertResult; 369 assert(InsertResult.second && "DINode was already assigned a type index"); 370 return TI; 371 } 372 373 unsigned CodeViewDebug::getPointerSizeInBytes() { 374 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 375 } 376 377 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 378 const LexicalScope *LS) { 379 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 380 // This variable was inlined. Associate it with the InlineSite. 381 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 382 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 383 Site.InlinedLocals.emplace_back(Var); 384 } else { 385 // This variable goes into the corresponding lexical scope. 386 ScopeVariables[LS].emplace_back(Var); 387 } 388 } 389 390 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 391 const DILocation *Loc) { 392 auto B = Locs.begin(), E = Locs.end(); 393 if (std::find(B, E, Loc) == E) 394 Locs.push_back(Loc); 395 } 396 397 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 398 const MachineFunction *MF) { 399 // Skip this instruction if it has the same location as the previous one. 400 if (!DL || DL == PrevInstLoc) 401 return; 402 403 const DIScope *Scope = DL.get()->getScope(); 404 if (!Scope) 405 return; 406 407 // Skip this line if it is longer than the maximum we can record. 408 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 409 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 410 LI.isNeverStepInto()) 411 return; 412 413 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 414 if (CI.getStartColumn() != DL.getCol()) 415 return; 416 417 if (!CurFn->HaveLineInfo) 418 CurFn->HaveLineInfo = true; 419 unsigned FileId = 0; 420 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 421 FileId = CurFn->LastFileId; 422 else 423 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 424 PrevInstLoc = DL; 425 426 unsigned FuncId = CurFn->FuncId; 427 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 428 const DILocation *Loc = DL.get(); 429 430 // If this location was actually inlined from somewhere else, give it the ID 431 // of the inline call site. 432 FuncId = 433 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 434 435 // Ensure we have links in the tree of inline call sites. 436 bool FirstLoc = true; 437 while ((SiteLoc = Loc->getInlinedAt())) { 438 InlineSite &Site = 439 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 440 if (!FirstLoc) 441 addLocIfNotPresent(Site.ChildSites, Loc); 442 FirstLoc = false; 443 Loc = SiteLoc; 444 } 445 addLocIfNotPresent(CurFn->ChildSites, Loc); 446 } 447 448 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 449 /*PrologueEnd=*/false, /*IsStmt=*/false, 450 DL->getFilename(), SMLoc()); 451 } 452 453 void CodeViewDebug::emitCodeViewMagicVersion() { 454 OS.EmitValueToAlignment(4); 455 OS.AddComment("Debug section magic"); 456 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 457 } 458 459 void CodeViewDebug::endModule() { 460 if (!Asm || !MMI->hasDebugInfo()) 461 return; 462 463 assert(Asm != nullptr); 464 465 // The COFF .debug$S section consists of several subsections, each starting 466 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 467 // of the payload followed by the payload itself. The subsections are 4-byte 468 // aligned. 469 470 // Use the generic .debug$S section, and make a subsection for all the inlined 471 // subprograms. 472 switchToDebugSectionForSymbol(nullptr); 473 474 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 475 emitCompilerInformation(); 476 endCVSubsection(CompilerInfo); 477 478 emitInlineeLinesSubsection(); 479 480 // Emit per-function debug information. 481 for (auto &P : FnDebugInfo) 482 if (!P.first->isDeclarationForLinker()) 483 emitDebugInfoForFunction(P.first, *P.second); 484 485 // Emit global variable debug information. 486 setCurrentSubprogram(nullptr); 487 emitDebugInfoForGlobals(); 488 489 // Emit retained types. 490 emitDebugInfoForRetainedTypes(); 491 492 // Switch back to the generic .debug$S section after potentially processing 493 // comdat symbol sections. 494 switchToDebugSectionForSymbol(nullptr); 495 496 // Emit UDT records for any types used by global variables. 497 if (!GlobalUDTs.empty()) { 498 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 499 emitDebugInfoForUDTs(GlobalUDTs); 500 endCVSubsection(SymbolsEnd); 501 } 502 503 // This subsection holds a file index to offset in string table table. 504 OS.AddComment("File index to string table offset subsection"); 505 OS.EmitCVFileChecksumsDirective(); 506 507 // This subsection holds the string table. 508 OS.AddComment("String table"); 509 OS.EmitCVStringTableDirective(); 510 511 // Emit type information and hashes last, so that any types we translate while 512 // emitting function info are included. 513 emitTypeInformation(); 514 515 if (EmitDebugGlobalHashes) 516 emitTypeGlobalHashes(); 517 518 clear(); 519 } 520 521 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 522 unsigned MaxFixedRecordLength = 0xF00) { 523 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 524 // after a fixed length portion of the record. The fixed length portion should 525 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 526 // overall record size is less than the maximum allowed. 527 SmallString<32> NullTerminatedString( 528 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 529 NullTerminatedString.push_back('\0'); 530 OS.EmitBytes(NullTerminatedString); 531 } 532 533 void CodeViewDebug::emitTypeInformation() { 534 if (TypeTable.empty()) 535 return; 536 537 // Start the .debug$T or .debug$P section with 0x4. 538 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 539 emitCodeViewMagicVersion(); 540 541 SmallString<8> CommentPrefix; 542 if (OS.isVerboseAsm()) { 543 CommentPrefix += '\t'; 544 CommentPrefix += Asm->MAI->getCommentString(); 545 CommentPrefix += ' '; 546 } 547 548 TypeTableCollection Table(TypeTable.records()); 549 Optional<TypeIndex> B = Table.getFirst(); 550 while (B) { 551 // This will fail if the record data is invalid. 552 CVType Record = Table.getType(*B); 553 554 if (OS.isVerboseAsm()) { 555 // Emit a block comment describing the type record for readability. 556 SmallString<512> CommentBlock; 557 raw_svector_ostream CommentOS(CommentBlock); 558 ScopedPrinter SP(CommentOS); 559 SP.setPrefix(CommentPrefix); 560 TypeDumpVisitor TDV(Table, &SP, false); 561 562 Error E = codeview::visitTypeRecord(Record, *B, TDV); 563 if (E) { 564 logAllUnhandledErrors(std::move(E), errs(), "error: "); 565 llvm_unreachable("produced malformed type record"); 566 } 567 // emitRawComment will insert its own tab and comment string before 568 // the first line, so strip off our first one. It also prints its own 569 // newline. 570 OS.emitRawComment( 571 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 572 } 573 OS.EmitBinaryData(Record.str_data()); 574 B = Table.getNext(*B); 575 } 576 } 577 578 void CodeViewDebug::emitTypeGlobalHashes() { 579 if (TypeTable.empty()) 580 return; 581 582 // Start the .debug$H section with the version and hash algorithm, currently 583 // hardcoded to version 0, SHA1. 584 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 585 586 OS.EmitValueToAlignment(4); 587 OS.AddComment("Magic"); 588 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 589 OS.AddComment("Section Version"); 590 OS.EmitIntValue(0, 2); 591 OS.AddComment("Hash Algorithm"); 592 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 593 594 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 595 for (const auto &GHR : TypeTable.hashes()) { 596 if (OS.isVerboseAsm()) { 597 // Emit an EOL-comment describing which TypeIndex this hash corresponds 598 // to, as well as the stringified SHA1 hash. 599 SmallString<32> Comment; 600 raw_svector_ostream CommentOS(Comment); 601 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 602 OS.AddComment(Comment); 603 ++TI; 604 } 605 assert(GHR.Hash.size() == 8); 606 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 607 GHR.Hash.size()); 608 OS.EmitBinaryData(S); 609 } 610 } 611 612 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 613 switch (DWLang) { 614 case dwarf::DW_LANG_C: 615 case dwarf::DW_LANG_C89: 616 case dwarf::DW_LANG_C99: 617 case dwarf::DW_LANG_C11: 618 case dwarf::DW_LANG_ObjC: 619 return SourceLanguage::C; 620 case dwarf::DW_LANG_C_plus_plus: 621 case dwarf::DW_LANG_C_plus_plus_03: 622 case dwarf::DW_LANG_C_plus_plus_11: 623 case dwarf::DW_LANG_C_plus_plus_14: 624 return SourceLanguage::Cpp; 625 case dwarf::DW_LANG_Fortran77: 626 case dwarf::DW_LANG_Fortran90: 627 case dwarf::DW_LANG_Fortran03: 628 case dwarf::DW_LANG_Fortran08: 629 return SourceLanguage::Fortran; 630 case dwarf::DW_LANG_Pascal83: 631 return SourceLanguage::Pascal; 632 case dwarf::DW_LANG_Cobol74: 633 case dwarf::DW_LANG_Cobol85: 634 return SourceLanguage::Cobol; 635 case dwarf::DW_LANG_Java: 636 return SourceLanguage::Java; 637 case dwarf::DW_LANG_D: 638 return SourceLanguage::D; 639 default: 640 // There's no CodeView representation for this language, and CV doesn't 641 // have an "unknown" option for the language field, so we'll use MASM, 642 // as it's very low level. 643 return SourceLanguage::Masm; 644 } 645 } 646 647 namespace { 648 struct Version { 649 int Part[4]; 650 }; 651 } // end anonymous namespace 652 653 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 654 // the version number. 655 static Version parseVersion(StringRef Name) { 656 Version V = {{0}}; 657 int N = 0; 658 for (const char C : Name) { 659 if (isdigit(C)) { 660 V.Part[N] *= 10; 661 V.Part[N] += C - '0'; 662 } else if (C == '.') { 663 ++N; 664 if (N >= 4) 665 return V; 666 } else if (N > 0) 667 return V; 668 } 669 return V; 670 } 671 672 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 673 switch (Type) { 674 case Triple::ArchType::x86: 675 return CPUType::Pentium3; 676 case Triple::ArchType::x86_64: 677 return CPUType::X64; 678 case Triple::ArchType::thumb: 679 return CPUType::Thumb; 680 case Triple::ArchType::aarch64: 681 return CPUType::ARM64; 682 default: 683 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 684 } 685 } 686 687 void CodeViewDebug::emitCompilerInformation() { 688 MCContext &Context = MMI->getContext(); 689 MCSymbol *CompilerBegin = Context.createTempSymbol(), 690 *CompilerEnd = Context.createTempSymbol(); 691 OS.AddComment("Record length"); 692 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 693 OS.EmitLabel(CompilerBegin); 694 OS.AddComment("Record kind: S_COMPILE3"); 695 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 696 uint32_t Flags = 0; 697 698 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 699 const MDNode *Node = *CUs->operands().begin(); 700 const auto *CU = cast<DICompileUnit>(Node); 701 702 // The low byte of the flags indicates the source language. 703 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 704 // TODO: Figure out which other flags need to be set. 705 706 OS.AddComment("Flags and language"); 707 OS.EmitIntValue(Flags, 4); 708 709 OS.AddComment("CPUType"); 710 CPUType CPU = 711 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 712 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 713 714 StringRef CompilerVersion = CU->getProducer(); 715 Version FrontVer = parseVersion(CompilerVersion); 716 OS.AddComment("Frontend version"); 717 for (int N = 0; N < 4; ++N) 718 OS.EmitIntValue(FrontVer.Part[N], 2); 719 720 // Some Microsoft tools, like Binscope, expect a backend version number of at 721 // least 8.something, so we'll coerce the LLVM version into a form that 722 // guarantees it'll be big enough without really lying about the version. 723 int Major = 1000 * LLVM_VERSION_MAJOR + 724 10 * LLVM_VERSION_MINOR + 725 LLVM_VERSION_PATCH; 726 // Clamp it for builds that use unusually large version numbers. 727 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 728 Version BackVer = {{ Major, 0, 0, 0 }}; 729 OS.AddComment("Backend version"); 730 for (int N = 0; N < 4; ++N) 731 OS.EmitIntValue(BackVer.Part[N], 2); 732 733 OS.AddComment("Null-terminated compiler version string"); 734 emitNullTerminatedSymbolName(OS, CompilerVersion); 735 736 OS.EmitLabel(CompilerEnd); 737 } 738 739 void CodeViewDebug::emitInlineeLinesSubsection() { 740 if (InlinedSubprograms.empty()) 741 return; 742 743 OS.AddComment("Inlinee lines subsection"); 744 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 745 746 // We emit the checksum info for files. This is used by debuggers to 747 // determine if a pdb matches the source before loading it. Visual Studio, 748 // for instance, will display a warning that the breakpoints are not valid if 749 // the pdb does not match the source. 750 OS.AddComment("Inlinee lines signature"); 751 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 752 753 for (const DISubprogram *SP : InlinedSubprograms) { 754 assert(TypeIndices.count({SP, nullptr})); 755 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 756 757 OS.AddBlankLine(); 758 unsigned FileId = maybeRecordFile(SP->getFile()); 759 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 760 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 761 OS.AddBlankLine(); 762 OS.AddComment("Type index of inlined function"); 763 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 764 OS.AddComment("Offset into filechecksum table"); 765 OS.EmitCVFileChecksumOffsetDirective(FileId); 766 OS.AddComment("Starting line number"); 767 OS.EmitIntValue(SP->getLine(), 4); 768 } 769 770 endCVSubsection(InlineEnd); 771 } 772 773 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 774 const DILocation *InlinedAt, 775 const InlineSite &Site) { 776 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 777 *InlineEnd = MMI->getContext().createTempSymbol(); 778 779 assert(TypeIndices.count({Site.Inlinee, nullptr})); 780 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 781 782 // SymbolRecord 783 OS.AddComment("Record length"); 784 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 785 OS.EmitLabel(InlineBegin); 786 OS.AddComment("Record kind: S_INLINESITE"); 787 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 788 789 OS.AddComment("PtrParent"); 790 OS.EmitIntValue(0, 4); 791 OS.AddComment("PtrEnd"); 792 OS.EmitIntValue(0, 4); 793 OS.AddComment("Inlinee type index"); 794 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 795 796 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 797 unsigned StartLineNum = Site.Inlinee->getLine(); 798 799 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 800 FI.Begin, FI.End); 801 802 OS.EmitLabel(InlineEnd); 803 804 emitLocalVariableList(Site.InlinedLocals); 805 806 // Recurse on child inlined call sites before closing the scope. 807 for (const DILocation *ChildSite : Site.ChildSites) { 808 auto I = FI.InlineSites.find(ChildSite); 809 assert(I != FI.InlineSites.end() && 810 "child site not in function inline site map"); 811 emitInlinedCallSite(FI, ChildSite, I->second); 812 } 813 814 // Close the scope. 815 OS.AddComment("Record length"); 816 OS.EmitIntValue(2, 2); // RecordLength 817 OS.AddComment("Record kind: S_INLINESITE_END"); 818 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 819 } 820 821 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 822 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 823 // comdat key. A section may be comdat because of -ffunction-sections or 824 // because it is comdat in the IR. 825 MCSectionCOFF *GVSec = 826 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 827 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 828 829 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 830 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 831 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 832 833 OS.SwitchSection(DebugSec); 834 835 // Emit the magic version number if this is the first time we've switched to 836 // this section. 837 if (ComdatDebugSections.insert(DebugSec).second) 838 emitCodeViewMagicVersion(); 839 } 840 841 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 842 // The only supported thunk ordinal is currently the standard type. 843 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 844 FunctionInfo &FI, 845 const MCSymbol *Fn) { 846 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 847 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 848 849 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 850 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 851 852 // Emit S_THUNK32 853 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(), 854 *ThunkRecordEnd = MMI->getContext().createTempSymbol(); 855 OS.AddComment("Record length"); 856 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2); 857 OS.EmitLabel(ThunkRecordBegin); 858 OS.AddComment("Record kind: S_THUNK32"); 859 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2); 860 OS.AddComment("PtrParent"); 861 OS.EmitIntValue(0, 4); 862 OS.AddComment("PtrEnd"); 863 OS.EmitIntValue(0, 4); 864 OS.AddComment("PtrNext"); 865 OS.EmitIntValue(0, 4); 866 OS.AddComment("Thunk section relative address"); 867 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 868 OS.AddComment("Thunk section index"); 869 OS.EmitCOFFSectionIndex(Fn); 870 OS.AddComment("Code size"); 871 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 872 OS.AddComment("Ordinal"); 873 OS.EmitIntValue(unsigned(ordinal), 1); 874 OS.AddComment("Function name"); 875 emitNullTerminatedSymbolName(OS, FuncName); 876 // Additional fields specific to the thunk ordinal would go here. 877 OS.EmitLabel(ThunkRecordEnd); 878 879 // Local variables/inlined routines are purposely omitted here. The point of 880 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 881 882 // Emit S_PROC_ID_END 883 const unsigned RecordLengthForSymbolEnd = 2; 884 OS.AddComment("Record length"); 885 OS.EmitIntValue(RecordLengthForSymbolEnd, 2); 886 OS.AddComment("Record kind: S_PROC_ID_END"); 887 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 888 889 endCVSubsection(SymbolsEnd); 890 } 891 892 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 893 FunctionInfo &FI) { 894 // For each function there is a separate subsection which holds the PC to 895 // file:line table. 896 const MCSymbol *Fn = Asm->getSymbol(GV); 897 assert(Fn); 898 899 // Switch to the to a comdat section, if appropriate. 900 switchToDebugSectionForSymbol(Fn); 901 902 std::string FuncName; 903 auto *SP = GV->getSubprogram(); 904 assert(SP); 905 setCurrentSubprogram(SP); 906 907 if (SP->isThunk()) { 908 emitDebugInfoForThunk(GV, FI, Fn); 909 return; 910 } 911 912 // If we have a display name, build the fully qualified name by walking the 913 // chain of scopes. 914 if (!SP->getName().empty()) 915 FuncName = 916 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 917 918 // If our DISubprogram name is empty, use the mangled name. 919 if (FuncName.empty()) 920 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 921 922 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 923 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 924 OS.EmitCVFPOData(Fn); 925 926 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 927 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 928 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 929 { 930 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 931 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 932 OS.AddComment("Record length"); 933 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 934 OS.EmitLabel(ProcRecordBegin); 935 936 if (GV->hasLocalLinkage()) { 937 OS.AddComment("Record kind: S_LPROC32_ID"); 938 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 939 } else { 940 OS.AddComment("Record kind: S_GPROC32_ID"); 941 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 942 } 943 944 // These fields are filled in by tools like CVPACK which run after the fact. 945 OS.AddComment("PtrParent"); 946 OS.EmitIntValue(0, 4); 947 OS.AddComment("PtrEnd"); 948 OS.EmitIntValue(0, 4); 949 OS.AddComment("PtrNext"); 950 OS.EmitIntValue(0, 4); 951 // This is the important bit that tells the debugger where the function 952 // code is located and what's its size: 953 OS.AddComment("Code size"); 954 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 955 OS.AddComment("Offset after prologue"); 956 OS.EmitIntValue(0, 4); 957 OS.AddComment("Offset before epilogue"); 958 OS.EmitIntValue(0, 4); 959 OS.AddComment("Function type index"); 960 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 961 OS.AddComment("Function section relative address"); 962 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 963 OS.AddComment("Function section index"); 964 OS.EmitCOFFSectionIndex(Fn); 965 OS.AddComment("Flags"); 966 OS.EmitIntValue(0, 1); 967 // Emit the function display name as a null-terminated string. 968 OS.AddComment("Function name"); 969 // Truncate the name so we won't overflow the record length field. 970 emitNullTerminatedSymbolName(OS, FuncName); 971 OS.EmitLabel(ProcRecordEnd); 972 973 emitLocalVariableList(FI.Locals); 974 emitLexicalBlockList(FI.ChildBlocks, FI); 975 976 // Emit inlined call site information. Only emit functions inlined directly 977 // into the parent function. We'll emit the other sites recursively as part 978 // of their parent inline site. 979 for (const DILocation *InlinedAt : FI.ChildSites) { 980 auto I = FI.InlineSites.find(InlinedAt); 981 assert(I != FI.InlineSites.end() && 982 "child site not in function inline site map"); 983 emitInlinedCallSite(FI, InlinedAt, I->second); 984 } 985 986 for (auto Annot : FI.Annotations) { 987 MCSymbol *Label = Annot.first; 988 MDTuple *Strs = cast<MDTuple>(Annot.second); 989 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 990 *AnnotEnd = MMI->getContext().createTempSymbol(); 991 OS.AddComment("Record length"); 992 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 993 OS.EmitLabel(AnnotBegin); 994 OS.AddComment("Record kind: S_ANNOTATION"); 995 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 996 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 997 // FIXME: Make sure we don't overflow the max record size. 998 OS.EmitCOFFSectionIndex(Label); 999 OS.EmitIntValue(Strs->getNumOperands(), 2); 1000 for (Metadata *MD : Strs->operands()) { 1001 // MDStrings are null terminated, so we can do EmitBytes and get the 1002 // nice .asciz directive. 1003 StringRef Str = cast<MDString>(MD)->getString(); 1004 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1005 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1006 } 1007 OS.EmitLabel(AnnotEnd); 1008 } 1009 1010 if (SP != nullptr) 1011 emitDebugInfoForUDTs(LocalUDTs); 1012 1013 // We're done with this function. 1014 OS.AddComment("Record length"); 1015 OS.EmitIntValue(0x0002, 2); 1016 OS.AddComment("Record kind: S_PROC_ID_END"); 1017 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 1018 } 1019 endCVSubsection(SymbolsEnd); 1020 1021 // We have an assembler directive that takes care of the whole line table. 1022 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1023 } 1024 1025 CodeViewDebug::LocalVarDefRange 1026 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1027 LocalVarDefRange DR; 1028 DR.InMemory = -1; 1029 DR.DataOffset = Offset; 1030 assert(DR.DataOffset == Offset && "truncation"); 1031 DR.IsSubfield = 0; 1032 DR.StructOffset = 0; 1033 DR.CVRegister = CVRegister; 1034 return DR; 1035 } 1036 1037 void CodeViewDebug::collectVariableInfoFromMFTable( 1038 DenseSet<InlinedEntity> &Processed) { 1039 const MachineFunction &MF = *Asm->MF; 1040 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1041 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1042 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1043 1044 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1045 if (!VI.Var) 1046 continue; 1047 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1048 "Expected inlined-at fields to agree"); 1049 1050 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1051 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1052 1053 // If variable scope is not found then skip this variable. 1054 if (!Scope) 1055 continue; 1056 1057 // If the variable has an attached offset expression, extract it. 1058 // FIXME: Try to handle DW_OP_deref as well. 1059 int64_t ExprOffset = 0; 1060 if (VI.Expr) 1061 if (!VI.Expr->extractIfOffset(ExprOffset)) 1062 continue; 1063 1064 // Get the frame register used and the offset. 1065 unsigned FrameReg = 0; 1066 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1067 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1068 1069 // Calculate the label ranges. 1070 LocalVarDefRange DefRange = 1071 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1072 for (const InsnRange &Range : Scope->getRanges()) { 1073 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1074 const MCSymbol *End = getLabelAfterInsn(Range.second); 1075 End = End ? End : Asm->getFunctionEnd(); 1076 DefRange.Ranges.emplace_back(Begin, End); 1077 } 1078 1079 LocalVariable Var; 1080 Var.DIVar = VI.Var; 1081 Var.DefRanges.emplace_back(std::move(DefRange)); 1082 recordLocalVariable(std::move(Var), Scope); 1083 } 1084 } 1085 1086 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1087 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1088 } 1089 1090 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1091 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1092 } 1093 1094 void CodeViewDebug::calculateRanges( 1095 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1096 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1097 1098 // Calculate the definition ranges. 1099 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1100 const InsnRange &Range = *I; 1101 const MachineInstr *DVInst = Range.first; 1102 assert(DVInst->isDebugValue() && "Invalid History entry"); 1103 // FIXME: Find a way to represent constant variables, since they are 1104 // relatively common. 1105 Optional<DbgVariableLocation> Location = 1106 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1107 if (!Location) 1108 continue; 1109 1110 // CodeView can only express variables in register and variables in memory 1111 // at a constant offset from a register. However, for variables passed 1112 // indirectly by pointer, it is common for that pointer to be spilled to a 1113 // stack location. For the special case of one offseted load followed by a 1114 // zero offset load (a pointer spilled to the stack), we change the type of 1115 // the local variable from a value type to a reference type. This tricks the 1116 // debugger into doing the load for us. 1117 if (Var.UseReferenceType) { 1118 // We're using a reference type. Drop the last zero offset load. 1119 if (canUseReferenceType(*Location)) 1120 Location->LoadChain.pop_back(); 1121 else 1122 continue; 1123 } else if (needsReferenceType(*Location)) { 1124 // This location can't be expressed without switching to a reference type. 1125 // Start over using that. 1126 Var.UseReferenceType = true; 1127 Var.DefRanges.clear(); 1128 calculateRanges(Var, Ranges); 1129 return; 1130 } 1131 1132 // We can only handle a register or an offseted load of a register. 1133 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1134 continue; 1135 { 1136 LocalVarDefRange DR; 1137 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1138 DR.InMemory = !Location->LoadChain.empty(); 1139 DR.DataOffset = 1140 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1141 if (Location->FragmentInfo) { 1142 DR.IsSubfield = true; 1143 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1144 } else { 1145 DR.IsSubfield = false; 1146 DR.StructOffset = 0; 1147 } 1148 1149 if (Var.DefRanges.empty() || 1150 Var.DefRanges.back().isDifferentLocation(DR)) { 1151 Var.DefRanges.emplace_back(std::move(DR)); 1152 } 1153 } 1154 1155 // Compute the label range. 1156 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1157 const MCSymbol *End = getLabelAfterInsn(Range.second); 1158 if (!End) { 1159 // This range is valid until the next overlapping bitpiece. In the 1160 // common case, ranges will not be bitpieces, so they will overlap. 1161 auto J = std::next(I); 1162 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1163 while (J != E && 1164 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1165 ++J; 1166 if (J != E) 1167 End = getLabelBeforeInsn(J->first); 1168 else 1169 End = Asm->getFunctionEnd(); 1170 } 1171 1172 // If the last range end is our begin, just extend the last range. 1173 // Otherwise make a new range. 1174 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1175 Var.DefRanges.back().Ranges; 1176 if (!R.empty() && R.back().second == Begin) 1177 R.back().second = End; 1178 else 1179 R.emplace_back(Begin, End); 1180 1181 // FIXME: Do more range combining. 1182 } 1183 } 1184 1185 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1186 DenseSet<InlinedEntity> Processed; 1187 // Grab the variable info that was squirreled away in the MMI side-table. 1188 collectVariableInfoFromMFTable(Processed); 1189 1190 for (const auto &I : DbgValues) { 1191 InlinedEntity IV = I.first; 1192 if (Processed.count(IV)) 1193 continue; 1194 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1195 const DILocation *InlinedAt = IV.second; 1196 1197 // Instruction ranges, specifying where IV is accessible. 1198 const auto &Ranges = I.second; 1199 1200 LexicalScope *Scope = nullptr; 1201 if (InlinedAt) 1202 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1203 else 1204 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1205 // If variable scope is not found then skip this variable. 1206 if (!Scope) 1207 continue; 1208 1209 LocalVariable Var; 1210 Var.DIVar = DIVar; 1211 1212 calculateRanges(Var, Ranges); 1213 recordLocalVariable(std::move(Var), Scope); 1214 } 1215 } 1216 1217 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1218 const Function &GV = MF->getFunction(); 1219 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1220 assert(Insertion.second && "function already has info"); 1221 CurFn = Insertion.first->second.get(); 1222 CurFn->FuncId = NextFuncId++; 1223 CurFn->Begin = Asm->getFunctionBegin(); 1224 1225 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1226 1227 // Find the end of the function prolog. First known non-DBG_VALUE and 1228 // non-frame setup location marks the beginning of the function body. 1229 // FIXME: is there a simpler a way to do this? Can we just search 1230 // for the first instruction of the function, not the last of the prolog? 1231 DebugLoc PrologEndLoc; 1232 bool EmptyPrologue = true; 1233 for (const auto &MBB : *MF) { 1234 for (const auto &MI : MBB) { 1235 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1236 MI.getDebugLoc()) { 1237 PrologEndLoc = MI.getDebugLoc(); 1238 break; 1239 } else if (!MI.isMetaInstruction()) { 1240 EmptyPrologue = false; 1241 } 1242 } 1243 } 1244 1245 // Record beginning of function if we have a non-empty prologue. 1246 if (PrologEndLoc && !EmptyPrologue) { 1247 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1248 maybeRecordLocation(FnStartDL, MF); 1249 } 1250 } 1251 1252 static bool shouldEmitUdt(const DIType *T) { 1253 if (!T) 1254 return false; 1255 1256 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1257 if (T->getTag() == dwarf::DW_TAG_typedef) { 1258 if (DIScope *Scope = T->getScope().resolve()) { 1259 switch (Scope->getTag()) { 1260 case dwarf::DW_TAG_structure_type: 1261 case dwarf::DW_TAG_class_type: 1262 case dwarf::DW_TAG_union_type: 1263 return false; 1264 } 1265 } 1266 } 1267 1268 while (true) { 1269 if (!T || T->isForwardDecl()) 1270 return false; 1271 1272 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1273 if (!DT) 1274 return true; 1275 T = DT->getBaseType().resolve(); 1276 } 1277 return true; 1278 } 1279 1280 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1281 // Don't record empty UDTs. 1282 if (Ty->getName().empty()) 1283 return; 1284 if (!shouldEmitUdt(Ty)) 1285 return; 1286 1287 SmallVector<StringRef, 5> QualifiedNameComponents; 1288 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1289 Ty->getScope().resolve(), QualifiedNameComponents); 1290 1291 std::string FullyQualifiedName = 1292 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1293 1294 if (ClosestSubprogram == nullptr) { 1295 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1296 } else if (ClosestSubprogram == CurrentSubprogram) { 1297 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1298 } 1299 1300 // TODO: What if the ClosestSubprogram is neither null or the current 1301 // subprogram? Currently, the UDT just gets dropped on the floor. 1302 // 1303 // The current behavior is not desirable. To get maximal fidelity, we would 1304 // need to perform all type translation before beginning emission of .debug$S 1305 // and then make LocalUDTs a member of FunctionInfo 1306 } 1307 1308 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1309 // Generic dispatch for lowering an unknown type. 1310 switch (Ty->getTag()) { 1311 case dwarf::DW_TAG_array_type: 1312 return lowerTypeArray(cast<DICompositeType>(Ty)); 1313 case dwarf::DW_TAG_typedef: 1314 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1315 case dwarf::DW_TAG_base_type: 1316 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1317 case dwarf::DW_TAG_pointer_type: 1318 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1319 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1320 LLVM_FALLTHROUGH; 1321 case dwarf::DW_TAG_reference_type: 1322 case dwarf::DW_TAG_rvalue_reference_type: 1323 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1324 case dwarf::DW_TAG_ptr_to_member_type: 1325 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1326 case dwarf::DW_TAG_restrict_type: 1327 case dwarf::DW_TAG_const_type: 1328 case dwarf::DW_TAG_volatile_type: 1329 // TODO: add support for DW_TAG_atomic_type here 1330 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1331 case dwarf::DW_TAG_subroutine_type: 1332 if (ClassTy) { 1333 // The member function type of a member function pointer has no 1334 // ThisAdjustment. 1335 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1336 /*ThisAdjustment=*/0, 1337 /*IsStaticMethod=*/false); 1338 } 1339 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1340 case dwarf::DW_TAG_enumeration_type: 1341 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1342 case dwarf::DW_TAG_class_type: 1343 case dwarf::DW_TAG_structure_type: 1344 return lowerTypeClass(cast<DICompositeType>(Ty)); 1345 case dwarf::DW_TAG_union_type: 1346 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1347 case dwarf::DW_TAG_unspecified_type: 1348 return TypeIndex::None(); 1349 default: 1350 // Use the null type index. 1351 return TypeIndex(); 1352 } 1353 } 1354 1355 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1356 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1357 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1358 StringRef TypeName = Ty->getName(); 1359 1360 addToUDTs(Ty); 1361 1362 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1363 TypeName == "HRESULT") 1364 return TypeIndex(SimpleTypeKind::HResult); 1365 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1366 TypeName == "wchar_t") 1367 return TypeIndex(SimpleTypeKind::WideCharacter); 1368 1369 return UnderlyingTypeIndex; 1370 } 1371 1372 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1373 DITypeRef ElementTypeRef = Ty->getBaseType(); 1374 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1375 // IndexType is size_t, which depends on the bitness of the target. 1376 TypeIndex IndexType = getPointerSizeInBytes() == 8 1377 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1378 : TypeIndex(SimpleTypeKind::UInt32Long); 1379 1380 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1381 1382 // Add subranges to array type. 1383 DINodeArray Elements = Ty->getElements(); 1384 for (int i = Elements.size() - 1; i >= 0; --i) { 1385 const DINode *Element = Elements[i]; 1386 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1387 1388 const DISubrange *Subrange = cast<DISubrange>(Element); 1389 assert(Subrange->getLowerBound() == 0 && 1390 "codeview doesn't support subranges with lower bounds"); 1391 int64_t Count = -1; 1392 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1393 Count = CI->getSExtValue(); 1394 1395 // Forward declarations of arrays without a size and VLAs use a count of -1. 1396 // Emit a count of zero in these cases to match what MSVC does for arrays 1397 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1398 // should do for them even if we could distinguish them. 1399 if (Count == -1) 1400 Count = 0; 1401 1402 // Update the element size and element type index for subsequent subranges. 1403 ElementSize *= Count; 1404 1405 // If this is the outermost array, use the size from the array. It will be 1406 // more accurate if we had a VLA or an incomplete element type size. 1407 uint64_t ArraySize = 1408 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1409 1410 StringRef Name = (i == 0) ? Ty->getName() : ""; 1411 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1412 ElementTypeIndex = TypeTable.writeLeafType(AR); 1413 } 1414 1415 return ElementTypeIndex; 1416 } 1417 1418 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1419 TypeIndex Index; 1420 dwarf::TypeKind Kind; 1421 uint32_t ByteSize; 1422 1423 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1424 ByteSize = Ty->getSizeInBits() / 8; 1425 1426 SimpleTypeKind STK = SimpleTypeKind::None; 1427 switch (Kind) { 1428 case dwarf::DW_ATE_address: 1429 // FIXME: Translate 1430 break; 1431 case dwarf::DW_ATE_boolean: 1432 switch (ByteSize) { 1433 case 1: STK = SimpleTypeKind::Boolean8; break; 1434 case 2: STK = SimpleTypeKind::Boolean16; break; 1435 case 4: STK = SimpleTypeKind::Boolean32; break; 1436 case 8: STK = SimpleTypeKind::Boolean64; break; 1437 case 16: STK = SimpleTypeKind::Boolean128; break; 1438 } 1439 break; 1440 case dwarf::DW_ATE_complex_float: 1441 switch (ByteSize) { 1442 case 2: STK = SimpleTypeKind::Complex16; break; 1443 case 4: STK = SimpleTypeKind::Complex32; break; 1444 case 8: STK = SimpleTypeKind::Complex64; break; 1445 case 10: STK = SimpleTypeKind::Complex80; break; 1446 case 16: STK = SimpleTypeKind::Complex128; break; 1447 } 1448 break; 1449 case dwarf::DW_ATE_float: 1450 switch (ByteSize) { 1451 case 2: STK = SimpleTypeKind::Float16; break; 1452 case 4: STK = SimpleTypeKind::Float32; break; 1453 case 6: STK = SimpleTypeKind::Float48; break; 1454 case 8: STK = SimpleTypeKind::Float64; break; 1455 case 10: STK = SimpleTypeKind::Float80; break; 1456 case 16: STK = SimpleTypeKind::Float128; break; 1457 } 1458 break; 1459 case dwarf::DW_ATE_signed: 1460 switch (ByteSize) { 1461 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1462 case 2: STK = SimpleTypeKind::Int16Short; break; 1463 case 4: STK = SimpleTypeKind::Int32; break; 1464 case 8: STK = SimpleTypeKind::Int64Quad; break; 1465 case 16: STK = SimpleTypeKind::Int128Oct; break; 1466 } 1467 break; 1468 case dwarf::DW_ATE_unsigned: 1469 switch (ByteSize) { 1470 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1471 case 2: STK = SimpleTypeKind::UInt16Short; break; 1472 case 4: STK = SimpleTypeKind::UInt32; break; 1473 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1474 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1475 } 1476 break; 1477 case dwarf::DW_ATE_UTF: 1478 switch (ByteSize) { 1479 case 2: STK = SimpleTypeKind::Character16; break; 1480 case 4: STK = SimpleTypeKind::Character32; break; 1481 } 1482 break; 1483 case dwarf::DW_ATE_signed_char: 1484 if (ByteSize == 1) 1485 STK = SimpleTypeKind::SignedCharacter; 1486 break; 1487 case dwarf::DW_ATE_unsigned_char: 1488 if (ByteSize == 1) 1489 STK = SimpleTypeKind::UnsignedCharacter; 1490 break; 1491 default: 1492 break; 1493 } 1494 1495 // Apply some fixups based on the source-level type name. 1496 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1497 STK = SimpleTypeKind::Int32Long; 1498 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1499 STK = SimpleTypeKind::UInt32Long; 1500 if (STK == SimpleTypeKind::UInt16Short && 1501 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1502 STK = SimpleTypeKind::WideCharacter; 1503 if ((STK == SimpleTypeKind::SignedCharacter || 1504 STK == SimpleTypeKind::UnsignedCharacter) && 1505 Ty->getName() == "char") 1506 STK = SimpleTypeKind::NarrowCharacter; 1507 1508 return TypeIndex(STK); 1509 } 1510 1511 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1512 PointerOptions PO) { 1513 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1514 1515 // Pointers to simple types without any options can use SimpleTypeMode, rather 1516 // than having a dedicated pointer type record. 1517 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1518 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1519 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1520 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1521 ? SimpleTypeMode::NearPointer64 1522 : SimpleTypeMode::NearPointer32; 1523 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1524 } 1525 1526 PointerKind PK = 1527 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1528 PointerMode PM = PointerMode::Pointer; 1529 switch (Ty->getTag()) { 1530 default: llvm_unreachable("not a pointer tag type"); 1531 case dwarf::DW_TAG_pointer_type: 1532 PM = PointerMode::Pointer; 1533 break; 1534 case dwarf::DW_TAG_reference_type: 1535 PM = PointerMode::LValueReference; 1536 break; 1537 case dwarf::DW_TAG_rvalue_reference_type: 1538 PM = PointerMode::RValueReference; 1539 break; 1540 } 1541 1542 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1543 return TypeTable.writeLeafType(PR); 1544 } 1545 1546 static PointerToMemberRepresentation 1547 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1548 // SizeInBytes being zero generally implies that the member pointer type was 1549 // incomplete, which can happen if it is part of a function prototype. In this 1550 // case, use the unknown model instead of the general model. 1551 if (IsPMF) { 1552 switch (Flags & DINode::FlagPtrToMemberRep) { 1553 case 0: 1554 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1555 : PointerToMemberRepresentation::GeneralFunction; 1556 case DINode::FlagSingleInheritance: 1557 return PointerToMemberRepresentation::SingleInheritanceFunction; 1558 case DINode::FlagMultipleInheritance: 1559 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1560 case DINode::FlagVirtualInheritance: 1561 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1562 } 1563 } else { 1564 switch (Flags & DINode::FlagPtrToMemberRep) { 1565 case 0: 1566 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1567 : PointerToMemberRepresentation::GeneralData; 1568 case DINode::FlagSingleInheritance: 1569 return PointerToMemberRepresentation::SingleInheritanceData; 1570 case DINode::FlagMultipleInheritance: 1571 return PointerToMemberRepresentation::MultipleInheritanceData; 1572 case DINode::FlagVirtualInheritance: 1573 return PointerToMemberRepresentation::VirtualInheritanceData; 1574 } 1575 } 1576 llvm_unreachable("invalid ptr to member representation"); 1577 } 1578 1579 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1580 PointerOptions PO) { 1581 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1582 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1583 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1584 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1585 : PointerKind::Near32; 1586 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1587 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1588 : PointerMode::PointerToDataMember; 1589 1590 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1591 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1592 MemberPointerInfo MPI( 1593 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1594 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1595 return TypeTable.writeLeafType(PR); 1596 } 1597 1598 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1599 /// have a translation, use the NearC convention. 1600 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1601 switch (DwarfCC) { 1602 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1603 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1604 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1605 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1606 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1607 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1608 } 1609 return CallingConvention::NearC; 1610 } 1611 1612 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1613 ModifierOptions Mods = ModifierOptions::None; 1614 PointerOptions PO = PointerOptions::None; 1615 bool IsModifier = true; 1616 const DIType *BaseTy = Ty; 1617 while (IsModifier && BaseTy) { 1618 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1619 switch (BaseTy->getTag()) { 1620 case dwarf::DW_TAG_const_type: 1621 Mods |= ModifierOptions::Const; 1622 PO |= PointerOptions::Const; 1623 break; 1624 case dwarf::DW_TAG_volatile_type: 1625 Mods |= ModifierOptions::Volatile; 1626 PO |= PointerOptions::Volatile; 1627 break; 1628 case dwarf::DW_TAG_restrict_type: 1629 // Only pointer types be marked with __restrict. There is no known flag 1630 // for __restrict in LF_MODIFIER records. 1631 PO |= PointerOptions::Restrict; 1632 break; 1633 default: 1634 IsModifier = false; 1635 break; 1636 } 1637 if (IsModifier) 1638 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1639 } 1640 1641 // Check if the inner type will use an LF_POINTER record. If so, the 1642 // qualifiers will go in the LF_POINTER record. This comes up for types like 1643 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1644 // char *'. 1645 if (BaseTy) { 1646 switch (BaseTy->getTag()) { 1647 case dwarf::DW_TAG_pointer_type: 1648 case dwarf::DW_TAG_reference_type: 1649 case dwarf::DW_TAG_rvalue_reference_type: 1650 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1651 case dwarf::DW_TAG_ptr_to_member_type: 1652 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1653 default: 1654 break; 1655 } 1656 } 1657 1658 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1659 1660 // Return the base type index if there aren't any modifiers. For example, the 1661 // metadata could contain restrict wrappers around non-pointer types. 1662 if (Mods == ModifierOptions::None) 1663 return ModifiedTI; 1664 1665 ModifierRecord MR(ModifiedTI, Mods); 1666 return TypeTable.writeLeafType(MR); 1667 } 1668 1669 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1670 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1671 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1672 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1673 1674 // MSVC uses type none for variadic argument. 1675 if (ReturnAndArgTypeIndices.size() > 1 && 1676 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1677 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1678 } 1679 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1680 ArrayRef<TypeIndex> ArgTypeIndices = None; 1681 if (!ReturnAndArgTypeIndices.empty()) { 1682 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1683 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1684 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1685 } 1686 1687 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1688 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1689 1690 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1691 1692 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1693 ArgTypeIndices.size(), ArgListIndex); 1694 return TypeTable.writeLeafType(Procedure); 1695 } 1696 1697 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1698 const DIType *ClassTy, 1699 int ThisAdjustment, 1700 bool IsStaticMethod) { 1701 // Lower the containing class type. 1702 TypeIndex ClassType = getTypeIndex(ClassTy); 1703 1704 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1705 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1706 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1707 1708 // MSVC uses type none for variadic argument. 1709 if (ReturnAndArgTypeIndices.size() > 1 && 1710 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1711 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1712 } 1713 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1714 ArrayRef<TypeIndex> ArgTypeIndices = None; 1715 if (!ReturnAndArgTypeIndices.empty()) { 1716 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1717 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1718 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1719 } 1720 TypeIndex ThisTypeIndex; 1721 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1722 ThisTypeIndex = ArgTypeIndices.front(); 1723 ArgTypeIndices = ArgTypeIndices.drop_front(); 1724 } 1725 1726 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1727 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1728 1729 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1730 1731 // TODO: Need to use the correct values for FunctionOptions. 1732 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1733 FunctionOptions::None, ArgTypeIndices.size(), 1734 ArgListIndex, ThisAdjustment); 1735 return TypeTable.writeLeafType(MFR); 1736 } 1737 1738 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1739 unsigned VSlotCount = 1740 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1741 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1742 1743 VFTableShapeRecord VFTSR(Slots); 1744 return TypeTable.writeLeafType(VFTSR); 1745 } 1746 1747 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1748 switch (Flags & DINode::FlagAccessibility) { 1749 case DINode::FlagPrivate: return MemberAccess::Private; 1750 case DINode::FlagPublic: return MemberAccess::Public; 1751 case DINode::FlagProtected: return MemberAccess::Protected; 1752 case 0: 1753 // If there was no explicit access control, provide the default for the tag. 1754 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1755 : MemberAccess::Public; 1756 } 1757 llvm_unreachable("access flags are exclusive"); 1758 } 1759 1760 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1761 if (SP->isArtificial()) 1762 return MethodOptions::CompilerGenerated; 1763 1764 // FIXME: Handle other MethodOptions. 1765 1766 return MethodOptions::None; 1767 } 1768 1769 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1770 bool Introduced) { 1771 if (SP->getFlags() & DINode::FlagStaticMember) 1772 return MethodKind::Static; 1773 1774 switch (SP->getVirtuality()) { 1775 case dwarf::DW_VIRTUALITY_none: 1776 break; 1777 case dwarf::DW_VIRTUALITY_virtual: 1778 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1779 case dwarf::DW_VIRTUALITY_pure_virtual: 1780 return Introduced ? MethodKind::PureIntroducingVirtual 1781 : MethodKind::PureVirtual; 1782 default: 1783 llvm_unreachable("unhandled virtuality case"); 1784 } 1785 1786 return MethodKind::Vanilla; 1787 } 1788 1789 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1790 switch (Ty->getTag()) { 1791 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1792 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1793 } 1794 llvm_unreachable("unexpected tag"); 1795 } 1796 1797 /// Return ClassOptions that should be present on both the forward declaration 1798 /// and the defintion of a tag type. 1799 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1800 ClassOptions CO = ClassOptions::None; 1801 1802 // MSVC always sets this flag, even for local types. Clang doesn't always 1803 // appear to give every type a linkage name, which may be problematic for us. 1804 // FIXME: Investigate the consequences of not following them here. 1805 if (!Ty->getIdentifier().empty()) 1806 CO |= ClassOptions::HasUniqueName; 1807 1808 // Put the Nested flag on a type if it appears immediately inside a tag type. 1809 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1810 // here. That flag is only set on definitions, and not forward declarations. 1811 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1812 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1813 CO |= ClassOptions::Nested; 1814 1815 // Put the Scoped flag on function-local types. 1816 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1817 Scope = Scope->getScope().resolve()) { 1818 if (isa<DISubprogram>(Scope)) { 1819 CO |= ClassOptions::Scoped; 1820 break; 1821 } 1822 } 1823 1824 return CO; 1825 } 1826 1827 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1828 switch (Ty->getTag()) { 1829 case dwarf::DW_TAG_class_type: 1830 case dwarf::DW_TAG_structure_type: 1831 case dwarf::DW_TAG_union_type: 1832 case dwarf::DW_TAG_enumeration_type: 1833 break; 1834 default: 1835 return; 1836 } 1837 1838 if (const auto *File = Ty->getFile()) { 1839 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1840 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1841 1842 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1843 TypeTable.writeLeafType(USLR); 1844 } 1845 } 1846 1847 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1848 ClassOptions CO = getCommonClassOptions(Ty); 1849 TypeIndex FTI; 1850 unsigned EnumeratorCount = 0; 1851 1852 if (Ty->isForwardDecl()) { 1853 CO |= ClassOptions::ForwardReference; 1854 } else { 1855 ContinuationRecordBuilder ContinuationBuilder; 1856 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1857 for (const DINode *Element : Ty->getElements()) { 1858 // We assume that the frontend provides all members in source declaration 1859 // order, which is what MSVC does. 1860 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1861 EnumeratorRecord ER(MemberAccess::Public, 1862 APSInt::getUnsigned(Enumerator->getValue()), 1863 Enumerator->getName()); 1864 ContinuationBuilder.writeMemberType(ER); 1865 EnumeratorCount++; 1866 } 1867 } 1868 FTI = TypeTable.insertRecord(ContinuationBuilder); 1869 } 1870 1871 std::string FullName = getFullyQualifiedName(Ty); 1872 1873 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1874 getTypeIndex(Ty->getBaseType())); 1875 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 1876 1877 addUDTSrcLine(Ty, EnumTI); 1878 1879 return EnumTI; 1880 } 1881 1882 //===----------------------------------------------------------------------===// 1883 // ClassInfo 1884 //===----------------------------------------------------------------------===// 1885 1886 struct llvm::ClassInfo { 1887 struct MemberInfo { 1888 const DIDerivedType *MemberTypeNode; 1889 uint64_t BaseOffset; 1890 }; 1891 // [MemberInfo] 1892 using MemberList = std::vector<MemberInfo>; 1893 1894 using MethodsList = TinyPtrVector<const DISubprogram *>; 1895 // MethodName -> MethodsList 1896 using MethodsMap = MapVector<MDString *, MethodsList>; 1897 1898 /// Base classes. 1899 std::vector<const DIDerivedType *> Inheritance; 1900 1901 /// Direct members. 1902 MemberList Members; 1903 // Direct overloaded methods gathered by name. 1904 MethodsMap Methods; 1905 1906 TypeIndex VShapeTI; 1907 1908 std::vector<const DIType *> NestedTypes; 1909 }; 1910 1911 void CodeViewDebug::clear() { 1912 assert(CurFn == nullptr); 1913 FileIdMap.clear(); 1914 FnDebugInfo.clear(); 1915 FileToFilepathMap.clear(); 1916 LocalUDTs.clear(); 1917 GlobalUDTs.clear(); 1918 TypeIndices.clear(); 1919 CompleteTypeIndices.clear(); 1920 } 1921 1922 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1923 const DIDerivedType *DDTy) { 1924 if (!DDTy->getName().empty()) { 1925 Info.Members.push_back({DDTy, 0}); 1926 return; 1927 } 1928 1929 // An unnamed member may represent a nested struct or union. Attempt to 1930 // interpret the unnamed member as a DICompositeType possibly wrapped in 1931 // qualifier types. Add all the indirect fields to the current record if that 1932 // succeeds, and drop the member if that fails. 1933 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1934 uint64_t Offset = DDTy->getOffsetInBits(); 1935 const DIType *Ty = DDTy->getBaseType().resolve(); 1936 bool FullyResolved = false; 1937 while (!FullyResolved) { 1938 switch (Ty->getTag()) { 1939 case dwarf::DW_TAG_const_type: 1940 case dwarf::DW_TAG_volatile_type: 1941 // FIXME: we should apply the qualifier types to the indirect fields 1942 // rather than dropping them. 1943 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 1944 break; 1945 default: 1946 FullyResolved = true; 1947 break; 1948 } 1949 } 1950 1951 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 1952 if (!DCTy) 1953 return; 1954 1955 ClassInfo NestedInfo = collectClassInfo(DCTy); 1956 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1957 Info.Members.push_back( 1958 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1959 } 1960 1961 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1962 ClassInfo Info; 1963 // Add elements to structure type. 1964 DINodeArray Elements = Ty->getElements(); 1965 for (auto *Element : Elements) { 1966 // We assume that the frontend provides all members in source declaration 1967 // order, which is what MSVC does. 1968 if (!Element) 1969 continue; 1970 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1971 Info.Methods[SP->getRawName()].push_back(SP); 1972 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1973 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1974 collectMemberInfo(Info, DDTy); 1975 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1976 Info.Inheritance.push_back(DDTy); 1977 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1978 DDTy->getName() == "__vtbl_ptr_type") { 1979 Info.VShapeTI = getTypeIndex(DDTy); 1980 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1981 Info.NestedTypes.push_back(DDTy); 1982 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1983 // Ignore friend members. It appears that MSVC emitted info about 1984 // friends in the past, but modern versions do not. 1985 } 1986 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1987 Info.NestedTypes.push_back(Composite); 1988 } 1989 // Skip other unrecognized kinds of elements. 1990 } 1991 return Info; 1992 } 1993 1994 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 1995 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 1996 // if a complete type should be emitted instead of a forward reference. 1997 return Ty->getName().empty() && Ty->getIdentifier().empty() && 1998 !Ty->isForwardDecl(); 1999 } 2000 2001 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2002 // Emit the complete type for unnamed structs. C++ classes with methods 2003 // which have a circular reference back to the class type are expected to 2004 // be named by the front-end and should not be "unnamed". C unnamed 2005 // structs should not have circular references. 2006 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2007 // If this unnamed complete type is already in the process of being defined 2008 // then the description of the type is malformed and cannot be emitted 2009 // into CodeView correctly so report a fatal error. 2010 auto I = CompleteTypeIndices.find(Ty); 2011 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2012 report_fatal_error("cannot debug circular reference to unnamed type"); 2013 return getCompleteTypeIndex(Ty); 2014 } 2015 2016 // First, construct the forward decl. Don't look into Ty to compute the 2017 // forward decl options, since it might not be available in all TUs. 2018 TypeRecordKind Kind = getRecordKind(Ty); 2019 ClassOptions CO = 2020 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2021 std::string FullName = getFullyQualifiedName(Ty); 2022 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2023 FullName, Ty->getIdentifier()); 2024 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2025 if (!Ty->isForwardDecl()) 2026 DeferredCompleteTypes.push_back(Ty); 2027 return FwdDeclTI; 2028 } 2029 2030 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2031 // Construct the field list and complete type record. 2032 TypeRecordKind Kind = getRecordKind(Ty); 2033 ClassOptions CO = getCommonClassOptions(Ty); 2034 TypeIndex FieldTI; 2035 TypeIndex VShapeTI; 2036 unsigned FieldCount; 2037 bool ContainsNestedClass; 2038 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2039 lowerRecordFieldList(Ty); 2040 2041 if (ContainsNestedClass) 2042 CO |= ClassOptions::ContainsNestedClass; 2043 2044 std::string FullName = getFullyQualifiedName(Ty); 2045 2046 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2047 2048 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2049 SizeInBytes, FullName, Ty->getIdentifier()); 2050 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2051 2052 addUDTSrcLine(Ty, ClassTI); 2053 2054 addToUDTs(Ty); 2055 2056 return ClassTI; 2057 } 2058 2059 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2060 // Emit the complete type for unnamed unions. 2061 if (shouldAlwaysEmitCompleteClassType(Ty)) 2062 return getCompleteTypeIndex(Ty); 2063 2064 ClassOptions CO = 2065 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2066 std::string FullName = getFullyQualifiedName(Ty); 2067 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2068 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2069 if (!Ty->isForwardDecl()) 2070 DeferredCompleteTypes.push_back(Ty); 2071 return FwdDeclTI; 2072 } 2073 2074 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2075 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2076 TypeIndex FieldTI; 2077 unsigned FieldCount; 2078 bool ContainsNestedClass; 2079 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2080 lowerRecordFieldList(Ty); 2081 2082 if (ContainsNestedClass) 2083 CO |= ClassOptions::ContainsNestedClass; 2084 2085 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2086 std::string FullName = getFullyQualifiedName(Ty); 2087 2088 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2089 Ty->getIdentifier()); 2090 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2091 2092 addUDTSrcLine(Ty, UnionTI); 2093 2094 addToUDTs(Ty); 2095 2096 return UnionTI; 2097 } 2098 2099 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2100 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2101 // Manually count members. MSVC appears to count everything that generates a 2102 // field list record. Each individual overload in a method overload group 2103 // contributes to this count, even though the overload group is a single field 2104 // list record. 2105 unsigned MemberCount = 0; 2106 ClassInfo Info = collectClassInfo(Ty); 2107 ContinuationRecordBuilder ContinuationBuilder; 2108 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2109 2110 // Create base classes. 2111 for (const DIDerivedType *I : Info.Inheritance) { 2112 if (I->getFlags() & DINode::FlagVirtual) { 2113 // Virtual base. 2114 unsigned VBPtrOffset = I->getVBPtrOffset(); 2115 // FIXME: Despite the accessor name, the offset is really in bytes. 2116 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2117 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2118 ? TypeRecordKind::IndirectVirtualBaseClass 2119 : TypeRecordKind::VirtualBaseClass; 2120 VirtualBaseClassRecord VBCR( 2121 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2122 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2123 VBTableIndex); 2124 2125 ContinuationBuilder.writeMemberType(VBCR); 2126 MemberCount++; 2127 } else { 2128 assert(I->getOffsetInBits() % 8 == 0 && 2129 "bases must be on byte boundaries"); 2130 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2131 getTypeIndex(I->getBaseType()), 2132 I->getOffsetInBits() / 8); 2133 ContinuationBuilder.writeMemberType(BCR); 2134 MemberCount++; 2135 } 2136 } 2137 2138 // Create members. 2139 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2140 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2141 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2142 StringRef MemberName = Member->getName(); 2143 MemberAccess Access = 2144 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2145 2146 if (Member->isStaticMember()) { 2147 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2148 ContinuationBuilder.writeMemberType(SDMR); 2149 MemberCount++; 2150 continue; 2151 } 2152 2153 // Virtual function pointer member. 2154 if ((Member->getFlags() & DINode::FlagArtificial) && 2155 Member->getName().startswith("_vptr$")) { 2156 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2157 ContinuationBuilder.writeMemberType(VFPR); 2158 MemberCount++; 2159 continue; 2160 } 2161 2162 // Data member. 2163 uint64_t MemberOffsetInBits = 2164 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2165 if (Member->isBitField()) { 2166 uint64_t StartBitOffset = MemberOffsetInBits; 2167 if (const auto *CI = 2168 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2169 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2170 } 2171 StartBitOffset -= MemberOffsetInBits; 2172 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2173 StartBitOffset); 2174 MemberBaseType = TypeTable.writeLeafType(BFR); 2175 } 2176 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2177 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2178 MemberName); 2179 ContinuationBuilder.writeMemberType(DMR); 2180 MemberCount++; 2181 } 2182 2183 // Create methods 2184 for (auto &MethodItr : Info.Methods) { 2185 StringRef Name = MethodItr.first->getString(); 2186 2187 std::vector<OneMethodRecord> Methods; 2188 for (const DISubprogram *SP : MethodItr.second) { 2189 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2190 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2191 2192 unsigned VFTableOffset = -1; 2193 if (Introduced) 2194 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2195 2196 Methods.push_back(OneMethodRecord( 2197 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2198 translateMethodKindFlags(SP, Introduced), 2199 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2200 MemberCount++; 2201 } 2202 assert(!Methods.empty() && "Empty methods map entry"); 2203 if (Methods.size() == 1) 2204 ContinuationBuilder.writeMemberType(Methods[0]); 2205 else { 2206 // FIXME: Make this use its own ContinuationBuilder so that 2207 // MethodOverloadList can be split correctly. 2208 MethodOverloadListRecord MOLR(Methods); 2209 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2210 2211 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2212 ContinuationBuilder.writeMemberType(OMR); 2213 } 2214 } 2215 2216 // Create nested classes. 2217 for (const DIType *Nested : Info.NestedTypes) { 2218 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2219 ContinuationBuilder.writeMemberType(R); 2220 MemberCount++; 2221 } 2222 2223 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2224 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2225 !Info.NestedTypes.empty()); 2226 } 2227 2228 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2229 if (!VBPType.getIndex()) { 2230 // Make a 'const int *' type. 2231 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2232 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2233 2234 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2235 : PointerKind::Near32; 2236 PointerMode PM = PointerMode::Pointer; 2237 PointerOptions PO = PointerOptions::None; 2238 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2239 VBPType = TypeTable.writeLeafType(PR); 2240 } 2241 2242 return VBPType; 2243 } 2244 2245 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2246 const DIType *Ty = TypeRef.resolve(); 2247 const DIType *ClassTy = ClassTyRef.resolve(); 2248 2249 // The null DIType is the void type. Don't try to hash it. 2250 if (!Ty) 2251 return TypeIndex::Void(); 2252 2253 // Check if we've already translated this type. Don't try to do a 2254 // get-or-create style insertion that caches the hash lookup across the 2255 // lowerType call. It will update the TypeIndices map. 2256 auto I = TypeIndices.find({Ty, ClassTy}); 2257 if (I != TypeIndices.end()) 2258 return I->second; 2259 2260 TypeLoweringScope S(*this); 2261 TypeIndex TI = lowerType(Ty, ClassTy); 2262 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2263 } 2264 2265 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2266 DIType *Ty = TypeRef.resolve(); 2267 PointerRecord PR(getTypeIndex(Ty), 2268 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2269 : PointerKind::Near32, 2270 PointerMode::LValueReference, PointerOptions::None, 2271 Ty->getSizeInBits() / 8); 2272 return TypeTable.writeLeafType(PR); 2273 } 2274 2275 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2276 const DIType *Ty = TypeRef.resolve(); 2277 2278 // The null DIType is the void type. Don't try to hash it. 2279 if (!Ty) 2280 return TypeIndex::Void(); 2281 2282 // If this is a non-record type, the complete type index is the same as the 2283 // normal type index. Just call getTypeIndex. 2284 switch (Ty->getTag()) { 2285 case dwarf::DW_TAG_class_type: 2286 case dwarf::DW_TAG_structure_type: 2287 case dwarf::DW_TAG_union_type: 2288 break; 2289 default: 2290 return getTypeIndex(Ty); 2291 } 2292 2293 // Check if we've already translated the complete record type. 2294 const auto *CTy = cast<DICompositeType>(Ty); 2295 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2296 if (!InsertResult.second) 2297 return InsertResult.first->second; 2298 2299 TypeLoweringScope S(*this); 2300 2301 // Make sure the forward declaration is emitted first. It's unclear if this 2302 // is necessary, but MSVC does it, and we should follow suit until we can show 2303 // otherwise. 2304 // We only emit a forward declaration for named types. 2305 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2306 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2307 2308 // Just use the forward decl if we don't have complete type info. This 2309 // might happen if the frontend is using modules and expects the complete 2310 // definition to be emitted elsewhere. 2311 if (CTy->isForwardDecl()) 2312 return FwdDeclTI; 2313 } 2314 2315 TypeIndex TI; 2316 switch (CTy->getTag()) { 2317 case dwarf::DW_TAG_class_type: 2318 case dwarf::DW_TAG_structure_type: 2319 TI = lowerCompleteTypeClass(CTy); 2320 break; 2321 case dwarf::DW_TAG_union_type: 2322 TI = lowerCompleteTypeUnion(CTy); 2323 break; 2324 default: 2325 llvm_unreachable("not a record"); 2326 } 2327 2328 // Update the type index associated with this CompositeType. This cannot 2329 // use the 'InsertResult' iterator above because it is potentially 2330 // invalidated by map insertions which can occur while lowering the class 2331 // type above. 2332 CompleteTypeIndices[CTy] = TI; 2333 return TI; 2334 } 2335 2336 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2337 /// and do this until fixpoint, as each complete record type typically 2338 /// references 2339 /// many other record types. 2340 void CodeViewDebug::emitDeferredCompleteTypes() { 2341 SmallVector<const DICompositeType *, 4> TypesToEmit; 2342 while (!DeferredCompleteTypes.empty()) { 2343 std::swap(DeferredCompleteTypes, TypesToEmit); 2344 for (const DICompositeType *RecordTy : TypesToEmit) 2345 getCompleteTypeIndex(RecordTy); 2346 TypesToEmit.clear(); 2347 } 2348 } 2349 2350 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2351 // Get the sorted list of parameters and emit them first. 2352 SmallVector<const LocalVariable *, 6> Params; 2353 for (const LocalVariable &L : Locals) 2354 if (L.DIVar->isParameter()) 2355 Params.push_back(&L); 2356 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2357 return L->DIVar->getArg() < R->DIVar->getArg(); 2358 }); 2359 for (const LocalVariable *L : Params) 2360 emitLocalVariable(*L); 2361 2362 // Next emit all non-parameters in the order that we found them. 2363 for (const LocalVariable &L : Locals) 2364 if (!L.DIVar->isParameter()) 2365 emitLocalVariable(L); 2366 } 2367 2368 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2369 // LocalSym record, see SymbolRecord.h for more info. 2370 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2371 *LocalEnd = MMI->getContext().createTempSymbol(); 2372 OS.AddComment("Record length"); 2373 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2374 OS.EmitLabel(LocalBegin); 2375 2376 OS.AddComment("Record kind: S_LOCAL"); 2377 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2378 2379 LocalSymFlags Flags = LocalSymFlags::None; 2380 if (Var.DIVar->isParameter()) 2381 Flags |= LocalSymFlags::IsParameter; 2382 if (Var.DefRanges.empty()) 2383 Flags |= LocalSymFlags::IsOptimizedOut; 2384 2385 OS.AddComment("TypeIndex"); 2386 TypeIndex TI = Var.UseReferenceType 2387 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2388 : getCompleteTypeIndex(Var.DIVar->getType()); 2389 OS.EmitIntValue(TI.getIndex(), 4); 2390 OS.AddComment("Flags"); 2391 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2392 // Truncate the name so we won't overflow the record length field. 2393 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2394 OS.EmitLabel(LocalEnd); 2395 2396 // Calculate the on disk prefix of the appropriate def range record. The 2397 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2398 // should be big enough to hold all forms without memory allocation. 2399 SmallString<20> BytePrefix; 2400 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2401 BytePrefix.clear(); 2402 if (DefRange.InMemory) { 2403 uint16_t RegRelFlags = 0; 2404 if (DefRange.IsSubfield) { 2405 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2406 (DefRange.StructOffset 2407 << DefRangeRegisterRelSym::OffsetInParentShift); 2408 } 2409 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2410 Sym.Hdr.Register = DefRange.CVRegister; 2411 Sym.Hdr.Flags = RegRelFlags; 2412 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2413 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2414 BytePrefix += 2415 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2416 BytePrefix += 2417 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2418 } else { 2419 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2420 if (DefRange.IsSubfield) { 2421 // Unclear what matters here. 2422 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2423 Sym.Hdr.Register = DefRange.CVRegister; 2424 Sym.Hdr.MayHaveNoName = 0; 2425 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2426 2427 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2428 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2429 sizeof(SymKind)); 2430 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2431 sizeof(Sym.Hdr)); 2432 } else { 2433 // Unclear what matters here. 2434 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2435 Sym.Hdr.Register = DefRange.CVRegister; 2436 Sym.Hdr.MayHaveNoName = 0; 2437 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2438 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2439 sizeof(SymKind)); 2440 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2441 sizeof(Sym.Hdr)); 2442 } 2443 } 2444 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2445 } 2446 } 2447 2448 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2449 const FunctionInfo& FI) { 2450 for (LexicalBlock *Block : Blocks) 2451 emitLexicalBlock(*Block, FI); 2452 } 2453 2454 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2455 /// lexical block scope. 2456 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2457 const FunctionInfo& FI) { 2458 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2459 *RecordEnd = MMI->getContext().createTempSymbol(); 2460 2461 // Lexical block symbol record. 2462 OS.AddComment("Record length"); 2463 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2464 OS.EmitLabel(RecordBegin); 2465 OS.AddComment("Record kind: S_BLOCK32"); 2466 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2467 OS.AddComment("PtrParent"); 2468 OS.EmitIntValue(0, 4); // PtrParent 2469 OS.AddComment("PtrEnd"); 2470 OS.EmitIntValue(0, 4); // PtrEnd 2471 OS.AddComment("Code size"); 2472 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2473 OS.AddComment("Function section relative address"); 2474 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2475 OS.AddComment("Function section index"); 2476 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2477 OS.AddComment("Lexical block name"); 2478 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2479 OS.EmitLabel(RecordEnd); 2480 2481 // Emit variables local to this lexical block. 2482 emitLocalVariableList(Block.Locals); 2483 2484 // Emit lexical blocks contained within this block. 2485 emitLexicalBlockList(Block.Children, FI); 2486 2487 // Close the lexical block scope. 2488 OS.AddComment("Record length"); 2489 OS.EmitIntValue(2, 2); // Record Length 2490 OS.AddComment("Record kind: S_END"); 2491 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2492 } 2493 2494 /// Convenience routine for collecting lexical block information for a list 2495 /// of lexical scopes. 2496 void CodeViewDebug::collectLexicalBlockInfo( 2497 SmallVectorImpl<LexicalScope *> &Scopes, 2498 SmallVectorImpl<LexicalBlock *> &Blocks, 2499 SmallVectorImpl<LocalVariable> &Locals) { 2500 for (LexicalScope *Scope : Scopes) 2501 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2502 } 2503 2504 /// Populate the lexical blocks and local variable lists of the parent with 2505 /// information about the specified lexical scope. 2506 void CodeViewDebug::collectLexicalBlockInfo( 2507 LexicalScope &Scope, 2508 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2509 SmallVectorImpl<LocalVariable> &ParentLocals) { 2510 if (Scope.isAbstractScope()) 2511 return; 2512 2513 auto LocalsIter = ScopeVariables.find(&Scope); 2514 if (LocalsIter == ScopeVariables.end()) { 2515 // This scope does not contain variables and can be eliminated. 2516 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2517 return; 2518 } 2519 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2520 2521 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2522 if (!DILB) { 2523 // This scope is not a lexical block and can be eliminated, but keep any 2524 // local variables it contains. 2525 ParentLocals.append(Locals.begin(), Locals.end()); 2526 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2527 return; 2528 } 2529 2530 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2531 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2532 // This lexical block scope has too many address ranges to represent in the 2533 // current CodeView format or does not have a valid address range. 2534 // Eliminate this lexical scope and promote any locals it contains to the 2535 // parent scope. 2536 // 2537 // For lexical scopes with multiple address ranges you may be tempted to 2538 // construct a single range covering every instruction where the block is 2539 // live and everything in between. Unfortunately, Visual Studio only 2540 // displays variables from the first matching lexical block scope. If the 2541 // first lexical block contains exception handling code or cold code which 2542 // is moved to the bottom of the routine creating a single range covering 2543 // nearly the entire routine, then it will hide all other lexical blocks 2544 // and the variables they contain. 2545 // 2546 ParentLocals.append(Locals.begin(), Locals.end()); 2547 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2548 return; 2549 } 2550 2551 // Create a new CodeView lexical block for this lexical scope. If we've 2552 // seen this DILexicalBlock before then the scope tree is malformed and 2553 // we can handle this gracefully by not processing it a second time. 2554 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2555 if (!BlockInsertion.second) 2556 return; 2557 2558 // Create a lexical block containing the local variables and collect the 2559 // the lexical block information for the children. 2560 const InsnRange &Range = Ranges.front(); 2561 assert(Range.first && Range.second); 2562 LexicalBlock &Block = BlockInsertion.first->second; 2563 Block.Begin = getLabelBeforeInsn(Range.first); 2564 Block.End = getLabelAfterInsn(Range.second); 2565 assert(Block.Begin && "missing label for scope begin"); 2566 assert(Block.End && "missing label for scope end"); 2567 Block.Name = DILB->getName(); 2568 Block.Locals = std::move(Locals); 2569 ParentBlocks.push_back(&Block); 2570 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2571 } 2572 2573 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2574 const Function &GV = MF->getFunction(); 2575 assert(FnDebugInfo.count(&GV)); 2576 assert(CurFn == FnDebugInfo[&GV].get()); 2577 2578 collectVariableInfo(GV.getSubprogram()); 2579 2580 // Build the lexical block structure to emit for this routine. 2581 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2582 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2583 2584 // Clear the scope and variable information from the map which will not be 2585 // valid after we have finished processing this routine. This also prepares 2586 // the map for the subsequent routine. 2587 ScopeVariables.clear(); 2588 2589 // Don't emit anything if we don't have any line tables. 2590 // Thunks are compiler-generated and probably won't have source correlation. 2591 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2592 FnDebugInfo.erase(&GV); 2593 CurFn = nullptr; 2594 return; 2595 } 2596 2597 CurFn->Annotations = MF->getCodeViewAnnotations(); 2598 2599 CurFn->End = Asm->getFunctionEnd(); 2600 2601 CurFn = nullptr; 2602 } 2603 2604 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2605 DebugHandlerBase::beginInstruction(MI); 2606 2607 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2608 if (!Asm || !CurFn || MI->isDebugInstr() || 2609 MI->getFlag(MachineInstr::FrameSetup)) 2610 return; 2611 2612 // If the first instruction of a new MBB has no location, find the first 2613 // instruction with a location and use that. 2614 DebugLoc DL = MI->getDebugLoc(); 2615 if (!DL && MI->getParent() != PrevInstBB) { 2616 for (const auto &NextMI : *MI->getParent()) { 2617 if (NextMI.isDebugInstr()) 2618 continue; 2619 DL = NextMI.getDebugLoc(); 2620 if (DL) 2621 break; 2622 } 2623 } 2624 PrevInstBB = MI->getParent(); 2625 2626 // If we still don't have a debug location, don't record a location. 2627 if (!DL) 2628 return; 2629 2630 maybeRecordLocation(DL, Asm->MF); 2631 } 2632 2633 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2634 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2635 *EndLabel = MMI->getContext().createTempSymbol(); 2636 OS.EmitIntValue(unsigned(Kind), 4); 2637 OS.AddComment("Subsection size"); 2638 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2639 OS.EmitLabel(BeginLabel); 2640 return EndLabel; 2641 } 2642 2643 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2644 OS.EmitLabel(EndLabel); 2645 // Every subsection must be aligned to a 4-byte boundary. 2646 OS.EmitValueToAlignment(4); 2647 } 2648 2649 void CodeViewDebug::emitDebugInfoForUDTs( 2650 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2651 for (const auto &UDT : UDTs) { 2652 const DIType *T = UDT.second; 2653 assert(shouldEmitUdt(T)); 2654 2655 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2656 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2657 OS.AddComment("Record length"); 2658 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2659 OS.EmitLabel(UDTRecordBegin); 2660 2661 OS.AddComment("Record kind: S_UDT"); 2662 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2663 2664 OS.AddComment("Type"); 2665 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2666 2667 emitNullTerminatedSymbolName(OS, UDT.first); 2668 OS.EmitLabel(UDTRecordEnd); 2669 } 2670 } 2671 2672 void CodeViewDebug::emitDebugInfoForGlobals() { 2673 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2674 GlobalMap; 2675 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2676 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2677 GV.getDebugInfo(GVEs); 2678 for (const auto *GVE : GVEs) 2679 GlobalMap[GVE] = &GV; 2680 } 2681 2682 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2683 for (const MDNode *Node : CUs->operands()) { 2684 const auto *CU = cast<DICompileUnit>(Node); 2685 2686 // First, emit all globals that are not in a comdat in a single symbol 2687 // substream. MSVC doesn't like it if the substream is empty, so only open 2688 // it if we have at least one global to emit. 2689 switchToDebugSectionForSymbol(nullptr); 2690 MCSymbol *EndLabel = nullptr; 2691 for (const auto *GVE : CU->getGlobalVariables()) { 2692 if (const auto *GV = GlobalMap.lookup(GVE)) 2693 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2694 if (!EndLabel) { 2695 OS.AddComment("Symbol subsection for globals"); 2696 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2697 } 2698 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2699 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2700 } 2701 } 2702 if (EndLabel) 2703 endCVSubsection(EndLabel); 2704 2705 // Second, emit each global that is in a comdat into its own .debug$S 2706 // section along with its own symbol substream. 2707 for (const auto *GVE : CU->getGlobalVariables()) { 2708 if (const auto *GV = GlobalMap.lookup(GVE)) { 2709 if (GV->hasComdat()) { 2710 MCSymbol *GVSym = Asm->getSymbol(GV); 2711 OS.AddComment("Symbol subsection for " + 2712 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2713 switchToDebugSectionForSymbol(GVSym); 2714 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2715 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2716 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2717 endCVSubsection(EndLabel); 2718 } 2719 } 2720 } 2721 } 2722 } 2723 2724 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2725 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2726 for (const MDNode *Node : CUs->operands()) { 2727 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2728 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2729 getTypeIndex(RT); 2730 // FIXME: Add to global/local DTU list. 2731 } 2732 } 2733 } 2734 } 2735 2736 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2737 const GlobalVariable *GV, 2738 MCSymbol *GVSym) { 2739 // DataSym record, see SymbolRecord.h for more info. 2740 // FIXME: Thread local data, etc 2741 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2742 *DataEnd = MMI->getContext().createTempSymbol(); 2743 const unsigned FixedLengthOfThisRecord = 12; 2744 OS.AddComment("Record length"); 2745 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2746 OS.EmitLabel(DataBegin); 2747 if (DIGV->isLocalToUnit()) { 2748 if (GV->isThreadLocal()) { 2749 OS.AddComment("Record kind: S_LTHREAD32"); 2750 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2751 } else { 2752 OS.AddComment("Record kind: S_LDATA32"); 2753 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2754 } 2755 } else { 2756 if (GV->isThreadLocal()) { 2757 OS.AddComment("Record kind: S_GTHREAD32"); 2758 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2759 } else { 2760 OS.AddComment("Record kind: S_GDATA32"); 2761 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2762 } 2763 } 2764 OS.AddComment("Type"); 2765 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2766 OS.AddComment("DataOffset"); 2767 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2768 OS.AddComment("Segment"); 2769 OS.EmitCOFFSectionIndex(GVSym); 2770 OS.AddComment("Name"); 2771 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2772 OS.EmitLabel(DataEnd); 2773 } 2774