1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 153 Log2_32_Ceil(VE.getTypes().size()+1))); 154 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 155 156 // Abbrev for TYPE_CODE_STRUCT. 157 Abbv = new BitCodeAbbrev(); 158 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 162 Log2_32_Ceil(VE.getTypes().size()+1))); 163 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_ARRAY. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 170 Log2_32_Ceil(VE.getTypes().size()+1))); 171 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 172 173 // Emit an entry count so the reader can reserve space. 174 TypeVals.push_back(TypeList.size()); 175 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 176 TypeVals.clear(); 177 178 // Loop over all of the types, emitting each in turn. 179 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 180 const Type *T = TypeList[i].first; 181 int AbbrevToUse = 0; 182 unsigned Code = 0; 183 184 switch (T->getTypeID()) { 185 default: assert(0 && "Unknown type!"); 186 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 187 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 188 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 189 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 190 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 191 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 192 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 193 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 194 case Type::IntegerTyID: 195 // INTEGER: [width] 196 Code = bitc::TYPE_CODE_INTEGER; 197 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 198 break; 199 case Type::PointerTyID: { 200 const PointerType *PTy = cast<PointerType>(T); 201 // POINTER: [pointee type] or [pointee type, address space] 202 Code = bitc::TYPE_CODE_POINTER; 203 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 204 if (unsigned AddressSpace = PTy->getAddressSpace()) 205 TypeVals.push_back(AddressSpace); 206 else 207 AbbrevToUse = PtrAbbrev; 208 break; 209 } 210 211 case Type::FunctionTyID: { 212 const FunctionType *FT = cast<FunctionType>(T); 213 // FUNCTION: [isvararg, attrid, retty, paramty x N] 214 Code = bitc::TYPE_CODE_FUNCTION; 215 TypeVals.push_back(FT->isVarArg()); 216 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 217 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 218 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 219 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 220 AbbrevToUse = FunctionAbbrev; 221 break; 222 } 223 case Type::StructTyID: { 224 const StructType *ST = cast<StructType>(T); 225 // STRUCT: [ispacked, eltty x N] 226 Code = bitc::TYPE_CODE_STRUCT; 227 TypeVals.push_back(ST->isPacked()); 228 // Output all of the element types. 229 for (StructType::element_iterator I = ST->element_begin(), 230 E = ST->element_end(); I != E; ++I) 231 TypeVals.push_back(VE.getTypeID(*I)); 232 AbbrevToUse = StructAbbrev; 233 break; 234 } 235 case Type::ArrayTyID: { 236 const ArrayType *AT = cast<ArrayType>(T); 237 // ARRAY: [numelts, eltty] 238 Code = bitc::TYPE_CODE_ARRAY; 239 TypeVals.push_back(AT->getNumElements()); 240 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 241 AbbrevToUse = ArrayAbbrev; 242 break; 243 } 244 case Type::VectorTyID: { 245 const VectorType *VT = cast<VectorType>(T); 246 // VECTOR [numelts, eltty] 247 Code = bitc::TYPE_CODE_VECTOR; 248 TypeVals.push_back(VT->getNumElements()); 249 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 250 break; 251 } 252 } 253 254 // Emit the finished record. 255 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 256 TypeVals.clear(); 257 } 258 259 Stream.ExitBlock(); 260 } 261 262 static unsigned getEncodedLinkage(const GlobalValue *GV) { 263 switch (GV->getLinkage()) { 264 default: assert(0 && "Invalid linkage!"); 265 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 266 case GlobalValue::ExternalLinkage: return 0; 267 case GlobalValue::WeakLinkage: return 1; 268 case GlobalValue::AppendingLinkage: return 2; 269 case GlobalValue::InternalLinkage: return 3; 270 case GlobalValue::LinkOnceLinkage: return 4; 271 case GlobalValue::DLLImportLinkage: return 5; 272 case GlobalValue::DLLExportLinkage: return 6; 273 case GlobalValue::ExternalWeakLinkage: return 7; 274 } 275 } 276 277 static unsigned getEncodedVisibility(const GlobalValue *GV) { 278 switch (GV->getVisibility()) { 279 default: assert(0 && "Invalid visibility!"); 280 case GlobalValue::DefaultVisibility: return 0; 281 case GlobalValue::HiddenVisibility: return 1; 282 case GlobalValue::ProtectedVisibility: return 2; 283 } 284 } 285 286 // Emit top-level description of module, including target triple, inline asm, 287 // descriptors for global variables, and function prototype info. 288 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 289 BitstreamWriter &Stream) { 290 // Emit the list of dependent libraries for the Module. 291 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 292 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 293 294 // Emit various pieces of data attached to a module. 295 if (!M->getTargetTriple().empty()) 296 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 297 0/*TODO*/, Stream); 298 if (!M->getDataLayout().empty()) 299 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 300 0/*TODO*/, Stream); 301 if (!M->getModuleInlineAsm().empty()) 302 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 303 0/*TODO*/, Stream); 304 305 // Emit information about sections and collectors, computing how many there 306 // are. Also compute the maximum alignment value. 307 std::map<std::string, unsigned> SectionMap; 308 std::map<std::string, unsigned> CollectorMap; 309 unsigned MaxAlignment = 0; 310 unsigned MaxGlobalType = 0; 311 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 312 GV != E; ++GV) { 313 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 314 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 315 316 if (!GV->hasSection()) continue; 317 // Give section names unique ID's. 318 unsigned &Entry = SectionMap[GV->getSection()]; 319 if (Entry != 0) continue; 320 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 321 0/*TODO*/, Stream); 322 Entry = SectionMap.size(); 323 } 324 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 325 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 326 if (F->hasSection()) { 327 // Give section names unique ID's. 328 unsigned &Entry = SectionMap[F->getSection()]; 329 if (!Entry) { 330 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 331 0/*TODO*/, Stream); 332 Entry = SectionMap.size(); 333 } 334 } 335 if (F->hasCollector()) { 336 // Same for collector names. 337 unsigned &Entry = CollectorMap[F->getCollector()]; 338 if (!Entry) { 339 WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(), 340 0/*TODO*/, Stream); 341 Entry = CollectorMap.size(); 342 } 343 } 344 } 345 346 // Emit abbrev for globals, now that we know # sections and max alignment. 347 unsigned SimpleGVarAbbrev = 0; 348 if (!M->global_empty()) { 349 // Add an abbrev for common globals with no visibility or thread localness. 350 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 351 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 353 Log2_32_Ceil(MaxGlobalType+1))); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 357 if (MaxAlignment == 0) // Alignment. 358 Abbv->Add(BitCodeAbbrevOp(0)); 359 else { 360 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 362 Log2_32_Ceil(MaxEncAlignment+1))); 363 } 364 if (SectionMap.empty()) // Section. 365 Abbv->Add(BitCodeAbbrevOp(0)); 366 else 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 368 Log2_32_Ceil(SectionMap.size()+1))); 369 // Don't bother emitting vis + thread local. 370 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 371 } 372 373 // Emit the global variable information. 374 SmallVector<unsigned, 64> Vals; 375 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 376 GV != E; ++GV) { 377 unsigned AbbrevToUse = 0; 378 379 // GLOBALVAR: [type, isconst, initid, 380 // linkage, alignment, section, visibility, threadlocal] 381 Vals.push_back(VE.getTypeID(GV->getType())); 382 Vals.push_back(GV->isConstant()); 383 Vals.push_back(GV->isDeclaration() ? 0 : 384 (VE.getValueID(GV->getInitializer()) + 1)); 385 Vals.push_back(getEncodedLinkage(GV)); 386 Vals.push_back(Log2_32(GV->getAlignment())+1); 387 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 388 if (GV->isThreadLocal() || 389 GV->getVisibility() != GlobalValue::DefaultVisibility) { 390 Vals.push_back(getEncodedVisibility(GV)); 391 Vals.push_back(GV->isThreadLocal()); 392 } else { 393 AbbrevToUse = SimpleGVarAbbrev; 394 } 395 396 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 397 Vals.clear(); 398 } 399 400 // Emit the function proto information. 401 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 402 // FUNCTION: [type, callingconv, isproto, paramattr, 403 // linkage, alignment, section, visibility, collector] 404 Vals.push_back(VE.getTypeID(F->getType())); 405 Vals.push_back(F->getCallingConv()); 406 Vals.push_back(F->isDeclaration()); 407 Vals.push_back(getEncodedLinkage(F)); 408 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 409 Vals.push_back(Log2_32(F->getAlignment())+1); 410 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 411 Vals.push_back(getEncodedVisibility(F)); 412 Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0); 413 414 unsigned AbbrevToUse = 0; 415 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 416 Vals.clear(); 417 } 418 419 420 // Emit the alias information. 421 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 422 AI != E; ++AI) { 423 Vals.push_back(VE.getTypeID(AI->getType())); 424 Vals.push_back(VE.getValueID(AI->getAliasee())); 425 Vals.push_back(getEncodedLinkage(AI)); 426 unsigned AbbrevToUse = 0; 427 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 428 Vals.clear(); 429 } 430 } 431 432 433 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 434 const ValueEnumerator &VE, 435 BitstreamWriter &Stream, bool isGlobal) { 436 if (FirstVal == LastVal) return; 437 438 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 439 440 unsigned AggregateAbbrev = 0; 441 unsigned String8Abbrev = 0; 442 unsigned CString7Abbrev = 0; 443 unsigned CString6Abbrev = 0; 444 // If this is a constant pool for the module, emit module-specific abbrevs. 445 if (isGlobal) { 446 // Abbrev for CST_CODE_AGGREGATE. 447 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 451 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 452 453 // Abbrev for CST_CODE_STRING. 454 Abbv = new BitCodeAbbrev(); 455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 458 String8Abbrev = Stream.EmitAbbrev(Abbv); 459 // Abbrev for CST_CODE_CSTRING. 460 Abbv = new BitCodeAbbrev(); 461 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 464 CString7Abbrev = Stream.EmitAbbrev(Abbv); 465 // Abbrev for CST_CODE_CSTRING. 466 Abbv = new BitCodeAbbrev(); 467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 470 CString6Abbrev = Stream.EmitAbbrev(Abbv); 471 } 472 473 SmallVector<uint64_t, 64> Record; 474 475 const ValueEnumerator::ValueList &Vals = VE.getValues(); 476 const Type *LastTy = 0; 477 for (unsigned i = FirstVal; i != LastVal; ++i) { 478 const Value *V = Vals[i].first; 479 // If we need to switch types, do so now. 480 if (V->getType() != LastTy) { 481 LastTy = V->getType(); 482 Record.push_back(VE.getTypeID(LastTy)); 483 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 484 CONSTANTS_SETTYPE_ABBREV); 485 Record.clear(); 486 } 487 488 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 489 Record.push_back(unsigned(IA->hasSideEffects())); 490 491 // Add the asm string. 492 const std::string &AsmStr = IA->getAsmString(); 493 Record.push_back(AsmStr.size()); 494 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 495 Record.push_back(AsmStr[i]); 496 497 // Add the constraint string. 498 const std::string &ConstraintStr = IA->getConstraintString(); 499 Record.push_back(ConstraintStr.size()); 500 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 501 Record.push_back(ConstraintStr[i]); 502 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 503 Record.clear(); 504 continue; 505 } 506 const Constant *C = cast<Constant>(V); 507 unsigned Code = -1U; 508 unsigned AbbrevToUse = 0; 509 if (C->isNullValue()) { 510 Code = bitc::CST_CODE_NULL; 511 } else if (isa<UndefValue>(C)) { 512 Code = bitc::CST_CODE_UNDEF; 513 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 514 if (IV->getBitWidth() <= 64) { 515 int64_t V = IV->getSExtValue(); 516 if (V >= 0) 517 Record.push_back(V << 1); 518 else 519 Record.push_back((-V << 1) | 1); 520 Code = bitc::CST_CODE_INTEGER; 521 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 522 } else { // Wide integers, > 64 bits in size. 523 // We have an arbitrary precision integer value to write whose 524 // bit width is > 64. However, in canonical unsigned integer 525 // format it is likely that the high bits are going to be zero. 526 // So, we only write the number of active words. 527 unsigned NWords = IV->getValue().getActiveWords(); 528 const uint64_t *RawWords = IV->getValue().getRawData(); 529 for (unsigned i = 0; i != NWords; ++i) { 530 int64_t V = RawWords[i]; 531 if (V >= 0) 532 Record.push_back(V << 1); 533 else 534 Record.push_back((-V << 1) | 1); 535 } 536 Code = bitc::CST_CODE_WIDE_INTEGER; 537 } 538 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 539 Code = bitc::CST_CODE_FLOAT; 540 const Type *Ty = CFP->getType(); 541 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 542 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 543 } else if (Ty == Type::X86_FP80Ty) { 544 // api needed to prevent premature destruction 545 APInt api = CFP->getValueAPF().convertToAPInt(); 546 const uint64_t *p = api.getRawData(); 547 Record.push_back(p[0]); 548 Record.push_back((uint16_t)p[1]); 549 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 550 APInt api = CFP->getValueAPF().convertToAPInt(); 551 const uint64_t *p = api.getRawData(); 552 Record.push_back(p[0]); 553 Record.push_back(p[1]); 554 } else { 555 assert (0 && "Unknown FP type!"); 556 } 557 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 558 // Emit constant strings specially. 559 unsigned NumOps = C->getNumOperands(); 560 // If this is a null-terminated string, use the denser CSTRING encoding. 561 if (C->getOperand(NumOps-1)->isNullValue()) { 562 Code = bitc::CST_CODE_CSTRING; 563 --NumOps; // Don't encode the null, which isn't allowed by char6. 564 } else { 565 Code = bitc::CST_CODE_STRING; 566 AbbrevToUse = String8Abbrev; 567 } 568 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 569 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 570 for (unsigned i = 0; i != NumOps; ++i) { 571 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 572 Record.push_back(V); 573 isCStr7 &= (V & 128) == 0; 574 if (isCStrChar6) 575 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 576 } 577 578 if (isCStrChar6) 579 AbbrevToUse = CString6Abbrev; 580 else if (isCStr7) 581 AbbrevToUse = CString7Abbrev; 582 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 583 isa<ConstantVector>(V)) { 584 Code = bitc::CST_CODE_AGGREGATE; 585 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 586 Record.push_back(VE.getValueID(C->getOperand(i))); 587 AbbrevToUse = AggregateAbbrev; 588 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 589 switch (CE->getOpcode()) { 590 default: 591 if (Instruction::isCast(CE->getOpcode())) { 592 Code = bitc::CST_CODE_CE_CAST; 593 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 594 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 595 Record.push_back(VE.getValueID(C->getOperand(0))); 596 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 597 } else { 598 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 599 Code = bitc::CST_CODE_CE_BINOP; 600 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 601 Record.push_back(VE.getValueID(C->getOperand(0))); 602 Record.push_back(VE.getValueID(C->getOperand(1))); 603 } 604 break; 605 case Instruction::GetElementPtr: 606 Code = bitc::CST_CODE_CE_GEP; 607 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 608 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 609 Record.push_back(VE.getValueID(C->getOperand(i))); 610 } 611 break; 612 case Instruction::Select: 613 Code = bitc::CST_CODE_CE_SELECT; 614 Record.push_back(VE.getValueID(C->getOperand(0))); 615 Record.push_back(VE.getValueID(C->getOperand(1))); 616 Record.push_back(VE.getValueID(C->getOperand(2))); 617 break; 618 case Instruction::ExtractElement: 619 Code = bitc::CST_CODE_CE_EXTRACTELT; 620 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 621 Record.push_back(VE.getValueID(C->getOperand(0))); 622 Record.push_back(VE.getValueID(C->getOperand(1))); 623 break; 624 case Instruction::InsertElement: 625 Code = bitc::CST_CODE_CE_INSERTELT; 626 Record.push_back(VE.getValueID(C->getOperand(0))); 627 Record.push_back(VE.getValueID(C->getOperand(1))); 628 Record.push_back(VE.getValueID(C->getOperand(2))); 629 break; 630 case Instruction::ShuffleVector: 631 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 632 Record.push_back(VE.getValueID(C->getOperand(0))); 633 Record.push_back(VE.getValueID(C->getOperand(1))); 634 Record.push_back(VE.getValueID(C->getOperand(2))); 635 break; 636 case Instruction::ICmp: 637 case Instruction::FCmp: 638 Code = bitc::CST_CODE_CE_CMP; 639 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 640 Record.push_back(VE.getValueID(C->getOperand(0))); 641 Record.push_back(VE.getValueID(C->getOperand(1))); 642 Record.push_back(CE->getPredicate()); 643 break; 644 } 645 } else { 646 assert(0 && "Unknown constant!"); 647 } 648 Stream.EmitRecord(Code, Record, AbbrevToUse); 649 Record.clear(); 650 } 651 652 Stream.ExitBlock(); 653 } 654 655 static void WriteModuleConstants(const ValueEnumerator &VE, 656 BitstreamWriter &Stream) { 657 const ValueEnumerator::ValueList &Vals = VE.getValues(); 658 659 // Find the first constant to emit, which is the first non-globalvalue value. 660 // We know globalvalues have been emitted by WriteModuleInfo. 661 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 662 if (!isa<GlobalValue>(Vals[i].first)) { 663 WriteConstants(i, Vals.size(), VE, Stream, true); 664 return; 665 } 666 } 667 } 668 669 /// PushValueAndType - The file has to encode both the value and type id for 670 /// many values, because we need to know what type to create for forward 671 /// references. However, most operands are not forward references, so this type 672 /// field is not needed. 673 /// 674 /// This function adds V's value ID to Vals. If the value ID is higher than the 675 /// instruction ID, then it is a forward reference, and it also includes the 676 /// type ID. 677 static bool PushValueAndType(Value *V, unsigned InstID, 678 SmallVector<unsigned, 64> &Vals, 679 ValueEnumerator &VE) { 680 unsigned ValID = VE.getValueID(V); 681 Vals.push_back(ValID); 682 if (ValID >= InstID) { 683 Vals.push_back(VE.getTypeID(V->getType())); 684 return true; 685 } 686 return false; 687 } 688 689 /// WriteInstruction - Emit an instruction to the specified stream. 690 static void WriteInstruction(const Instruction &I, unsigned InstID, 691 ValueEnumerator &VE, BitstreamWriter &Stream, 692 SmallVector<unsigned, 64> &Vals) { 693 unsigned Code = 0; 694 unsigned AbbrevToUse = 0; 695 switch (I.getOpcode()) { 696 default: 697 if (Instruction::isCast(I.getOpcode())) { 698 Code = bitc::FUNC_CODE_INST_CAST; 699 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 700 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 701 Vals.push_back(VE.getTypeID(I.getType())); 702 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 703 } else { 704 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 705 Code = bitc::FUNC_CODE_INST_BINOP; 706 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 707 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 708 Vals.push_back(VE.getValueID(I.getOperand(1))); 709 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 710 } 711 break; 712 713 case Instruction::GetElementPtr: 714 Code = bitc::FUNC_CODE_INST_GEP; 715 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 716 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 717 break; 718 case Instruction::Select: 719 Code = bitc::FUNC_CODE_INST_SELECT; 720 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 721 Vals.push_back(VE.getValueID(I.getOperand(2))); 722 Vals.push_back(VE.getValueID(I.getOperand(0))); 723 break; 724 case Instruction::ExtractElement: 725 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 726 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 727 Vals.push_back(VE.getValueID(I.getOperand(1))); 728 break; 729 case Instruction::InsertElement: 730 Code = bitc::FUNC_CODE_INST_INSERTELT; 731 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 732 Vals.push_back(VE.getValueID(I.getOperand(1))); 733 Vals.push_back(VE.getValueID(I.getOperand(2))); 734 break; 735 case Instruction::ShuffleVector: 736 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 737 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 738 Vals.push_back(VE.getValueID(I.getOperand(1))); 739 Vals.push_back(VE.getValueID(I.getOperand(2))); 740 break; 741 case Instruction::ICmp: 742 case Instruction::FCmp: 743 Code = bitc::FUNC_CODE_INST_CMP; 744 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 745 Vals.push_back(VE.getValueID(I.getOperand(1))); 746 Vals.push_back(cast<CmpInst>(I).getPredicate()); 747 break; 748 749 case Instruction::Ret: 750 Code = bitc::FUNC_CODE_INST_RET; 751 if (!I.getNumOperands()) 752 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 753 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 754 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 755 break; 756 case Instruction::Br: 757 Code = bitc::FUNC_CODE_INST_BR; 758 Vals.push_back(VE.getValueID(I.getOperand(0))); 759 if (cast<BranchInst>(I).isConditional()) { 760 Vals.push_back(VE.getValueID(I.getOperand(1))); 761 Vals.push_back(VE.getValueID(I.getOperand(2))); 762 } 763 break; 764 case Instruction::Switch: 765 Code = bitc::FUNC_CODE_INST_SWITCH; 766 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 767 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 768 Vals.push_back(VE.getValueID(I.getOperand(i))); 769 break; 770 case Instruction::Invoke: { 771 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 772 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 773 Code = bitc::FUNC_CODE_INST_INVOKE; 774 775 const InvokeInst *II = cast<InvokeInst>(&I); 776 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 777 Vals.push_back(II->getCallingConv()); 778 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 779 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 780 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 781 782 // Emit value #'s for the fixed parameters. 783 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 784 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 785 786 // Emit type/value pairs for varargs params. 787 if (FTy->isVarArg()) { 788 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 789 i != e; ++i) 790 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 791 } 792 break; 793 } 794 case Instruction::Unwind: 795 Code = bitc::FUNC_CODE_INST_UNWIND; 796 break; 797 case Instruction::Unreachable: 798 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 799 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 800 break; 801 802 case Instruction::PHI: 803 Code = bitc::FUNC_CODE_INST_PHI; 804 Vals.push_back(VE.getTypeID(I.getType())); 805 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 806 Vals.push_back(VE.getValueID(I.getOperand(i))); 807 break; 808 809 case Instruction::Malloc: 810 Code = bitc::FUNC_CODE_INST_MALLOC; 811 Vals.push_back(VE.getTypeID(I.getType())); 812 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 813 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 814 break; 815 816 case Instruction::Free: 817 Code = bitc::FUNC_CODE_INST_FREE; 818 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 819 break; 820 821 case Instruction::Alloca: 822 Code = bitc::FUNC_CODE_INST_ALLOCA; 823 Vals.push_back(VE.getTypeID(I.getType())); 824 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 825 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 826 break; 827 828 case Instruction::Load: 829 Code = bitc::FUNC_CODE_INST_LOAD; 830 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 831 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 832 833 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 834 Vals.push_back(cast<LoadInst>(I).isVolatile()); 835 break; 836 case Instruction::Store: 837 Code = bitc::FUNC_CODE_INST_STORE2; 838 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 839 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 840 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 841 Vals.push_back(cast<StoreInst>(I).isVolatile()); 842 break; 843 case Instruction::Call: { 844 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 845 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 846 847 Code = bitc::FUNC_CODE_INST_CALL; 848 849 const CallInst *CI = cast<CallInst>(&I); 850 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 851 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 852 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 853 854 // Emit value #'s for the fixed parameters. 855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 856 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 857 858 // Emit type/value pairs for varargs params. 859 if (FTy->isVarArg()) { 860 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 861 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 862 i != e; ++i) 863 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 864 } 865 break; 866 } 867 case Instruction::VAArg: 868 Code = bitc::FUNC_CODE_INST_VAARG; 869 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 870 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 871 Vals.push_back(VE.getTypeID(I.getType())); // restype. 872 break; 873 } 874 875 Stream.EmitRecord(Code, Vals, AbbrevToUse); 876 Vals.clear(); 877 } 878 879 // Emit names for globals/functions etc. 880 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 881 const ValueEnumerator &VE, 882 BitstreamWriter &Stream) { 883 if (VST.empty()) return; 884 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 885 886 // FIXME: Set up the abbrev, we know how many values there are! 887 // FIXME: We know if the type names can use 7-bit ascii. 888 SmallVector<unsigned, 64> NameVals; 889 890 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 891 SI != SE; ++SI) { 892 893 const ValueName &Name = *SI; 894 895 // Figure out the encoding to use for the name. 896 bool is7Bit = true; 897 bool isChar6 = true; 898 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 899 C != E; ++C) { 900 if (isChar6) 901 isChar6 = BitCodeAbbrevOp::isChar6(*C); 902 if ((unsigned char)*C & 128) { 903 is7Bit = false; 904 break; // don't bother scanning the rest. 905 } 906 } 907 908 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 909 910 // VST_ENTRY: [valueid, namechar x N] 911 // VST_BBENTRY: [bbid, namechar x N] 912 unsigned Code; 913 if (isa<BasicBlock>(SI->getValue())) { 914 Code = bitc::VST_CODE_BBENTRY; 915 if (isChar6) 916 AbbrevToUse = VST_BBENTRY_6_ABBREV; 917 } else { 918 Code = bitc::VST_CODE_ENTRY; 919 if (isChar6) 920 AbbrevToUse = VST_ENTRY_6_ABBREV; 921 else if (is7Bit) 922 AbbrevToUse = VST_ENTRY_7_ABBREV; 923 } 924 925 NameVals.push_back(VE.getValueID(SI->getValue())); 926 for (const char *P = Name.getKeyData(), 927 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 928 NameVals.push_back((unsigned char)*P); 929 930 // Emit the finished record. 931 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 932 NameVals.clear(); 933 } 934 Stream.ExitBlock(); 935 } 936 937 /// WriteFunction - Emit a function body to the module stream. 938 static void WriteFunction(const Function &F, ValueEnumerator &VE, 939 BitstreamWriter &Stream) { 940 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 941 VE.incorporateFunction(F); 942 943 SmallVector<unsigned, 64> Vals; 944 945 // Emit the number of basic blocks, so the reader can create them ahead of 946 // time. 947 Vals.push_back(VE.getBasicBlocks().size()); 948 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 949 Vals.clear(); 950 951 // If there are function-local constants, emit them now. 952 unsigned CstStart, CstEnd; 953 VE.getFunctionConstantRange(CstStart, CstEnd); 954 WriteConstants(CstStart, CstEnd, VE, Stream, false); 955 956 // Keep a running idea of what the instruction ID is. 957 unsigned InstID = CstEnd; 958 959 // Finally, emit all the instructions, in order. 960 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 961 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 962 I != E; ++I) { 963 WriteInstruction(*I, InstID, VE, Stream, Vals); 964 if (I->getType() != Type::VoidTy) 965 ++InstID; 966 } 967 968 // Emit names for all the instructions etc. 969 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 970 971 VE.purgeFunction(); 972 Stream.ExitBlock(); 973 } 974 975 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 976 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 977 const ValueEnumerator &VE, 978 BitstreamWriter &Stream) { 979 if (TST.empty()) return; 980 981 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 982 983 // 7-bit fixed width VST_CODE_ENTRY strings. 984 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 985 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 987 Log2_32_Ceil(VE.getTypes().size()+1))); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 990 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 991 992 SmallVector<unsigned, 64> NameVals; 993 994 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 995 TI != TE; ++TI) { 996 // TST_ENTRY: [typeid, namechar x N] 997 NameVals.push_back(VE.getTypeID(TI->second)); 998 999 const std::string &Str = TI->first; 1000 bool is7Bit = true; 1001 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1002 NameVals.push_back((unsigned char)Str[i]); 1003 if (Str[i] & 128) 1004 is7Bit = false; 1005 } 1006 1007 // Emit the finished record. 1008 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1009 NameVals.clear(); 1010 } 1011 1012 Stream.ExitBlock(); 1013 } 1014 1015 // Emit blockinfo, which defines the standard abbreviations etc. 1016 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1017 // We only want to emit block info records for blocks that have multiple 1018 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1019 // blocks can defined their abbrevs inline. 1020 Stream.EnterBlockInfoBlock(2); 1021 1022 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1023 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1028 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1029 Abbv) != VST_ENTRY_8_ABBREV) 1030 assert(0 && "Unexpected abbrev ordering!"); 1031 } 1032 1033 { // 7-bit fixed width VST_ENTRY strings. 1034 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1035 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1039 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1040 Abbv) != VST_ENTRY_7_ABBREV) 1041 assert(0 && "Unexpected abbrev ordering!"); 1042 } 1043 { // 6-bit char6 VST_ENTRY strings. 1044 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1045 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1049 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1050 Abbv) != VST_ENTRY_6_ABBREV) 1051 assert(0 && "Unexpected abbrev ordering!"); 1052 } 1053 { // 6-bit char6 VST_BBENTRY strings. 1054 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1055 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1059 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1060 Abbv) != VST_BBENTRY_6_ABBREV) 1061 assert(0 && "Unexpected abbrev ordering!"); 1062 } 1063 1064 1065 1066 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1067 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1068 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1070 Log2_32_Ceil(VE.getTypes().size()+1))); 1071 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1072 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1073 assert(0 && "Unexpected abbrev ordering!"); 1074 } 1075 1076 { // INTEGER abbrev for CONSTANTS_BLOCK. 1077 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1078 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1080 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1081 Abbv) != CONSTANTS_INTEGER_ABBREV) 1082 assert(0 && "Unexpected abbrev ordering!"); 1083 } 1084 1085 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1086 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1087 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1090 Log2_32_Ceil(VE.getTypes().size()+1))); 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1092 1093 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1094 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1095 assert(0 && "Unexpected abbrev ordering!"); 1096 } 1097 { // NULL abbrev for CONSTANTS_BLOCK. 1098 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1099 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1100 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1101 Abbv) != CONSTANTS_NULL_Abbrev) 1102 assert(0 && "Unexpected abbrev ordering!"); 1103 } 1104 1105 // FIXME: This should only use space for first class types! 1106 1107 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1108 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1109 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1113 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1114 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1115 assert(0 && "Unexpected abbrev ordering!"); 1116 } 1117 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1118 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1119 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1123 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1124 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1125 assert(0 && "Unexpected abbrev ordering!"); 1126 } 1127 { // INST_CAST abbrev for FUNCTION_BLOCK. 1128 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1129 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1132 Log2_32_Ceil(VE.getTypes().size()+1))); 1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1134 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1135 Abbv) != FUNCTION_INST_CAST_ABBREV) 1136 assert(0 && "Unexpected abbrev ordering!"); 1137 } 1138 1139 { // INST_RET abbrev for FUNCTION_BLOCK. 1140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1141 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1142 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1143 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1144 assert(0 && "Unexpected abbrev ordering!"); 1145 } 1146 { // INST_RET abbrev for FUNCTION_BLOCK. 1147 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1148 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1150 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1151 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1152 assert(0 && "Unexpected abbrev ordering!"); 1153 } 1154 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1155 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1156 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1157 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1158 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1159 assert(0 && "Unexpected abbrev ordering!"); 1160 } 1161 1162 Stream.ExitBlock(); 1163 } 1164 1165 1166 /// WriteModule - Emit the specified module to the bitstream. 1167 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1168 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1169 1170 // Emit the version number if it is non-zero. 1171 if (CurVersion) { 1172 SmallVector<unsigned, 1> Vals; 1173 Vals.push_back(CurVersion); 1174 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1175 } 1176 1177 // Analyze the module, enumerating globals, functions, etc. 1178 ValueEnumerator VE(M); 1179 1180 // Emit blockinfo, which defines the standard abbreviations etc. 1181 WriteBlockInfo(VE, Stream); 1182 1183 // Emit information about parameter attributes. 1184 WriteParamAttrTable(VE, Stream); 1185 1186 // Emit information describing all of the types in the module. 1187 WriteTypeTable(VE, Stream); 1188 1189 // Emit top-level description of module, including target triple, inline asm, 1190 // descriptors for global variables, and function prototype info. 1191 WriteModuleInfo(M, VE, Stream); 1192 1193 // Emit constants. 1194 WriteModuleConstants(VE, Stream); 1195 1196 // If we have any aggregate values in the value table, purge them - these can 1197 // only be used to initialize global variables. Doing so makes the value 1198 // namespace smaller for code in functions. 1199 int NumNonAggregates = VE.PurgeAggregateValues(); 1200 if (NumNonAggregates != -1) { 1201 SmallVector<unsigned, 1> Vals; 1202 Vals.push_back(NumNonAggregates); 1203 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1204 } 1205 1206 // Emit function bodies. 1207 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1208 if (!I->isDeclaration()) 1209 WriteFunction(*I, VE, Stream); 1210 1211 // Emit the type symbol table information. 1212 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1213 1214 // Emit names for globals/functions etc. 1215 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1216 1217 Stream.ExitBlock(); 1218 } 1219 1220 1221 /// WriteBitcodeToFile - Write the specified module to the specified output 1222 /// stream. 1223 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1224 std::vector<unsigned char> Buffer; 1225 BitstreamWriter Stream(Buffer); 1226 1227 Buffer.reserve(256*1024); 1228 1229 // Emit the file header. 1230 Stream.Emit((unsigned)'B', 8); 1231 Stream.Emit((unsigned)'C', 8); 1232 Stream.Emit(0x0, 4); 1233 Stream.Emit(0xC, 4); 1234 Stream.Emit(0xE, 4); 1235 Stream.Emit(0xD, 4); 1236 1237 // Emit the module. 1238 WriteModule(M, Stream); 1239 1240 // Write the generated bitstream to "Out". 1241 Out.write((char*)&Buffer.front(), Buffer.size()); 1242 1243 // Make sure it hits disk now. 1244 Out.flush(); 1245 } 1246