1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::Builtin: 166 return bitc::ATTR_KIND_BUILTIN; 167 case Attribute::ByVal: 168 return bitc::ATTR_KIND_BY_VAL; 169 case Attribute::Convergent: 170 return bitc::ATTR_KIND_CONVERGENT; 171 case Attribute::InAlloca: 172 return bitc::ATTR_KIND_IN_ALLOCA; 173 case Attribute::Cold: 174 return bitc::ATTR_KIND_COLD; 175 case Attribute::InlineHint: 176 return bitc::ATTR_KIND_INLINE_HINT; 177 case Attribute::InReg: 178 return bitc::ATTR_KIND_IN_REG; 179 case Attribute::JumpTable: 180 return bitc::ATTR_KIND_JUMP_TABLE; 181 case Attribute::MinSize: 182 return bitc::ATTR_KIND_MIN_SIZE; 183 case Attribute::Naked: 184 return bitc::ATTR_KIND_NAKED; 185 case Attribute::Nest: 186 return bitc::ATTR_KIND_NEST; 187 case Attribute::NoAlias: 188 return bitc::ATTR_KIND_NO_ALIAS; 189 case Attribute::NoBuiltin: 190 return bitc::ATTR_KIND_NO_BUILTIN; 191 case Attribute::NoCapture: 192 return bitc::ATTR_KIND_NO_CAPTURE; 193 case Attribute::NoDuplicate: 194 return bitc::ATTR_KIND_NO_DUPLICATE; 195 case Attribute::NoImplicitFloat: 196 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 197 case Attribute::NoInline: 198 return bitc::ATTR_KIND_NO_INLINE; 199 case Attribute::NonLazyBind: 200 return bitc::ATTR_KIND_NON_LAZY_BIND; 201 case Attribute::NonNull: 202 return bitc::ATTR_KIND_NON_NULL; 203 case Attribute::Dereferenceable: 204 return bitc::ATTR_KIND_DEREFERENCEABLE; 205 case Attribute::DereferenceableOrNull: 206 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 207 case Attribute::NoRedZone: 208 return bitc::ATTR_KIND_NO_RED_ZONE; 209 case Attribute::NoReturn: 210 return bitc::ATTR_KIND_NO_RETURN; 211 case Attribute::NoUnwind: 212 return bitc::ATTR_KIND_NO_UNWIND; 213 case Attribute::OptimizeForSize: 214 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 215 case Attribute::OptimizeNone: 216 return bitc::ATTR_KIND_OPTIMIZE_NONE; 217 case Attribute::ReadNone: 218 return bitc::ATTR_KIND_READ_NONE; 219 case Attribute::ReadOnly: 220 return bitc::ATTR_KIND_READ_ONLY; 221 case Attribute::Returned: 222 return bitc::ATTR_KIND_RETURNED; 223 case Attribute::ReturnsTwice: 224 return bitc::ATTR_KIND_RETURNS_TWICE; 225 case Attribute::SExt: 226 return bitc::ATTR_KIND_S_EXT; 227 case Attribute::StackAlignment: 228 return bitc::ATTR_KIND_STACK_ALIGNMENT; 229 case Attribute::StackProtect: 230 return bitc::ATTR_KIND_STACK_PROTECT; 231 case Attribute::StackProtectReq: 232 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 233 case Attribute::StackProtectStrong: 234 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 235 case Attribute::SafeStack: 236 return bitc::ATTR_KIND_SAFESTACK; 237 case Attribute::StructRet: 238 return bitc::ATTR_KIND_STRUCT_RET; 239 case Attribute::SanitizeAddress: 240 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 241 case Attribute::SanitizeThread: 242 return bitc::ATTR_KIND_SANITIZE_THREAD; 243 case Attribute::SanitizeMemory: 244 return bitc::ATTR_KIND_SANITIZE_MEMORY; 245 case Attribute::UWTable: 246 return bitc::ATTR_KIND_UW_TABLE; 247 case Attribute::ZExt: 248 return bitc::ATTR_KIND_Z_EXT; 249 case Attribute::EndAttrKinds: 250 llvm_unreachable("Can not encode end-attribute kinds marker."); 251 case Attribute::None: 252 llvm_unreachable("Can not encode none-attribute."); 253 } 254 255 llvm_unreachable("Trying to encode unknown attribute"); 256 } 257 258 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 259 BitstreamWriter &Stream) { 260 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 261 if (AttrGrps.empty()) return; 262 263 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 264 265 SmallVector<uint64_t, 64> Record; 266 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 267 AttributeSet AS = AttrGrps[i]; 268 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 269 AttributeSet A = AS.getSlotAttributes(i); 270 271 Record.push_back(VE.getAttributeGroupID(A)); 272 Record.push_back(AS.getSlotIndex(i)); 273 274 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 275 I != E; ++I) { 276 Attribute Attr = *I; 277 if (Attr.isEnumAttribute()) { 278 Record.push_back(0); 279 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 280 } else if (Attr.isIntAttribute()) { 281 Record.push_back(1); 282 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 283 Record.push_back(Attr.getValueAsInt()); 284 } else { 285 StringRef Kind = Attr.getKindAsString(); 286 StringRef Val = Attr.getValueAsString(); 287 288 Record.push_back(Val.empty() ? 3 : 4); 289 Record.append(Kind.begin(), Kind.end()); 290 Record.push_back(0); 291 if (!Val.empty()) { 292 Record.append(Val.begin(), Val.end()); 293 Record.push_back(0); 294 } 295 } 296 } 297 298 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 299 Record.clear(); 300 } 301 } 302 303 Stream.ExitBlock(); 304 } 305 306 static void WriteAttributeTable(const ValueEnumerator &VE, 307 BitstreamWriter &Stream) { 308 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 309 if (Attrs.empty()) return; 310 311 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 312 313 SmallVector<uint64_t, 64> Record; 314 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 315 const AttributeSet &A = Attrs[i]; 316 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 317 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 318 319 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 320 Record.clear(); 321 } 322 323 Stream.ExitBlock(); 324 } 325 326 /// WriteTypeTable - Write out the type table for a module. 327 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 328 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 329 330 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 331 SmallVector<uint64_t, 64> TypeVals; 332 333 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 334 335 // Abbrev for TYPE_CODE_POINTER. 336 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 339 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 340 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 341 342 // Abbrev for TYPE_CODE_FUNCTION. 343 Abbv = new BitCodeAbbrev(); 344 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 348 349 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 350 351 // Abbrev for TYPE_CODE_STRUCT_ANON. 352 Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 357 358 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAME. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 365 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 366 367 // Abbrev for TYPE_CODE_STRUCT_NAMED. 368 Abbv = new BitCodeAbbrev(); 369 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Abbrev for TYPE_CODE_ARRAY. 377 Abbv = new BitCodeAbbrev(); 378 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 381 382 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Emit an entry count so the reader can reserve space. 385 TypeVals.push_back(TypeList.size()); 386 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 387 TypeVals.clear(); 388 389 // Loop over all of the types, emitting each in turn. 390 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 391 Type *T = TypeList[i]; 392 int AbbrevToUse = 0; 393 unsigned Code = 0; 394 395 switch (T->getTypeID()) { 396 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 397 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 398 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 399 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 400 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 401 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 402 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 403 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 404 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 405 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 406 case Type::IntegerTyID: 407 // INTEGER: [width] 408 Code = bitc::TYPE_CODE_INTEGER; 409 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 410 break; 411 case Type::PointerTyID: { 412 PointerType *PTy = cast<PointerType>(T); 413 // POINTER: [pointee type, address space] 414 Code = bitc::TYPE_CODE_POINTER; 415 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 416 unsigned AddressSpace = PTy->getAddressSpace(); 417 TypeVals.push_back(AddressSpace); 418 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 419 break; 420 } 421 case Type::FunctionTyID: { 422 FunctionType *FT = cast<FunctionType>(T); 423 // FUNCTION: [isvararg, retty, paramty x N] 424 Code = bitc::TYPE_CODE_FUNCTION; 425 TypeVals.push_back(FT->isVarArg()); 426 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 427 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 428 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 429 AbbrevToUse = FunctionAbbrev; 430 break; 431 } 432 case Type::StructTyID: { 433 StructType *ST = cast<StructType>(T); 434 // STRUCT: [ispacked, eltty x N] 435 TypeVals.push_back(ST->isPacked()); 436 // Output all of the element types. 437 for (StructType::element_iterator I = ST->element_begin(), 438 E = ST->element_end(); I != E; ++I) 439 TypeVals.push_back(VE.getTypeID(*I)); 440 441 if (ST->isLiteral()) { 442 Code = bitc::TYPE_CODE_STRUCT_ANON; 443 AbbrevToUse = StructAnonAbbrev; 444 } else { 445 if (ST->isOpaque()) { 446 Code = bitc::TYPE_CODE_OPAQUE; 447 } else { 448 Code = bitc::TYPE_CODE_STRUCT_NAMED; 449 AbbrevToUse = StructNamedAbbrev; 450 } 451 452 // Emit the name if it is present. 453 if (!ST->getName().empty()) 454 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 455 StructNameAbbrev, Stream); 456 } 457 break; 458 } 459 case Type::ArrayTyID: { 460 ArrayType *AT = cast<ArrayType>(T); 461 // ARRAY: [numelts, eltty] 462 Code = bitc::TYPE_CODE_ARRAY; 463 TypeVals.push_back(AT->getNumElements()); 464 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 465 AbbrevToUse = ArrayAbbrev; 466 break; 467 } 468 case Type::VectorTyID: { 469 VectorType *VT = cast<VectorType>(T); 470 // VECTOR [numelts, eltty] 471 Code = bitc::TYPE_CODE_VECTOR; 472 TypeVals.push_back(VT->getNumElements()); 473 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 474 break; 475 } 476 } 477 478 // Emit the finished record. 479 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 480 TypeVals.clear(); 481 } 482 483 Stream.ExitBlock(); 484 } 485 486 static unsigned getEncodedLinkage(const GlobalValue &GV) { 487 switch (GV.getLinkage()) { 488 case GlobalValue::ExternalLinkage: 489 return 0; 490 case GlobalValue::WeakAnyLinkage: 491 return 16; 492 case GlobalValue::AppendingLinkage: 493 return 2; 494 case GlobalValue::InternalLinkage: 495 return 3; 496 case GlobalValue::LinkOnceAnyLinkage: 497 return 18; 498 case GlobalValue::ExternalWeakLinkage: 499 return 7; 500 case GlobalValue::CommonLinkage: 501 return 8; 502 case GlobalValue::PrivateLinkage: 503 return 9; 504 case GlobalValue::WeakODRLinkage: 505 return 17; 506 case GlobalValue::LinkOnceODRLinkage: 507 return 19; 508 case GlobalValue::AvailableExternallyLinkage: 509 return 12; 510 } 511 llvm_unreachable("Invalid linkage"); 512 } 513 514 static unsigned getEncodedVisibility(const GlobalValue &GV) { 515 switch (GV.getVisibility()) { 516 case GlobalValue::DefaultVisibility: return 0; 517 case GlobalValue::HiddenVisibility: return 1; 518 case GlobalValue::ProtectedVisibility: return 2; 519 } 520 llvm_unreachable("Invalid visibility"); 521 } 522 523 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 524 switch (GV.getDLLStorageClass()) { 525 case GlobalValue::DefaultStorageClass: return 0; 526 case GlobalValue::DLLImportStorageClass: return 1; 527 case GlobalValue::DLLExportStorageClass: return 2; 528 } 529 llvm_unreachable("Invalid DLL storage class"); 530 } 531 532 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 533 switch (GV.getThreadLocalMode()) { 534 case GlobalVariable::NotThreadLocal: return 0; 535 case GlobalVariable::GeneralDynamicTLSModel: return 1; 536 case GlobalVariable::LocalDynamicTLSModel: return 2; 537 case GlobalVariable::InitialExecTLSModel: return 3; 538 case GlobalVariable::LocalExecTLSModel: return 4; 539 } 540 llvm_unreachable("Invalid TLS model"); 541 } 542 543 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 544 switch (C.getSelectionKind()) { 545 case Comdat::Any: 546 return bitc::COMDAT_SELECTION_KIND_ANY; 547 case Comdat::ExactMatch: 548 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 549 case Comdat::Largest: 550 return bitc::COMDAT_SELECTION_KIND_LARGEST; 551 case Comdat::NoDuplicates: 552 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 553 case Comdat::SameSize: 554 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 555 } 556 llvm_unreachable("Invalid selection kind"); 557 } 558 559 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 560 SmallVector<uint16_t, 64> Vals; 561 for (const Comdat *C : VE.getComdats()) { 562 // COMDAT: [selection_kind, name] 563 Vals.push_back(getEncodedComdatSelectionKind(*C)); 564 size_t Size = C->getName().size(); 565 assert(isUInt<16>(Size)); 566 Vals.push_back(Size); 567 for (char Chr : C->getName()) 568 Vals.push_back((unsigned char)Chr); 569 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 570 Vals.clear(); 571 } 572 } 573 574 // Emit top-level description of module, including target triple, inline asm, 575 // descriptors for global variables, and function prototype info. 576 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 577 BitstreamWriter &Stream) { 578 // Emit various pieces of data attached to a module. 579 if (!M->getTargetTriple().empty()) 580 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 581 0/*TODO*/, Stream); 582 const std::string &DL = M->getDataLayoutStr(); 583 if (!DL.empty()) 584 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 585 if (!M->getModuleInlineAsm().empty()) 586 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 587 0/*TODO*/, Stream); 588 589 // Emit information about sections and GC, computing how many there are. Also 590 // compute the maximum alignment value. 591 std::map<std::string, unsigned> SectionMap; 592 std::map<std::string, unsigned> GCMap; 593 unsigned MaxAlignment = 0; 594 unsigned MaxGlobalType = 0; 595 for (const GlobalValue &GV : M->globals()) { 596 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 597 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 598 if (GV.hasSection()) { 599 // Give section names unique ID's. 600 unsigned &Entry = SectionMap[GV.getSection()]; 601 if (!Entry) { 602 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 603 0/*TODO*/, Stream); 604 Entry = SectionMap.size(); 605 } 606 } 607 } 608 for (const Function &F : *M) { 609 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 610 if (F.hasSection()) { 611 // Give section names unique ID's. 612 unsigned &Entry = SectionMap[F.getSection()]; 613 if (!Entry) { 614 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 615 0/*TODO*/, Stream); 616 Entry = SectionMap.size(); 617 } 618 } 619 if (F.hasGC()) { 620 // Same for GC names. 621 unsigned &Entry = GCMap[F.getGC()]; 622 if (!Entry) { 623 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 624 0/*TODO*/, Stream); 625 Entry = GCMap.size(); 626 } 627 } 628 } 629 630 // Emit abbrev for globals, now that we know # sections and max alignment. 631 unsigned SimpleGVarAbbrev = 0; 632 if (!M->global_empty()) { 633 // Add an abbrev for common globals with no visibility or thread localness. 634 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 635 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 637 Log2_32_Ceil(MaxGlobalType+1))); 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 639 //| explicitType << 1 640 //| constant 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 643 if (MaxAlignment == 0) // Alignment. 644 Abbv->Add(BitCodeAbbrevOp(0)); 645 else { 646 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 648 Log2_32_Ceil(MaxEncAlignment+1))); 649 } 650 if (SectionMap.empty()) // Section. 651 Abbv->Add(BitCodeAbbrevOp(0)); 652 else 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 654 Log2_32_Ceil(SectionMap.size()+1))); 655 // Don't bother emitting vis + thread local. 656 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 657 } 658 659 // Emit the global variable information. 660 SmallVector<unsigned, 64> Vals; 661 for (const GlobalVariable &GV : M->globals()) { 662 unsigned AbbrevToUse = 0; 663 664 // GLOBALVAR: [type, isconst, initid, 665 // linkage, alignment, section, visibility, threadlocal, 666 // unnamed_addr, externally_initialized, dllstorageclass, 667 // comdat] 668 Vals.push_back(VE.getTypeID(GV.getValueType())); 669 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 670 Vals.push_back(GV.isDeclaration() ? 0 : 671 (VE.getValueID(GV.getInitializer()) + 1)); 672 Vals.push_back(getEncodedLinkage(GV)); 673 Vals.push_back(Log2_32(GV.getAlignment())+1); 674 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 675 if (GV.isThreadLocal() || 676 GV.getVisibility() != GlobalValue::DefaultVisibility || 677 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 678 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 679 GV.hasComdat()) { 680 Vals.push_back(getEncodedVisibility(GV)); 681 Vals.push_back(getEncodedThreadLocalMode(GV)); 682 Vals.push_back(GV.hasUnnamedAddr()); 683 Vals.push_back(GV.isExternallyInitialized()); 684 Vals.push_back(getEncodedDLLStorageClass(GV)); 685 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 686 } else { 687 AbbrevToUse = SimpleGVarAbbrev; 688 } 689 690 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 691 Vals.clear(); 692 } 693 694 // Emit the function proto information. 695 for (const Function &F : *M) { 696 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 697 // section, visibility, gc, unnamed_addr, prologuedata, 698 // dllstorageclass, comdat, prefixdata, personalityfn] 699 Vals.push_back(VE.getTypeID(F.getFunctionType())); 700 Vals.push_back(F.getCallingConv()); 701 Vals.push_back(F.isDeclaration()); 702 Vals.push_back(getEncodedLinkage(F)); 703 Vals.push_back(VE.getAttributeID(F.getAttributes())); 704 Vals.push_back(Log2_32(F.getAlignment())+1); 705 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 706 Vals.push_back(getEncodedVisibility(F)); 707 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 708 Vals.push_back(F.hasUnnamedAddr()); 709 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 710 : 0); 711 Vals.push_back(getEncodedDLLStorageClass(F)); 712 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 713 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 714 : 0); 715 Vals.push_back( 716 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 717 718 unsigned AbbrevToUse = 0; 719 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 720 Vals.clear(); 721 } 722 723 // Emit the alias information. 724 for (const GlobalAlias &A : M->aliases()) { 725 // ALIAS: [alias type, aliasee val#, linkage, visibility] 726 Vals.push_back(VE.getTypeID(A.getType())); 727 Vals.push_back(VE.getValueID(A.getAliasee())); 728 Vals.push_back(getEncodedLinkage(A)); 729 Vals.push_back(getEncodedVisibility(A)); 730 Vals.push_back(getEncodedDLLStorageClass(A)); 731 Vals.push_back(getEncodedThreadLocalMode(A)); 732 Vals.push_back(A.hasUnnamedAddr()); 733 unsigned AbbrevToUse = 0; 734 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 735 Vals.clear(); 736 } 737 } 738 739 static uint64_t GetOptimizationFlags(const Value *V) { 740 uint64_t Flags = 0; 741 742 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 743 if (OBO->hasNoSignedWrap()) 744 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 745 if (OBO->hasNoUnsignedWrap()) 746 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 747 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 748 if (PEO->isExact()) 749 Flags |= 1 << bitc::PEO_EXACT; 750 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 751 if (FPMO->hasUnsafeAlgebra()) 752 Flags |= FastMathFlags::UnsafeAlgebra; 753 if (FPMO->hasNoNaNs()) 754 Flags |= FastMathFlags::NoNaNs; 755 if (FPMO->hasNoInfs()) 756 Flags |= FastMathFlags::NoInfs; 757 if (FPMO->hasNoSignedZeros()) 758 Flags |= FastMathFlags::NoSignedZeros; 759 if (FPMO->hasAllowReciprocal()) 760 Flags |= FastMathFlags::AllowReciprocal; 761 } 762 763 return Flags; 764 } 765 766 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 767 const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record) { 770 // Mimic an MDNode with a value as one operand. 771 Value *V = MD->getValue(); 772 Record.push_back(VE.getTypeID(V->getType())); 773 Record.push_back(VE.getValueID(V)); 774 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 775 Record.clear(); 776 } 777 778 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 779 BitstreamWriter &Stream, 780 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 781 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 782 Metadata *MD = N->getOperand(i); 783 assert(!(MD && isa<LocalAsMetadata>(MD)) && 784 "Unexpected function-local metadata"); 785 Record.push_back(VE.getMetadataOrNullID(MD)); 786 } 787 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 788 : bitc::METADATA_NODE, 789 Record, Abbrev); 790 Record.clear(); 791 } 792 793 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 794 BitstreamWriter &Stream, 795 SmallVectorImpl<uint64_t> &Record, 796 unsigned Abbrev) { 797 Record.push_back(N->isDistinct()); 798 Record.push_back(N->getLine()); 799 Record.push_back(N->getColumn()); 800 Record.push_back(VE.getMetadataID(N->getScope())); 801 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 802 803 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 804 Record.clear(); 805 } 806 807 static void WriteGenericDINode(const GenericDINode *N, 808 const ValueEnumerator &VE, 809 BitstreamWriter &Stream, 810 SmallVectorImpl<uint64_t> &Record, 811 unsigned Abbrev) { 812 Record.push_back(N->isDistinct()); 813 Record.push_back(N->getTag()); 814 Record.push_back(0); // Per-tag version field; unused for now. 815 816 for (auto &I : N->operands()) 817 Record.push_back(VE.getMetadataOrNullID(I)); 818 819 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 820 Record.clear(); 821 } 822 823 static uint64_t rotateSign(int64_t I) { 824 uint64_t U = I; 825 return I < 0 ? ~(U << 1) : U << 1; 826 } 827 828 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 829 BitstreamWriter &Stream, 830 SmallVectorImpl<uint64_t> &Record, 831 unsigned Abbrev) { 832 Record.push_back(N->isDistinct()); 833 Record.push_back(N->getCount()); 834 Record.push_back(rotateSign(N->getLowerBound())); 835 836 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 837 Record.clear(); 838 } 839 840 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 841 BitstreamWriter &Stream, 842 SmallVectorImpl<uint64_t> &Record, 843 unsigned Abbrev) { 844 Record.push_back(N->isDistinct()); 845 Record.push_back(rotateSign(N->getValue())); 846 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 847 848 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 849 Record.clear(); 850 } 851 852 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 853 BitstreamWriter &Stream, 854 SmallVectorImpl<uint64_t> &Record, 855 unsigned Abbrev) { 856 Record.push_back(N->isDistinct()); 857 Record.push_back(N->getTag()); 858 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 859 Record.push_back(N->getSizeInBits()); 860 Record.push_back(N->getAlignInBits()); 861 Record.push_back(N->getEncoding()); 862 863 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 864 Record.clear(); 865 } 866 867 static void WriteDIDerivedType(const DIDerivedType *N, 868 const ValueEnumerator &VE, 869 BitstreamWriter &Stream, 870 SmallVectorImpl<uint64_t> &Record, 871 unsigned Abbrev) { 872 Record.push_back(N->isDistinct()); 873 Record.push_back(N->getTag()); 874 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 875 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 876 Record.push_back(N->getLine()); 877 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 878 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 879 Record.push_back(N->getSizeInBits()); 880 Record.push_back(N->getAlignInBits()); 881 Record.push_back(N->getOffsetInBits()); 882 Record.push_back(N->getFlags()); 883 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 884 885 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 886 Record.clear(); 887 } 888 889 static void WriteDICompositeType(const DICompositeType *N, 890 const ValueEnumerator &VE, 891 BitstreamWriter &Stream, 892 SmallVectorImpl<uint64_t> &Record, 893 unsigned Abbrev) { 894 Record.push_back(N->isDistinct()); 895 Record.push_back(N->getTag()); 896 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 897 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 898 Record.push_back(N->getLine()); 899 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 900 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 901 Record.push_back(N->getSizeInBits()); 902 Record.push_back(N->getAlignInBits()); 903 Record.push_back(N->getOffsetInBits()); 904 Record.push_back(N->getFlags()); 905 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 906 Record.push_back(N->getRuntimeLang()); 907 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 908 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 909 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 910 911 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 912 Record.clear(); 913 } 914 915 static void WriteDISubroutineType(const DISubroutineType *N, 916 const ValueEnumerator &VE, 917 BitstreamWriter &Stream, 918 SmallVectorImpl<uint64_t> &Record, 919 unsigned Abbrev) { 920 Record.push_back(N->isDistinct()); 921 Record.push_back(N->getFlags()); 922 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 923 924 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 929 BitstreamWriter &Stream, 930 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 931 Record.push_back(N->isDistinct()); 932 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 933 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 934 935 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 936 Record.clear(); 937 } 938 939 static void WriteDICompileUnit(const DICompileUnit *N, 940 const ValueEnumerator &VE, 941 BitstreamWriter &Stream, 942 SmallVectorImpl<uint64_t> &Record, 943 unsigned Abbrev) { 944 Record.push_back(N->isDistinct()); 945 Record.push_back(N->getSourceLanguage()); 946 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 947 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 948 Record.push_back(N->isOptimized()); 949 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 950 Record.push_back(N->getRuntimeVersion()); 951 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 952 Record.push_back(N->getEmissionKind()); 953 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 954 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 955 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 956 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 957 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 958 Record.push_back(N->getDWOId()); 959 960 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 961 Record.clear(); 962 } 963 964 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 965 BitstreamWriter &Stream, 966 SmallVectorImpl<uint64_t> &Record, 967 unsigned Abbrev) { 968 Record.push_back(N->isDistinct()); 969 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 970 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 971 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 972 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 973 Record.push_back(N->getLine()); 974 Record.push_back(VE.getMetadataOrNullID(N->getType())); 975 Record.push_back(N->isLocalToUnit()); 976 Record.push_back(N->isDefinition()); 977 Record.push_back(N->getScopeLine()); 978 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 979 Record.push_back(N->getVirtuality()); 980 Record.push_back(N->getVirtualIndex()); 981 Record.push_back(N->getFlags()); 982 Record.push_back(N->isOptimized()); 983 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 984 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 985 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 986 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 987 988 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 989 Record.clear(); 990 } 991 992 static void WriteDILexicalBlock(const DILexicalBlock *N, 993 const ValueEnumerator &VE, 994 BitstreamWriter &Stream, 995 SmallVectorImpl<uint64_t> &Record, 996 unsigned Abbrev) { 997 Record.push_back(N->isDistinct()); 998 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 999 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1000 Record.push_back(N->getLine()); 1001 Record.push_back(N->getColumn()); 1002 1003 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1004 Record.clear(); 1005 } 1006 1007 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1008 const ValueEnumerator &VE, 1009 BitstreamWriter &Stream, 1010 SmallVectorImpl<uint64_t> &Record, 1011 unsigned Abbrev) { 1012 Record.push_back(N->isDistinct()); 1013 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1014 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1015 Record.push_back(N->getDiscriminator()); 1016 1017 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1018 Record.clear(); 1019 } 1020 1021 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1022 BitstreamWriter &Stream, 1023 SmallVectorImpl<uint64_t> &Record, 1024 unsigned Abbrev) { 1025 Record.push_back(N->isDistinct()); 1026 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1027 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1028 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1029 Record.push_back(N->getLine()); 1030 1031 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1032 Record.clear(); 1033 } 1034 1035 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1036 BitstreamWriter &Stream, 1037 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1038 Record.push_back(N->isDistinct()); 1039 for (auto &I : N->operands()) 1040 Record.push_back(VE.getMetadataOrNullID(I)); 1041 1042 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1043 Record.clear(); 1044 } 1045 1046 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1047 const ValueEnumerator &VE, 1048 BitstreamWriter &Stream, 1049 SmallVectorImpl<uint64_t> &Record, 1050 unsigned Abbrev) { 1051 Record.push_back(N->isDistinct()); 1052 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1053 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1054 1055 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1056 Record.clear(); 1057 } 1058 1059 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1060 const ValueEnumerator &VE, 1061 BitstreamWriter &Stream, 1062 SmallVectorImpl<uint64_t> &Record, 1063 unsigned Abbrev) { 1064 Record.push_back(N->isDistinct()); 1065 Record.push_back(N->getTag()); 1066 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1067 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1068 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1069 1070 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1071 Record.clear(); 1072 } 1073 1074 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1075 const ValueEnumerator &VE, 1076 BitstreamWriter &Stream, 1077 SmallVectorImpl<uint64_t> &Record, 1078 unsigned Abbrev) { 1079 Record.push_back(N->isDistinct()); 1080 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1081 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1082 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1083 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1084 Record.push_back(N->getLine()); 1085 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1086 Record.push_back(N->isLocalToUnit()); 1087 Record.push_back(N->isDefinition()); 1088 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1090 1091 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1092 Record.clear(); 1093 } 1094 1095 static void WriteDILocalVariable(const DILocalVariable *N, 1096 const ValueEnumerator &VE, 1097 BitstreamWriter &Stream, 1098 SmallVectorImpl<uint64_t> &Record, 1099 unsigned Abbrev) { 1100 Record.push_back(N->isDistinct()); 1101 Record.push_back(N->getTag()); 1102 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1103 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1104 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1105 Record.push_back(N->getLine()); 1106 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1107 Record.push_back(N->getArg()); 1108 Record.push_back(N->getFlags()); 1109 1110 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1111 Record.clear(); 1112 } 1113 1114 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1115 BitstreamWriter &Stream, 1116 SmallVectorImpl<uint64_t> &Record, 1117 unsigned Abbrev) { 1118 Record.reserve(N->getElements().size() + 1); 1119 1120 Record.push_back(N->isDistinct()); 1121 Record.append(N->elements_begin(), N->elements_end()); 1122 1123 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1124 Record.clear(); 1125 } 1126 1127 static void WriteDIObjCProperty(const DIObjCProperty *N, 1128 const ValueEnumerator &VE, 1129 BitstreamWriter &Stream, 1130 SmallVectorImpl<uint64_t> &Record, 1131 unsigned Abbrev) { 1132 Record.push_back(N->isDistinct()); 1133 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1134 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1135 Record.push_back(N->getLine()); 1136 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1137 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1138 Record.push_back(N->getAttributes()); 1139 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1140 1141 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1142 Record.clear(); 1143 } 1144 1145 static void WriteDIImportedEntity(const DIImportedEntity *N, 1146 const ValueEnumerator &VE, 1147 BitstreamWriter &Stream, 1148 SmallVectorImpl<uint64_t> &Record, 1149 unsigned Abbrev) { 1150 Record.push_back(N->isDistinct()); 1151 Record.push_back(N->getTag()); 1152 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1153 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1154 Record.push_back(N->getLine()); 1155 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1156 1157 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1158 Record.clear(); 1159 } 1160 1161 static void WriteModuleMetadata(const Module *M, 1162 const ValueEnumerator &VE, 1163 BitstreamWriter &Stream) { 1164 const auto &MDs = VE.getMDs(); 1165 if (MDs.empty() && M->named_metadata_empty()) 1166 return; 1167 1168 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1169 1170 unsigned MDSAbbrev = 0; 1171 if (VE.hasMDString()) { 1172 // Abbrev for METADATA_STRING. 1173 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1174 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1177 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1178 } 1179 1180 // Initialize MDNode abbreviations. 1181 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1182 #include "llvm/IR/Metadata.def" 1183 1184 if (VE.hasDILocation()) { 1185 // Abbrev for METADATA_LOCATION. 1186 // 1187 // Assume the column is usually under 128, and always output the inlined-at 1188 // location (it's never more expensive than building an array size 1). 1189 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1190 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1196 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1197 } 1198 1199 if (VE.hasGenericDINode()) { 1200 // Abbrev for METADATA_GENERIC_DEBUG. 1201 // 1202 // Assume the column is usually under 128, and always output the inlined-at 1203 // location (it's never more expensive than building an array size 1). 1204 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1205 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1212 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1213 } 1214 1215 unsigned NameAbbrev = 0; 1216 if (!M->named_metadata_empty()) { 1217 // Abbrev for METADATA_NAME. 1218 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1219 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1222 NameAbbrev = Stream.EmitAbbrev(Abbv); 1223 } 1224 1225 SmallVector<uint64_t, 64> Record; 1226 for (const Metadata *MD : MDs) { 1227 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1228 assert(N->isResolved() && "Expected forward references to be resolved"); 1229 1230 switch (N->getMetadataID()) { 1231 default: 1232 llvm_unreachable("Invalid MDNode subclass"); 1233 #define HANDLE_MDNODE_LEAF(CLASS) \ 1234 case Metadata::CLASS##Kind: \ 1235 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1236 continue; 1237 #include "llvm/IR/Metadata.def" 1238 } 1239 } 1240 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1241 WriteValueAsMetadata(MDC, VE, Stream, Record); 1242 continue; 1243 } 1244 const MDString *MDS = cast<MDString>(MD); 1245 // Code: [strchar x N] 1246 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1247 1248 // Emit the finished record. 1249 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1250 Record.clear(); 1251 } 1252 1253 // Write named metadata. 1254 for (const NamedMDNode &NMD : M->named_metadata()) { 1255 // Write name. 1256 StringRef Str = NMD.getName(); 1257 Record.append(Str.bytes_begin(), Str.bytes_end()); 1258 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1259 Record.clear(); 1260 1261 // Write named metadata operands. 1262 for (const MDNode *N : NMD.operands()) 1263 Record.push_back(VE.getMetadataID(N)); 1264 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1265 Record.clear(); 1266 } 1267 1268 Stream.ExitBlock(); 1269 } 1270 1271 static void WriteFunctionLocalMetadata(const Function &F, 1272 const ValueEnumerator &VE, 1273 BitstreamWriter &Stream) { 1274 bool StartedMetadataBlock = false; 1275 SmallVector<uint64_t, 64> Record; 1276 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1277 VE.getFunctionLocalMDs(); 1278 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1279 assert(MDs[i] && "Expected valid function-local metadata"); 1280 if (!StartedMetadataBlock) { 1281 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1282 StartedMetadataBlock = true; 1283 } 1284 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1285 } 1286 1287 if (StartedMetadataBlock) 1288 Stream.ExitBlock(); 1289 } 1290 1291 static void WriteMetadataAttachment(const Function &F, 1292 const ValueEnumerator &VE, 1293 BitstreamWriter &Stream) { 1294 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1295 1296 SmallVector<uint64_t, 64> Record; 1297 1298 // Write metadata attachments 1299 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1300 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1301 F.getAllMetadata(MDs); 1302 if (!MDs.empty()) { 1303 for (const auto &I : MDs) { 1304 Record.push_back(I.first); 1305 Record.push_back(VE.getMetadataID(I.second)); 1306 } 1307 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1308 Record.clear(); 1309 } 1310 1311 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1312 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1313 I != E; ++I) { 1314 MDs.clear(); 1315 I->getAllMetadataOtherThanDebugLoc(MDs); 1316 1317 // If no metadata, ignore instruction. 1318 if (MDs.empty()) continue; 1319 1320 Record.push_back(VE.getInstructionID(I)); 1321 1322 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1323 Record.push_back(MDs[i].first); 1324 Record.push_back(VE.getMetadataID(MDs[i].second)); 1325 } 1326 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1327 Record.clear(); 1328 } 1329 1330 Stream.ExitBlock(); 1331 } 1332 1333 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1334 SmallVector<uint64_t, 64> Record; 1335 1336 // Write metadata kinds 1337 // METADATA_KIND - [n x [id, name]] 1338 SmallVector<StringRef, 8> Names; 1339 M->getMDKindNames(Names); 1340 1341 if (Names.empty()) return; 1342 1343 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1344 1345 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1346 Record.push_back(MDKindID); 1347 StringRef KName = Names[MDKindID]; 1348 Record.append(KName.begin(), KName.end()); 1349 1350 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1351 Record.clear(); 1352 } 1353 1354 Stream.ExitBlock(); 1355 } 1356 1357 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1358 if ((int64_t)V >= 0) 1359 Vals.push_back(V << 1); 1360 else 1361 Vals.push_back((-V << 1) | 1); 1362 } 1363 1364 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1365 const ValueEnumerator &VE, 1366 BitstreamWriter &Stream, bool isGlobal) { 1367 if (FirstVal == LastVal) return; 1368 1369 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1370 1371 unsigned AggregateAbbrev = 0; 1372 unsigned String8Abbrev = 0; 1373 unsigned CString7Abbrev = 0; 1374 unsigned CString6Abbrev = 0; 1375 // If this is a constant pool for the module, emit module-specific abbrevs. 1376 if (isGlobal) { 1377 // Abbrev for CST_CODE_AGGREGATE. 1378 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1379 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1382 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1383 1384 // Abbrev for CST_CODE_STRING. 1385 Abbv = new BitCodeAbbrev(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1389 String8Abbrev = Stream.EmitAbbrev(Abbv); 1390 // Abbrev for CST_CODE_CSTRING. 1391 Abbv = new BitCodeAbbrev(); 1392 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1395 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1396 // Abbrev for CST_CODE_CSTRING. 1397 Abbv = new BitCodeAbbrev(); 1398 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1401 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1402 } 1403 1404 SmallVector<uint64_t, 64> Record; 1405 1406 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1407 Type *LastTy = nullptr; 1408 for (unsigned i = FirstVal; i != LastVal; ++i) { 1409 const Value *V = Vals[i].first; 1410 // If we need to switch types, do so now. 1411 if (V->getType() != LastTy) { 1412 LastTy = V->getType(); 1413 Record.push_back(VE.getTypeID(LastTy)); 1414 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1415 CONSTANTS_SETTYPE_ABBREV); 1416 Record.clear(); 1417 } 1418 1419 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1420 Record.push_back(unsigned(IA->hasSideEffects()) | 1421 unsigned(IA->isAlignStack()) << 1 | 1422 unsigned(IA->getDialect()&1) << 2); 1423 1424 // Add the asm string. 1425 const std::string &AsmStr = IA->getAsmString(); 1426 Record.push_back(AsmStr.size()); 1427 Record.append(AsmStr.begin(), AsmStr.end()); 1428 1429 // Add the constraint string. 1430 const std::string &ConstraintStr = IA->getConstraintString(); 1431 Record.push_back(ConstraintStr.size()); 1432 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1433 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1434 Record.clear(); 1435 continue; 1436 } 1437 const Constant *C = cast<Constant>(V); 1438 unsigned Code = -1U; 1439 unsigned AbbrevToUse = 0; 1440 if (C->isNullValue()) { 1441 Code = bitc::CST_CODE_NULL; 1442 } else if (isa<UndefValue>(C)) { 1443 Code = bitc::CST_CODE_UNDEF; 1444 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1445 if (IV->getBitWidth() <= 64) { 1446 uint64_t V = IV->getSExtValue(); 1447 emitSignedInt64(Record, V); 1448 Code = bitc::CST_CODE_INTEGER; 1449 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1450 } else { // Wide integers, > 64 bits in size. 1451 // We have an arbitrary precision integer value to write whose 1452 // bit width is > 64. However, in canonical unsigned integer 1453 // format it is likely that the high bits are going to be zero. 1454 // So, we only write the number of active words. 1455 unsigned NWords = IV->getValue().getActiveWords(); 1456 const uint64_t *RawWords = IV->getValue().getRawData(); 1457 for (unsigned i = 0; i != NWords; ++i) { 1458 emitSignedInt64(Record, RawWords[i]); 1459 } 1460 Code = bitc::CST_CODE_WIDE_INTEGER; 1461 } 1462 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1463 Code = bitc::CST_CODE_FLOAT; 1464 Type *Ty = CFP->getType(); 1465 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1466 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1467 } else if (Ty->isX86_FP80Ty()) { 1468 // api needed to prevent premature destruction 1469 // bits are not in the same order as a normal i80 APInt, compensate. 1470 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1471 const uint64_t *p = api.getRawData(); 1472 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1473 Record.push_back(p[0] & 0xffffLL); 1474 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1475 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1476 const uint64_t *p = api.getRawData(); 1477 Record.push_back(p[0]); 1478 Record.push_back(p[1]); 1479 } else { 1480 assert (0 && "Unknown FP type!"); 1481 } 1482 } else if (isa<ConstantDataSequential>(C) && 1483 cast<ConstantDataSequential>(C)->isString()) { 1484 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1485 // Emit constant strings specially. 1486 unsigned NumElts = Str->getNumElements(); 1487 // If this is a null-terminated string, use the denser CSTRING encoding. 1488 if (Str->isCString()) { 1489 Code = bitc::CST_CODE_CSTRING; 1490 --NumElts; // Don't encode the null, which isn't allowed by char6. 1491 } else { 1492 Code = bitc::CST_CODE_STRING; 1493 AbbrevToUse = String8Abbrev; 1494 } 1495 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1496 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1497 for (unsigned i = 0; i != NumElts; ++i) { 1498 unsigned char V = Str->getElementAsInteger(i); 1499 Record.push_back(V); 1500 isCStr7 &= (V & 128) == 0; 1501 if (isCStrChar6) 1502 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1503 } 1504 1505 if (isCStrChar6) 1506 AbbrevToUse = CString6Abbrev; 1507 else if (isCStr7) 1508 AbbrevToUse = CString7Abbrev; 1509 } else if (const ConstantDataSequential *CDS = 1510 dyn_cast<ConstantDataSequential>(C)) { 1511 Code = bitc::CST_CODE_DATA; 1512 Type *EltTy = CDS->getType()->getElementType(); 1513 if (isa<IntegerType>(EltTy)) { 1514 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1515 Record.push_back(CDS->getElementAsInteger(i)); 1516 } else if (EltTy->isFloatTy()) { 1517 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1518 union { float F; uint32_t I; }; 1519 F = CDS->getElementAsFloat(i); 1520 Record.push_back(I); 1521 } 1522 } else { 1523 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1524 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1525 union { double F; uint64_t I; }; 1526 F = CDS->getElementAsDouble(i); 1527 Record.push_back(I); 1528 } 1529 } 1530 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1531 isa<ConstantVector>(C)) { 1532 Code = bitc::CST_CODE_AGGREGATE; 1533 for (const Value *Op : C->operands()) 1534 Record.push_back(VE.getValueID(Op)); 1535 AbbrevToUse = AggregateAbbrev; 1536 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1537 switch (CE->getOpcode()) { 1538 default: 1539 if (Instruction::isCast(CE->getOpcode())) { 1540 Code = bitc::CST_CODE_CE_CAST; 1541 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1542 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1543 Record.push_back(VE.getValueID(C->getOperand(0))); 1544 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1545 } else { 1546 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1547 Code = bitc::CST_CODE_CE_BINOP; 1548 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1549 Record.push_back(VE.getValueID(C->getOperand(0))); 1550 Record.push_back(VE.getValueID(C->getOperand(1))); 1551 uint64_t Flags = GetOptimizationFlags(CE); 1552 if (Flags != 0) 1553 Record.push_back(Flags); 1554 } 1555 break; 1556 case Instruction::GetElementPtr: { 1557 Code = bitc::CST_CODE_CE_GEP; 1558 const auto *GO = cast<GEPOperator>(C); 1559 if (GO->isInBounds()) 1560 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1561 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1562 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1563 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1564 Record.push_back(VE.getValueID(C->getOperand(i))); 1565 } 1566 break; 1567 } 1568 case Instruction::Select: 1569 Code = bitc::CST_CODE_CE_SELECT; 1570 Record.push_back(VE.getValueID(C->getOperand(0))); 1571 Record.push_back(VE.getValueID(C->getOperand(1))); 1572 Record.push_back(VE.getValueID(C->getOperand(2))); 1573 break; 1574 case Instruction::ExtractElement: 1575 Code = bitc::CST_CODE_CE_EXTRACTELT; 1576 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1577 Record.push_back(VE.getValueID(C->getOperand(0))); 1578 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1579 Record.push_back(VE.getValueID(C->getOperand(1))); 1580 break; 1581 case Instruction::InsertElement: 1582 Code = bitc::CST_CODE_CE_INSERTELT; 1583 Record.push_back(VE.getValueID(C->getOperand(0))); 1584 Record.push_back(VE.getValueID(C->getOperand(1))); 1585 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1586 Record.push_back(VE.getValueID(C->getOperand(2))); 1587 break; 1588 case Instruction::ShuffleVector: 1589 // If the return type and argument types are the same, this is a 1590 // standard shufflevector instruction. If the types are different, 1591 // then the shuffle is widening or truncating the input vectors, and 1592 // the argument type must also be encoded. 1593 if (C->getType() == C->getOperand(0)->getType()) { 1594 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1595 } else { 1596 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1597 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1598 } 1599 Record.push_back(VE.getValueID(C->getOperand(0))); 1600 Record.push_back(VE.getValueID(C->getOperand(1))); 1601 Record.push_back(VE.getValueID(C->getOperand(2))); 1602 break; 1603 case Instruction::ICmp: 1604 case Instruction::FCmp: 1605 Code = bitc::CST_CODE_CE_CMP; 1606 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1607 Record.push_back(VE.getValueID(C->getOperand(0))); 1608 Record.push_back(VE.getValueID(C->getOperand(1))); 1609 Record.push_back(CE->getPredicate()); 1610 break; 1611 } 1612 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1613 Code = bitc::CST_CODE_BLOCKADDRESS; 1614 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1615 Record.push_back(VE.getValueID(BA->getFunction())); 1616 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1617 } else { 1618 #ifndef NDEBUG 1619 C->dump(); 1620 #endif 1621 llvm_unreachable("Unknown constant!"); 1622 } 1623 Stream.EmitRecord(Code, Record, AbbrevToUse); 1624 Record.clear(); 1625 } 1626 1627 Stream.ExitBlock(); 1628 } 1629 1630 static void WriteModuleConstants(const ValueEnumerator &VE, 1631 BitstreamWriter &Stream) { 1632 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1633 1634 // Find the first constant to emit, which is the first non-globalvalue value. 1635 // We know globalvalues have been emitted by WriteModuleInfo. 1636 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1637 if (!isa<GlobalValue>(Vals[i].first)) { 1638 WriteConstants(i, Vals.size(), VE, Stream, true); 1639 return; 1640 } 1641 } 1642 } 1643 1644 /// PushValueAndType - The file has to encode both the value and type id for 1645 /// many values, because we need to know what type to create for forward 1646 /// references. However, most operands are not forward references, so this type 1647 /// field is not needed. 1648 /// 1649 /// This function adds V's value ID to Vals. If the value ID is higher than the 1650 /// instruction ID, then it is a forward reference, and it also includes the 1651 /// type ID. The value ID that is written is encoded relative to the InstID. 1652 static bool PushValueAndType(const Value *V, unsigned InstID, 1653 SmallVectorImpl<unsigned> &Vals, 1654 ValueEnumerator &VE) { 1655 unsigned ValID = VE.getValueID(V); 1656 // Make encoding relative to the InstID. 1657 Vals.push_back(InstID - ValID); 1658 if (ValID >= InstID) { 1659 Vals.push_back(VE.getTypeID(V->getType())); 1660 return true; 1661 } 1662 return false; 1663 } 1664 1665 /// pushValue - Like PushValueAndType, but where the type of the value is 1666 /// omitted (perhaps it was already encoded in an earlier operand). 1667 static void pushValue(const Value *V, unsigned InstID, 1668 SmallVectorImpl<unsigned> &Vals, 1669 ValueEnumerator &VE) { 1670 unsigned ValID = VE.getValueID(V); 1671 Vals.push_back(InstID - ValID); 1672 } 1673 1674 static void pushValueSigned(const Value *V, unsigned InstID, 1675 SmallVectorImpl<uint64_t> &Vals, 1676 ValueEnumerator &VE) { 1677 unsigned ValID = VE.getValueID(V); 1678 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1679 emitSignedInt64(Vals, diff); 1680 } 1681 1682 /// WriteInstruction - Emit an instruction to the specified stream. 1683 static void WriteInstruction(const Instruction &I, unsigned InstID, 1684 ValueEnumerator &VE, BitstreamWriter &Stream, 1685 SmallVectorImpl<unsigned> &Vals) { 1686 unsigned Code = 0; 1687 unsigned AbbrevToUse = 0; 1688 VE.setInstructionID(&I); 1689 switch (I.getOpcode()) { 1690 default: 1691 if (Instruction::isCast(I.getOpcode())) { 1692 Code = bitc::FUNC_CODE_INST_CAST; 1693 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1694 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1695 Vals.push_back(VE.getTypeID(I.getType())); 1696 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1697 } else { 1698 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1699 Code = bitc::FUNC_CODE_INST_BINOP; 1700 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1701 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1702 pushValue(I.getOperand(1), InstID, Vals, VE); 1703 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1704 uint64_t Flags = GetOptimizationFlags(&I); 1705 if (Flags != 0) { 1706 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1707 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1708 Vals.push_back(Flags); 1709 } 1710 } 1711 break; 1712 1713 case Instruction::GetElementPtr: { 1714 Code = bitc::FUNC_CODE_INST_GEP; 1715 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1716 auto &GEPInst = cast<GetElementPtrInst>(I); 1717 Vals.push_back(GEPInst.isInBounds()); 1718 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1719 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1720 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1721 break; 1722 } 1723 case Instruction::ExtractValue: { 1724 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1725 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1726 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1727 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1728 break; 1729 } 1730 case Instruction::InsertValue: { 1731 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1732 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1733 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1734 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1735 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1736 break; 1737 } 1738 case Instruction::Select: 1739 Code = bitc::FUNC_CODE_INST_VSELECT; 1740 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1741 pushValue(I.getOperand(2), InstID, Vals, VE); 1742 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1743 break; 1744 case Instruction::ExtractElement: 1745 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1746 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1747 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1748 break; 1749 case Instruction::InsertElement: 1750 Code = bitc::FUNC_CODE_INST_INSERTELT; 1751 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1752 pushValue(I.getOperand(1), InstID, Vals, VE); 1753 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1754 break; 1755 case Instruction::ShuffleVector: 1756 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1757 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1758 pushValue(I.getOperand(1), InstID, Vals, VE); 1759 pushValue(I.getOperand(2), InstID, Vals, VE); 1760 break; 1761 case Instruction::ICmp: 1762 case Instruction::FCmp: 1763 // compare returning Int1Ty or vector of Int1Ty 1764 Code = bitc::FUNC_CODE_INST_CMP2; 1765 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1766 pushValue(I.getOperand(1), InstID, Vals, VE); 1767 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1768 break; 1769 1770 case Instruction::Ret: 1771 { 1772 Code = bitc::FUNC_CODE_INST_RET; 1773 unsigned NumOperands = I.getNumOperands(); 1774 if (NumOperands == 0) 1775 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1776 else if (NumOperands == 1) { 1777 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1778 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1779 } else { 1780 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1781 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1782 } 1783 } 1784 break; 1785 case Instruction::Br: 1786 { 1787 Code = bitc::FUNC_CODE_INST_BR; 1788 const BranchInst &II = cast<BranchInst>(I); 1789 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1790 if (II.isConditional()) { 1791 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1792 pushValue(II.getCondition(), InstID, Vals, VE); 1793 } 1794 } 1795 break; 1796 case Instruction::Switch: 1797 { 1798 Code = bitc::FUNC_CODE_INST_SWITCH; 1799 const SwitchInst &SI = cast<SwitchInst>(I); 1800 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1801 pushValue(SI.getCondition(), InstID, Vals, VE); 1802 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1803 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1804 i != e; ++i) { 1805 Vals.push_back(VE.getValueID(i.getCaseValue())); 1806 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1807 } 1808 } 1809 break; 1810 case Instruction::IndirectBr: 1811 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1812 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1813 // Encode the address operand as relative, but not the basic blocks. 1814 pushValue(I.getOperand(0), InstID, Vals, VE); 1815 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1816 Vals.push_back(VE.getValueID(I.getOperand(i))); 1817 break; 1818 1819 case Instruction::Invoke: { 1820 const InvokeInst *II = cast<InvokeInst>(&I); 1821 const Value *Callee = II->getCalledValue(); 1822 FunctionType *FTy = II->getFunctionType(); 1823 Code = bitc::FUNC_CODE_INST_INVOKE; 1824 1825 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1826 Vals.push_back(II->getCallingConv() | 1 << 13); 1827 Vals.push_back(VE.getValueID(II->getNormalDest())); 1828 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1829 Vals.push_back(VE.getTypeID(FTy)); 1830 PushValueAndType(Callee, InstID, Vals, VE); 1831 1832 // Emit value #'s for the fixed parameters. 1833 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1834 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1835 1836 // Emit type/value pairs for varargs params. 1837 if (FTy->isVarArg()) { 1838 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1839 i != e; ++i) 1840 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1841 } 1842 break; 1843 } 1844 case Instruction::Resume: 1845 Code = bitc::FUNC_CODE_INST_RESUME; 1846 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1847 break; 1848 case Instruction::Unreachable: 1849 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1850 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1851 break; 1852 1853 case Instruction::PHI: { 1854 const PHINode &PN = cast<PHINode>(I); 1855 Code = bitc::FUNC_CODE_INST_PHI; 1856 // With the newer instruction encoding, forward references could give 1857 // negative valued IDs. This is most common for PHIs, so we use 1858 // signed VBRs. 1859 SmallVector<uint64_t, 128> Vals64; 1860 Vals64.push_back(VE.getTypeID(PN.getType())); 1861 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1862 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1863 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1864 } 1865 // Emit a Vals64 vector and exit. 1866 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1867 Vals64.clear(); 1868 return; 1869 } 1870 1871 case Instruction::LandingPad: { 1872 const LandingPadInst &LP = cast<LandingPadInst>(I); 1873 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1874 Vals.push_back(VE.getTypeID(LP.getType())); 1875 Vals.push_back(LP.isCleanup()); 1876 Vals.push_back(LP.getNumClauses()); 1877 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1878 if (LP.isCatch(I)) 1879 Vals.push_back(LandingPadInst::Catch); 1880 else 1881 Vals.push_back(LandingPadInst::Filter); 1882 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1883 } 1884 break; 1885 } 1886 1887 case Instruction::Alloca: { 1888 Code = bitc::FUNC_CODE_INST_ALLOCA; 1889 const AllocaInst &AI = cast<AllocaInst>(I); 1890 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1891 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1892 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1893 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1894 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1895 "not enough bits for maximum alignment"); 1896 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1897 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1898 AlignRecord |= 1 << 6; 1899 Vals.push_back(AlignRecord); 1900 break; 1901 } 1902 1903 case Instruction::Load: 1904 if (cast<LoadInst>(I).isAtomic()) { 1905 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1906 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1907 } else { 1908 Code = bitc::FUNC_CODE_INST_LOAD; 1909 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1910 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1911 } 1912 Vals.push_back(VE.getTypeID(I.getType())); 1913 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1914 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1915 if (cast<LoadInst>(I).isAtomic()) { 1916 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1917 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1918 } 1919 break; 1920 case Instruction::Store: 1921 if (cast<StoreInst>(I).isAtomic()) 1922 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1923 else 1924 Code = bitc::FUNC_CODE_INST_STORE; 1925 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1926 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1927 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1928 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1929 if (cast<StoreInst>(I).isAtomic()) { 1930 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1931 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1932 } 1933 break; 1934 case Instruction::AtomicCmpXchg: 1935 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1936 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1937 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 1938 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1939 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1940 Vals.push_back(GetEncodedOrdering( 1941 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1942 Vals.push_back(GetEncodedSynchScope( 1943 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1944 Vals.push_back(GetEncodedOrdering( 1945 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1946 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1947 break; 1948 case Instruction::AtomicRMW: 1949 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1950 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1951 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1952 Vals.push_back(GetEncodedRMWOperation( 1953 cast<AtomicRMWInst>(I).getOperation())); 1954 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1955 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1956 Vals.push_back(GetEncodedSynchScope( 1957 cast<AtomicRMWInst>(I).getSynchScope())); 1958 break; 1959 case Instruction::Fence: 1960 Code = bitc::FUNC_CODE_INST_FENCE; 1961 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1962 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1963 break; 1964 case Instruction::Call: { 1965 const CallInst &CI = cast<CallInst>(I); 1966 FunctionType *FTy = CI.getFunctionType(); 1967 1968 Code = bitc::FUNC_CODE_INST_CALL; 1969 1970 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1971 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1972 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 1973 Vals.push_back(VE.getTypeID(FTy)); 1974 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1975 1976 // Emit value #'s for the fixed parameters. 1977 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1978 // Check for labels (can happen with asm labels). 1979 if (FTy->getParamType(i)->isLabelTy()) 1980 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1981 else 1982 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1983 } 1984 1985 // Emit type/value pairs for varargs params. 1986 if (FTy->isVarArg()) { 1987 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1988 i != e; ++i) 1989 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1990 } 1991 break; 1992 } 1993 case Instruction::VAArg: 1994 Code = bitc::FUNC_CODE_INST_VAARG; 1995 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1996 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1997 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1998 break; 1999 } 2000 2001 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2002 Vals.clear(); 2003 } 2004 2005 // Emit names for globals/functions etc. 2006 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 2007 const ValueEnumerator &VE, 2008 BitstreamWriter &Stream) { 2009 if (VST.empty()) return; 2010 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2011 2012 // FIXME: Set up the abbrev, we know how many values there are! 2013 // FIXME: We know if the type names can use 7-bit ascii. 2014 SmallVector<unsigned, 64> NameVals; 2015 2016 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 2017 SI != SE; ++SI) { 2018 2019 const ValueName &Name = *SI; 2020 2021 // Figure out the encoding to use for the name. 2022 bool is7Bit = true; 2023 bool isChar6 = true; 2024 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2025 C != E; ++C) { 2026 if (isChar6) 2027 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2028 if ((unsigned char)*C & 128) { 2029 is7Bit = false; 2030 break; // don't bother scanning the rest. 2031 } 2032 } 2033 2034 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2035 2036 // VST_ENTRY: [valueid, namechar x N] 2037 // VST_BBENTRY: [bbid, namechar x N] 2038 unsigned Code; 2039 if (isa<BasicBlock>(SI->getValue())) { 2040 Code = bitc::VST_CODE_BBENTRY; 2041 if (isChar6) 2042 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2043 } else { 2044 Code = bitc::VST_CODE_ENTRY; 2045 if (isChar6) 2046 AbbrevToUse = VST_ENTRY_6_ABBREV; 2047 else if (is7Bit) 2048 AbbrevToUse = VST_ENTRY_7_ABBREV; 2049 } 2050 2051 NameVals.push_back(VE.getValueID(SI->getValue())); 2052 for (const char *P = Name.getKeyData(), 2053 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2054 NameVals.push_back((unsigned char)*P); 2055 2056 // Emit the finished record. 2057 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2058 NameVals.clear(); 2059 } 2060 Stream.ExitBlock(); 2061 } 2062 2063 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2064 BitstreamWriter &Stream) { 2065 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2066 unsigned Code; 2067 if (isa<BasicBlock>(Order.V)) 2068 Code = bitc::USELIST_CODE_BB; 2069 else 2070 Code = bitc::USELIST_CODE_DEFAULT; 2071 2072 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2073 Record.push_back(VE.getValueID(Order.V)); 2074 Stream.EmitRecord(Code, Record); 2075 } 2076 2077 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2078 BitstreamWriter &Stream) { 2079 assert(VE.shouldPreserveUseListOrder() && 2080 "Expected to be preserving use-list order"); 2081 2082 auto hasMore = [&]() { 2083 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2084 }; 2085 if (!hasMore()) 2086 // Nothing to do. 2087 return; 2088 2089 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2090 while (hasMore()) { 2091 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2092 VE.UseListOrders.pop_back(); 2093 } 2094 Stream.ExitBlock(); 2095 } 2096 2097 /// WriteFunction - Emit a function body to the module stream. 2098 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2099 BitstreamWriter &Stream) { 2100 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2101 VE.incorporateFunction(F); 2102 2103 SmallVector<unsigned, 64> Vals; 2104 2105 // Emit the number of basic blocks, so the reader can create them ahead of 2106 // time. 2107 Vals.push_back(VE.getBasicBlocks().size()); 2108 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2109 Vals.clear(); 2110 2111 // If there are function-local constants, emit them now. 2112 unsigned CstStart, CstEnd; 2113 VE.getFunctionConstantRange(CstStart, CstEnd); 2114 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2115 2116 // If there is function-local metadata, emit it now. 2117 WriteFunctionLocalMetadata(F, VE, Stream); 2118 2119 // Keep a running idea of what the instruction ID is. 2120 unsigned InstID = CstEnd; 2121 2122 bool NeedsMetadataAttachment = F.hasMetadata(); 2123 2124 DILocation *LastDL = nullptr; 2125 2126 // Finally, emit all the instructions, in order. 2127 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2128 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2129 I != E; ++I) { 2130 WriteInstruction(*I, InstID, VE, Stream, Vals); 2131 2132 if (!I->getType()->isVoidTy()) 2133 ++InstID; 2134 2135 // If the instruction has metadata, write a metadata attachment later. 2136 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2137 2138 // If the instruction has a debug location, emit it. 2139 DILocation *DL = I->getDebugLoc(); 2140 if (!DL) 2141 continue; 2142 2143 if (DL == LastDL) { 2144 // Just repeat the same debug loc as last time. 2145 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2146 continue; 2147 } 2148 2149 Vals.push_back(DL->getLine()); 2150 Vals.push_back(DL->getColumn()); 2151 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2152 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2153 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2154 Vals.clear(); 2155 2156 LastDL = DL; 2157 } 2158 2159 // Emit names for all the instructions etc. 2160 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2161 2162 if (NeedsMetadataAttachment) 2163 WriteMetadataAttachment(F, VE, Stream); 2164 if (VE.shouldPreserveUseListOrder()) 2165 WriteUseListBlock(&F, VE, Stream); 2166 VE.purgeFunction(); 2167 Stream.ExitBlock(); 2168 } 2169 2170 // Emit blockinfo, which defines the standard abbreviations etc. 2171 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2172 // We only want to emit block info records for blocks that have multiple 2173 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2174 // Other blocks can define their abbrevs inline. 2175 Stream.EnterBlockInfoBlock(2); 2176 2177 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2183 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2184 Abbv) != VST_ENTRY_8_ABBREV) 2185 llvm_unreachable("Unexpected abbrev ordering!"); 2186 } 2187 2188 { // 7-bit fixed width VST_ENTRY strings. 2189 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2190 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2194 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2195 Abbv) != VST_ENTRY_7_ABBREV) 2196 llvm_unreachable("Unexpected abbrev ordering!"); 2197 } 2198 { // 6-bit char6 VST_ENTRY strings. 2199 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2200 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2204 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2205 Abbv) != VST_ENTRY_6_ABBREV) 2206 llvm_unreachable("Unexpected abbrev ordering!"); 2207 } 2208 { // 6-bit char6 VST_BBENTRY strings. 2209 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2210 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2214 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2215 Abbv) != VST_BBENTRY_6_ABBREV) 2216 llvm_unreachable("Unexpected abbrev ordering!"); 2217 } 2218 2219 2220 2221 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2222 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2223 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2225 VE.computeBitsRequiredForTypeIndicies())); 2226 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2227 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2228 llvm_unreachable("Unexpected abbrev ordering!"); 2229 } 2230 2231 { // INTEGER abbrev for CONSTANTS_BLOCK. 2232 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2233 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2235 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2236 Abbv) != CONSTANTS_INTEGER_ABBREV) 2237 llvm_unreachable("Unexpected abbrev ordering!"); 2238 } 2239 2240 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2241 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2242 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2245 VE.computeBitsRequiredForTypeIndicies())); 2246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2247 2248 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2249 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2250 llvm_unreachable("Unexpected abbrev ordering!"); 2251 } 2252 { // NULL abbrev for CONSTANTS_BLOCK. 2253 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2254 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2255 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2256 Abbv) != CONSTANTS_NULL_Abbrev) 2257 llvm_unreachable("Unexpected abbrev ordering!"); 2258 } 2259 2260 // FIXME: This should only use space for first class types! 2261 2262 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2263 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2264 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2267 VE.computeBitsRequiredForTypeIndicies())); 2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2270 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2271 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2272 llvm_unreachable("Unexpected abbrev ordering!"); 2273 } 2274 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2275 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2276 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2280 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2281 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2282 llvm_unreachable("Unexpected abbrev ordering!"); 2283 } 2284 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2285 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2286 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2291 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2292 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2293 llvm_unreachable("Unexpected abbrev ordering!"); 2294 } 2295 { // INST_CAST abbrev for FUNCTION_BLOCK. 2296 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2297 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2300 VE.computeBitsRequiredForTypeIndicies())); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2302 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2303 Abbv) != FUNCTION_INST_CAST_ABBREV) 2304 llvm_unreachable("Unexpected abbrev ordering!"); 2305 } 2306 2307 { // INST_RET abbrev for FUNCTION_BLOCK. 2308 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2309 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2310 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2311 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2312 llvm_unreachable("Unexpected abbrev ordering!"); 2313 } 2314 { // INST_RET abbrev for FUNCTION_BLOCK. 2315 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2316 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2318 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2319 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2320 llvm_unreachable("Unexpected abbrev ordering!"); 2321 } 2322 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2323 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2324 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2325 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2326 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2327 llvm_unreachable("Unexpected abbrev ordering!"); 2328 } 2329 { 2330 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2331 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2334 Log2_32_Ceil(VE.getTypes().size() + 1))); 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2337 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2338 FUNCTION_INST_GEP_ABBREV) 2339 llvm_unreachable("Unexpected abbrev ordering!"); 2340 } 2341 2342 Stream.ExitBlock(); 2343 } 2344 2345 /// WriteModule - Emit the specified module to the bitstream. 2346 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2347 bool ShouldPreserveUseListOrder) { 2348 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2349 2350 SmallVector<unsigned, 1> Vals; 2351 unsigned CurVersion = 1; 2352 Vals.push_back(CurVersion); 2353 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2354 2355 // Analyze the module, enumerating globals, functions, etc. 2356 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2357 2358 // Emit blockinfo, which defines the standard abbreviations etc. 2359 WriteBlockInfo(VE, Stream); 2360 2361 // Emit information about attribute groups. 2362 WriteAttributeGroupTable(VE, Stream); 2363 2364 // Emit information about parameter attributes. 2365 WriteAttributeTable(VE, Stream); 2366 2367 // Emit information describing all of the types in the module. 2368 WriteTypeTable(VE, Stream); 2369 2370 writeComdats(VE, Stream); 2371 2372 // Emit top-level description of module, including target triple, inline asm, 2373 // descriptors for global variables, and function prototype info. 2374 WriteModuleInfo(M, VE, Stream); 2375 2376 // Emit constants. 2377 WriteModuleConstants(VE, Stream); 2378 2379 // Emit metadata. 2380 WriteModuleMetadata(M, VE, Stream); 2381 2382 // Emit metadata. 2383 WriteModuleMetadataStore(M, Stream); 2384 2385 // Emit names for globals/functions etc. 2386 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2387 2388 // Emit module-level use-lists. 2389 if (VE.shouldPreserveUseListOrder()) 2390 WriteUseListBlock(nullptr, VE, Stream); 2391 2392 // Emit function bodies. 2393 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2394 if (!F->isDeclaration()) 2395 WriteFunction(*F, VE, Stream); 2396 2397 Stream.ExitBlock(); 2398 } 2399 2400 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2401 /// header and trailer to make it compatible with the system archiver. To do 2402 /// this we emit the following header, and then emit a trailer that pads the 2403 /// file out to be a multiple of 16 bytes. 2404 /// 2405 /// struct bc_header { 2406 /// uint32_t Magic; // 0x0B17C0DE 2407 /// uint32_t Version; // Version, currently always 0. 2408 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2409 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2410 /// uint32_t CPUType; // CPU specifier. 2411 /// ... potentially more later ... 2412 /// }; 2413 enum { 2414 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2415 DarwinBCHeaderSize = 5*4 2416 }; 2417 2418 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2419 uint32_t &Position) { 2420 support::endian::write32le(&Buffer[Position], Value); 2421 Position += 4; 2422 } 2423 2424 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2425 const Triple &TT) { 2426 unsigned CPUType = ~0U; 2427 2428 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2429 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2430 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2431 // specific constants here because they are implicitly part of the Darwin ABI. 2432 enum { 2433 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2434 DARWIN_CPU_TYPE_X86 = 7, 2435 DARWIN_CPU_TYPE_ARM = 12, 2436 DARWIN_CPU_TYPE_POWERPC = 18 2437 }; 2438 2439 Triple::ArchType Arch = TT.getArch(); 2440 if (Arch == Triple::x86_64) 2441 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2442 else if (Arch == Triple::x86) 2443 CPUType = DARWIN_CPU_TYPE_X86; 2444 else if (Arch == Triple::ppc) 2445 CPUType = DARWIN_CPU_TYPE_POWERPC; 2446 else if (Arch == Triple::ppc64) 2447 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2448 else if (Arch == Triple::arm || Arch == Triple::thumb) 2449 CPUType = DARWIN_CPU_TYPE_ARM; 2450 2451 // Traditional Bitcode starts after header. 2452 assert(Buffer.size() >= DarwinBCHeaderSize && 2453 "Expected header size to be reserved"); 2454 unsigned BCOffset = DarwinBCHeaderSize; 2455 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2456 2457 // Write the magic and version. 2458 unsigned Position = 0; 2459 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2460 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2461 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2462 WriteInt32ToBuffer(BCSize , Buffer, Position); 2463 WriteInt32ToBuffer(CPUType , Buffer, Position); 2464 2465 // If the file is not a multiple of 16 bytes, insert dummy padding. 2466 while (Buffer.size() & 15) 2467 Buffer.push_back(0); 2468 } 2469 2470 /// WriteBitcodeToFile - Write the specified module to the specified output 2471 /// stream. 2472 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2473 bool ShouldPreserveUseListOrder) { 2474 SmallVector<char, 0> Buffer; 2475 Buffer.reserve(256*1024); 2476 2477 // If this is darwin or another generic macho target, reserve space for the 2478 // header. 2479 Triple TT(M->getTargetTriple()); 2480 if (TT.isOSDarwin()) 2481 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2482 2483 // Emit the module into the buffer. 2484 { 2485 BitstreamWriter Stream(Buffer); 2486 2487 // Emit the file header. 2488 Stream.Emit((unsigned)'B', 8); 2489 Stream.Emit((unsigned)'C', 8); 2490 Stream.Emit(0x0, 4); 2491 Stream.Emit(0xC, 4); 2492 Stream.Emit(0xE, 4); 2493 Stream.Emit(0xD, 4); 2494 2495 // Emit the module. 2496 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2497 } 2498 2499 if (TT.isOSDarwin()) 2500 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2501 2502 // Write the generated bitstream to "Out". 2503 Out.write((char*)&Buffer.front(), Buffer.size()); 2504 } 2505