1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 42 cl::opt<unsigned> 43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 44 cl::desc("Number of metadatas above which we emit an index " 45 "to enable lazy-loading")); 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 73 /// file type. 74 class BitcodeWriterBase { 75 protected: 76 /// The stream created and owned by the client. 77 BitstreamWriter &Stream; 78 79 /// Saves the offset of the VSTOffset record that must eventually be 80 /// backpatched with the offset of the actual VST. 81 uint64_t VSTOffsetPlaceholder = 0; 82 83 public: 84 /// Constructs a BitcodeWriterBase object that writes to the provided 85 /// \p Stream. 86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 87 88 protected: 89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 90 void writeValueSymbolTableForwardDecl(); 91 void writeBitcodeHeader(); 92 }; 93 94 /// Class to manage the bitcode writing for a module. 95 class ModuleBitcodeWriter : public BitcodeWriterBase { 96 /// Pointer to the buffer allocated by caller for bitcode writing. 97 const SmallVectorImpl<char> &Buffer; 98 99 /// The Module to write to bitcode. 100 const Module &M; 101 102 /// Enumerates ids for all values in the module. 103 ValueEnumerator VE; 104 105 /// Optional per-module index to write for ThinLTO. 106 const ModuleSummaryIndex *Index; 107 108 /// True if a module hash record should be written. 109 bool GenerateHash; 110 111 /// If non-null, when GenerateHash is true, the resulting hash is written 112 /// into ModHash. When GenerateHash is false, that specified value 113 /// is used as the hash instead of computing from the generated bitcode. 114 /// Can be used to produce the same module hash for a minimized bitcode 115 /// used just for the thin link as in the regular full bitcode that will 116 /// be used in the backend. 117 ModuleHash *ModHash; 118 119 /// The start bit of the identification block. 120 uint64_t BitcodeStartBit; 121 122 /// Map that holds the correspondence between GUIDs in the summary index, 123 /// that came from indirect call profiles, and a value id generated by this 124 /// class to use in the VST and summary block records. 125 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 126 127 /// Tracks the last value id recorded in the GUIDToValueMap. 128 unsigned GlobalValueId; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 134 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 135 const ModuleSummaryIndex *Index, bool GenerateHash, 136 ModuleHash *ModHash = nullptr) 137 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 138 VE(*M, ShouldPreserveUseListOrder), Index(Index), 139 GenerateHash(GenerateHash), ModHash(ModHash), 140 BitcodeStartBit(Stream.GetCurrentBitNo()) { 141 // Assign ValueIds to any callee values in the index that came from 142 // indirect call profiles and were recorded as a GUID not a Value* 143 // (which would have been assigned an ID by the ValueEnumerator). 144 // The starting ValueId is just after the number of values in the 145 // ValueEnumerator, so that they can be emitted in the VST. 146 GlobalValueId = VE.getValues().size(); 147 if (!Index) 148 return; 149 for (const auto &GUIDSummaryLists : *Index) 150 // Examine all summaries for this GUID. 151 for (auto &Summary : GUIDSummaryLists.second) 152 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 153 // For each call in the function summary, see if the call 154 // is to a GUID (which means it is for an indirect call, 155 // otherwise we would have a Value for it). If so, synthesize 156 // a value id. 157 for (auto &CallEdge : FS->calls()) 158 if (CallEdge.first.isGUID()) 159 assignValueId(CallEdge.first.getGUID()); 160 } 161 162 /// Emit the current module to the bitstream. 163 void write(); 164 165 private: 166 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 167 168 void writeAttributeGroupTable(); 169 void writeAttributeTable(); 170 void writeTypeTable(); 171 void writeComdats(); 172 void writeModuleInfo(); 173 void writeValueAsMetadata(const ValueAsMetadata *MD, 174 SmallVectorImpl<uint64_t> &Record); 175 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 176 unsigned Abbrev); 177 unsigned createDILocationAbbrev(); 178 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 179 unsigned &Abbrev); 180 unsigned createGenericDINodeAbbrev(); 181 void writeGenericDINode(const GenericDINode *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 183 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 184 unsigned Abbrev); 185 void writeDIEnumerator(const DIEnumerator *N, 186 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 187 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned Abbrev); 189 void writeDIDerivedType(const DIDerivedType *N, 190 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 191 void writeDICompositeType(const DICompositeType *N, 192 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 193 void writeDISubroutineType(const DISubroutineType *N, 194 SmallVectorImpl<uint64_t> &Record, 195 unsigned Abbrev); 196 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDICompileUnit(const DICompileUnit *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDISubprogram(const DISubprogram *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDILexicalBlock(const DILexicalBlock *N, 203 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 204 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 205 SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 208 unsigned Abbrev); 209 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 210 unsigned Abbrev); 211 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 212 unsigned Abbrev); 213 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 214 unsigned Abbrev); 215 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 216 SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIGlobalVariable(const DIGlobalVariable *N, 222 SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDILocalVariable(const DILocalVariable *N, 225 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 226 void writeDIExpression(const DIExpression *N, 227 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 228 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 229 SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIObjCProperty(const DIObjCProperty *N, 232 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 233 void writeDIImportedEntity(const DIImportedEntity *N, 234 SmallVectorImpl<uint64_t> &Record, 235 unsigned Abbrev); 236 unsigned createNamedMetadataAbbrev(); 237 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 238 unsigned createMetadataStringsAbbrev(); 239 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 240 SmallVectorImpl<uint64_t> &Record); 241 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 242 SmallVectorImpl<uint64_t> &Record, 243 std::vector<unsigned> *MDAbbrevs = nullptr, 244 std::vector<uint64_t> *IndexPos = nullptr); 245 void writeModuleMetadata(); 246 void writeFunctionMetadata(const Function &F); 247 void writeFunctionMetadataAttachment(const Function &F); 248 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 249 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 250 const GlobalObject &GO); 251 void writeModuleMetadataKinds(); 252 void writeOperandBundleTags(); 253 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 254 void writeModuleConstants(); 255 bool pushValueAndType(const Value *V, unsigned InstID, 256 SmallVectorImpl<unsigned> &Vals); 257 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 258 void pushValue(const Value *V, unsigned InstID, 259 SmallVectorImpl<unsigned> &Vals); 260 void pushValueSigned(const Value *V, unsigned InstID, 261 SmallVectorImpl<uint64_t> &Vals); 262 void writeInstruction(const Instruction &I, unsigned InstID, 263 SmallVectorImpl<unsigned> &Vals); 264 void writeValueSymbolTable( 265 const ValueSymbolTable &VST, bool IsModuleLevel = false, 266 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 267 void writeUseList(UseListOrder &&Order); 268 void writeUseListBlock(const Function *F); 269 void 270 writeFunction(const Function &F, 271 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 272 void writeBlockInfo(); 273 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 274 GlobalValueSummary *Summary, 275 unsigned ValueID, 276 unsigned FSCallsAbbrev, 277 unsigned FSCallsProfileAbbrev, 278 const Function &F); 279 void writeModuleLevelReferences(const GlobalVariable &V, 280 SmallVector<uint64_t, 64> &NameVals, 281 unsigned FSModRefsAbbrev); 282 void writePerModuleGlobalValueSummary(); 283 void writeModuleHash(size_t BlockStartPos); 284 285 void assignValueId(GlobalValue::GUID ValGUID) { 286 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 287 } 288 unsigned getValueId(GlobalValue::GUID ValGUID) { 289 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 290 // Expect that any GUID value had a value Id assigned by an 291 // earlier call to assignValueId. 292 assert(VMI != GUIDToValueIdMap.end() && 293 "GUID does not have assigned value Id"); 294 return VMI->second; 295 } 296 // Helper to get the valueId for the type of value recorded in VI. 297 unsigned getValueId(ValueInfo VI) { 298 if (VI.isGUID()) 299 return getValueId(VI.getGUID()); 300 return VE.getValueID(VI.getValue()); 301 } 302 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 303 }; 304 305 /// Class to manage the bitcode writing for a combined index. 306 class IndexBitcodeWriter : public BitcodeWriterBase { 307 /// The combined index to write to bitcode. 308 const ModuleSummaryIndex &Index; 309 310 /// When writing a subset of the index for distributed backends, client 311 /// provides a map of modules to the corresponding GUIDs/summaries to write. 312 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 313 314 /// Map that holds the correspondence between the GUID used in the combined 315 /// index and a value id generated by this class to use in references. 316 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 317 318 /// Tracks the last value id recorded in the GUIDToValueMap. 319 unsigned GlobalValueId = 0; 320 321 public: 322 /// Constructs a IndexBitcodeWriter object for the given combined index, 323 /// writing to the provided \p Buffer. When writing a subset of the index 324 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 325 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 326 const std::map<std::string, GVSummaryMapTy> 327 *ModuleToSummariesForIndex = nullptr) 328 : BitcodeWriterBase(Stream), Index(Index), 329 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 330 // Assign unique value ids to all summaries to be written, for use 331 // in writing out the call graph edges. Save the mapping from GUID 332 // to the new global value id to use when writing those edges, which 333 // are currently saved in the index in terms of GUID. 334 for (const auto &I : *this) 335 GUIDToValueIdMap[I.first] = ++GlobalValueId; 336 } 337 338 /// The below iterator returns the GUID and associated summary. 339 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 340 341 /// Iterator over the value GUID and summaries to be written to bitcode, 342 /// hides the details of whether they are being pulled from the entire 343 /// index or just those in a provided ModuleToSummariesForIndex map. 344 class iterator 345 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 346 GVInfo> { 347 /// Enables access to parent class. 348 const IndexBitcodeWriter &Writer; 349 350 // Iterators used when writing only those summaries in a provided 351 // ModuleToSummariesForIndex map: 352 353 /// Points to the last element in outer ModuleToSummariesForIndex map. 354 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 355 /// Iterator on outer ModuleToSummariesForIndex map. 356 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 357 /// Iterator on an inner global variable summary map. 358 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 359 360 // Iterators used when writing all summaries in the index: 361 362 /// Points to the last element in the Index outer GlobalValueMap. 363 const_gvsummary_iterator IndexSummariesBack; 364 /// Iterator on outer GlobalValueMap. 365 const_gvsummary_iterator IndexSummariesIter; 366 /// Iterator on an inner GlobalValueSummaryList. 367 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 368 369 public: 370 /// Construct iterator from parent \p Writer and indicate if we are 371 /// constructing the end iterator. 372 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 373 // Set up the appropriate set of iterators given whether we are writing 374 // the full index or just a subset. 375 // Can't setup the Back or inner iterators if the corresponding map 376 // is empty. This will be handled specially in operator== as well. 377 if (Writer.ModuleToSummariesForIndex && 378 !Writer.ModuleToSummariesForIndex->empty()) { 379 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 380 std::next(ModuleSummariesBack) != 381 Writer.ModuleToSummariesForIndex->end(); 382 ModuleSummariesBack++) 383 ; 384 ModuleSummariesIter = !IsAtEnd 385 ? Writer.ModuleToSummariesForIndex->begin() 386 : ModuleSummariesBack; 387 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 388 : ModuleSummariesBack->second.end(); 389 } else if (!Writer.ModuleToSummariesForIndex && 390 Writer.Index.begin() != Writer.Index.end()) { 391 for (IndexSummariesBack = Writer.Index.begin(); 392 std::next(IndexSummariesBack) != Writer.Index.end(); 393 IndexSummariesBack++) 394 ; 395 IndexSummariesIter = 396 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 397 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 398 : IndexSummariesBack->second.end(); 399 } 400 } 401 402 /// Increment the appropriate set of iterators. 403 iterator &operator++() { 404 // First the inner iterator is incremented, then if it is at the end 405 // and there are more outer iterations to go, the inner is reset to 406 // the start of the next inner list. 407 if (Writer.ModuleToSummariesForIndex) { 408 ++ModuleGVSummariesIter; 409 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 410 ModuleSummariesIter != ModuleSummariesBack) { 411 ++ModuleSummariesIter; 412 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 413 } 414 } else { 415 ++IndexGVSummariesIter; 416 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 417 IndexSummariesIter != IndexSummariesBack) { 418 ++IndexSummariesIter; 419 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 420 } 421 } 422 return *this; 423 } 424 425 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 426 /// outer and inner iterator positions. 427 GVInfo operator*() { 428 if (Writer.ModuleToSummariesForIndex) 429 return std::make_pair(ModuleGVSummariesIter->first, 430 ModuleGVSummariesIter->second); 431 return std::make_pair(IndexSummariesIter->first, 432 IndexGVSummariesIter->get()); 433 } 434 435 /// Checks if the iterators are equal, with special handling for empty 436 /// indexes. 437 bool operator==(const iterator &RHS) const { 438 if (Writer.ModuleToSummariesForIndex) { 439 // First ensure that both are writing the same subset. 440 if (Writer.ModuleToSummariesForIndex != 441 RHS.Writer.ModuleToSummariesForIndex) 442 return false; 443 // Already determined above that maps are the same, so if one is 444 // empty, they both are. 445 if (Writer.ModuleToSummariesForIndex->empty()) 446 return true; 447 // Ensure the ModuleGVSummariesIter are iterating over the same 448 // container before checking them below. 449 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 450 return false; 451 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 452 } 453 // First ensure RHS also writing the full index, and that both are 454 // writing the same full index. 455 if (RHS.Writer.ModuleToSummariesForIndex || 456 &Writer.Index != &RHS.Writer.Index) 457 return false; 458 // Already determined above that maps are the same, so if one is 459 // empty, they both are. 460 if (Writer.Index.begin() == Writer.Index.end()) 461 return true; 462 // Ensure the IndexGVSummariesIter are iterating over the same 463 // container before checking them below. 464 if (IndexSummariesIter != RHS.IndexSummariesIter) 465 return false; 466 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 467 } 468 }; 469 470 /// Obtain the start iterator over the summaries to be written. 471 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 472 /// Obtain the end iterator over the summaries to be written. 473 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 474 475 /// Main entry point for writing a combined index to bitcode. 476 void write(); 477 478 private: 479 void writeModStrings(); 480 void writeCombinedValueSymbolTable(); 481 void writeCombinedGlobalValueSummary(); 482 483 /// Indicates whether the provided \p ModulePath should be written into 484 /// the module string table, e.g. if full index written or if it is in 485 /// the provided subset. 486 bool doIncludeModule(StringRef ModulePath) { 487 return !ModuleToSummariesForIndex || 488 ModuleToSummariesForIndex->count(ModulePath); 489 } 490 491 bool hasValueId(GlobalValue::GUID ValGUID) { 492 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 493 return VMI != GUIDToValueIdMap.end(); 494 } 495 unsigned getValueId(GlobalValue::GUID ValGUID) { 496 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 497 // If this GUID doesn't have an entry, assign one. 498 if (VMI == GUIDToValueIdMap.end()) { 499 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 500 return GlobalValueId; 501 } else { 502 return VMI->second; 503 } 504 } 505 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 506 }; 507 } // end anonymous namespace 508 509 static unsigned getEncodedCastOpcode(unsigned Opcode) { 510 switch (Opcode) { 511 default: llvm_unreachable("Unknown cast instruction!"); 512 case Instruction::Trunc : return bitc::CAST_TRUNC; 513 case Instruction::ZExt : return bitc::CAST_ZEXT; 514 case Instruction::SExt : return bitc::CAST_SEXT; 515 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 516 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 517 case Instruction::UIToFP : return bitc::CAST_UITOFP; 518 case Instruction::SIToFP : return bitc::CAST_SITOFP; 519 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 520 case Instruction::FPExt : return bitc::CAST_FPEXT; 521 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 522 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 523 case Instruction::BitCast : return bitc::CAST_BITCAST; 524 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 525 } 526 } 527 528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: return bitc::BINOP_ADD; 533 case Instruction::Sub: 534 case Instruction::FSub: return bitc::BINOP_SUB; 535 case Instruction::Mul: 536 case Instruction::FMul: return bitc::BINOP_MUL; 537 case Instruction::UDiv: return bitc::BINOP_UDIV; 538 case Instruction::FDiv: 539 case Instruction::SDiv: return bitc::BINOP_SDIV; 540 case Instruction::URem: return bitc::BINOP_UREM; 541 case Instruction::FRem: 542 case Instruction::SRem: return bitc::BINOP_SREM; 543 case Instruction::Shl: return bitc::BINOP_SHL; 544 case Instruction::LShr: return bitc::BINOP_LSHR; 545 case Instruction::AShr: return bitc::BINOP_ASHR; 546 case Instruction::And: return bitc::BINOP_AND; 547 case Instruction::Or: return bitc::BINOP_OR; 548 case Instruction::Xor: return bitc::BINOP_XOR; 549 } 550 } 551 552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 553 switch (Op) { 554 default: llvm_unreachable("Unknown RMW operation!"); 555 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 556 case AtomicRMWInst::Add: return bitc::RMW_ADD; 557 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 558 case AtomicRMWInst::And: return bitc::RMW_AND; 559 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 560 case AtomicRMWInst::Or: return bitc::RMW_OR; 561 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 562 case AtomicRMWInst::Max: return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 565 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 566 } 567 } 568 569 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 570 switch (Ordering) { 571 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 572 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 573 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 574 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 575 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 576 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 577 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 578 } 579 llvm_unreachable("Invalid ordering"); 580 } 581 582 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 583 switch (SynchScope) { 584 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 585 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 586 } 587 llvm_unreachable("Invalid synch scope"); 588 } 589 590 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 591 StringRef Str, unsigned AbbrevToUse) { 592 SmallVector<unsigned, 64> Vals; 593 594 // Code: [strchar x N] 595 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 596 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 597 AbbrevToUse = 0; 598 Vals.push_back(Str[i]); 599 } 600 601 // Emit the finished record. 602 Stream.EmitRecord(Code, Vals, AbbrevToUse); 603 } 604 605 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 606 switch (Kind) { 607 case Attribute::Alignment: 608 return bitc::ATTR_KIND_ALIGNMENT; 609 case Attribute::AllocSize: 610 return bitc::ATTR_KIND_ALLOC_SIZE; 611 case Attribute::AlwaysInline: 612 return bitc::ATTR_KIND_ALWAYS_INLINE; 613 case Attribute::ArgMemOnly: 614 return bitc::ATTR_KIND_ARGMEMONLY; 615 case Attribute::Builtin: 616 return bitc::ATTR_KIND_BUILTIN; 617 case Attribute::ByVal: 618 return bitc::ATTR_KIND_BY_VAL; 619 case Attribute::Convergent: 620 return bitc::ATTR_KIND_CONVERGENT; 621 case Attribute::InAlloca: 622 return bitc::ATTR_KIND_IN_ALLOCA; 623 case Attribute::Cold: 624 return bitc::ATTR_KIND_COLD; 625 case Attribute::InaccessibleMemOnly: 626 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 627 case Attribute::InaccessibleMemOrArgMemOnly: 628 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 629 case Attribute::InlineHint: 630 return bitc::ATTR_KIND_INLINE_HINT; 631 case Attribute::InReg: 632 return bitc::ATTR_KIND_IN_REG; 633 case Attribute::JumpTable: 634 return bitc::ATTR_KIND_JUMP_TABLE; 635 case Attribute::MinSize: 636 return bitc::ATTR_KIND_MIN_SIZE; 637 case Attribute::Naked: 638 return bitc::ATTR_KIND_NAKED; 639 case Attribute::Nest: 640 return bitc::ATTR_KIND_NEST; 641 case Attribute::NoAlias: 642 return bitc::ATTR_KIND_NO_ALIAS; 643 case Attribute::NoBuiltin: 644 return bitc::ATTR_KIND_NO_BUILTIN; 645 case Attribute::NoCapture: 646 return bitc::ATTR_KIND_NO_CAPTURE; 647 case Attribute::NoDuplicate: 648 return bitc::ATTR_KIND_NO_DUPLICATE; 649 case Attribute::NoImplicitFloat: 650 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 651 case Attribute::NoInline: 652 return bitc::ATTR_KIND_NO_INLINE; 653 case Attribute::NoRecurse: 654 return bitc::ATTR_KIND_NO_RECURSE; 655 case Attribute::NonLazyBind: 656 return bitc::ATTR_KIND_NON_LAZY_BIND; 657 case Attribute::NonNull: 658 return bitc::ATTR_KIND_NON_NULL; 659 case Attribute::Dereferenceable: 660 return bitc::ATTR_KIND_DEREFERENCEABLE; 661 case Attribute::DereferenceableOrNull: 662 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 663 case Attribute::NoRedZone: 664 return bitc::ATTR_KIND_NO_RED_ZONE; 665 case Attribute::NoReturn: 666 return bitc::ATTR_KIND_NO_RETURN; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptimizeForSize: 670 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 671 case Attribute::OptimizeNone: 672 return bitc::ATTR_KIND_OPTIMIZE_NONE; 673 case Attribute::ReadNone: 674 return bitc::ATTR_KIND_READ_NONE; 675 case Attribute::ReadOnly: 676 return bitc::ATTR_KIND_READ_ONLY; 677 case Attribute::Returned: 678 return bitc::ATTR_KIND_RETURNED; 679 case Attribute::ReturnsTwice: 680 return bitc::ATTR_KIND_RETURNS_TWICE; 681 case Attribute::SExt: 682 return bitc::ATTR_KIND_S_EXT; 683 case Attribute::StackAlignment: 684 return bitc::ATTR_KIND_STACK_ALIGNMENT; 685 case Attribute::StackProtect: 686 return bitc::ATTR_KIND_STACK_PROTECT; 687 case Attribute::StackProtectReq: 688 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 689 case Attribute::StackProtectStrong: 690 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 691 case Attribute::SafeStack: 692 return bitc::ATTR_KIND_SAFESTACK; 693 case Attribute::StructRet: 694 return bitc::ATTR_KIND_STRUCT_RET; 695 case Attribute::SanitizeAddress: 696 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 697 case Attribute::SanitizeThread: 698 return bitc::ATTR_KIND_SANITIZE_THREAD; 699 case Attribute::SanitizeMemory: 700 return bitc::ATTR_KIND_SANITIZE_MEMORY; 701 case Attribute::SwiftError: 702 return bitc::ATTR_KIND_SWIFT_ERROR; 703 case Attribute::SwiftSelf: 704 return bitc::ATTR_KIND_SWIFT_SELF; 705 case Attribute::UWTable: 706 return bitc::ATTR_KIND_UW_TABLE; 707 case Attribute::WriteOnly: 708 return bitc::ATTR_KIND_WRITEONLY; 709 case Attribute::ZExt: 710 return bitc::ATTR_KIND_Z_EXT; 711 case Attribute::EndAttrKinds: 712 llvm_unreachable("Can not encode end-attribute kinds marker."); 713 case Attribute::None: 714 llvm_unreachable("Can not encode none-attribute."); 715 } 716 717 llvm_unreachable("Trying to encode unknown attribute"); 718 } 719 720 void ModuleBitcodeWriter::writeAttributeGroupTable() { 721 const std::vector<AttributeList> &AttrGrps = VE.getAttributeGroups(); 722 if (AttrGrps.empty()) return; 723 724 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 725 726 SmallVector<uint64_t, 64> Record; 727 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 728 AttributeList AS = AttrGrps[i]; 729 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 730 AttributeList A = AS.getSlotAttributes(i); 731 732 Record.push_back(VE.getAttributeGroupID(A)); 733 Record.push_back(AS.getSlotIndex(i)); 734 735 for (AttributeList::iterator I = AS.begin(0), E = AS.end(0); I != E; 736 ++I) { 737 Attribute Attr = *I; 738 if (Attr.isEnumAttribute()) { 739 Record.push_back(0); 740 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 741 } else if (Attr.isIntAttribute()) { 742 Record.push_back(1); 743 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 744 Record.push_back(Attr.getValueAsInt()); 745 } else { 746 StringRef Kind = Attr.getKindAsString(); 747 StringRef Val = Attr.getValueAsString(); 748 749 Record.push_back(Val.empty() ? 3 : 4); 750 Record.append(Kind.begin(), Kind.end()); 751 Record.push_back(0); 752 if (!Val.empty()) { 753 Record.append(Val.begin(), Val.end()); 754 Record.push_back(0); 755 } 756 } 757 } 758 759 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 760 Record.clear(); 761 } 762 } 763 764 Stream.ExitBlock(); 765 } 766 767 void ModuleBitcodeWriter::writeAttributeTable() { 768 const std::vector<AttributeList> &Attrs = VE.getAttributes(); 769 if (Attrs.empty()) return; 770 771 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 772 773 SmallVector<uint64_t, 64> Record; 774 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 775 const AttributeList &A = Attrs[i]; 776 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 777 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 778 779 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 780 Record.clear(); 781 } 782 783 Stream.ExitBlock(); 784 } 785 786 /// WriteTypeTable - Write out the type table for a module. 787 void ModuleBitcodeWriter::writeTypeTable() { 788 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 789 790 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 791 SmallVector<uint64_t, 64> TypeVals; 792 793 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 794 795 // Abbrev for TYPE_CODE_POINTER. 796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 797 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 800 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 801 802 // Abbrev for TYPE_CODE_FUNCTION. 803 Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 808 809 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_ANON. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 817 818 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 819 820 // Abbrev for TYPE_CODE_STRUCT_NAME. 821 Abbv = std::make_shared<BitCodeAbbrev>(); 822 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 825 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 826 827 // Abbrev for TYPE_CODE_STRUCT_NAMED. 828 Abbv = std::make_shared<BitCodeAbbrev>(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 833 834 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 835 836 // Abbrev for TYPE_CODE_ARRAY. 837 Abbv = std::make_shared<BitCodeAbbrev>(); 838 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 841 842 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 843 844 // Emit an entry count so the reader can reserve space. 845 TypeVals.push_back(TypeList.size()); 846 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 847 TypeVals.clear(); 848 849 // Loop over all of the types, emitting each in turn. 850 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 851 Type *T = TypeList[i]; 852 int AbbrevToUse = 0; 853 unsigned Code = 0; 854 855 switch (T->getTypeID()) { 856 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 857 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 858 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 859 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 860 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 861 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 862 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 863 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 864 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 865 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 866 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 867 case Type::IntegerTyID: 868 // INTEGER: [width] 869 Code = bitc::TYPE_CODE_INTEGER; 870 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 871 break; 872 case Type::PointerTyID: { 873 PointerType *PTy = cast<PointerType>(T); 874 // POINTER: [pointee type, address space] 875 Code = bitc::TYPE_CODE_POINTER; 876 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 877 unsigned AddressSpace = PTy->getAddressSpace(); 878 TypeVals.push_back(AddressSpace); 879 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 880 break; 881 } 882 case Type::FunctionTyID: { 883 FunctionType *FT = cast<FunctionType>(T); 884 // FUNCTION: [isvararg, retty, paramty x N] 885 Code = bitc::TYPE_CODE_FUNCTION; 886 TypeVals.push_back(FT->isVarArg()); 887 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 888 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 889 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 890 AbbrevToUse = FunctionAbbrev; 891 break; 892 } 893 case Type::StructTyID: { 894 StructType *ST = cast<StructType>(T); 895 // STRUCT: [ispacked, eltty x N] 896 TypeVals.push_back(ST->isPacked()); 897 // Output all of the element types. 898 for (StructType::element_iterator I = ST->element_begin(), 899 E = ST->element_end(); I != E; ++I) 900 TypeVals.push_back(VE.getTypeID(*I)); 901 902 if (ST->isLiteral()) { 903 Code = bitc::TYPE_CODE_STRUCT_ANON; 904 AbbrevToUse = StructAnonAbbrev; 905 } else { 906 if (ST->isOpaque()) { 907 Code = bitc::TYPE_CODE_OPAQUE; 908 } else { 909 Code = bitc::TYPE_CODE_STRUCT_NAMED; 910 AbbrevToUse = StructNamedAbbrev; 911 } 912 913 // Emit the name if it is present. 914 if (!ST->getName().empty()) 915 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 916 StructNameAbbrev); 917 } 918 break; 919 } 920 case Type::ArrayTyID: { 921 ArrayType *AT = cast<ArrayType>(T); 922 // ARRAY: [numelts, eltty] 923 Code = bitc::TYPE_CODE_ARRAY; 924 TypeVals.push_back(AT->getNumElements()); 925 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 926 AbbrevToUse = ArrayAbbrev; 927 break; 928 } 929 case Type::VectorTyID: { 930 VectorType *VT = cast<VectorType>(T); 931 // VECTOR [numelts, eltty] 932 Code = bitc::TYPE_CODE_VECTOR; 933 TypeVals.push_back(VT->getNumElements()); 934 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 935 break; 936 } 937 } 938 939 // Emit the finished record. 940 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 941 TypeVals.clear(); 942 } 943 944 Stream.ExitBlock(); 945 } 946 947 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 948 switch (Linkage) { 949 case GlobalValue::ExternalLinkage: 950 return 0; 951 case GlobalValue::WeakAnyLinkage: 952 return 16; 953 case GlobalValue::AppendingLinkage: 954 return 2; 955 case GlobalValue::InternalLinkage: 956 return 3; 957 case GlobalValue::LinkOnceAnyLinkage: 958 return 18; 959 case GlobalValue::ExternalWeakLinkage: 960 return 7; 961 case GlobalValue::CommonLinkage: 962 return 8; 963 case GlobalValue::PrivateLinkage: 964 return 9; 965 case GlobalValue::WeakODRLinkage: 966 return 17; 967 case GlobalValue::LinkOnceODRLinkage: 968 return 19; 969 case GlobalValue::AvailableExternallyLinkage: 970 return 12; 971 } 972 llvm_unreachable("Invalid linkage"); 973 } 974 975 static unsigned getEncodedLinkage(const GlobalValue &GV) { 976 return getEncodedLinkage(GV.getLinkage()); 977 } 978 979 // Decode the flags for GlobalValue in the summary 980 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 981 uint64_t RawFlags = 0; 982 983 RawFlags |= Flags.NotEligibleToImport; // bool 984 RawFlags |= (Flags.LiveRoot << 1); 985 // Linkage don't need to be remapped at that time for the summary. Any future 986 // change to the getEncodedLinkage() function will need to be taken into 987 // account here as well. 988 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 989 990 return RawFlags; 991 } 992 993 static unsigned getEncodedVisibility(const GlobalValue &GV) { 994 switch (GV.getVisibility()) { 995 case GlobalValue::DefaultVisibility: return 0; 996 case GlobalValue::HiddenVisibility: return 1; 997 case GlobalValue::ProtectedVisibility: return 2; 998 } 999 llvm_unreachable("Invalid visibility"); 1000 } 1001 1002 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1003 switch (GV.getDLLStorageClass()) { 1004 case GlobalValue::DefaultStorageClass: return 0; 1005 case GlobalValue::DLLImportStorageClass: return 1; 1006 case GlobalValue::DLLExportStorageClass: return 2; 1007 } 1008 llvm_unreachable("Invalid DLL storage class"); 1009 } 1010 1011 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1012 switch (GV.getThreadLocalMode()) { 1013 case GlobalVariable::NotThreadLocal: return 0; 1014 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1015 case GlobalVariable::LocalDynamicTLSModel: return 2; 1016 case GlobalVariable::InitialExecTLSModel: return 3; 1017 case GlobalVariable::LocalExecTLSModel: return 4; 1018 } 1019 llvm_unreachable("Invalid TLS model"); 1020 } 1021 1022 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1023 switch (C.getSelectionKind()) { 1024 case Comdat::Any: 1025 return bitc::COMDAT_SELECTION_KIND_ANY; 1026 case Comdat::ExactMatch: 1027 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1028 case Comdat::Largest: 1029 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1030 case Comdat::NoDuplicates: 1031 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1032 case Comdat::SameSize: 1033 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1034 } 1035 llvm_unreachable("Invalid selection kind"); 1036 } 1037 1038 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1039 switch (GV.getUnnamedAddr()) { 1040 case GlobalValue::UnnamedAddr::None: return 0; 1041 case GlobalValue::UnnamedAddr::Local: return 2; 1042 case GlobalValue::UnnamedAddr::Global: return 1; 1043 } 1044 llvm_unreachable("Invalid unnamed_addr"); 1045 } 1046 1047 void ModuleBitcodeWriter::writeComdats() { 1048 SmallVector<unsigned, 64> Vals; 1049 for (const Comdat *C : VE.getComdats()) { 1050 // COMDAT: [selection_kind, name] 1051 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1052 size_t Size = C->getName().size(); 1053 assert(isUInt<32>(Size)); 1054 Vals.push_back(Size); 1055 for (char Chr : C->getName()) 1056 Vals.push_back((unsigned char)Chr); 1057 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1058 Vals.clear(); 1059 } 1060 } 1061 1062 /// Write a record that will eventually hold the word offset of the 1063 /// module-level VST. For now the offset is 0, which will be backpatched 1064 /// after the real VST is written. Saves the bit offset to backpatch. 1065 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1066 // Write a placeholder value in for the offset of the real VST, 1067 // which is written after the function blocks so that it can include 1068 // the offset of each function. The placeholder offset will be 1069 // updated when the real VST is written. 1070 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1071 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1072 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1073 // hold the real VST offset. Must use fixed instead of VBR as we don't 1074 // know how many VBR chunks to reserve ahead of time. 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1076 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1077 1078 // Emit the placeholder 1079 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1080 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1081 1082 // Compute and save the bit offset to the placeholder, which will be 1083 // patched when the real VST is written. We can simply subtract the 32-bit 1084 // fixed size from the current bit number to get the location to backpatch. 1085 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1086 } 1087 1088 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1089 1090 /// Determine the encoding to use for the given string name and length. 1091 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1092 bool isChar6 = true; 1093 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1094 if (isChar6) 1095 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1096 if ((unsigned char)*C & 128) 1097 // don't bother scanning the rest. 1098 return SE_Fixed8; 1099 } 1100 if (isChar6) 1101 return SE_Char6; 1102 else 1103 return SE_Fixed7; 1104 } 1105 1106 /// Emit top-level description of module, including target triple, inline asm, 1107 /// descriptors for global variables, and function prototype info. 1108 /// Returns the bit offset to backpatch with the location of the real VST. 1109 void ModuleBitcodeWriter::writeModuleInfo() { 1110 // Emit various pieces of data attached to a module. 1111 if (!M.getTargetTriple().empty()) 1112 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1113 0 /*TODO*/); 1114 const std::string &DL = M.getDataLayoutStr(); 1115 if (!DL.empty()) 1116 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1117 if (!M.getModuleInlineAsm().empty()) 1118 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1119 0 /*TODO*/); 1120 1121 // Emit information about sections and GC, computing how many there are. Also 1122 // compute the maximum alignment value. 1123 std::map<std::string, unsigned> SectionMap; 1124 std::map<std::string, unsigned> GCMap; 1125 unsigned MaxAlignment = 0; 1126 unsigned MaxGlobalType = 0; 1127 for (const GlobalValue &GV : M.globals()) { 1128 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1129 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1130 if (GV.hasSection()) { 1131 // Give section names unique ID's. 1132 unsigned &Entry = SectionMap[GV.getSection()]; 1133 if (!Entry) { 1134 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1135 0 /*TODO*/); 1136 Entry = SectionMap.size(); 1137 } 1138 } 1139 } 1140 for (const Function &F : M) { 1141 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1142 if (F.hasSection()) { 1143 // Give section names unique ID's. 1144 unsigned &Entry = SectionMap[F.getSection()]; 1145 if (!Entry) { 1146 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1147 0 /*TODO*/); 1148 Entry = SectionMap.size(); 1149 } 1150 } 1151 if (F.hasGC()) { 1152 // Same for GC names. 1153 unsigned &Entry = GCMap[F.getGC()]; 1154 if (!Entry) { 1155 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1156 0 /*TODO*/); 1157 Entry = GCMap.size(); 1158 } 1159 } 1160 } 1161 1162 // Emit abbrev for globals, now that we know # sections and max alignment. 1163 unsigned SimpleGVarAbbrev = 0; 1164 if (!M.global_empty()) { 1165 // Add an abbrev for common globals with no visibility or thread localness. 1166 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1167 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1169 Log2_32_Ceil(MaxGlobalType+1))); 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1171 //| explicitType << 1 1172 //| constant 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1175 if (MaxAlignment == 0) // Alignment. 1176 Abbv->Add(BitCodeAbbrevOp(0)); 1177 else { 1178 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1180 Log2_32_Ceil(MaxEncAlignment+1))); 1181 } 1182 if (SectionMap.empty()) // Section. 1183 Abbv->Add(BitCodeAbbrevOp(0)); 1184 else 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1186 Log2_32_Ceil(SectionMap.size()+1))); 1187 // Don't bother emitting vis + thread local. 1188 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1189 } 1190 1191 // Emit the global variable information. 1192 SmallVector<unsigned, 64> Vals; 1193 for (const GlobalVariable &GV : M.globals()) { 1194 unsigned AbbrevToUse = 0; 1195 1196 // GLOBALVAR: [type, isconst, initid, 1197 // linkage, alignment, section, visibility, threadlocal, 1198 // unnamed_addr, externally_initialized, dllstorageclass, 1199 // comdat] 1200 Vals.push_back(VE.getTypeID(GV.getValueType())); 1201 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1202 Vals.push_back(GV.isDeclaration() ? 0 : 1203 (VE.getValueID(GV.getInitializer()) + 1)); 1204 Vals.push_back(getEncodedLinkage(GV)); 1205 Vals.push_back(Log2_32(GV.getAlignment())+1); 1206 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1207 if (GV.isThreadLocal() || 1208 GV.getVisibility() != GlobalValue::DefaultVisibility || 1209 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1210 GV.isExternallyInitialized() || 1211 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1212 GV.hasComdat()) { 1213 Vals.push_back(getEncodedVisibility(GV)); 1214 Vals.push_back(getEncodedThreadLocalMode(GV)); 1215 Vals.push_back(getEncodedUnnamedAddr(GV)); 1216 Vals.push_back(GV.isExternallyInitialized()); 1217 Vals.push_back(getEncodedDLLStorageClass(GV)); 1218 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1219 } else { 1220 AbbrevToUse = SimpleGVarAbbrev; 1221 } 1222 1223 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1224 Vals.clear(); 1225 } 1226 1227 // Emit the function proto information. 1228 for (const Function &F : M) { 1229 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1230 // section, visibility, gc, unnamed_addr, prologuedata, 1231 // dllstorageclass, comdat, prefixdata, personalityfn] 1232 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1233 Vals.push_back(F.getCallingConv()); 1234 Vals.push_back(F.isDeclaration()); 1235 Vals.push_back(getEncodedLinkage(F)); 1236 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1237 Vals.push_back(Log2_32(F.getAlignment())+1); 1238 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1239 Vals.push_back(getEncodedVisibility(F)); 1240 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1241 Vals.push_back(getEncodedUnnamedAddr(F)); 1242 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1243 : 0); 1244 Vals.push_back(getEncodedDLLStorageClass(F)); 1245 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1246 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1247 : 0); 1248 Vals.push_back( 1249 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1250 1251 unsigned AbbrevToUse = 0; 1252 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1253 Vals.clear(); 1254 } 1255 1256 // Emit the alias information. 1257 for (const GlobalAlias &A : M.aliases()) { 1258 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1259 // threadlocal, unnamed_addr] 1260 Vals.push_back(VE.getTypeID(A.getValueType())); 1261 Vals.push_back(A.getType()->getAddressSpace()); 1262 Vals.push_back(VE.getValueID(A.getAliasee())); 1263 Vals.push_back(getEncodedLinkage(A)); 1264 Vals.push_back(getEncodedVisibility(A)); 1265 Vals.push_back(getEncodedDLLStorageClass(A)); 1266 Vals.push_back(getEncodedThreadLocalMode(A)); 1267 Vals.push_back(getEncodedUnnamedAddr(A)); 1268 unsigned AbbrevToUse = 0; 1269 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1270 Vals.clear(); 1271 } 1272 1273 // Emit the ifunc information. 1274 for (const GlobalIFunc &I : M.ifuncs()) { 1275 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1276 Vals.push_back(VE.getTypeID(I.getValueType())); 1277 Vals.push_back(I.getType()->getAddressSpace()); 1278 Vals.push_back(VE.getValueID(I.getResolver())); 1279 Vals.push_back(getEncodedLinkage(I)); 1280 Vals.push_back(getEncodedVisibility(I)); 1281 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1282 Vals.clear(); 1283 } 1284 1285 // Emit the module's source file name. 1286 { 1287 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1288 M.getSourceFileName().size()); 1289 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1290 if (Bits == SE_Char6) 1291 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1292 else if (Bits == SE_Fixed7) 1293 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1294 1295 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1296 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1297 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1299 Abbv->Add(AbbrevOpToUse); 1300 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1301 1302 for (const auto P : M.getSourceFileName()) 1303 Vals.push_back((unsigned char)P); 1304 1305 // Emit the finished record. 1306 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1307 Vals.clear(); 1308 } 1309 1310 // If we have a VST, write the VSTOFFSET record placeholder. 1311 if (M.getValueSymbolTable().empty()) 1312 return; 1313 writeValueSymbolTableForwardDecl(); 1314 } 1315 1316 static uint64_t getOptimizationFlags(const Value *V) { 1317 uint64_t Flags = 0; 1318 1319 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1320 if (OBO->hasNoSignedWrap()) 1321 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1322 if (OBO->hasNoUnsignedWrap()) 1323 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1324 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1325 if (PEO->isExact()) 1326 Flags |= 1 << bitc::PEO_EXACT; 1327 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1328 if (FPMO->hasUnsafeAlgebra()) 1329 Flags |= FastMathFlags::UnsafeAlgebra; 1330 if (FPMO->hasNoNaNs()) 1331 Flags |= FastMathFlags::NoNaNs; 1332 if (FPMO->hasNoInfs()) 1333 Flags |= FastMathFlags::NoInfs; 1334 if (FPMO->hasNoSignedZeros()) 1335 Flags |= FastMathFlags::NoSignedZeros; 1336 if (FPMO->hasAllowReciprocal()) 1337 Flags |= FastMathFlags::AllowReciprocal; 1338 if (FPMO->hasAllowContract()) 1339 Flags |= FastMathFlags::AllowContract; 1340 } 1341 1342 return Flags; 1343 } 1344 1345 void ModuleBitcodeWriter::writeValueAsMetadata( 1346 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1347 // Mimic an MDNode with a value as one operand. 1348 Value *V = MD->getValue(); 1349 Record.push_back(VE.getTypeID(V->getType())); 1350 Record.push_back(VE.getValueID(V)); 1351 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1352 Record.clear(); 1353 } 1354 1355 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1356 SmallVectorImpl<uint64_t> &Record, 1357 unsigned Abbrev) { 1358 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1359 Metadata *MD = N->getOperand(i); 1360 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1361 "Unexpected function-local metadata"); 1362 Record.push_back(VE.getMetadataOrNullID(MD)); 1363 } 1364 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1365 : bitc::METADATA_NODE, 1366 Record, Abbrev); 1367 Record.clear(); 1368 } 1369 1370 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1371 // Assume the column is usually under 128, and always output the inlined-at 1372 // location (it's never more expensive than building an array size 1). 1373 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1374 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1380 return Stream.EmitAbbrev(std::move(Abbv)); 1381 } 1382 1383 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1384 SmallVectorImpl<uint64_t> &Record, 1385 unsigned &Abbrev) { 1386 if (!Abbrev) 1387 Abbrev = createDILocationAbbrev(); 1388 1389 Record.push_back(N->isDistinct()); 1390 Record.push_back(N->getLine()); 1391 Record.push_back(N->getColumn()); 1392 Record.push_back(VE.getMetadataID(N->getScope())); 1393 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1394 1395 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1396 Record.clear(); 1397 } 1398 1399 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1400 // Assume the column is usually under 128, and always output the inlined-at 1401 // location (it's never more expensive than building an array size 1). 1402 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1403 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1410 return Stream.EmitAbbrev(std::move(Abbv)); 1411 } 1412 1413 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1414 SmallVectorImpl<uint64_t> &Record, 1415 unsigned &Abbrev) { 1416 if (!Abbrev) 1417 Abbrev = createGenericDINodeAbbrev(); 1418 1419 Record.push_back(N->isDistinct()); 1420 Record.push_back(N->getTag()); 1421 Record.push_back(0); // Per-tag version field; unused for now. 1422 1423 for (auto &I : N->operands()) 1424 Record.push_back(VE.getMetadataOrNullID(I)); 1425 1426 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1427 Record.clear(); 1428 } 1429 1430 static uint64_t rotateSign(int64_t I) { 1431 uint64_t U = I; 1432 return I < 0 ? ~(U << 1) : U << 1; 1433 } 1434 1435 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1436 SmallVectorImpl<uint64_t> &Record, 1437 unsigned Abbrev) { 1438 Record.push_back(N->isDistinct()); 1439 Record.push_back(N->getCount()); 1440 Record.push_back(rotateSign(N->getLowerBound())); 1441 1442 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1443 Record.clear(); 1444 } 1445 1446 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1447 SmallVectorImpl<uint64_t> &Record, 1448 unsigned Abbrev) { 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(rotateSign(N->getValue())); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1452 1453 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1454 Record.clear(); 1455 } 1456 1457 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1458 SmallVectorImpl<uint64_t> &Record, 1459 unsigned Abbrev) { 1460 Record.push_back(N->isDistinct()); 1461 Record.push_back(N->getTag()); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1463 Record.push_back(N->getSizeInBits()); 1464 Record.push_back(N->getAlignInBits()); 1465 Record.push_back(N->getEncoding()); 1466 1467 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1468 Record.clear(); 1469 } 1470 1471 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1472 SmallVectorImpl<uint64_t> &Record, 1473 unsigned Abbrev) { 1474 Record.push_back(N->isDistinct()); 1475 Record.push_back(N->getTag()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1478 Record.push_back(N->getLine()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1480 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1481 Record.push_back(N->getSizeInBits()); 1482 Record.push_back(N->getAlignInBits()); 1483 Record.push_back(N->getOffsetInBits()); 1484 Record.push_back(N->getFlags()); 1485 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1486 1487 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1488 // that there is no DWARF address space associated with DIDerivedType. 1489 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1490 Record.push_back(*DWARFAddressSpace + 1); 1491 else 1492 Record.push_back(0); 1493 1494 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1495 Record.clear(); 1496 } 1497 1498 void ModuleBitcodeWriter::writeDICompositeType( 1499 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1500 unsigned Abbrev) { 1501 const unsigned IsNotUsedInOldTypeRef = 0x2; 1502 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1503 Record.push_back(N->getTag()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1506 Record.push_back(N->getLine()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1509 Record.push_back(N->getSizeInBits()); 1510 Record.push_back(N->getAlignInBits()); 1511 Record.push_back(N->getOffsetInBits()); 1512 Record.push_back(N->getFlags()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1514 Record.push_back(N->getRuntimeLang()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1518 1519 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1520 Record.clear(); 1521 } 1522 1523 void ModuleBitcodeWriter::writeDISubroutineType( 1524 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1525 unsigned Abbrev) { 1526 const unsigned HasNoOldTypeRefs = 0x2; 1527 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1528 Record.push_back(N->getFlags()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1530 Record.push_back(N->getCC()); 1531 1532 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1533 Record.clear(); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned Abbrev) { 1539 Record.push_back(N->isDistinct()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1542 Record.push_back(N->getChecksumKind()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1544 1545 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1550 SmallVectorImpl<uint64_t> &Record, 1551 unsigned Abbrev) { 1552 assert(N->isDistinct() && "Expected distinct compile units"); 1553 Record.push_back(/* IsDistinct */ true); 1554 Record.push_back(N->getSourceLanguage()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1557 Record.push_back(N->isOptimized()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1559 Record.push_back(N->getRuntimeVersion()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1561 Record.push_back(N->getEmissionKind()); 1562 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1564 Record.push_back(/* subprograms */ 0); 1565 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1566 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1567 Record.push_back(N->getDWOId()); 1568 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1569 Record.push_back(N->getSplitDebugInlining()); 1570 Record.push_back(N->getDebugInfoForProfiling()); 1571 1572 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1573 Record.clear(); 1574 } 1575 1576 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1577 SmallVectorImpl<uint64_t> &Record, 1578 unsigned Abbrev) { 1579 uint64_t HasUnitFlag = 1 << 1; 1580 Record.push_back(N->isDistinct() | HasUnitFlag); 1581 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1585 Record.push_back(N->getLine()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1587 Record.push_back(N->isLocalToUnit()); 1588 Record.push_back(N->isDefinition()); 1589 Record.push_back(N->getScopeLine()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1591 Record.push_back(N->getVirtuality()); 1592 Record.push_back(N->getVirtualIndex()); 1593 Record.push_back(N->getFlags()); 1594 Record.push_back(N->isOptimized()); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1599 Record.push_back(N->getThisAdjustment()); 1600 1601 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1606 SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 Record.push_back(N->isDistinct()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1611 Record.push_back(N->getLine()); 1612 Record.push_back(N->getColumn()); 1613 1614 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1619 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1624 Record.push_back(N->getDiscriminator()); 1625 1626 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1631 SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1634 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1637 Record.push_back(N->getLine()); 1638 1639 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1640 Record.clear(); 1641 } 1642 1643 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1644 SmallVectorImpl<uint64_t> &Record, 1645 unsigned Abbrev) { 1646 Record.push_back(N->isDistinct()); 1647 Record.push_back(N->getMacinfoType()); 1648 Record.push_back(N->getLine()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1651 1652 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.push_back(N->isDistinct()); 1660 Record.push_back(N->getMacinfoType()); 1661 Record.push_back(N->getLine()); 1662 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1664 1665 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1670 SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 Record.push_back(N->isDistinct()); 1673 for (auto &I : N->operands()) 1674 Record.push_back(VE.getMetadataOrNullID(I)); 1675 1676 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1681 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1686 1687 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1692 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back(N->isDistinct()); 1695 Record.push_back(N->getTag()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1699 1700 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1701 Record.clear(); 1702 } 1703 1704 void ModuleBitcodeWriter::writeDIGlobalVariable( 1705 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1706 unsigned Abbrev) { 1707 const uint64_t Version = 1 << 1; 1708 Record.push_back((uint64_t)N->isDistinct() | Version); 1709 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1713 Record.push_back(N->getLine()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1715 Record.push_back(N->isLocalToUnit()); 1716 Record.push_back(N->isDefinition()); 1717 Record.push_back(/* expr */ 0); 1718 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1719 Record.push_back(N->getAlignInBits()); 1720 1721 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1722 Record.clear(); 1723 } 1724 1725 void ModuleBitcodeWriter::writeDILocalVariable( 1726 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1727 unsigned Abbrev) { 1728 // In order to support all possible bitcode formats in BitcodeReader we need 1729 // to distinguish the following cases: 1730 // 1) Record has no artificial tag (Record[1]), 1731 // has no obsolete inlinedAt field (Record[9]). 1732 // In this case Record size will be 8, HasAlignment flag is false. 1733 // 2) Record has artificial tag (Record[1]), 1734 // has no obsolete inlignedAt field (Record[9]). 1735 // In this case Record size will be 9, HasAlignment flag is false. 1736 // 3) Record has both artificial tag (Record[1]) and 1737 // obsolete inlignedAt field (Record[9]). 1738 // In this case Record size will be 10, HasAlignment flag is false. 1739 // 4) Record has neither artificial tag, nor inlignedAt field, but 1740 // HasAlignment flag is true and Record[8] contains alignment value. 1741 const uint64_t HasAlignmentFlag = 1 << 1; 1742 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1743 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1746 Record.push_back(N->getLine()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1748 Record.push_back(N->getArg()); 1749 Record.push_back(N->getFlags()); 1750 Record.push_back(N->getAlignInBits()); 1751 1752 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1753 Record.clear(); 1754 } 1755 1756 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1757 SmallVectorImpl<uint64_t> &Record, 1758 unsigned Abbrev) { 1759 Record.reserve(N->getElements().size() + 1); 1760 1761 const uint64_t HasOpFragmentFlag = 1 << 1; 1762 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1763 Record.append(N->elements_begin(), N->elements_end()); 1764 1765 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1766 Record.clear(); 1767 } 1768 1769 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1770 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1771 unsigned Abbrev) { 1772 Record.push_back(N->isDistinct()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1774 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1775 1776 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1777 Record.clear(); 1778 } 1779 1780 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1781 SmallVectorImpl<uint64_t> &Record, 1782 unsigned Abbrev) { 1783 Record.push_back(N->isDistinct()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1786 Record.push_back(N->getLine()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1789 Record.push_back(N->getAttributes()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1791 1792 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 void ModuleBitcodeWriter::writeDIImportedEntity( 1797 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1798 unsigned Abbrev) { 1799 Record.push_back(N->isDistinct()); 1800 Record.push_back(N->getTag()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1803 Record.push_back(N->getLine()); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1805 1806 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1807 Record.clear(); 1808 } 1809 1810 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1811 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1812 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1815 return Stream.EmitAbbrev(std::move(Abbv)); 1816 } 1817 1818 void ModuleBitcodeWriter::writeNamedMetadata( 1819 SmallVectorImpl<uint64_t> &Record) { 1820 if (M.named_metadata_empty()) 1821 return; 1822 1823 unsigned Abbrev = createNamedMetadataAbbrev(); 1824 for (const NamedMDNode &NMD : M.named_metadata()) { 1825 // Write name. 1826 StringRef Str = NMD.getName(); 1827 Record.append(Str.bytes_begin(), Str.bytes_end()); 1828 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1829 Record.clear(); 1830 1831 // Write named metadata operands. 1832 for (const MDNode *N : NMD.operands()) 1833 Record.push_back(VE.getMetadataID(N)); 1834 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1835 Record.clear(); 1836 } 1837 } 1838 1839 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1840 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1841 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1845 return Stream.EmitAbbrev(std::move(Abbv)); 1846 } 1847 1848 /// Write out a record for MDString. 1849 /// 1850 /// All the metadata strings in a metadata block are emitted in a single 1851 /// record. The sizes and strings themselves are shoved into a blob. 1852 void ModuleBitcodeWriter::writeMetadataStrings( 1853 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1854 if (Strings.empty()) 1855 return; 1856 1857 // Start the record with the number of strings. 1858 Record.push_back(bitc::METADATA_STRINGS); 1859 Record.push_back(Strings.size()); 1860 1861 // Emit the sizes of the strings in the blob. 1862 SmallString<256> Blob; 1863 { 1864 BitstreamWriter W(Blob); 1865 for (const Metadata *MD : Strings) 1866 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1867 W.FlushToWord(); 1868 } 1869 1870 // Add the offset to the strings to the record. 1871 Record.push_back(Blob.size()); 1872 1873 // Add the strings to the blob. 1874 for (const Metadata *MD : Strings) 1875 Blob.append(cast<MDString>(MD)->getString()); 1876 1877 // Emit the final record. 1878 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1879 Record.clear(); 1880 } 1881 1882 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1883 enum MetadataAbbrev : unsigned { 1884 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1885 #include "llvm/IR/Metadata.def" 1886 LastPlusOne 1887 }; 1888 1889 void ModuleBitcodeWriter::writeMetadataRecords( 1890 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1891 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1892 if (MDs.empty()) 1893 return; 1894 1895 // Initialize MDNode abbreviations. 1896 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1897 #include "llvm/IR/Metadata.def" 1898 1899 for (const Metadata *MD : MDs) { 1900 if (IndexPos) 1901 IndexPos->push_back(Stream.GetCurrentBitNo()); 1902 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1903 assert(N->isResolved() && "Expected forward references to be resolved"); 1904 1905 switch (N->getMetadataID()) { 1906 default: 1907 llvm_unreachable("Invalid MDNode subclass"); 1908 #define HANDLE_MDNODE_LEAF(CLASS) \ 1909 case Metadata::CLASS##Kind: \ 1910 if (MDAbbrevs) \ 1911 write##CLASS(cast<CLASS>(N), Record, \ 1912 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1913 else \ 1914 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1915 continue; 1916 #include "llvm/IR/Metadata.def" 1917 } 1918 } 1919 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1920 } 1921 } 1922 1923 void ModuleBitcodeWriter::writeModuleMetadata() { 1924 if (!VE.hasMDs() && M.named_metadata_empty()) 1925 return; 1926 1927 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1928 SmallVector<uint64_t, 64> Record; 1929 1930 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1931 // block and load any metadata. 1932 std::vector<unsigned> MDAbbrevs; 1933 1934 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1935 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1936 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1937 createGenericDINodeAbbrev(); 1938 1939 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1940 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1943 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1944 1945 Abbv = std::make_shared<BitCodeAbbrev>(); 1946 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1949 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1950 1951 // Emit MDStrings together upfront. 1952 writeMetadataStrings(VE.getMDStrings(), Record); 1953 1954 // We only emit an index for the metadata record if we have more than a given 1955 // (naive) threshold of metadatas, otherwise it is not worth it. 1956 if (VE.getNonMDStrings().size() > IndexThreshold) { 1957 // Write a placeholder value in for the offset of the metadata index, 1958 // which is written after the records, so that it can include 1959 // the offset of each entry. The placeholder offset will be 1960 // updated after all records are emitted. 1961 uint64_t Vals[] = {0, 0}; 1962 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1963 } 1964 1965 // Compute and save the bit offset to the current position, which will be 1966 // patched when we emit the index later. We can simply subtract the 64-bit 1967 // fixed size from the current bit number to get the location to backpatch. 1968 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1969 1970 // This index will contain the bitpos for each individual record. 1971 std::vector<uint64_t> IndexPos; 1972 IndexPos.reserve(VE.getNonMDStrings().size()); 1973 1974 // Write all the records 1975 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1976 1977 if (VE.getNonMDStrings().size() > IndexThreshold) { 1978 // Now that we have emitted all the records we will emit the index. But 1979 // first 1980 // backpatch the forward reference so that the reader can skip the records 1981 // efficiently. 1982 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1983 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1984 1985 // Delta encode the index. 1986 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1987 for (auto &Elt : IndexPos) { 1988 auto EltDelta = Elt - PreviousValue; 1989 PreviousValue = Elt; 1990 Elt = EltDelta; 1991 } 1992 // Emit the index record. 1993 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1994 IndexPos.clear(); 1995 } 1996 1997 // Write the named metadata now. 1998 writeNamedMetadata(Record); 1999 2000 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2001 SmallVector<uint64_t, 4> Record; 2002 Record.push_back(VE.getValueID(&GO)); 2003 pushGlobalMetadataAttachment(Record, GO); 2004 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2005 }; 2006 for (const Function &F : M) 2007 if (F.isDeclaration() && F.hasMetadata()) 2008 AddDeclAttachedMetadata(F); 2009 // FIXME: Only store metadata for declarations here, and move data for global 2010 // variable definitions to a separate block (PR28134). 2011 for (const GlobalVariable &GV : M.globals()) 2012 if (GV.hasMetadata()) 2013 AddDeclAttachedMetadata(GV); 2014 2015 Stream.ExitBlock(); 2016 } 2017 2018 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2019 if (!VE.hasMDs()) 2020 return; 2021 2022 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2023 SmallVector<uint64_t, 64> Record; 2024 writeMetadataStrings(VE.getMDStrings(), Record); 2025 writeMetadataRecords(VE.getNonMDStrings(), Record); 2026 Stream.ExitBlock(); 2027 } 2028 2029 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2030 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2031 // [n x [id, mdnode]] 2032 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2033 GO.getAllMetadata(MDs); 2034 for (const auto &I : MDs) { 2035 Record.push_back(I.first); 2036 Record.push_back(VE.getMetadataID(I.second)); 2037 } 2038 } 2039 2040 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2041 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2042 2043 SmallVector<uint64_t, 64> Record; 2044 2045 if (F.hasMetadata()) { 2046 pushGlobalMetadataAttachment(Record, F); 2047 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2048 Record.clear(); 2049 } 2050 2051 // Write metadata attachments 2052 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2053 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2054 for (const BasicBlock &BB : F) 2055 for (const Instruction &I : BB) { 2056 MDs.clear(); 2057 I.getAllMetadataOtherThanDebugLoc(MDs); 2058 2059 // If no metadata, ignore instruction. 2060 if (MDs.empty()) continue; 2061 2062 Record.push_back(VE.getInstructionID(&I)); 2063 2064 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2065 Record.push_back(MDs[i].first); 2066 Record.push_back(VE.getMetadataID(MDs[i].second)); 2067 } 2068 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2069 Record.clear(); 2070 } 2071 2072 Stream.ExitBlock(); 2073 } 2074 2075 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2076 SmallVector<uint64_t, 64> Record; 2077 2078 // Write metadata kinds 2079 // METADATA_KIND - [n x [id, name]] 2080 SmallVector<StringRef, 8> Names; 2081 M.getMDKindNames(Names); 2082 2083 if (Names.empty()) return; 2084 2085 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2086 2087 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2088 Record.push_back(MDKindID); 2089 StringRef KName = Names[MDKindID]; 2090 Record.append(KName.begin(), KName.end()); 2091 2092 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2093 Record.clear(); 2094 } 2095 2096 Stream.ExitBlock(); 2097 } 2098 2099 void ModuleBitcodeWriter::writeOperandBundleTags() { 2100 // Write metadata kinds 2101 // 2102 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2103 // 2104 // OPERAND_BUNDLE_TAG - [strchr x N] 2105 2106 SmallVector<StringRef, 8> Tags; 2107 M.getOperandBundleTags(Tags); 2108 2109 if (Tags.empty()) 2110 return; 2111 2112 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2113 2114 SmallVector<uint64_t, 64> Record; 2115 2116 for (auto Tag : Tags) { 2117 Record.append(Tag.begin(), Tag.end()); 2118 2119 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2120 Record.clear(); 2121 } 2122 2123 Stream.ExitBlock(); 2124 } 2125 2126 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2127 if ((int64_t)V >= 0) 2128 Vals.push_back(V << 1); 2129 else 2130 Vals.push_back((-V << 1) | 1); 2131 } 2132 2133 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2134 bool isGlobal) { 2135 if (FirstVal == LastVal) return; 2136 2137 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2138 2139 unsigned AggregateAbbrev = 0; 2140 unsigned String8Abbrev = 0; 2141 unsigned CString7Abbrev = 0; 2142 unsigned CString6Abbrev = 0; 2143 // If this is a constant pool for the module, emit module-specific abbrevs. 2144 if (isGlobal) { 2145 // Abbrev for CST_CODE_AGGREGATE. 2146 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2147 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2150 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2151 2152 // Abbrev for CST_CODE_STRING. 2153 Abbv = std::make_shared<BitCodeAbbrev>(); 2154 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2157 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2158 // Abbrev for CST_CODE_CSTRING. 2159 Abbv = std::make_shared<BitCodeAbbrev>(); 2160 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2163 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2164 // Abbrev for CST_CODE_CSTRING. 2165 Abbv = std::make_shared<BitCodeAbbrev>(); 2166 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2169 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2170 } 2171 2172 SmallVector<uint64_t, 64> Record; 2173 2174 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2175 Type *LastTy = nullptr; 2176 for (unsigned i = FirstVal; i != LastVal; ++i) { 2177 const Value *V = Vals[i].first; 2178 // If we need to switch types, do so now. 2179 if (V->getType() != LastTy) { 2180 LastTy = V->getType(); 2181 Record.push_back(VE.getTypeID(LastTy)); 2182 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2183 CONSTANTS_SETTYPE_ABBREV); 2184 Record.clear(); 2185 } 2186 2187 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2188 Record.push_back(unsigned(IA->hasSideEffects()) | 2189 unsigned(IA->isAlignStack()) << 1 | 2190 unsigned(IA->getDialect()&1) << 2); 2191 2192 // Add the asm string. 2193 const std::string &AsmStr = IA->getAsmString(); 2194 Record.push_back(AsmStr.size()); 2195 Record.append(AsmStr.begin(), AsmStr.end()); 2196 2197 // Add the constraint string. 2198 const std::string &ConstraintStr = IA->getConstraintString(); 2199 Record.push_back(ConstraintStr.size()); 2200 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2201 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2202 Record.clear(); 2203 continue; 2204 } 2205 const Constant *C = cast<Constant>(V); 2206 unsigned Code = -1U; 2207 unsigned AbbrevToUse = 0; 2208 if (C->isNullValue()) { 2209 Code = bitc::CST_CODE_NULL; 2210 } else if (isa<UndefValue>(C)) { 2211 Code = bitc::CST_CODE_UNDEF; 2212 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2213 if (IV->getBitWidth() <= 64) { 2214 uint64_t V = IV->getSExtValue(); 2215 emitSignedInt64(Record, V); 2216 Code = bitc::CST_CODE_INTEGER; 2217 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2218 } else { // Wide integers, > 64 bits in size. 2219 // We have an arbitrary precision integer value to write whose 2220 // bit width is > 64. However, in canonical unsigned integer 2221 // format it is likely that the high bits are going to be zero. 2222 // So, we only write the number of active words. 2223 unsigned NWords = IV->getValue().getActiveWords(); 2224 const uint64_t *RawWords = IV->getValue().getRawData(); 2225 for (unsigned i = 0; i != NWords; ++i) { 2226 emitSignedInt64(Record, RawWords[i]); 2227 } 2228 Code = bitc::CST_CODE_WIDE_INTEGER; 2229 } 2230 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2231 Code = bitc::CST_CODE_FLOAT; 2232 Type *Ty = CFP->getType(); 2233 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2234 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2235 } else if (Ty->isX86_FP80Ty()) { 2236 // api needed to prevent premature destruction 2237 // bits are not in the same order as a normal i80 APInt, compensate. 2238 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2239 const uint64_t *p = api.getRawData(); 2240 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2241 Record.push_back(p[0] & 0xffffLL); 2242 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2243 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2244 const uint64_t *p = api.getRawData(); 2245 Record.push_back(p[0]); 2246 Record.push_back(p[1]); 2247 } else { 2248 assert (0 && "Unknown FP type!"); 2249 } 2250 } else if (isa<ConstantDataSequential>(C) && 2251 cast<ConstantDataSequential>(C)->isString()) { 2252 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2253 // Emit constant strings specially. 2254 unsigned NumElts = Str->getNumElements(); 2255 // If this is a null-terminated string, use the denser CSTRING encoding. 2256 if (Str->isCString()) { 2257 Code = bitc::CST_CODE_CSTRING; 2258 --NumElts; // Don't encode the null, which isn't allowed by char6. 2259 } else { 2260 Code = bitc::CST_CODE_STRING; 2261 AbbrevToUse = String8Abbrev; 2262 } 2263 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2264 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2265 for (unsigned i = 0; i != NumElts; ++i) { 2266 unsigned char V = Str->getElementAsInteger(i); 2267 Record.push_back(V); 2268 isCStr7 &= (V & 128) == 0; 2269 if (isCStrChar6) 2270 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2271 } 2272 2273 if (isCStrChar6) 2274 AbbrevToUse = CString6Abbrev; 2275 else if (isCStr7) 2276 AbbrevToUse = CString7Abbrev; 2277 } else if (const ConstantDataSequential *CDS = 2278 dyn_cast<ConstantDataSequential>(C)) { 2279 Code = bitc::CST_CODE_DATA; 2280 Type *EltTy = CDS->getType()->getElementType(); 2281 if (isa<IntegerType>(EltTy)) { 2282 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2283 Record.push_back(CDS->getElementAsInteger(i)); 2284 } else { 2285 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2286 Record.push_back( 2287 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2288 } 2289 } else if (isa<ConstantAggregate>(C)) { 2290 Code = bitc::CST_CODE_AGGREGATE; 2291 for (const Value *Op : C->operands()) 2292 Record.push_back(VE.getValueID(Op)); 2293 AbbrevToUse = AggregateAbbrev; 2294 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2295 switch (CE->getOpcode()) { 2296 default: 2297 if (Instruction::isCast(CE->getOpcode())) { 2298 Code = bitc::CST_CODE_CE_CAST; 2299 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2300 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2301 Record.push_back(VE.getValueID(C->getOperand(0))); 2302 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2303 } else { 2304 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2305 Code = bitc::CST_CODE_CE_BINOP; 2306 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2307 Record.push_back(VE.getValueID(C->getOperand(0))); 2308 Record.push_back(VE.getValueID(C->getOperand(1))); 2309 uint64_t Flags = getOptimizationFlags(CE); 2310 if (Flags != 0) 2311 Record.push_back(Flags); 2312 } 2313 break; 2314 case Instruction::GetElementPtr: { 2315 Code = bitc::CST_CODE_CE_GEP; 2316 const auto *GO = cast<GEPOperator>(C); 2317 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2318 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2319 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2320 Record.push_back((*Idx << 1) | GO->isInBounds()); 2321 } else if (GO->isInBounds()) 2322 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2323 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2324 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2325 Record.push_back(VE.getValueID(C->getOperand(i))); 2326 } 2327 break; 2328 } 2329 case Instruction::Select: 2330 Code = bitc::CST_CODE_CE_SELECT; 2331 Record.push_back(VE.getValueID(C->getOperand(0))); 2332 Record.push_back(VE.getValueID(C->getOperand(1))); 2333 Record.push_back(VE.getValueID(C->getOperand(2))); 2334 break; 2335 case Instruction::ExtractElement: 2336 Code = bitc::CST_CODE_CE_EXTRACTELT; 2337 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2338 Record.push_back(VE.getValueID(C->getOperand(0))); 2339 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2340 Record.push_back(VE.getValueID(C->getOperand(1))); 2341 break; 2342 case Instruction::InsertElement: 2343 Code = bitc::CST_CODE_CE_INSERTELT; 2344 Record.push_back(VE.getValueID(C->getOperand(0))); 2345 Record.push_back(VE.getValueID(C->getOperand(1))); 2346 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2347 Record.push_back(VE.getValueID(C->getOperand(2))); 2348 break; 2349 case Instruction::ShuffleVector: 2350 // If the return type and argument types are the same, this is a 2351 // standard shufflevector instruction. If the types are different, 2352 // then the shuffle is widening or truncating the input vectors, and 2353 // the argument type must also be encoded. 2354 if (C->getType() == C->getOperand(0)->getType()) { 2355 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2356 } else { 2357 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2358 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2359 } 2360 Record.push_back(VE.getValueID(C->getOperand(0))); 2361 Record.push_back(VE.getValueID(C->getOperand(1))); 2362 Record.push_back(VE.getValueID(C->getOperand(2))); 2363 break; 2364 case Instruction::ICmp: 2365 case Instruction::FCmp: 2366 Code = bitc::CST_CODE_CE_CMP; 2367 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2368 Record.push_back(VE.getValueID(C->getOperand(0))); 2369 Record.push_back(VE.getValueID(C->getOperand(1))); 2370 Record.push_back(CE->getPredicate()); 2371 break; 2372 } 2373 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2374 Code = bitc::CST_CODE_BLOCKADDRESS; 2375 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2376 Record.push_back(VE.getValueID(BA->getFunction())); 2377 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2378 } else { 2379 #ifndef NDEBUG 2380 C->dump(); 2381 #endif 2382 llvm_unreachable("Unknown constant!"); 2383 } 2384 Stream.EmitRecord(Code, Record, AbbrevToUse); 2385 Record.clear(); 2386 } 2387 2388 Stream.ExitBlock(); 2389 } 2390 2391 void ModuleBitcodeWriter::writeModuleConstants() { 2392 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2393 2394 // Find the first constant to emit, which is the first non-globalvalue value. 2395 // We know globalvalues have been emitted by WriteModuleInfo. 2396 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2397 if (!isa<GlobalValue>(Vals[i].first)) { 2398 writeConstants(i, Vals.size(), true); 2399 return; 2400 } 2401 } 2402 } 2403 2404 /// pushValueAndType - The file has to encode both the value and type id for 2405 /// many values, because we need to know what type to create for forward 2406 /// references. However, most operands are not forward references, so this type 2407 /// field is not needed. 2408 /// 2409 /// This function adds V's value ID to Vals. If the value ID is higher than the 2410 /// instruction ID, then it is a forward reference, and it also includes the 2411 /// type ID. The value ID that is written is encoded relative to the InstID. 2412 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2413 SmallVectorImpl<unsigned> &Vals) { 2414 unsigned ValID = VE.getValueID(V); 2415 // Make encoding relative to the InstID. 2416 Vals.push_back(InstID - ValID); 2417 if (ValID >= InstID) { 2418 Vals.push_back(VE.getTypeID(V->getType())); 2419 return true; 2420 } 2421 return false; 2422 } 2423 2424 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2425 unsigned InstID) { 2426 SmallVector<unsigned, 64> Record; 2427 LLVMContext &C = CS.getInstruction()->getContext(); 2428 2429 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2430 const auto &Bundle = CS.getOperandBundleAt(i); 2431 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2432 2433 for (auto &Input : Bundle.Inputs) 2434 pushValueAndType(Input, InstID, Record); 2435 2436 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2437 Record.clear(); 2438 } 2439 } 2440 2441 /// pushValue - Like pushValueAndType, but where the type of the value is 2442 /// omitted (perhaps it was already encoded in an earlier operand). 2443 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2444 SmallVectorImpl<unsigned> &Vals) { 2445 unsigned ValID = VE.getValueID(V); 2446 Vals.push_back(InstID - ValID); 2447 } 2448 2449 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2450 SmallVectorImpl<uint64_t> &Vals) { 2451 unsigned ValID = VE.getValueID(V); 2452 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2453 emitSignedInt64(Vals, diff); 2454 } 2455 2456 /// WriteInstruction - Emit an instruction to the specified stream. 2457 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2458 unsigned InstID, 2459 SmallVectorImpl<unsigned> &Vals) { 2460 unsigned Code = 0; 2461 unsigned AbbrevToUse = 0; 2462 VE.setInstructionID(&I); 2463 switch (I.getOpcode()) { 2464 default: 2465 if (Instruction::isCast(I.getOpcode())) { 2466 Code = bitc::FUNC_CODE_INST_CAST; 2467 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2468 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2469 Vals.push_back(VE.getTypeID(I.getType())); 2470 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2471 } else { 2472 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2473 Code = bitc::FUNC_CODE_INST_BINOP; 2474 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2475 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2476 pushValue(I.getOperand(1), InstID, Vals); 2477 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2478 uint64_t Flags = getOptimizationFlags(&I); 2479 if (Flags != 0) { 2480 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2481 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2482 Vals.push_back(Flags); 2483 } 2484 } 2485 break; 2486 2487 case Instruction::GetElementPtr: { 2488 Code = bitc::FUNC_CODE_INST_GEP; 2489 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2490 auto &GEPInst = cast<GetElementPtrInst>(I); 2491 Vals.push_back(GEPInst.isInBounds()); 2492 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2493 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2494 pushValueAndType(I.getOperand(i), InstID, Vals); 2495 break; 2496 } 2497 case Instruction::ExtractValue: { 2498 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2499 pushValueAndType(I.getOperand(0), InstID, Vals); 2500 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2501 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2502 break; 2503 } 2504 case Instruction::InsertValue: { 2505 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2506 pushValueAndType(I.getOperand(0), InstID, Vals); 2507 pushValueAndType(I.getOperand(1), InstID, Vals); 2508 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2509 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2510 break; 2511 } 2512 case Instruction::Select: 2513 Code = bitc::FUNC_CODE_INST_VSELECT; 2514 pushValueAndType(I.getOperand(1), InstID, Vals); 2515 pushValue(I.getOperand(2), InstID, Vals); 2516 pushValueAndType(I.getOperand(0), InstID, Vals); 2517 break; 2518 case Instruction::ExtractElement: 2519 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2520 pushValueAndType(I.getOperand(0), InstID, Vals); 2521 pushValueAndType(I.getOperand(1), InstID, Vals); 2522 break; 2523 case Instruction::InsertElement: 2524 Code = bitc::FUNC_CODE_INST_INSERTELT; 2525 pushValueAndType(I.getOperand(0), InstID, Vals); 2526 pushValue(I.getOperand(1), InstID, Vals); 2527 pushValueAndType(I.getOperand(2), InstID, Vals); 2528 break; 2529 case Instruction::ShuffleVector: 2530 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2531 pushValueAndType(I.getOperand(0), InstID, Vals); 2532 pushValue(I.getOperand(1), InstID, Vals); 2533 pushValue(I.getOperand(2), InstID, Vals); 2534 break; 2535 case Instruction::ICmp: 2536 case Instruction::FCmp: { 2537 // compare returning Int1Ty or vector of Int1Ty 2538 Code = bitc::FUNC_CODE_INST_CMP2; 2539 pushValueAndType(I.getOperand(0), InstID, Vals); 2540 pushValue(I.getOperand(1), InstID, Vals); 2541 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2542 uint64_t Flags = getOptimizationFlags(&I); 2543 if (Flags != 0) 2544 Vals.push_back(Flags); 2545 break; 2546 } 2547 2548 case Instruction::Ret: 2549 { 2550 Code = bitc::FUNC_CODE_INST_RET; 2551 unsigned NumOperands = I.getNumOperands(); 2552 if (NumOperands == 0) 2553 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2554 else if (NumOperands == 1) { 2555 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2556 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2557 } else { 2558 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2559 pushValueAndType(I.getOperand(i), InstID, Vals); 2560 } 2561 } 2562 break; 2563 case Instruction::Br: 2564 { 2565 Code = bitc::FUNC_CODE_INST_BR; 2566 const BranchInst &II = cast<BranchInst>(I); 2567 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2568 if (II.isConditional()) { 2569 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2570 pushValue(II.getCondition(), InstID, Vals); 2571 } 2572 } 2573 break; 2574 case Instruction::Switch: 2575 { 2576 Code = bitc::FUNC_CODE_INST_SWITCH; 2577 const SwitchInst &SI = cast<SwitchInst>(I); 2578 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2579 pushValue(SI.getCondition(), InstID, Vals); 2580 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2581 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2582 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2583 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2584 } 2585 } 2586 break; 2587 case Instruction::IndirectBr: 2588 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2589 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2590 // Encode the address operand as relative, but not the basic blocks. 2591 pushValue(I.getOperand(0), InstID, Vals); 2592 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2593 Vals.push_back(VE.getValueID(I.getOperand(i))); 2594 break; 2595 2596 case Instruction::Invoke: { 2597 const InvokeInst *II = cast<InvokeInst>(&I); 2598 const Value *Callee = II->getCalledValue(); 2599 FunctionType *FTy = II->getFunctionType(); 2600 2601 if (II->hasOperandBundles()) 2602 writeOperandBundles(II, InstID); 2603 2604 Code = bitc::FUNC_CODE_INST_INVOKE; 2605 2606 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2607 Vals.push_back(II->getCallingConv() | 1 << 13); 2608 Vals.push_back(VE.getValueID(II->getNormalDest())); 2609 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2610 Vals.push_back(VE.getTypeID(FTy)); 2611 pushValueAndType(Callee, InstID, Vals); 2612 2613 // Emit value #'s for the fixed parameters. 2614 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2615 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2616 2617 // Emit type/value pairs for varargs params. 2618 if (FTy->isVarArg()) { 2619 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2620 i != e; ++i) 2621 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2622 } 2623 break; 2624 } 2625 case Instruction::Resume: 2626 Code = bitc::FUNC_CODE_INST_RESUME; 2627 pushValueAndType(I.getOperand(0), InstID, Vals); 2628 break; 2629 case Instruction::CleanupRet: { 2630 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2631 const auto &CRI = cast<CleanupReturnInst>(I); 2632 pushValue(CRI.getCleanupPad(), InstID, Vals); 2633 if (CRI.hasUnwindDest()) 2634 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2635 break; 2636 } 2637 case Instruction::CatchRet: { 2638 Code = bitc::FUNC_CODE_INST_CATCHRET; 2639 const auto &CRI = cast<CatchReturnInst>(I); 2640 pushValue(CRI.getCatchPad(), InstID, Vals); 2641 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2642 break; 2643 } 2644 case Instruction::CleanupPad: 2645 case Instruction::CatchPad: { 2646 const auto &FuncletPad = cast<FuncletPadInst>(I); 2647 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2648 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2649 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2650 2651 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2652 Vals.push_back(NumArgOperands); 2653 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2654 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2655 break; 2656 } 2657 case Instruction::CatchSwitch: { 2658 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2659 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2660 2661 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2662 2663 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2664 Vals.push_back(NumHandlers); 2665 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2666 Vals.push_back(VE.getValueID(CatchPadBB)); 2667 2668 if (CatchSwitch.hasUnwindDest()) 2669 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2670 break; 2671 } 2672 case Instruction::Unreachable: 2673 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2674 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2675 break; 2676 2677 case Instruction::PHI: { 2678 const PHINode &PN = cast<PHINode>(I); 2679 Code = bitc::FUNC_CODE_INST_PHI; 2680 // With the newer instruction encoding, forward references could give 2681 // negative valued IDs. This is most common for PHIs, so we use 2682 // signed VBRs. 2683 SmallVector<uint64_t, 128> Vals64; 2684 Vals64.push_back(VE.getTypeID(PN.getType())); 2685 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2686 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2687 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2688 } 2689 // Emit a Vals64 vector and exit. 2690 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2691 Vals64.clear(); 2692 return; 2693 } 2694 2695 case Instruction::LandingPad: { 2696 const LandingPadInst &LP = cast<LandingPadInst>(I); 2697 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2698 Vals.push_back(VE.getTypeID(LP.getType())); 2699 Vals.push_back(LP.isCleanup()); 2700 Vals.push_back(LP.getNumClauses()); 2701 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2702 if (LP.isCatch(I)) 2703 Vals.push_back(LandingPadInst::Catch); 2704 else 2705 Vals.push_back(LandingPadInst::Filter); 2706 pushValueAndType(LP.getClause(I), InstID, Vals); 2707 } 2708 break; 2709 } 2710 2711 case Instruction::Alloca: { 2712 Code = bitc::FUNC_CODE_INST_ALLOCA; 2713 const AllocaInst &AI = cast<AllocaInst>(I); 2714 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2715 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2716 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2717 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2718 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2719 "not enough bits for maximum alignment"); 2720 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2721 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2722 AlignRecord |= 1 << 6; 2723 AlignRecord |= AI.isSwiftError() << 7; 2724 Vals.push_back(AlignRecord); 2725 break; 2726 } 2727 2728 case Instruction::Load: 2729 if (cast<LoadInst>(I).isAtomic()) { 2730 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2731 pushValueAndType(I.getOperand(0), InstID, Vals); 2732 } else { 2733 Code = bitc::FUNC_CODE_INST_LOAD; 2734 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2735 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2736 } 2737 Vals.push_back(VE.getTypeID(I.getType())); 2738 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2739 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2740 if (cast<LoadInst>(I).isAtomic()) { 2741 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2742 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2743 } 2744 break; 2745 case Instruction::Store: 2746 if (cast<StoreInst>(I).isAtomic()) 2747 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2748 else 2749 Code = bitc::FUNC_CODE_INST_STORE; 2750 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2751 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2752 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2753 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2754 if (cast<StoreInst>(I).isAtomic()) { 2755 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2756 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2757 } 2758 break; 2759 case Instruction::AtomicCmpXchg: 2760 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2761 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2762 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2763 pushValue(I.getOperand(2), InstID, Vals); // newval. 2764 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2765 Vals.push_back( 2766 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2767 Vals.push_back( 2768 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2769 Vals.push_back( 2770 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2771 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2772 break; 2773 case Instruction::AtomicRMW: 2774 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2775 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2776 pushValue(I.getOperand(1), InstID, Vals); // val. 2777 Vals.push_back( 2778 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2779 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2780 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2781 Vals.push_back( 2782 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2783 break; 2784 case Instruction::Fence: 2785 Code = bitc::FUNC_CODE_INST_FENCE; 2786 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2787 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2788 break; 2789 case Instruction::Call: { 2790 const CallInst &CI = cast<CallInst>(I); 2791 FunctionType *FTy = CI.getFunctionType(); 2792 2793 if (CI.hasOperandBundles()) 2794 writeOperandBundles(&CI, InstID); 2795 2796 Code = bitc::FUNC_CODE_INST_CALL; 2797 2798 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2799 2800 unsigned Flags = getOptimizationFlags(&I); 2801 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2802 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2803 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2804 1 << bitc::CALL_EXPLICIT_TYPE | 2805 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2806 unsigned(Flags != 0) << bitc::CALL_FMF); 2807 if (Flags != 0) 2808 Vals.push_back(Flags); 2809 2810 Vals.push_back(VE.getTypeID(FTy)); 2811 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2812 2813 // Emit value #'s for the fixed parameters. 2814 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2815 // Check for labels (can happen with asm labels). 2816 if (FTy->getParamType(i)->isLabelTy()) 2817 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2818 else 2819 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2820 } 2821 2822 // Emit type/value pairs for varargs params. 2823 if (FTy->isVarArg()) { 2824 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2825 i != e; ++i) 2826 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2827 } 2828 break; 2829 } 2830 case Instruction::VAArg: 2831 Code = bitc::FUNC_CODE_INST_VAARG; 2832 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2833 pushValue(I.getOperand(0), InstID, Vals); // valist. 2834 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2835 break; 2836 } 2837 2838 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2839 Vals.clear(); 2840 } 2841 2842 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2843 /// we are writing the module-level VST, where we are including a function 2844 /// bitcode index and need to backpatch the VST forward declaration record. 2845 void ModuleBitcodeWriter::writeValueSymbolTable( 2846 const ValueSymbolTable &VST, bool IsModuleLevel, 2847 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2848 if (VST.empty()) { 2849 // writeValueSymbolTableForwardDecl should have returned early as 2850 // well. Ensure this handling remains in sync by asserting that 2851 // the placeholder offset is not set. 2852 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2853 return; 2854 } 2855 2856 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2857 // Get the offset of the VST we are writing, and backpatch it into 2858 // the VST forward declaration record. 2859 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2860 // The BitcodeStartBit was the stream offset of the identification block. 2861 VSTOffset -= bitcodeStartBit(); 2862 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2863 // Note that we add 1 here because the offset is relative to one word 2864 // before the start of the identification block, which was historically 2865 // always the start of the regular bitcode header. 2866 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2867 } 2868 2869 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2870 2871 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2872 // records, which are not used in the per-function VSTs. 2873 unsigned FnEntry8BitAbbrev; 2874 unsigned FnEntry7BitAbbrev; 2875 unsigned FnEntry6BitAbbrev; 2876 unsigned GUIDEntryAbbrev; 2877 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2878 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2879 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2880 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2885 FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2886 2887 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2888 Abbv = std::make_shared<BitCodeAbbrev>(); 2889 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2894 FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2895 2896 // 6-bit char6 VST_CODE_FNENTRY function strings. 2897 Abbv = std::make_shared<BitCodeAbbrev>(); 2898 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2903 FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2904 2905 // FIXME: Change the name of this record as it is now used by 2906 // the per-module index as well. 2907 Abbv = std::make_shared<BitCodeAbbrev>(); 2908 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2911 GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2912 } 2913 2914 // FIXME: Set up the abbrev, we know how many values there are! 2915 // FIXME: We know if the type names can use 7-bit ascii. 2916 SmallVector<uint64_t, 64> NameVals; 2917 2918 for (const ValueName &Name : VST) { 2919 // Figure out the encoding to use for the name. 2920 StringEncoding Bits = 2921 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2922 2923 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2924 NameVals.push_back(VE.getValueID(Name.getValue())); 2925 2926 Function *F = dyn_cast<Function>(Name.getValue()); 2927 2928 // VST_CODE_ENTRY: [valueid, namechar x N] 2929 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2930 // VST_CODE_BBENTRY: [bbid, namechar x N] 2931 unsigned Code; 2932 if (isa<BasicBlock>(Name.getValue())) { 2933 Code = bitc::VST_CODE_BBENTRY; 2934 if (Bits == SE_Char6) 2935 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2936 } else if (F && !F->isDeclaration()) { 2937 // Must be the module-level VST, where we pass in the Index and 2938 // have a VSTOffsetPlaceholder. The function-level VST should not 2939 // contain any Function symbols. 2940 assert(FunctionToBitcodeIndex); 2941 assert(hasVSTOffsetPlaceholder()); 2942 2943 // Save the word offset of the function (from the start of the 2944 // actual bitcode written to the stream). 2945 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2946 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2947 // Note that we add 1 here because the offset is relative to one word 2948 // before the start of the identification block, which was historically 2949 // always the start of the regular bitcode header. 2950 NameVals.push_back(BitcodeIndex / 32 + 1); 2951 2952 Code = bitc::VST_CODE_FNENTRY; 2953 AbbrevToUse = FnEntry8BitAbbrev; 2954 if (Bits == SE_Char6) 2955 AbbrevToUse = FnEntry6BitAbbrev; 2956 else if (Bits == SE_Fixed7) 2957 AbbrevToUse = FnEntry7BitAbbrev; 2958 } else { 2959 Code = bitc::VST_CODE_ENTRY; 2960 if (Bits == SE_Char6) 2961 AbbrevToUse = VST_ENTRY_6_ABBREV; 2962 else if (Bits == SE_Fixed7) 2963 AbbrevToUse = VST_ENTRY_7_ABBREV; 2964 } 2965 2966 for (const auto P : Name.getKey()) 2967 NameVals.push_back((unsigned char)P); 2968 2969 // Emit the finished record. 2970 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2971 NameVals.clear(); 2972 } 2973 // Emit any GUID valueIDs created for indirect call edges into the 2974 // module-level VST. 2975 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2976 for (const auto &GI : valueIds()) { 2977 NameVals.push_back(GI.second); 2978 NameVals.push_back(GI.first); 2979 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2980 GUIDEntryAbbrev); 2981 NameVals.clear(); 2982 } 2983 Stream.ExitBlock(); 2984 } 2985 2986 /// Emit function names and summary offsets for the combined index 2987 /// used by ThinLTO. 2988 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2989 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2990 // Get the offset of the VST we are writing, and backpatch it into 2991 // the VST forward declaration record. 2992 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2993 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2994 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2995 2996 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2997 2998 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2999 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 3000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 3002 unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3003 3004 SmallVector<uint64_t, 64> NameVals; 3005 for (const auto &GVI : valueIds()) { 3006 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 3007 NameVals.push_back(GVI.second); 3008 NameVals.push_back(GVI.first); 3009 3010 // Emit the finished record. 3011 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 3012 NameVals.clear(); 3013 } 3014 Stream.ExitBlock(); 3015 } 3016 3017 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3018 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3019 unsigned Code; 3020 if (isa<BasicBlock>(Order.V)) 3021 Code = bitc::USELIST_CODE_BB; 3022 else 3023 Code = bitc::USELIST_CODE_DEFAULT; 3024 3025 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3026 Record.push_back(VE.getValueID(Order.V)); 3027 Stream.EmitRecord(Code, Record); 3028 } 3029 3030 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3031 assert(VE.shouldPreserveUseListOrder() && 3032 "Expected to be preserving use-list order"); 3033 3034 auto hasMore = [&]() { 3035 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3036 }; 3037 if (!hasMore()) 3038 // Nothing to do. 3039 return; 3040 3041 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3042 while (hasMore()) { 3043 writeUseList(std::move(VE.UseListOrders.back())); 3044 VE.UseListOrders.pop_back(); 3045 } 3046 Stream.ExitBlock(); 3047 } 3048 3049 /// Emit a function body to the module stream. 3050 void ModuleBitcodeWriter::writeFunction( 3051 const Function &F, 3052 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3053 // Save the bitcode index of the start of this function block for recording 3054 // in the VST. 3055 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3056 3057 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3058 VE.incorporateFunction(F); 3059 3060 SmallVector<unsigned, 64> Vals; 3061 3062 // Emit the number of basic blocks, so the reader can create them ahead of 3063 // time. 3064 Vals.push_back(VE.getBasicBlocks().size()); 3065 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3066 Vals.clear(); 3067 3068 // If there are function-local constants, emit them now. 3069 unsigned CstStart, CstEnd; 3070 VE.getFunctionConstantRange(CstStart, CstEnd); 3071 writeConstants(CstStart, CstEnd, false); 3072 3073 // If there is function-local metadata, emit it now. 3074 writeFunctionMetadata(F); 3075 3076 // Keep a running idea of what the instruction ID is. 3077 unsigned InstID = CstEnd; 3078 3079 bool NeedsMetadataAttachment = F.hasMetadata(); 3080 3081 DILocation *LastDL = nullptr; 3082 // Finally, emit all the instructions, in order. 3083 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3084 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3085 I != E; ++I) { 3086 writeInstruction(*I, InstID, Vals); 3087 3088 if (!I->getType()->isVoidTy()) 3089 ++InstID; 3090 3091 // If the instruction has metadata, write a metadata attachment later. 3092 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3093 3094 // If the instruction has a debug location, emit it. 3095 DILocation *DL = I->getDebugLoc(); 3096 if (!DL) 3097 continue; 3098 3099 if (DL == LastDL) { 3100 // Just repeat the same debug loc as last time. 3101 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3102 continue; 3103 } 3104 3105 Vals.push_back(DL->getLine()); 3106 Vals.push_back(DL->getColumn()); 3107 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3108 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3109 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3110 Vals.clear(); 3111 3112 LastDL = DL; 3113 } 3114 3115 // Emit names for all the instructions etc. 3116 if (auto *Symtab = F.getValueSymbolTable()) 3117 writeValueSymbolTable(*Symtab); 3118 3119 if (NeedsMetadataAttachment) 3120 writeFunctionMetadataAttachment(F); 3121 if (VE.shouldPreserveUseListOrder()) 3122 writeUseListBlock(&F); 3123 VE.purgeFunction(); 3124 Stream.ExitBlock(); 3125 } 3126 3127 // Emit blockinfo, which defines the standard abbreviations etc. 3128 void ModuleBitcodeWriter::writeBlockInfo() { 3129 // We only want to emit block info records for blocks that have multiple 3130 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3131 // Other blocks can define their abbrevs inline. 3132 Stream.EnterBlockInfoBlock(); 3133 3134 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3135 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3140 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3141 VST_ENTRY_8_ABBREV) 3142 llvm_unreachable("Unexpected abbrev ordering!"); 3143 } 3144 3145 { // 7-bit fixed width VST_CODE_ENTRY strings. 3146 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3147 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3151 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3152 VST_ENTRY_7_ABBREV) 3153 llvm_unreachable("Unexpected abbrev ordering!"); 3154 } 3155 { // 6-bit char6 VST_CODE_ENTRY strings. 3156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3157 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3161 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3162 VST_ENTRY_6_ABBREV) 3163 llvm_unreachable("Unexpected abbrev ordering!"); 3164 } 3165 { // 6-bit char6 VST_CODE_BBENTRY strings. 3166 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3167 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3171 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3172 VST_BBENTRY_6_ABBREV) 3173 llvm_unreachable("Unexpected abbrev ordering!"); 3174 } 3175 3176 3177 3178 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3179 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3180 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3182 VE.computeBitsRequiredForTypeIndicies())); 3183 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3184 CONSTANTS_SETTYPE_ABBREV) 3185 llvm_unreachable("Unexpected abbrev ordering!"); 3186 } 3187 3188 { // INTEGER abbrev for CONSTANTS_BLOCK. 3189 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3190 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3192 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3193 CONSTANTS_INTEGER_ABBREV) 3194 llvm_unreachable("Unexpected abbrev ordering!"); 3195 } 3196 3197 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3198 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3199 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3202 VE.computeBitsRequiredForTypeIndicies())); 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3204 3205 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3206 CONSTANTS_CE_CAST_Abbrev) 3207 llvm_unreachable("Unexpected abbrev ordering!"); 3208 } 3209 { // NULL abbrev for CONSTANTS_BLOCK. 3210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3211 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3212 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3213 CONSTANTS_NULL_Abbrev) 3214 llvm_unreachable("Unexpected abbrev ordering!"); 3215 } 3216 3217 // FIXME: This should only use space for first class types! 3218 3219 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3221 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3224 VE.computeBitsRequiredForTypeIndicies())); 3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3227 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3228 FUNCTION_INST_LOAD_ABBREV) 3229 llvm_unreachable("Unexpected abbrev ordering!"); 3230 } 3231 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3232 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3233 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3237 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3238 FUNCTION_INST_BINOP_ABBREV) 3239 llvm_unreachable("Unexpected abbrev ordering!"); 3240 } 3241 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3248 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3249 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3250 llvm_unreachable("Unexpected abbrev ordering!"); 3251 } 3252 { // INST_CAST abbrev for FUNCTION_BLOCK. 3253 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3254 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3257 VE.computeBitsRequiredForTypeIndicies())); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3259 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3260 FUNCTION_INST_CAST_ABBREV) 3261 llvm_unreachable("Unexpected abbrev ordering!"); 3262 } 3263 3264 { // INST_RET abbrev for FUNCTION_BLOCK. 3265 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3266 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3267 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3268 FUNCTION_INST_RET_VOID_ABBREV) 3269 llvm_unreachable("Unexpected abbrev ordering!"); 3270 } 3271 { // INST_RET abbrev for FUNCTION_BLOCK. 3272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3273 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3275 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3276 FUNCTION_INST_RET_VAL_ABBREV) 3277 llvm_unreachable("Unexpected abbrev ordering!"); 3278 } 3279 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3281 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3282 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3283 FUNCTION_INST_UNREACHABLE_ABBREV) 3284 llvm_unreachable("Unexpected abbrev ordering!"); 3285 } 3286 { 3287 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3288 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3291 Log2_32_Ceil(VE.getTypes().size() + 1))); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3294 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3295 FUNCTION_INST_GEP_ABBREV) 3296 llvm_unreachable("Unexpected abbrev ordering!"); 3297 } 3298 3299 Stream.ExitBlock(); 3300 } 3301 3302 /// Write the module path strings, currently only used when generating 3303 /// a combined index file. 3304 void IndexBitcodeWriter::writeModStrings() { 3305 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3306 3307 // TODO: See which abbrev sizes we actually need to emit 3308 3309 // 8-bit fixed-width MST_ENTRY strings. 3310 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3311 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3315 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3316 3317 // 7-bit fixed width MST_ENTRY strings. 3318 Abbv = std::make_shared<BitCodeAbbrev>(); 3319 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3323 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3324 3325 // 6-bit char6 MST_ENTRY strings. 3326 Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3331 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3332 3333 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3334 Abbv = std::make_shared<BitCodeAbbrev>(); 3335 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3341 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3342 3343 SmallVector<unsigned, 64> Vals; 3344 for (const auto &MPSE : Index.modulePaths()) { 3345 if (!doIncludeModule(MPSE.getKey())) 3346 continue; 3347 StringEncoding Bits = 3348 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3349 unsigned AbbrevToUse = Abbrev8Bit; 3350 if (Bits == SE_Char6) 3351 AbbrevToUse = Abbrev6Bit; 3352 else if (Bits == SE_Fixed7) 3353 AbbrevToUse = Abbrev7Bit; 3354 3355 Vals.push_back(MPSE.getValue().first); 3356 3357 for (const auto P : MPSE.getKey()) 3358 Vals.push_back((unsigned char)P); 3359 3360 // Emit the finished record. 3361 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3362 3363 Vals.clear(); 3364 // Emit an optional hash for the module now 3365 auto &Hash = MPSE.getValue().second; 3366 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3367 for (auto Val : Hash) { 3368 if (Val) 3369 AllZero = false; 3370 Vals.push_back(Val); 3371 } 3372 if (!AllZero) { 3373 // Emit the hash record. 3374 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3375 } 3376 3377 Vals.clear(); 3378 } 3379 Stream.ExitBlock(); 3380 } 3381 3382 /// Write the function type metadata related records that need to appear before 3383 /// a function summary entry (whether per-module or combined). 3384 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3385 FunctionSummary *FS) { 3386 if (!FS->type_tests().empty()) 3387 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3388 3389 SmallVector<uint64_t, 64> Record; 3390 3391 auto WriteVFuncIdVec = [&](uint64_t Ty, 3392 ArrayRef<FunctionSummary::VFuncId> VFs) { 3393 if (VFs.empty()) 3394 return; 3395 Record.clear(); 3396 for (auto &VF : VFs) { 3397 Record.push_back(VF.GUID); 3398 Record.push_back(VF.Offset); 3399 } 3400 Stream.EmitRecord(Ty, Record); 3401 }; 3402 3403 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3404 FS->type_test_assume_vcalls()); 3405 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3406 FS->type_checked_load_vcalls()); 3407 3408 auto WriteConstVCallVec = [&](uint64_t Ty, 3409 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3410 for (auto &VC : VCs) { 3411 Record.clear(); 3412 Record.push_back(VC.VFunc.GUID); 3413 Record.push_back(VC.VFunc.Offset); 3414 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3415 Stream.EmitRecord(Ty, Record); 3416 } 3417 }; 3418 3419 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3420 FS->type_test_assume_const_vcalls()); 3421 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3422 FS->type_checked_load_const_vcalls()); 3423 } 3424 3425 // Helper to emit a single function summary record. 3426 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3427 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3428 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3429 const Function &F) { 3430 NameVals.push_back(ValueID); 3431 3432 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3433 writeFunctionTypeMetadataRecords(Stream, FS); 3434 3435 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3436 NameVals.push_back(FS->instCount()); 3437 NameVals.push_back(FS->refs().size()); 3438 3439 for (auto &RI : FS->refs()) 3440 NameVals.push_back(VE.getValueID(RI.getValue())); 3441 3442 bool HasProfileData = F.getEntryCount().hasValue(); 3443 for (auto &ECI : FS->calls()) { 3444 NameVals.push_back(getValueId(ECI.first)); 3445 if (HasProfileData) 3446 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3447 } 3448 3449 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3450 unsigned Code = 3451 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3452 3453 // Emit the finished record. 3454 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3455 NameVals.clear(); 3456 } 3457 3458 // Collect the global value references in the given variable's initializer, 3459 // and emit them in a summary record. 3460 void ModuleBitcodeWriter::writeModuleLevelReferences( 3461 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3462 unsigned FSModRefsAbbrev) { 3463 auto Summaries = 3464 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3465 if (Summaries == Index->end()) { 3466 // Only declarations should not have a summary (a declaration might however 3467 // have a summary if the def was in module level asm). 3468 assert(V.isDeclaration()); 3469 return; 3470 } 3471 auto *Summary = Summaries->second.front().get(); 3472 NameVals.push_back(VE.getValueID(&V)); 3473 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3474 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3475 3476 unsigned SizeBeforeRefs = NameVals.size(); 3477 for (auto &RI : VS->refs()) 3478 NameVals.push_back(VE.getValueID(RI.getValue())); 3479 // Sort the refs for determinism output, the vector returned by FS->refs() has 3480 // been initialized from a DenseSet. 3481 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3482 3483 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3484 FSModRefsAbbrev); 3485 NameVals.clear(); 3486 } 3487 3488 // Current version for the summary. 3489 // This is bumped whenever we introduce changes in the way some record are 3490 // interpreted, like flags for instance. 3491 static const uint64_t INDEX_VERSION = 3; 3492 3493 /// Emit the per-module summary section alongside the rest of 3494 /// the module's bitcode. 3495 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3496 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3497 3498 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3499 3500 if (Index->begin() == Index->end()) { 3501 Stream.ExitBlock(); 3502 return; 3503 } 3504 3505 // Abbrev for FS_PERMODULE. 3506 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3507 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3512 // numrefs x valueid, n x (valueid) 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3515 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3516 3517 // Abbrev for FS_PERMODULE_PROFILE. 3518 Abbv = std::make_shared<BitCodeAbbrev>(); 3519 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3524 // numrefs x valueid, n x (valueid, hotness) 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3527 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3528 3529 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3530 Abbv = std::make_shared<BitCodeAbbrev>(); 3531 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3536 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3537 3538 // Abbrev for FS_ALIAS. 3539 Abbv = std::make_shared<BitCodeAbbrev>(); 3540 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3544 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3545 3546 SmallVector<uint64_t, 64> NameVals; 3547 // Iterate over the list of functions instead of the Index to 3548 // ensure the ordering is stable. 3549 for (const Function &F : M) { 3550 // Summary emission does not support anonymous functions, they have to 3551 // renamed using the anonymous function renaming pass. 3552 if (!F.hasName()) 3553 report_fatal_error("Unexpected anonymous function when writing summary"); 3554 3555 auto Summaries = 3556 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3557 if (Summaries == Index->end()) { 3558 // Only declarations should not have a summary (a declaration might 3559 // however have a summary if the def was in module level asm). 3560 assert(F.isDeclaration()); 3561 continue; 3562 } 3563 auto *Summary = Summaries->second.front().get(); 3564 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3565 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3566 } 3567 3568 // Capture references from GlobalVariable initializers, which are outside 3569 // of a function scope. 3570 for (const GlobalVariable &G : M.globals()) 3571 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3572 3573 for (const GlobalAlias &A : M.aliases()) { 3574 auto *Aliasee = A.getBaseObject(); 3575 if (!Aliasee->hasName()) 3576 // Nameless function don't have an entry in the summary, skip it. 3577 continue; 3578 auto AliasId = VE.getValueID(&A); 3579 auto AliaseeId = VE.getValueID(Aliasee); 3580 NameVals.push_back(AliasId); 3581 auto *Summary = Index->getGlobalValueSummary(A); 3582 AliasSummary *AS = cast<AliasSummary>(Summary); 3583 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3584 NameVals.push_back(AliaseeId); 3585 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3586 NameVals.clear(); 3587 } 3588 3589 Stream.ExitBlock(); 3590 } 3591 3592 /// Emit the combined summary section into the combined index file. 3593 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3594 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3595 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3596 3597 // Abbrev for FS_COMBINED. 3598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3599 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3605 // numrefs x valueid, n x (valueid) 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3608 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3609 3610 // Abbrev for FS_COMBINED_PROFILE. 3611 Abbv = std::make_shared<BitCodeAbbrev>(); 3612 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3618 // numrefs x valueid, n x (valueid, hotness) 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3621 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3622 3623 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3624 Abbv = std::make_shared<BitCodeAbbrev>(); 3625 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3631 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3632 3633 // Abbrev for FS_COMBINED_ALIAS. 3634 Abbv = std::make_shared<BitCodeAbbrev>(); 3635 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3640 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3641 3642 // The aliases are emitted as a post-pass, and will point to the value 3643 // id of the aliasee. Save them in a vector for post-processing. 3644 SmallVector<AliasSummary *, 64> Aliases; 3645 3646 // Save the value id for each summary for alias emission. 3647 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3648 3649 SmallVector<uint64_t, 64> NameVals; 3650 3651 // For local linkage, we also emit the original name separately 3652 // immediately after the record. 3653 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3654 if (!GlobalValue::isLocalLinkage(S.linkage())) 3655 return; 3656 NameVals.push_back(S.getOriginalName()); 3657 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3658 NameVals.clear(); 3659 }; 3660 3661 for (const auto &I : *this) { 3662 GlobalValueSummary *S = I.second; 3663 assert(S); 3664 3665 assert(hasValueId(I.first)); 3666 unsigned ValueId = getValueId(I.first); 3667 SummaryToValueIdMap[S] = ValueId; 3668 3669 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3670 // Will process aliases as a post-pass because the reader wants all 3671 // global to be loaded first. 3672 Aliases.push_back(AS); 3673 continue; 3674 } 3675 3676 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3677 NameVals.push_back(ValueId); 3678 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3679 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3680 for (auto &RI : VS->refs()) { 3681 NameVals.push_back(getValueId(RI.getGUID())); 3682 } 3683 3684 // Emit the finished record. 3685 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3686 FSModRefsAbbrev); 3687 NameVals.clear(); 3688 MaybeEmitOriginalName(*S); 3689 continue; 3690 } 3691 3692 auto *FS = cast<FunctionSummary>(S); 3693 writeFunctionTypeMetadataRecords(Stream, FS); 3694 3695 NameVals.push_back(ValueId); 3696 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3697 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3698 NameVals.push_back(FS->instCount()); 3699 NameVals.push_back(FS->refs().size()); 3700 3701 for (auto &RI : FS->refs()) { 3702 NameVals.push_back(getValueId(RI.getGUID())); 3703 } 3704 3705 bool HasProfileData = false; 3706 for (auto &EI : FS->calls()) { 3707 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3708 if (HasProfileData) 3709 break; 3710 } 3711 3712 for (auto &EI : FS->calls()) { 3713 // If this GUID doesn't have a value id, it doesn't have a function 3714 // summary and we don't need to record any calls to it. 3715 GlobalValue::GUID GUID = EI.first.getGUID(); 3716 if (!hasValueId(GUID)) { 3717 // For SamplePGO, the indirect call targets for local functions will 3718 // have its original name annotated in profile. We try to find the 3719 // corresponding PGOFuncName as the GUID. 3720 GUID = Index.getGUIDFromOriginalID(GUID); 3721 if (GUID == 0 || !hasValueId(GUID)) 3722 continue; 3723 } 3724 NameVals.push_back(getValueId(GUID)); 3725 if (HasProfileData) 3726 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3727 } 3728 3729 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3730 unsigned Code = 3731 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3732 3733 // Emit the finished record. 3734 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3735 NameVals.clear(); 3736 MaybeEmitOriginalName(*S); 3737 } 3738 3739 for (auto *AS : Aliases) { 3740 auto AliasValueId = SummaryToValueIdMap[AS]; 3741 assert(AliasValueId); 3742 NameVals.push_back(AliasValueId); 3743 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3744 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3745 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3746 assert(AliaseeValueId); 3747 NameVals.push_back(AliaseeValueId); 3748 3749 // Emit the finished record. 3750 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3751 NameVals.clear(); 3752 MaybeEmitOriginalName(*AS); 3753 } 3754 3755 Stream.ExitBlock(); 3756 } 3757 3758 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3759 /// current llvm version, and a record for the epoch number. 3760 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3761 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3762 3763 // Write the "user readable" string identifying the bitcode producer 3764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3765 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3768 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3769 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3770 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3771 3772 // Write the epoch version 3773 Abbv = std::make_shared<BitCodeAbbrev>(); 3774 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3776 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3777 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3778 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3779 Stream.ExitBlock(); 3780 } 3781 3782 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3783 // Emit the module's hash. 3784 // MODULE_CODE_HASH: [5*i32] 3785 if (GenerateHash) { 3786 SHA1 Hasher; 3787 uint32_t Vals[5]; 3788 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3789 Buffer.size() - BlockStartPos)); 3790 StringRef Hash = Hasher.result(); 3791 for (int Pos = 0; Pos < 20; Pos += 4) { 3792 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3793 } 3794 3795 // Emit the finished record. 3796 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3797 3798 if (ModHash) 3799 // Save the written hash value. 3800 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3801 } else if (ModHash) 3802 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3803 } 3804 3805 void ModuleBitcodeWriter::write() { 3806 writeIdentificationBlock(Stream); 3807 3808 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3809 size_t BlockStartPos = Buffer.size(); 3810 3811 SmallVector<unsigned, 1> Vals; 3812 unsigned CurVersion = 1; 3813 Vals.push_back(CurVersion); 3814 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3815 3816 // Emit blockinfo, which defines the standard abbreviations etc. 3817 writeBlockInfo(); 3818 3819 // Emit information about attribute groups. 3820 writeAttributeGroupTable(); 3821 3822 // Emit information about parameter attributes. 3823 writeAttributeTable(); 3824 3825 // Emit information describing all of the types in the module. 3826 writeTypeTable(); 3827 3828 writeComdats(); 3829 3830 // Emit top-level description of module, including target triple, inline asm, 3831 // descriptors for global variables, and function prototype info. 3832 writeModuleInfo(); 3833 3834 // Emit constants. 3835 writeModuleConstants(); 3836 3837 // Emit metadata kind names. 3838 writeModuleMetadataKinds(); 3839 3840 // Emit metadata. 3841 writeModuleMetadata(); 3842 3843 // Emit module-level use-lists. 3844 if (VE.shouldPreserveUseListOrder()) 3845 writeUseListBlock(nullptr); 3846 3847 writeOperandBundleTags(); 3848 3849 // Emit function bodies. 3850 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3851 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3852 if (!F->isDeclaration()) 3853 writeFunction(*F, FunctionToBitcodeIndex); 3854 3855 // Need to write after the above call to WriteFunction which populates 3856 // the summary information in the index. 3857 if (Index) 3858 writePerModuleGlobalValueSummary(); 3859 3860 writeValueSymbolTable(M.getValueSymbolTable(), 3861 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3862 3863 writeModuleHash(BlockStartPos); 3864 3865 Stream.ExitBlock(); 3866 } 3867 3868 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3869 uint32_t &Position) { 3870 support::endian::write32le(&Buffer[Position], Value); 3871 Position += 4; 3872 } 3873 3874 /// If generating a bc file on darwin, we have to emit a 3875 /// header and trailer to make it compatible with the system archiver. To do 3876 /// this we emit the following header, and then emit a trailer that pads the 3877 /// file out to be a multiple of 16 bytes. 3878 /// 3879 /// struct bc_header { 3880 /// uint32_t Magic; // 0x0B17C0DE 3881 /// uint32_t Version; // Version, currently always 0. 3882 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3883 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3884 /// uint32_t CPUType; // CPU specifier. 3885 /// ... potentially more later ... 3886 /// }; 3887 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3888 const Triple &TT) { 3889 unsigned CPUType = ~0U; 3890 3891 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3892 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3893 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3894 // specific constants here because they are implicitly part of the Darwin ABI. 3895 enum { 3896 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3897 DARWIN_CPU_TYPE_X86 = 7, 3898 DARWIN_CPU_TYPE_ARM = 12, 3899 DARWIN_CPU_TYPE_POWERPC = 18 3900 }; 3901 3902 Triple::ArchType Arch = TT.getArch(); 3903 if (Arch == Triple::x86_64) 3904 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3905 else if (Arch == Triple::x86) 3906 CPUType = DARWIN_CPU_TYPE_X86; 3907 else if (Arch == Triple::ppc) 3908 CPUType = DARWIN_CPU_TYPE_POWERPC; 3909 else if (Arch == Triple::ppc64) 3910 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3911 else if (Arch == Triple::arm || Arch == Triple::thumb) 3912 CPUType = DARWIN_CPU_TYPE_ARM; 3913 3914 // Traditional Bitcode starts after header. 3915 assert(Buffer.size() >= BWH_HeaderSize && 3916 "Expected header size to be reserved"); 3917 unsigned BCOffset = BWH_HeaderSize; 3918 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3919 3920 // Write the magic and version. 3921 unsigned Position = 0; 3922 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3923 writeInt32ToBuffer(0, Buffer, Position); // Version. 3924 writeInt32ToBuffer(BCOffset, Buffer, Position); 3925 writeInt32ToBuffer(BCSize, Buffer, Position); 3926 writeInt32ToBuffer(CPUType, Buffer, Position); 3927 3928 // If the file is not a multiple of 16 bytes, insert dummy padding. 3929 while (Buffer.size() & 15) 3930 Buffer.push_back(0); 3931 } 3932 3933 /// Helper to write the header common to all bitcode files. 3934 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3935 // Emit the file header. 3936 Stream.Emit((unsigned)'B', 8); 3937 Stream.Emit((unsigned)'C', 8); 3938 Stream.Emit(0x0, 4); 3939 Stream.Emit(0xC, 4); 3940 Stream.Emit(0xE, 4); 3941 Stream.Emit(0xD, 4); 3942 } 3943 3944 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3945 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3946 writeBitcodeHeader(*Stream); 3947 } 3948 3949 BitcodeWriter::~BitcodeWriter() = default; 3950 3951 void BitcodeWriter::writeModule(const Module *M, 3952 bool ShouldPreserveUseListOrder, 3953 const ModuleSummaryIndex *Index, 3954 bool GenerateHash, ModuleHash *ModHash) { 3955 ModuleBitcodeWriter ModuleWriter(M, Buffer, *Stream, 3956 ShouldPreserveUseListOrder, Index, 3957 GenerateHash, ModHash); 3958 ModuleWriter.write(); 3959 } 3960 3961 /// WriteBitcodeToFile - Write the specified module to the specified output 3962 /// stream. 3963 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3964 bool ShouldPreserveUseListOrder, 3965 const ModuleSummaryIndex *Index, 3966 bool GenerateHash, ModuleHash *ModHash) { 3967 SmallVector<char, 0> Buffer; 3968 Buffer.reserve(256*1024); 3969 3970 // If this is darwin or another generic macho target, reserve space for the 3971 // header. 3972 Triple TT(M->getTargetTriple()); 3973 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3974 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3975 3976 BitcodeWriter Writer(Buffer); 3977 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3978 ModHash); 3979 3980 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3981 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3982 3983 // Write the generated bitstream to "Out". 3984 Out.write((char*)&Buffer.front(), Buffer.size()); 3985 } 3986 3987 void IndexBitcodeWriter::write() { 3988 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3989 3990 SmallVector<unsigned, 1> Vals; 3991 unsigned CurVersion = 1; 3992 Vals.push_back(CurVersion); 3993 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3994 3995 // If we have a VST, write the VSTOFFSET record placeholder. 3996 writeValueSymbolTableForwardDecl(); 3997 3998 // Write the module paths in the combined index. 3999 writeModStrings(); 4000 4001 // Write the summary combined index records. 4002 writeCombinedGlobalValueSummary(); 4003 4004 // Need a special VST writer for the combined index (we don't have a 4005 // real VST and real values when this is invoked). 4006 writeCombinedValueSymbolTable(); 4007 4008 Stream.ExitBlock(); 4009 } 4010 4011 // Write the specified module summary index to the given raw output stream, 4012 // where it will be written in a new bitcode block. This is used when 4013 // writing the combined index file for ThinLTO. When writing a subset of the 4014 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4015 void llvm::WriteIndexToFile( 4016 const ModuleSummaryIndex &Index, raw_ostream &Out, 4017 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4018 SmallVector<char, 0> Buffer; 4019 Buffer.reserve(256 * 1024); 4020 4021 BitstreamWriter Stream(Buffer); 4022 writeBitcodeHeader(Stream); 4023 4024 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4025 IndexWriter.write(); 4026 4027 Out.write((char *)&Buffer.front(), Buffer.size()); 4028 } 4029