1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Metadata.h" 24 #include "llvm/Module.h" 25 #include "llvm/Operator.h" 26 #include "llvm/TypeSymbolTable.h" 27 #include "llvm/ValueSymbolTable.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/System/Program.h" 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 105 106 static void WriteStringRecord(unsigned Code, const std::string &Str, 107 unsigned AbbrevToUse, BitstreamWriter &Stream) { 108 SmallVector<unsigned, 64> Vals; 109 110 // Code: [strchar x N] 111 for (unsigned i = 0, e = Str.size(); i != e; ++i) 112 Vals.push_back(Str[i]); 113 114 // Emit the finished record. 115 Stream.EmitRecord(Code, Vals, AbbrevToUse); 116 } 117 118 // Emit information about parameter attributes. 119 static void WriteAttributeTable(const ValueEnumerator &VE, 120 BitstreamWriter &Stream) { 121 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 122 if (Attrs.empty()) return; 123 124 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 125 126 SmallVector<uint64_t, 64> Record; 127 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 128 const AttrListPtr &A = Attrs[i]; 129 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 130 const AttributeWithIndex &PAWI = A.getSlot(i); 131 Record.push_back(PAWI.Index); 132 133 // FIXME: remove in LLVM 3.0 134 // Store the alignment in the bitcode as a 16-bit raw value instead of a 135 // 5-bit log2 encoded value. Shift the bits above the alignment up by 136 // 11 bits. 137 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 138 if (PAWI.Attrs & Attribute::Alignment) 139 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 140 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 141 142 Record.push_back(FauxAttr); 143 } 144 145 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 146 Record.clear(); 147 } 148 149 Stream.ExitBlock(); 150 } 151 152 /// WriteTypeTable - Write out the type table for a module. 153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 154 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 155 156 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 157 SmallVector<uint64_t, 64> TypeVals; 158 159 // Abbrev for TYPE_CODE_POINTER. 160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 161 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 165 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 166 167 // Abbrev for TYPE_CODE_FUNCTION. 168 Abbv = new BitCodeAbbrev(); 169 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 171 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 174 Log2_32_Ceil(VE.getTypes().size()+1))); 175 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 176 177 // Abbrev for TYPE_CODE_STRUCT. 178 Abbv = new BitCodeAbbrev(); 179 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 183 Log2_32_Ceil(VE.getTypes().size()+1))); 184 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 185 186 // Abbrev for TYPE_CODE_ARRAY. 187 Abbv = new BitCodeAbbrev(); 188 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 191 Log2_32_Ceil(VE.getTypes().size()+1))); 192 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 193 194 // Emit an entry count so the reader can reserve space. 195 TypeVals.push_back(TypeList.size()); 196 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 197 TypeVals.clear(); 198 199 // Loop over all of the types, emitting each in turn. 200 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 201 const Type *T = TypeList[i].first; 202 int AbbrevToUse = 0; 203 unsigned Code = 0; 204 205 switch (T->getTypeID()) { 206 default: llvm_unreachable("Unknown type!"); 207 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 208 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 209 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 210 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 211 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 212 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 213 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 214 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 215 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 216 case Type::IntegerTyID: 217 // INTEGER: [width] 218 Code = bitc::TYPE_CODE_INTEGER; 219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 220 break; 221 case Type::PointerTyID: { 222 const PointerType *PTy = cast<PointerType>(T); 223 // POINTER: [pointee type, address space] 224 Code = bitc::TYPE_CODE_POINTER; 225 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 226 unsigned AddressSpace = PTy->getAddressSpace(); 227 TypeVals.push_back(AddressSpace); 228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 229 break; 230 } 231 case Type::FunctionTyID: { 232 const FunctionType *FT = cast<FunctionType>(T); 233 // FUNCTION: [isvararg, attrid, retty, paramty x N] 234 Code = bitc::TYPE_CODE_FUNCTION; 235 TypeVals.push_back(FT->isVarArg()); 236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 237 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 240 AbbrevToUse = FunctionAbbrev; 241 break; 242 } 243 case Type::StructTyID: { 244 const StructType *ST = cast<StructType>(T); 245 // STRUCT: [ispacked, eltty x N] 246 Code = bitc::TYPE_CODE_STRUCT; 247 TypeVals.push_back(ST->isPacked()); 248 // Output all of the element types. 249 for (StructType::element_iterator I = ST->element_begin(), 250 E = ST->element_end(); I != E; ++I) 251 TypeVals.push_back(VE.getTypeID(*I)); 252 AbbrevToUse = StructAbbrev; 253 break; 254 } 255 case Type::ArrayTyID: { 256 const ArrayType *AT = cast<ArrayType>(T); 257 // ARRAY: [numelts, eltty] 258 Code = bitc::TYPE_CODE_ARRAY; 259 TypeVals.push_back(AT->getNumElements()); 260 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 261 AbbrevToUse = ArrayAbbrev; 262 break; 263 } 264 case Type::VectorTyID: { 265 const VectorType *VT = cast<VectorType>(T); 266 // VECTOR [numelts, eltty] 267 Code = bitc::TYPE_CODE_VECTOR; 268 TypeVals.push_back(VT->getNumElements()); 269 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 270 break; 271 } 272 } 273 274 // Emit the finished record. 275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 276 TypeVals.clear(); 277 } 278 279 Stream.ExitBlock(); 280 } 281 282 static unsigned getEncodedLinkage(const GlobalValue *GV) { 283 switch (GV->getLinkage()) { 284 default: llvm_unreachable("Invalid linkage!"); 285 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 286 case GlobalValue::ExternalLinkage: return 0; 287 case GlobalValue::WeakAnyLinkage: return 1; 288 case GlobalValue::AppendingLinkage: return 2; 289 case GlobalValue::InternalLinkage: return 3; 290 case GlobalValue::LinkOnceAnyLinkage: return 4; 291 case GlobalValue::DLLImportLinkage: return 5; 292 case GlobalValue::DLLExportLinkage: return 6; 293 case GlobalValue::ExternalWeakLinkage: return 7; 294 case GlobalValue::CommonLinkage: return 8; 295 case GlobalValue::PrivateLinkage: return 9; 296 case GlobalValue::WeakODRLinkage: return 10; 297 case GlobalValue::LinkOnceODRLinkage: return 11; 298 case GlobalValue::AvailableExternallyLinkage: return 12; 299 case GlobalValue::LinkerPrivateLinkage: return 13; 300 } 301 } 302 303 static unsigned getEncodedVisibility(const GlobalValue *GV) { 304 switch (GV->getVisibility()) { 305 default: llvm_unreachable("Invalid visibility!"); 306 case GlobalValue::DefaultVisibility: return 0; 307 case GlobalValue::HiddenVisibility: return 1; 308 case GlobalValue::ProtectedVisibility: return 2; 309 } 310 } 311 312 // Emit top-level description of module, including target triple, inline asm, 313 // descriptors for global variables, and function prototype info. 314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 315 BitstreamWriter &Stream) { 316 // Emit the list of dependent libraries for the Module. 317 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 318 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 319 320 // Emit various pieces of data attached to a module. 321 if (!M->getTargetTriple().empty()) 322 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 323 0/*TODO*/, Stream); 324 if (!M->getDataLayout().empty()) 325 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 326 0/*TODO*/, Stream); 327 if (!M->getModuleInlineAsm().empty()) 328 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 329 0/*TODO*/, Stream); 330 331 // Emit information about sections and GC, computing how many there are. Also 332 // compute the maximum alignment value. 333 std::map<std::string, unsigned> SectionMap; 334 std::map<std::string, unsigned> GCMap; 335 unsigned MaxAlignment = 0; 336 unsigned MaxGlobalType = 0; 337 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 338 GV != E; ++GV) { 339 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 340 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 341 342 if (!GV->hasSection()) continue; 343 // Give section names unique ID's. 344 unsigned &Entry = SectionMap[GV->getSection()]; 345 if (Entry != 0) continue; 346 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 347 0/*TODO*/, Stream); 348 Entry = SectionMap.size(); 349 } 350 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 351 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 352 if (F->hasSection()) { 353 // Give section names unique ID's. 354 unsigned &Entry = SectionMap[F->getSection()]; 355 if (!Entry) { 356 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 357 0/*TODO*/, Stream); 358 Entry = SectionMap.size(); 359 } 360 } 361 if (F->hasGC()) { 362 // Same for GC names. 363 unsigned &Entry = GCMap[F->getGC()]; 364 if (!Entry) { 365 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 366 0/*TODO*/, Stream); 367 Entry = GCMap.size(); 368 } 369 } 370 } 371 372 // Emit abbrev for globals, now that we know # sections and max alignment. 373 unsigned SimpleGVarAbbrev = 0; 374 if (!M->global_empty()) { 375 // Add an abbrev for common globals with no visibility or thread localness. 376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 377 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 379 Log2_32_Ceil(MaxGlobalType+1))); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 383 if (MaxAlignment == 0) // Alignment. 384 Abbv->Add(BitCodeAbbrevOp(0)); 385 else { 386 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 388 Log2_32_Ceil(MaxEncAlignment+1))); 389 } 390 if (SectionMap.empty()) // Section. 391 Abbv->Add(BitCodeAbbrevOp(0)); 392 else 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 394 Log2_32_Ceil(SectionMap.size()+1))); 395 // Don't bother emitting vis + thread local. 396 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 397 } 398 399 // Emit the global variable information. 400 SmallVector<unsigned, 64> Vals; 401 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 402 GV != E; ++GV) { 403 unsigned AbbrevToUse = 0; 404 405 // GLOBALVAR: [type, isconst, initid, 406 // linkage, alignment, section, visibility, threadlocal] 407 Vals.push_back(VE.getTypeID(GV->getType())); 408 Vals.push_back(GV->isConstant()); 409 Vals.push_back(GV->isDeclaration() ? 0 : 410 (VE.getValueID(GV->getInitializer()) + 1)); 411 Vals.push_back(getEncodedLinkage(GV)); 412 Vals.push_back(Log2_32(GV->getAlignment())+1); 413 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 414 if (GV->isThreadLocal() || 415 GV->getVisibility() != GlobalValue::DefaultVisibility) { 416 Vals.push_back(getEncodedVisibility(GV)); 417 Vals.push_back(GV->isThreadLocal()); 418 } else { 419 AbbrevToUse = SimpleGVarAbbrev; 420 } 421 422 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 423 Vals.clear(); 424 } 425 426 // Emit the function proto information. 427 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 428 // FUNCTION: [type, callingconv, isproto, paramattr, 429 // linkage, alignment, section, visibility, gc] 430 Vals.push_back(VE.getTypeID(F->getType())); 431 Vals.push_back(F->getCallingConv()); 432 Vals.push_back(F->isDeclaration()); 433 Vals.push_back(getEncodedLinkage(F)); 434 Vals.push_back(VE.getAttributeID(F->getAttributes())); 435 Vals.push_back(Log2_32(F->getAlignment())+1); 436 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 437 Vals.push_back(getEncodedVisibility(F)); 438 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 439 440 unsigned AbbrevToUse = 0; 441 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 442 Vals.clear(); 443 } 444 445 446 // Emit the alias information. 447 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 448 AI != E; ++AI) { 449 Vals.push_back(VE.getTypeID(AI->getType())); 450 Vals.push_back(VE.getValueID(AI->getAliasee())); 451 Vals.push_back(getEncodedLinkage(AI)); 452 Vals.push_back(getEncodedVisibility(AI)); 453 unsigned AbbrevToUse = 0; 454 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 455 Vals.clear(); 456 } 457 } 458 459 static uint64_t GetOptimizationFlags(const Value *V) { 460 uint64_t Flags = 0; 461 462 if (const OverflowingBinaryOperator *OBO = 463 dyn_cast<OverflowingBinaryOperator>(V)) { 464 if (OBO->hasNoSignedWrap()) 465 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 466 if (OBO->hasNoUnsignedWrap()) 467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 468 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 469 if (Div->isExact()) 470 Flags |= 1 << bitc::SDIV_EXACT; 471 } 472 473 return Flags; 474 } 475 476 static void WriteMDNode(const MDNode *N, 477 const ValueEnumerator &VE, 478 BitstreamWriter &Stream, 479 SmallVector<uint64_t, 64> &Record) { 480 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 481 if (N->getElement(i)) { 482 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 483 Record.push_back(VE.getValueID(N->getElement(i))); 484 } else { 485 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 486 Record.push_back(0); 487 } 488 } 489 Stream.EmitRecord(bitc::METADATA_NODE, Record, 0); 490 Record.clear(); 491 } 492 493 static void WriteModuleMetadata(const ValueEnumerator &VE, 494 BitstreamWriter &Stream) { 495 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 496 bool StartedMetadataBlock = false; 497 unsigned MDSAbbrev = 0; 498 SmallVector<uint64_t, 64> Record; 499 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 500 501 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 502 if (!StartedMetadataBlock) { 503 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 504 StartedMetadataBlock = true; 505 } 506 WriteMDNode(N, VE, Stream, Record); 507 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 508 if (!StartedMetadataBlock) { 509 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 510 511 // Abbrev for METADATA_STRING. 512 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 513 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 516 MDSAbbrev = Stream.EmitAbbrev(Abbv); 517 StartedMetadataBlock = true; 518 } 519 520 // Code: [strchar x N] 521 Record.append(MDS->begin(), MDS->end()); 522 523 // Emit the finished record. 524 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 525 Record.clear(); 526 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 527 if (!StartedMetadataBlock) { 528 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 529 StartedMetadataBlock = true; 530 } 531 532 // Write name. 533 std::string Str = NMD->getNameStr(); 534 const char *StrBegin = Str.c_str(); 535 for (unsigned i = 0, e = Str.length(); i != e; ++i) 536 Record.push_back(StrBegin[i]); 537 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 538 Record.clear(); 539 540 // Write named metadata elements. 541 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { 542 if (NMD->getElement(i)) 543 Record.push_back(VE.getValueID(NMD->getElement(i))); 544 else 545 Record.push_back(0); 546 } 547 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 548 Record.clear(); 549 } 550 } 551 552 if (StartedMetadataBlock) 553 Stream.ExitBlock(); 554 } 555 556 static void WriteMetadataAttachment(const Function &F, 557 const ValueEnumerator &VE, 558 BitstreamWriter &Stream) { 559 bool StartedMetadataBlock = false; 560 SmallVector<uint64_t, 64> Record; 561 562 // Write metadata attachments 563 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 564 MetadataContext &TheMetadata = F.getContext().getMetadata(); 565 typedef SmallVector<std::pair<unsigned, TrackingVH<MDNode> >, 2> MDMapTy; 566 MDMapTy MDs; 567 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 568 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 569 I != E; ++I) { 570 MDs.clear(); 571 TheMetadata.getMDs(I, MDs); 572 bool RecordedInstruction = false; 573 for (MDMapTy::const_iterator PI = MDs.begin(), PE = MDs.end(); 574 PI != PE; ++PI) { 575 if (RecordedInstruction == false) { 576 Record.push_back(VE.getInstructionID(I)); 577 RecordedInstruction = true; 578 } 579 Record.push_back(PI->first); 580 Record.push_back(VE.getValueID(PI->second)); 581 } 582 if (!Record.empty()) { 583 if (!StartedMetadataBlock) { 584 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 585 StartedMetadataBlock = true; 586 } 587 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 588 Record.clear(); 589 } 590 } 591 592 if (StartedMetadataBlock) 593 Stream.ExitBlock(); 594 } 595 596 static void WriteModuleMetadataStore(const Module *M, 597 const ValueEnumerator &VE, 598 BitstreamWriter &Stream) { 599 600 bool StartedMetadataBlock = false; 601 SmallVector<uint64_t, 64> Record; 602 603 // Write metadata kinds 604 // METADATA_KIND - [n x [id, name]] 605 MetadataContext &TheMetadata = M->getContext().getMetadata(); 606 SmallVector<std::pair<unsigned, StringRef>, 4> Names; 607 TheMetadata.getHandlerNames(Names); 608 for (SmallVector<std::pair<unsigned, StringRef>, 4>::iterator 609 I = Names.begin(), 610 E = Names.end(); I != E; ++I) { 611 Record.push_back(I->first); 612 StringRef KName = I->second; 613 for (unsigned i = 0, e = KName.size(); i != e; ++i) 614 Record.push_back(KName[i]); 615 if (!StartedMetadataBlock) { 616 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 617 StartedMetadataBlock = true; 618 } 619 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 620 Record.clear(); 621 } 622 623 if (StartedMetadataBlock) 624 Stream.ExitBlock(); 625 } 626 627 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 628 const ValueEnumerator &VE, 629 BitstreamWriter &Stream, bool isGlobal) { 630 if (FirstVal == LastVal) return; 631 632 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 633 634 unsigned AggregateAbbrev = 0; 635 unsigned String8Abbrev = 0; 636 unsigned CString7Abbrev = 0; 637 unsigned CString6Abbrev = 0; 638 // If this is a constant pool for the module, emit module-specific abbrevs. 639 if (isGlobal) { 640 // Abbrev for CST_CODE_AGGREGATE. 641 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 642 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 645 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 646 647 // Abbrev for CST_CODE_STRING. 648 Abbv = new BitCodeAbbrev(); 649 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 652 String8Abbrev = Stream.EmitAbbrev(Abbv); 653 // Abbrev for CST_CODE_CSTRING. 654 Abbv = new BitCodeAbbrev(); 655 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 658 CString7Abbrev = Stream.EmitAbbrev(Abbv); 659 // Abbrev for CST_CODE_CSTRING. 660 Abbv = new BitCodeAbbrev(); 661 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 664 CString6Abbrev = Stream.EmitAbbrev(Abbv); 665 } 666 667 SmallVector<uint64_t, 64> Record; 668 669 const ValueEnumerator::ValueList &Vals = VE.getValues(); 670 const Type *LastTy = 0; 671 for (unsigned i = FirstVal; i != LastVal; ++i) { 672 const Value *V = Vals[i].first; 673 // If we need to switch types, do so now. 674 if (V->getType() != LastTy) { 675 LastTy = V->getType(); 676 Record.push_back(VE.getTypeID(LastTy)); 677 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 678 CONSTANTS_SETTYPE_ABBREV); 679 Record.clear(); 680 } 681 682 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 683 Record.push_back(unsigned(IA->hasSideEffects()) | 684 unsigned(IA->isAlignStack()) << 1); 685 686 // Add the asm string. 687 const std::string &AsmStr = IA->getAsmString(); 688 Record.push_back(AsmStr.size()); 689 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 690 Record.push_back(AsmStr[i]); 691 692 // Add the constraint string. 693 const std::string &ConstraintStr = IA->getConstraintString(); 694 Record.push_back(ConstraintStr.size()); 695 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 696 Record.push_back(ConstraintStr[i]); 697 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 698 Record.clear(); 699 continue; 700 } 701 const Constant *C = cast<Constant>(V); 702 unsigned Code = -1U; 703 unsigned AbbrevToUse = 0; 704 if (C->isNullValue()) { 705 Code = bitc::CST_CODE_NULL; 706 } else if (isa<UndefValue>(C)) { 707 Code = bitc::CST_CODE_UNDEF; 708 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 709 if (IV->getBitWidth() <= 64) { 710 int64_t V = IV->getSExtValue(); 711 if (V >= 0) 712 Record.push_back(V << 1); 713 else 714 Record.push_back((-V << 1) | 1); 715 Code = bitc::CST_CODE_INTEGER; 716 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 717 } else { // Wide integers, > 64 bits in size. 718 // We have an arbitrary precision integer value to write whose 719 // bit width is > 64. However, in canonical unsigned integer 720 // format it is likely that the high bits are going to be zero. 721 // So, we only write the number of active words. 722 unsigned NWords = IV->getValue().getActiveWords(); 723 const uint64_t *RawWords = IV->getValue().getRawData(); 724 for (unsigned i = 0; i != NWords; ++i) { 725 int64_t V = RawWords[i]; 726 if (V >= 0) 727 Record.push_back(V << 1); 728 else 729 Record.push_back((-V << 1) | 1); 730 } 731 Code = bitc::CST_CODE_WIDE_INTEGER; 732 } 733 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 734 Code = bitc::CST_CODE_FLOAT; 735 const Type *Ty = CFP->getType(); 736 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 737 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 738 } else if (Ty->isX86_FP80Ty()) { 739 // api needed to prevent premature destruction 740 // bits are not in the same order as a normal i80 APInt, compensate. 741 APInt api = CFP->getValueAPF().bitcastToAPInt(); 742 const uint64_t *p = api.getRawData(); 743 Record.push_back((p[1] << 48) | (p[0] >> 16)); 744 Record.push_back(p[0] & 0xffffLL); 745 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 746 APInt api = CFP->getValueAPF().bitcastToAPInt(); 747 const uint64_t *p = api.getRawData(); 748 Record.push_back(p[0]); 749 Record.push_back(p[1]); 750 } else { 751 assert (0 && "Unknown FP type!"); 752 } 753 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 754 // Emit constant strings specially. 755 unsigned NumOps = C->getNumOperands(); 756 // If this is a null-terminated string, use the denser CSTRING encoding. 757 if (C->getOperand(NumOps-1)->isNullValue()) { 758 Code = bitc::CST_CODE_CSTRING; 759 --NumOps; // Don't encode the null, which isn't allowed by char6. 760 } else { 761 Code = bitc::CST_CODE_STRING; 762 AbbrevToUse = String8Abbrev; 763 } 764 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 765 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 766 for (unsigned i = 0; i != NumOps; ++i) { 767 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 768 Record.push_back(V); 769 isCStr7 &= (V & 128) == 0; 770 if (isCStrChar6) 771 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 772 } 773 774 if (isCStrChar6) 775 AbbrevToUse = CString6Abbrev; 776 else if (isCStr7) 777 AbbrevToUse = CString7Abbrev; 778 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 779 isa<ConstantVector>(V)) { 780 Code = bitc::CST_CODE_AGGREGATE; 781 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 782 Record.push_back(VE.getValueID(C->getOperand(i))); 783 AbbrevToUse = AggregateAbbrev; 784 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 785 switch (CE->getOpcode()) { 786 default: 787 if (Instruction::isCast(CE->getOpcode())) { 788 Code = bitc::CST_CODE_CE_CAST; 789 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 790 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 791 Record.push_back(VE.getValueID(C->getOperand(0))); 792 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 793 } else { 794 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 795 Code = bitc::CST_CODE_CE_BINOP; 796 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 797 Record.push_back(VE.getValueID(C->getOperand(0))); 798 Record.push_back(VE.getValueID(C->getOperand(1))); 799 uint64_t Flags = GetOptimizationFlags(CE); 800 if (Flags != 0) 801 Record.push_back(Flags); 802 } 803 break; 804 case Instruction::GetElementPtr: 805 Code = bitc::CST_CODE_CE_GEP; 806 if (cast<GEPOperator>(C)->isInBounds()) 807 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 808 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 809 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 810 Record.push_back(VE.getValueID(C->getOperand(i))); 811 } 812 break; 813 case Instruction::Select: 814 Code = bitc::CST_CODE_CE_SELECT; 815 Record.push_back(VE.getValueID(C->getOperand(0))); 816 Record.push_back(VE.getValueID(C->getOperand(1))); 817 Record.push_back(VE.getValueID(C->getOperand(2))); 818 break; 819 case Instruction::ExtractElement: 820 Code = bitc::CST_CODE_CE_EXTRACTELT; 821 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 822 Record.push_back(VE.getValueID(C->getOperand(0))); 823 Record.push_back(VE.getValueID(C->getOperand(1))); 824 break; 825 case Instruction::InsertElement: 826 Code = bitc::CST_CODE_CE_INSERTELT; 827 Record.push_back(VE.getValueID(C->getOperand(0))); 828 Record.push_back(VE.getValueID(C->getOperand(1))); 829 Record.push_back(VE.getValueID(C->getOperand(2))); 830 break; 831 case Instruction::ShuffleVector: 832 // If the return type and argument types are the same, this is a 833 // standard shufflevector instruction. If the types are different, 834 // then the shuffle is widening or truncating the input vectors, and 835 // the argument type must also be encoded. 836 if (C->getType() == C->getOperand(0)->getType()) { 837 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 838 } else { 839 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 840 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 841 } 842 Record.push_back(VE.getValueID(C->getOperand(0))); 843 Record.push_back(VE.getValueID(C->getOperand(1))); 844 Record.push_back(VE.getValueID(C->getOperand(2))); 845 break; 846 case Instruction::ICmp: 847 case Instruction::FCmp: 848 Code = bitc::CST_CODE_CE_CMP; 849 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 850 Record.push_back(VE.getValueID(C->getOperand(0))); 851 Record.push_back(VE.getValueID(C->getOperand(1))); 852 Record.push_back(CE->getPredicate()); 853 break; 854 } 855 } else { 856 llvm_unreachable("Unknown constant!"); 857 } 858 Stream.EmitRecord(Code, Record, AbbrevToUse); 859 Record.clear(); 860 } 861 862 Stream.ExitBlock(); 863 } 864 865 static void WriteModuleConstants(const ValueEnumerator &VE, 866 BitstreamWriter &Stream) { 867 const ValueEnumerator::ValueList &Vals = VE.getValues(); 868 869 // Find the first constant to emit, which is the first non-globalvalue value. 870 // We know globalvalues have been emitted by WriteModuleInfo. 871 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 872 if (!isa<GlobalValue>(Vals[i].first)) { 873 WriteConstants(i, Vals.size(), VE, Stream, true); 874 return; 875 } 876 } 877 } 878 879 /// PushValueAndType - The file has to encode both the value and type id for 880 /// many values, because we need to know what type to create for forward 881 /// references. However, most operands are not forward references, so this type 882 /// field is not needed. 883 /// 884 /// This function adds V's value ID to Vals. If the value ID is higher than the 885 /// instruction ID, then it is a forward reference, and it also includes the 886 /// type ID. 887 static bool PushValueAndType(const Value *V, unsigned InstID, 888 SmallVector<unsigned, 64> &Vals, 889 ValueEnumerator &VE) { 890 unsigned ValID = VE.getValueID(V); 891 Vals.push_back(ValID); 892 if (ValID >= InstID) { 893 Vals.push_back(VE.getTypeID(V->getType())); 894 return true; 895 } 896 return false; 897 } 898 899 /// WriteInstruction - Emit an instruction to the specified stream. 900 static void WriteInstruction(const Instruction &I, unsigned InstID, 901 ValueEnumerator &VE, BitstreamWriter &Stream, 902 SmallVector<unsigned, 64> &Vals) { 903 unsigned Code = 0; 904 unsigned AbbrevToUse = 0; 905 VE.setInstructionID(&I); 906 switch (I.getOpcode()) { 907 default: 908 if (Instruction::isCast(I.getOpcode())) { 909 Code = bitc::FUNC_CODE_INST_CAST; 910 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 911 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 912 Vals.push_back(VE.getTypeID(I.getType())); 913 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 914 } else { 915 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 916 Code = bitc::FUNC_CODE_INST_BINOP; 917 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 918 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 919 Vals.push_back(VE.getValueID(I.getOperand(1))); 920 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 921 uint64_t Flags = GetOptimizationFlags(&I); 922 if (Flags != 0) { 923 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 924 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 925 Vals.push_back(Flags); 926 } 927 } 928 break; 929 930 case Instruction::GetElementPtr: 931 Code = bitc::FUNC_CODE_INST_GEP; 932 if (cast<GEPOperator>(&I)->isInBounds()) 933 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 934 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 935 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 936 break; 937 case Instruction::ExtractValue: { 938 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 939 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 940 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 941 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 942 Vals.push_back(*i); 943 break; 944 } 945 case Instruction::InsertValue: { 946 Code = bitc::FUNC_CODE_INST_INSERTVAL; 947 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 948 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 949 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 950 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 951 Vals.push_back(*i); 952 break; 953 } 954 case Instruction::Select: 955 Code = bitc::FUNC_CODE_INST_VSELECT; 956 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 957 Vals.push_back(VE.getValueID(I.getOperand(2))); 958 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 959 break; 960 case Instruction::ExtractElement: 961 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 962 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 963 Vals.push_back(VE.getValueID(I.getOperand(1))); 964 break; 965 case Instruction::InsertElement: 966 Code = bitc::FUNC_CODE_INST_INSERTELT; 967 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 968 Vals.push_back(VE.getValueID(I.getOperand(1))); 969 Vals.push_back(VE.getValueID(I.getOperand(2))); 970 break; 971 case Instruction::ShuffleVector: 972 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 973 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 974 Vals.push_back(VE.getValueID(I.getOperand(1))); 975 Vals.push_back(VE.getValueID(I.getOperand(2))); 976 break; 977 case Instruction::ICmp: 978 case Instruction::FCmp: 979 // compare returning Int1Ty or vector of Int1Ty 980 Code = bitc::FUNC_CODE_INST_CMP2; 981 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 982 Vals.push_back(VE.getValueID(I.getOperand(1))); 983 Vals.push_back(cast<CmpInst>(I).getPredicate()); 984 break; 985 986 case Instruction::Ret: 987 { 988 Code = bitc::FUNC_CODE_INST_RET; 989 unsigned NumOperands = I.getNumOperands(); 990 if (NumOperands == 0) 991 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 992 else if (NumOperands == 1) { 993 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 994 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 995 } else { 996 for (unsigned i = 0, e = NumOperands; i != e; ++i) 997 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 998 } 999 } 1000 break; 1001 case Instruction::Br: 1002 { 1003 Code = bitc::FUNC_CODE_INST_BR; 1004 BranchInst &II = cast<BranchInst>(I); 1005 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1006 if (II.isConditional()) { 1007 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1008 Vals.push_back(VE.getValueID(II.getCondition())); 1009 } 1010 } 1011 break; 1012 case Instruction::Switch: 1013 Code = bitc::FUNC_CODE_INST_SWITCH; 1014 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1015 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1016 Vals.push_back(VE.getValueID(I.getOperand(i))); 1017 break; 1018 case Instruction::IndirectBr: 1019 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1020 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1021 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1022 Vals.push_back(VE.getValueID(I.getOperand(i))); 1023 break; 1024 1025 case Instruction::Invoke: { 1026 const InvokeInst *II = cast<InvokeInst>(&I); 1027 const Value *Callee(II->getCalledValue()); 1028 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1029 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1030 Code = bitc::FUNC_CODE_INST_INVOKE; 1031 1032 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1033 Vals.push_back(II->getCallingConv()); 1034 Vals.push_back(VE.getValueID(II->getNormalDest())); 1035 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1036 PushValueAndType(Callee, InstID, Vals, VE); 1037 1038 // Emit value #'s for the fixed parameters. 1039 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1040 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 1041 1042 // Emit type/value pairs for varargs params. 1043 if (FTy->isVarArg()) { 1044 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 1045 i != e; ++i) 1046 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1047 } 1048 break; 1049 } 1050 case Instruction::Unwind: 1051 Code = bitc::FUNC_CODE_INST_UNWIND; 1052 break; 1053 case Instruction::Unreachable: 1054 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1055 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1056 break; 1057 1058 case Instruction::PHI: 1059 Code = bitc::FUNC_CODE_INST_PHI; 1060 Vals.push_back(VE.getTypeID(I.getType())); 1061 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1062 Vals.push_back(VE.getValueID(I.getOperand(i))); 1063 break; 1064 1065 case Instruction::Alloca: 1066 Code = bitc::FUNC_CODE_INST_ALLOCA; 1067 Vals.push_back(VE.getTypeID(I.getType())); 1068 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1069 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1070 break; 1071 1072 case Instruction::Load: 1073 Code = bitc::FUNC_CODE_INST_LOAD; 1074 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1075 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1076 1077 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1078 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1079 break; 1080 case Instruction::Store: 1081 Code = bitc::FUNC_CODE_INST_STORE2; 1082 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1083 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1084 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1085 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1086 break; 1087 case Instruction::Call: { 1088 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1089 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1090 1091 Code = bitc::FUNC_CODE_INST_CALL; 1092 1093 const CallInst *CI = cast<CallInst>(&I); 1094 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1095 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1096 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1097 1098 // Emit value #'s for the fixed parameters. 1099 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1100 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1101 1102 // Emit type/value pairs for varargs params. 1103 if (FTy->isVarArg()) { 1104 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1105 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1106 i != e; ++i) 1107 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1108 } 1109 break; 1110 } 1111 case Instruction::VAArg: 1112 Code = bitc::FUNC_CODE_INST_VAARG; 1113 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1114 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1115 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1116 break; 1117 } 1118 1119 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1120 Vals.clear(); 1121 } 1122 1123 // Emit names for globals/functions etc. 1124 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1125 const ValueEnumerator &VE, 1126 BitstreamWriter &Stream) { 1127 if (VST.empty()) return; 1128 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1129 1130 // FIXME: Set up the abbrev, we know how many values there are! 1131 // FIXME: We know if the type names can use 7-bit ascii. 1132 SmallVector<unsigned, 64> NameVals; 1133 1134 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1135 SI != SE; ++SI) { 1136 1137 const ValueName &Name = *SI; 1138 1139 // Figure out the encoding to use for the name. 1140 bool is7Bit = true; 1141 bool isChar6 = true; 1142 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1143 C != E; ++C) { 1144 if (isChar6) 1145 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1146 if ((unsigned char)*C & 128) { 1147 is7Bit = false; 1148 break; // don't bother scanning the rest. 1149 } 1150 } 1151 1152 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1153 1154 // VST_ENTRY: [valueid, namechar x N] 1155 // VST_BBENTRY: [bbid, namechar x N] 1156 unsigned Code; 1157 if (isa<BasicBlock>(SI->getValue())) { 1158 Code = bitc::VST_CODE_BBENTRY; 1159 if (isChar6) 1160 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1161 } else { 1162 Code = bitc::VST_CODE_ENTRY; 1163 if (isChar6) 1164 AbbrevToUse = VST_ENTRY_6_ABBREV; 1165 else if (is7Bit) 1166 AbbrevToUse = VST_ENTRY_7_ABBREV; 1167 } 1168 1169 NameVals.push_back(VE.getValueID(SI->getValue())); 1170 for (const char *P = Name.getKeyData(), 1171 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1172 NameVals.push_back((unsigned char)*P); 1173 1174 // Emit the finished record. 1175 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1176 NameVals.clear(); 1177 } 1178 Stream.ExitBlock(); 1179 } 1180 1181 /// WriteFunction - Emit a function body to the module stream. 1182 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1183 BitstreamWriter &Stream) { 1184 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1185 VE.incorporateFunction(F); 1186 1187 SmallVector<unsigned, 64> Vals; 1188 1189 // Emit the number of basic blocks, so the reader can create them ahead of 1190 // time. 1191 Vals.push_back(VE.getBasicBlocks().size()); 1192 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1193 Vals.clear(); 1194 1195 // If there are function-local constants, emit them now. 1196 unsigned CstStart, CstEnd; 1197 VE.getFunctionConstantRange(CstStart, CstEnd); 1198 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1199 1200 // Keep a running idea of what the instruction ID is. 1201 unsigned InstID = CstEnd; 1202 1203 // Finally, emit all the instructions, in order. 1204 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1205 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1206 I != E; ++I) { 1207 WriteInstruction(*I, InstID, VE, Stream, Vals); 1208 if (I->getType() != Type::getVoidTy(F.getContext())) 1209 ++InstID; 1210 } 1211 1212 // Emit names for all the instructions etc. 1213 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1214 1215 WriteMetadataAttachment(F, VE, Stream); 1216 VE.purgeFunction(); 1217 Stream.ExitBlock(); 1218 } 1219 1220 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1221 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1222 const ValueEnumerator &VE, 1223 BitstreamWriter &Stream) { 1224 if (TST.empty()) return; 1225 1226 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1227 1228 // 7-bit fixed width VST_CODE_ENTRY strings. 1229 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1230 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1232 Log2_32_Ceil(VE.getTypes().size()+1))); 1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1235 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1236 1237 SmallVector<unsigned, 64> NameVals; 1238 1239 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1240 TI != TE; ++TI) { 1241 // TST_ENTRY: [typeid, namechar x N] 1242 NameVals.push_back(VE.getTypeID(TI->second)); 1243 1244 const std::string &Str = TI->first; 1245 bool is7Bit = true; 1246 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1247 NameVals.push_back((unsigned char)Str[i]); 1248 if (Str[i] & 128) 1249 is7Bit = false; 1250 } 1251 1252 // Emit the finished record. 1253 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1254 NameVals.clear(); 1255 } 1256 1257 Stream.ExitBlock(); 1258 } 1259 1260 // Emit blockinfo, which defines the standard abbreviations etc. 1261 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1262 // We only want to emit block info records for blocks that have multiple 1263 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1264 // blocks can defined their abbrevs inline. 1265 Stream.EnterBlockInfoBlock(2); 1266 1267 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1268 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1273 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1274 Abbv) != VST_ENTRY_8_ABBREV) 1275 llvm_unreachable("Unexpected abbrev ordering!"); 1276 } 1277 1278 { // 7-bit fixed width VST_ENTRY strings. 1279 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1280 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1284 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1285 Abbv) != VST_ENTRY_7_ABBREV) 1286 llvm_unreachable("Unexpected abbrev ordering!"); 1287 } 1288 { // 6-bit char6 VST_ENTRY strings. 1289 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1290 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1294 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1295 Abbv) != VST_ENTRY_6_ABBREV) 1296 llvm_unreachable("Unexpected abbrev ordering!"); 1297 } 1298 { // 6-bit char6 VST_BBENTRY strings. 1299 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1300 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1304 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1305 Abbv) != VST_BBENTRY_6_ABBREV) 1306 llvm_unreachable("Unexpected abbrev ordering!"); 1307 } 1308 1309 1310 1311 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1312 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1313 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1315 Log2_32_Ceil(VE.getTypes().size()+1))); 1316 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1317 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1318 llvm_unreachable("Unexpected abbrev ordering!"); 1319 } 1320 1321 { // INTEGER abbrev for CONSTANTS_BLOCK. 1322 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1323 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1325 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1326 Abbv) != CONSTANTS_INTEGER_ABBREV) 1327 llvm_unreachable("Unexpected abbrev ordering!"); 1328 } 1329 1330 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1332 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1335 Log2_32_Ceil(VE.getTypes().size()+1))); 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1337 1338 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1339 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1340 llvm_unreachable("Unexpected abbrev ordering!"); 1341 } 1342 { // NULL abbrev for CONSTANTS_BLOCK. 1343 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1344 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1345 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1346 Abbv) != CONSTANTS_NULL_Abbrev) 1347 llvm_unreachable("Unexpected abbrev ordering!"); 1348 } 1349 1350 // FIXME: This should only use space for first class types! 1351 1352 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1354 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1358 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1359 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1360 llvm_unreachable("Unexpected abbrev ordering!"); 1361 } 1362 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1363 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1364 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1368 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1369 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1370 llvm_unreachable("Unexpected abbrev ordering!"); 1371 } 1372 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1373 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1374 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1379 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1380 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1381 llvm_unreachable("Unexpected abbrev ordering!"); 1382 } 1383 { // INST_CAST abbrev for FUNCTION_BLOCK. 1384 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1388 Log2_32_Ceil(VE.getTypes().size()+1))); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1390 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1391 Abbv) != FUNCTION_INST_CAST_ABBREV) 1392 llvm_unreachable("Unexpected abbrev ordering!"); 1393 } 1394 1395 { // INST_RET abbrev for FUNCTION_BLOCK. 1396 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1397 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1398 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1399 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1400 llvm_unreachable("Unexpected abbrev ordering!"); 1401 } 1402 { // INST_RET abbrev for FUNCTION_BLOCK. 1403 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1404 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1406 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1407 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1408 llvm_unreachable("Unexpected abbrev ordering!"); 1409 } 1410 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1411 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1412 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1413 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1414 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1415 llvm_unreachable("Unexpected abbrev ordering!"); 1416 } 1417 1418 Stream.ExitBlock(); 1419 } 1420 1421 1422 /// WriteModule - Emit the specified module to the bitstream. 1423 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1424 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1425 1426 // Emit the version number if it is non-zero. 1427 if (CurVersion) { 1428 SmallVector<unsigned, 1> Vals; 1429 Vals.push_back(CurVersion); 1430 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1431 } 1432 1433 // Analyze the module, enumerating globals, functions, etc. 1434 ValueEnumerator VE(M); 1435 1436 // Emit blockinfo, which defines the standard abbreviations etc. 1437 WriteBlockInfo(VE, Stream); 1438 1439 // Emit information about parameter attributes. 1440 WriteAttributeTable(VE, Stream); 1441 1442 // Emit information describing all of the types in the module. 1443 WriteTypeTable(VE, Stream); 1444 1445 // Emit top-level description of module, including target triple, inline asm, 1446 // descriptors for global variables, and function prototype info. 1447 WriteModuleInfo(M, VE, Stream); 1448 1449 // Emit constants. 1450 WriteModuleConstants(VE, Stream); 1451 1452 // Emit metadata. 1453 WriteModuleMetadata(VE, Stream); 1454 1455 // Emit function bodies. 1456 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1457 if (!I->isDeclaration()) 1458 WriteFunction(*I, VE, Stream); 1459 1460 // Emit metadata. 1461 WriteModuleMetadataStore(M, VE, Stream); 1462 1463 // Emit the type symbol table information. 1464 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1465 1466 // Emit names for globals/functions etc. 1467 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1468 1469 Stream.ExitBlock(); 1470 } 1471 1472 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1473 /// header and trailer to make it compatible with the system archiver. To do 1474 /// this we emit the following header, and then emit a trailer that pads the 1475 /// file out to be a multiple of 16 bytes. 1476 /// 1477 /// struct bc_header { 1478 /// uint32_t Magic; // 0x0B17C0DE 1479 /// uint32_t Version; // Version, currently always 0. 1480 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1481 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1482 /// uint32_t CPUType; // CPU specifier. 1483 /// ... potentially more later ... 1484 /// }; 1485 enum { 1486 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1487 DarwinBCHeaderSize = 5*4 1488 }; 1489 1490 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1491 const std::string &TT) { 1492 unsigned CPUType = ~0U; 1493 1494 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1495 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1496 // specific constants here because they are implicitly part of the Darwin ABI. 1497 enum { 1498 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1499 DARWIN_CPU_TYPE_X86 = 7, 1500 DARWIN_CPU_TYPE_POWERPC = 18 1501 }; 1502 1503 if (TT.find("x86_64-") == 0) 1504 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1505 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1506 TT[4] == '-' && TT[1] - '3' < 6) 1507 CPUType = DARWIN_CPU_TYPE_X86; 1508 else if (TT.find("powerpc-") == 0) 1509 CPUType = DARWIN_CPU_TYPE_POWERPC; 1510 else if (TT.find("powerpc64-") == 0) 1511 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1512 1513 // Traditional Bitcode starts after header. 1514 unsigned BCOffset = DarwinBCHeaderSize; 1515 1516 Stream.Emit(0x0B17C0DE, 32); 1517 Stream.Emit(0 , 32); // Version. 1518 Stream.Emit(BCOffset , 32); 1519 Stream.Emit(0 , 32); // Filled in later. 1520 Stream.Emit(CPUType , 32); 1521 } 1522 1523 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1524 /// finalize the header. 1525 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1526 // Update the size field in the header. 1527 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1528 1529 // If the file is not a multiple of 16 bytes, insert dummy padding. 1530 while (BufferSize & 15) { 1531 Stream.Emit(0, 8); 1532 ++BufferSize; 1533 } 1534 } 1535 1536 1537 /// WriteBitcodeToFile - Write the specified module to the specified output 1538 /// stream. 1539 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1540 std::vector<unsigned char> Buffer; 1541 BitstreamWriter Stream(Buffer); 1542 1543 Buffer.reserve(256*1024); 1544 1545 WriteBitcodeToStream( M, Stream ); 1546 1547 // If writing to stdout, set binary mode. 1548 if (&llvm::outs() == &Out) 1549 sys::Program::ChangeStdoutToBinary(); 1550 1551 // Write the generated bitstream to "Out". 1552 Out.write((char*)&Buffer.front(), Buffer.size()); 1553 1554 // Make sure it hits disk now. 1555 Out.flush(); 1556 } 1557 1558 /// WriteBitcodeToStream - Write the specified module to the specified output 1559 /// stream. 1560 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1561 // If this is darwin, emit a file header and trailer if needed. 1562 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1563 if (isDarwin) 1564 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1565 1566 // Emit the file header. 1567 Stream.Emit((unsigned)'B', 8); 1568 Stream.Emit((unsigned)'C', 8); 1569 Stream.Emit(0x0, 4); 1570 Stream.Emit(0xC, 4); 1571 Stream.Emit(0xE, 4); 1572 Stream.Emit(0xD, 4); 1573 1574 // Emit the module. 1575 WriteModule(M, Stream); 1576 1577 if (isDarwin) 1578 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1579 } 1580