1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::Builtin: 166 return bitc::ATTR_KIND_BUILTIN; 167 case Attribute::ByVal: 168 return bitc::ATTR_KIND_BY_VAL; 169 case Attribute::InAlloca: 170 return bitc::ATTR_KIND_IN_ALLOCA; 171 case Attribute::Cold: 172 return bitc::ATTR_KIND_COLD; 173 case Attribute::InlineHint: 174 return bitc::ATTR_KIND_INLINE_HINT; 175 case Attribute::InReg: 176 return bitc::ATTR_KIND_IN_REG; 177 case Attribute::JumpTable: 178 return bitc::ATTR_KIND_JUMP_TABLE; 179 case Attribute::MinSize: 180 return bitc::ATTR_KIND_MIN_SIZE; 181 case Attribute::Naked: 182 return bitc::ATTR_KIND_NAKED; 183 case Attribute::Nest: 184 return bitc::ATTR_KIND_NEST; 185 case Attribute::NoAlias: 186 return bitc::ATTR_KIND_NO_ALIAS; 187 case Attribute::NoBuiltin: 188 return bitc::ATTR_KIND_NO_BUILTIN; 189 case Attribute::NoCapture: 190 return bitc::ATTR_KIND_NO_CAPTURE; 191 case Attribute::NoDuplicate: 192 return bitc::ATTR_KIND_NO_DUPLICATE; 193 case Attribute::NoImplicitFloat: 194 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 195 case Attribute::NoInline: 196 return bitc::ATTR_KIND_NO_INLINE; 197 case Attribute::NonLazyBind: 198 return bitc::ATTR_KIND_NON_LAZY_BIND; 199 case Attribute::NonNull: 200 return bitc::ATTR_KIND_NON_NULL; 201 case Attribute::Dereferenceable: 202 return bitc::ATTR_KIND_DEREFERENCEABLE; 203 case Attribute::DereferenceableOrNull: 204 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 205 case Attribute::NoRedZone: 206 return bitc::ATTR_KIND_NO_RED_ZONE; 207 case Attribute::NoReturn: 208 return bitc::ATTR_KIND_NO_RETURN; 209 case Attribute::NoUnwind: 210 return bitc::ATTR_KIND_NO_UNWIND; 211 case Attribute::OptimizeForSize: 212 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 213 case Attribute::OptimizeNone: 214 return bitc::ATTR_KIND_OPTIMIZE_NONE; 215 case Attribute::ReadNone: 216 return bitc::ATTR_KIND_READ_NONE; 217 case Attribute::ReadOnly: 218 return bitc::ATTR_KIND_READ_ONLY; 219 case Attribute::Returned: 220 return bitc::ATTR_KIND_RETURNED; 221 case Attribute::ReturnsTwice: 222 return bitc::ATTR_KIND_RETURNS_TWICE; 223 case Attribute::SExt: 224 return bitc::ATTR_KIND_S_EXT; 225 case Attribute::StackAlignment: 226 return bitc::ATTR_KIND_STACK_ALIGNMENT; 227 case Attribute::StackProtect: 228 return bitc::ATTR_KIND_STACK_PROTECT; 229 case Attribute::StackProtectReq: 230 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 231 case Attribute::StackProtectStrong: 232 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 233 case Attribute::StructRet: 234 return bitc::ATTR_KIND_STRUCT_RET; 235 case Attribute::SanitizeAddress: 236 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 237 case Attribute::SanitizeThread: 238 return bitc::ATTR_KIND_SANITIZE_THREAD; 239 case Attribute::SanitizeMemory: 240 return bitc::ATTR_KIND_SANITIZE_MEMORY; 241 case Attribute::UWTable: 242 return bitc::ATTR_KIND_UW_TABLE; 243 case Attribute::ZExt: 244 return bitc::ATTR_KIND_Z_EXT; 245 case Attribute::EndAttrKinds: 246 llvm_unreachable("Can not encode end-attribute kinds marker."); 247 case Attribute::None: 248 llvm_unreachable("Can not encode none-attribute."); 249 } 250 251 llvm_unreachable("Trying to encode unknown attribute"); 252 } 253 254 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 255 BitstreamWriter &Stream) { 256 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 257 if (AttrGrps.empty()) return; 258 259 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 260 261 SmallVector<uint64_t, 64> Record; 262 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 263 AttributeSet AS = AttrGrps[i]; 264 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 265 AttributeSet A = AS.getSlotAttributes(i); 266 267 Record.push_back(VE.getAttributeGroupID(A)); 268 Record.push_back(AS.getSlotIndex(i)); 269 270 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 271 I != E; ++I) { 272 Attribute Attr = *I; 273 if (Attr.isEnumAttribute()) { 274 Record.push_back(0); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 } else if (Attr.isIntAttribute()) { 277 Record.push_back(1); 278 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 279 Record.push_back(Attr.getValueAsInt()); 280 } else { 281 StringRef Kind = Attr.getKindAsString(); 282 StringRef Val = Attr.getValueAsString(); 283 284 Record.push_back(Val.empty() ? 3 : 4); 285 Record.append(Kind.begin(), Kind.end()); 286 Record.push_back(0); 287 if (!Val.empty()) { 288 Record.append(Val.begin(), Val.end()); 289 Record.push_back(0); 290 } 291 } 292 } 293 294 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 295 Record.clear(); 296 } 297 } 298 299 Stream.ExitBlock(); 300 } 301 302 static void WriteAttributeTable(const ValueEnumerator &VE, 303 BitstreamWriter &Stream) { 304 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 305 if (Attrs.empty()) return; 306 307 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 308 309 SmallVector<uint64_t, 64> Record; 310 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 311 const AttributeSet &A = Attrs[i]; 312 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 313 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 314 315 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 316 Record.clear(); 317 } 318 319 Stream.ExitBlock(); 320 } 321 322 /// WriteTypeTable - Write out the type table for a module. 323 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 324 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 325 326 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 327 SmallVector<uint64_t, 64> TypeVals; 328 329 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 330 331 // Abbrev for TYPE_CODE_POINTER. 332 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 333 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 335 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 336 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 337 338 // Abbrev for TYPE_CODE_FUNCTION. 339 Abbv = new BitCodeAbbrev(); 340 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 344 345 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 346 347 // Abbrev for TYPE_CODE_STRUCT_ANON. 348 Abbv = new BitCodeAbbrev(); 349 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 353 354 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 355 356 // Abbrev for TYPE_CODE_STRUCT_NAME. 357 Abbv = new BitCodeAbbrev(); 358 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 361 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 362 363 // Abbrev for TYPE_CODE_STRUCT_NAMED. 364 Abbv = new BitCodeAbbrev(); 365 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 369 370 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 371 372 // Abbrev for TYPE_CODE_ARRAY. 373 Abbv = new BitCodeAbbrev(); 374 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 377 378 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 379 380 // Emit an entry count so the reader can reserve space. 381 TypeVals.push_back(TypeList.size()); 382 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 383 TypeVals.clear(); 384 385 // Loop over all of the types, emitting each in turn. 386 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 387 Type *T = TypeList[i]; 388 int AbbrevToUse = 0; 389 unsigned Code = 0; 390 391 switch (T->getTypeID()) { 392 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 393 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 394 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 395 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 396 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 397 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 398 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 399 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 400 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 401 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 402 case Type::IntegerTyID: 403 // INTEGER: [width] 404 Code = bitc::TYPE_CODE_INTEGER; 405 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 406 break; 407 case Type::PointerTyID: { 408 PointerType *PTy = cast<PointerType>(T); 409 // POINTER: [pointee type, address space] 410 Code = bitc::TYPE_CODE_POINTER; 411 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 412 unsigned AddressSpace = PTy->getAddressSpace(); 413 TypeVals.push_back(AddressSpace); 414 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 415 break; 416 } 417 case Type::FunctionTyID: { 418 FunctionType *FT = cast<FunctionType>(T); 419 // FUNCTION: [isvararg, retty, paramty x N] 420 Code = bitc::TYPE_CODE_FUNCTION; 421 TypeVals.push_back(FT->isVarArg()); 422 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 423 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 424 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 425 AbbrevToUse = FunctionAbbrev; 426 break; 427 } 428 case Type::StructTyID: { 429 StructType *ST = cast<StructType>(T); 430 // STRUCT: [ispacked, eltty x N] 431 TypeVals.push_back(ST->isPacked()); 432 // Output all of the element types. 433 for (StructType::element_iterator I = ST->element_begin(), 434 E = ST->element_end(); I != E; ++I) 435 TypeVals.push_back(VE.getTypeID(*I)); 436 437 if (ST->isLiteral()) { 438 Code = bitc::TYPE_CODE_STRUCT_ANON; 439 AbbrevToUse = StructAnonAbbrev; 440 } else { 441 if (ST->isOpaque()) { 442 Code = bitc::TYPE_CODE_OPAQUE; 443 } else { 444 Code = bitc::TYPE_CODE_STRUCT_NAMED; 445 AbbrevToUse = StructNamedAbbrev; 446 } 447 448 // Emit the name if it is present. 449 if (!ST->getName().empty()) 450 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 451 StructNameAbbrev, Stream); 452 } 453 break; 454 } 455 case Type::ArrayTyID: { 456 ArrayType *AT = cast<ArrayType>(T); 457 // ARRAY: [numelts, eltty] 458 Code = bitc::TYPE_CODE_ARRAY; 459 TypeVals.push_back(AT->getNumElements()); 460 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 461 AbbrevToUse = ArrayAbbrev; 462 break; 463 } 464 case Type::VectorTyID: { 465 VectorType *VT = cast<VectorType>(T); 466 // VECTOR [numelts, eltty] 467 Code = bitc::TYPE_CODE_VECTOR; 468 TypeVals.push_back(VT->getNumElements()); 469 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 470 break; 471 } 472 } 473 474 // Emit the finished record. 475 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 476 TypeVals.clear(); 477 } 478 479 Stream.ExitBlock(); 480 } 481 482 static unsigned getEncodedLinkage(const GlobalValue &GV) { 483 switch (GV.getLinkage()) { 484 case GlobalValue::ExternalLinkage: 485 return 0; 486 case GlobalValue::WeakAnyLinkage: 487 return 16; 488 case GlobalValue::AppendingLinkage: 489 return 2; 490 case GlobalValue::InternalLinkage: 491 return 3; 492 case GlobalValue::LinkOnceAnyLinkage: 493 return 18; 494 case GlobalValue::ExternalWeakLinkage: 495 return 7; 496 case GlobalValue::CommonLinkage: 497 return 8; 498 case GlobalValue::PrivateLinkage: 499 return 9; 500 case GlobalValue::WeakODRLinkage: 501 return 17; 502 case GlobalValue::LinkOnceODRLinkage: 503 return 19; 504 case GlobalValue::AvailableExternallyLinkage: 505 return 12; 506 } 507 llvm_unreachable("Invalid linkage"); 508 } 509 510 static unsigned getEncodedVisibility(const GlobalValue &GV) { 511 switch (GV.getVisibility()) { 512 case GlobalValue::DefaultVisibility: return 0; 513 case GlobalValue::HiddenVisibility: return 1; 514 case GlobalValue::ProtectedVisibility: return 2; 515 } 516 llvm_unreachable("Invalid visibility"); 517 } 518 519 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 520 switch (GV.getDLLStorageClass()) { 521 case GlobalValue::DefaultStorageClass: return 0; 522 case GlobalValue::DLLImportStorageClass: return 1; 523 case GlobalValue::DLLExportStorageClass: return 2; 524 } 525 llvm_unreachable("Invalid DLL storage class"); 526 } 527 528 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 529 switch (GV.getThreadLocalMode()) { 530 case GlobalVariable::NotThreadLocal: return 0; 531 case GlobalVariable::GeneralDynamicTLSModel: return 1; 532 case GlobalVariable::LocalDynamicTLSModel: return 2; 533 case GlobalVariable::InitialExecTLSModel: return 3; 534 case GlobalVariable::LocalExecTLSModel: return 4; 535 } 536 llvm_unreachable("Invalid TLS model"); 537 } 538 539 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 540 switch (C.getSelectionKind()) { 541 case Comdat::Any: 542 return bitc::COMDAT_SELECTION_KIND_ANY; 543 case Comdat::ExactMatch: 544 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 545 case Comdat::Largest: 546 return bitc::COMDAT_SELECTION_KIND_LARGEST; 547 case Comdat::NoDuplicates: 548 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 549 case Comdat::SameSize: 550 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 551 } 552 llvm_unreachable("Invalid selection kind"); 553 } 554 555 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 556 SmallVector<uint16_t, 64> Vals; 557 for (const Comdat *C : VE.getComdats()) { 558 // COMDAT: [selection_kind, name] 559 Vals.push_back(getEncodedComdatSelectionKind(*C)); 560 size_t Size = C->getName().size(); 561 assert(isUInt<16>(Size)); 562 Vals.push_back(Size); 563 for (char Chr : C->getName()) 564 Vals.push_back((unsigned char)Chr); 565 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 566 Vals.clear(); 567 } 568 } 569 570 // Emit top-level description of module, including target triple, inline asm, 571 // descriptors for global variables, and function prototype info. 572 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 573 BitstreamWriter &Stream) { 574 // Emit various pieces of data attached to a module. 575 if (!M->getTargetTriple().empty()) 576 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 577 0/*TODO*/, Stream); 578 const std::string &DL = M->getDataLayoutStr(); 579 if (!DL.empty()) 580 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 581 if (!M->getModuleInlineAsm().empty()) 582 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 583 0/*TODO*/, Stream); 584 585 // Emit information about sections and GC, computing how many there are. Also 586 // compute the maximum alignment value. 587 std::map<std::string, unsigned> SectionMap; 588 std::map<std::string, unsigned> GCMap; 589 unsigned MaxAlignment = 0; 590 unsigned MaxGlobalType = 0; 591 for (const GlobalValue &GV : M->globals()) { 592 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 593 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 594 if (GV.hasSection()) { 595 // Give section names unique ID's. 596 unsigned &Entry = SectionMap[GV.getSection()]; 597 if (!Entry) { 598 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 599 0/*TODO*/, Stream); 600 Entry = SectionMap.size(); 601 } 602 } 603 } 604 for (const Function &F : *M) { 605 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 606 if (F.hasSection()) { 607 // Give section names unique ID's. 608 unsigned &Entry = SectionMap[F.getSection()]; 609 if (!Entry) { 610 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 611 0/*TODO*/, Stream); 612 Entry = SectionMap.size(); 613 } 614 } 615 if (F.hasGC()) { 616 // Same for GC names. 617 unsigned &Entry = GCMap[F.getGC()]; 618 if (!Entry) { 619 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 620 0/*TODO*/, Stream); 621 Entry = GCMap.size(); 622 } 623 } 624 } 625 626 // Emit abbrev for globals, now that we know # sections and max alignment. 627 unsigned SimpleGVarAbbrev = 0; 628 if (!M->global_empty()) { 629 // Add an abbrev for common globals with no visibility or thread localness. 630 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 631 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 633 Log2_32_Ceil(MaxGlobalType+1))); 634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 635 //| explicitType << 1 636 //| constant 637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 639 if (MaxAlignment == 0) // Alignment. 640 Abbv->Add(BitCodeAbbrevOp(0)); 641 else { 642 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 644 Log2_32_Ceil(MaxEncAlignment+1))); 645 } 646 if (SectionMap.empty()) // Section. 647 Abbv->Add(BitCodeAbbrevOp(0)); 648 else 649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 650 Log2_32_Ceil(SectionMap.size()+1))); 651 // Don't bother emitting vis + thread local. 652 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 653 } 654 655 // Emit the global variable information. 656 SmallVector<unsigned, 64> Vals; 657 for (const GlobalVariable &GV : M->globals()) { 658 unsigned AbbrevToUse = 0; 659 660 // GLOBALVAR: [type, isconst, initid, 661 // linkage, alignment, section, visibility, threadlocal, 662 // unnamed_addr, externally_initialized, dllstorageclass, 663 // comdat] 664 Vals.push_back(VE.getTypeID(GV.getValueType())); 665 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 666 Vals.push_back(GV.isDeclaration() ? 0 : 667 (VE.getValueID(GV.getInitializer()) + 1)); 668 Vals.push_back(getEncodedLinkage(GV)); 669 Vals.push_back(Log2_32(GV.getAlignment())+1); 670 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 671 if (GV.isThreadLocal() || 672 GV.getVisibility() != GlobalValue::DefaultVisibility || 673 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 674 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 675 GV.hasComdat()) { 676 Vals.push_back(getEncodedVisibility(GV)); 677 Vals.push_back(getEncodedThreadLocalMode(GV)); 678 Vals.push_back(GV.hasUnnamedAddr()); 679 Vals.push_back(GV.isExternallyInitialized()); 680 Vals.push_back(getEncodedDLLStorageClass(GV)); 681 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 682 } else { 683 AbbrevToUse = SimpleGVarAbbrev; 684 } 685 686 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 687 Vals.clear(); 688 } 689 690 // Emit the function proto information. 691 for (const Function &F : *M) { 692 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 693 // section, visibility, gc, unnamed_addr, prologuedata, 694 // dllstorageclass, comdat, prefixdata] 695 Vals.push_back(VE.getTypeID(F.getFunctionType())); 696 Vals.push_back(F.getCallingConv()); 697 Vals.push_back(F.isDeclaration()); 698 Vals.push_back(getEncodedLinkage(F)); 699 Vals.push_back(VE.getAttributeID(F.getAttributes())); 700 Vals.push_back(Log2_32(F.getAlignment())+1); 701 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 702 Vals.push_back(getEncodedVisibility(F)); 703 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 704 Vals.push_back(F.hasUnnamedAddr()); 705 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 706 : 0); 707 Vals.push_back(getEncodedDLLStorageClass(F)); 708 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 709 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 710 : 0); 711 712 unsigned AbbrevToUse = 0; 713 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 714 Vals.clear(); 715 } 716 717 // Emit the alias information. 718 for (const GlobalAlias &A : M->aliases()) { 719 // ALIAS: [alias type, aliasee val#, linkage, visibility] 720 Vals.push_back(VE.getTypeID(A.getType())); 721 Vals.push_back(VE.getValueID(A.getAliasee())); 722 Vals.push_back(getEncodedLinkage(A)); 723 Vals.push_back(getEncodedVisibility(A)); 724 Vals.push_back(getEncodedDLLStorageClass(A)); 725 Vals.push_back(getEncodedThreadLocalMode(A)); 726 Vals.push_back(A.hasUnnamedAddr()); 727 unsigned AbbrevToUse = 0; 728 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 729 Vals.clear(); 730 } 731 } 732 733 static uint64_t GetOptimizationFlags(const Value *V) { 734 uint64_t Flags = 0; 735 736 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 737 if (OBO->hasNoSignedWrap()) 738 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 739 if (OBO->hasNoUnsignedWrap()) 740 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 741 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 742 if (PEO->isExact()) 743 Flags |= 1 << bitc::PEO_EXACT; 744 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 745 if (FPMO->hasUnsafeAlgebra()) 746 Flags |= FastMathFlags::UnsafeAlgebra; 747 if (FPMO->hasNoNaNs()) 748 Flags |= FastMathFlags::NoNaNs; 749 if (FPMO->hasNoInfs()) 750 Flags |= FastMathFlags::NoInfs; 751 if (FPMO->hasNoSignedZeros()) 752 Flags |= FastMathFlags::NoSignedZeros; 753 if (FPMO->hasAllowReciprocal()) 754 Flags |= FastMathFlags::AllowReciprocal; 755 } 756 757 return Flags; 758 } 759 760 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 761 const ValueEnumerator &VE, 762 BitstreamWriter &Stream, 763 SmallVectorImpl<uint64_t> &Record) { 764 // Mimic an MDNode with a value as one operand. 765 Value *V = MD->getValue(); 766 Record.push_back(VE.getTypeID(V->getType())); 767 Record.push_back(VE.getValueID(V)); 768 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 769 Record.clear(); 770 } 771 772 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 773 BitstreamWriter &Stream, 774 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 775 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 776 Metadata *MD = N->getOperand(i); 777 assert(!(MD && isa<LocalAsMetadata>(MD)) && 778 "Unexpected function-local metadata"); 779 Record.push_back(VE.getMetadataOrNullID(MD)); 780 } 781 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 782 : bitc::METADATA_NODE, 783 Record, Abbrev); 784 Record.clear(); 785 } 786 787 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 788 BitstreamWriter &Stream, 789 SmallVectorImpl<uint64_t> &Record, 790 unsigned Abbrev) { 791 Record.push_back(N->isDistinct()); 792 Record.push_back(N->getLine()); 793 Record.push_back(N->getColumn()); 794 Record.push_back(VE.getMetadataID(N->getScope())); 795 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 796 797 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 798 Record.clear(); 799 } 800 801 static void WriteGenericDebugNode(const GenericDebugNode *N, 802 const ValueEnumerator &VE, 803 BitstreamWriter &Stream, 804 SmallVectorImpl<uint64_t> &Record, 805 unsigned Abbrev) { 806 Record.push_back(N->isDistinct()); 807 Record.push_back(N->getTag()); 808 Record.push_back(0); // Per-tag version field; unused for now. 809 810 for (auto &I : N->operands()) 811 Record.push_back(VE.getMetadataOrNullID(I)); 812 813 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 814 Record.clear(); 815 } 816 817 static uint64_t rotateSign(int64_t I) { 818 uint64_t U = I; 819 return I < 0 ? ~(U << 1) : U << 1; 820 } 821 822 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 823 BitstreamWriter &Stream, 824 SmallVectorImpl<uint64_t> &Record, 825 unsigned Abbrev) { 826 Record.push_back(N->isDistinct()); 827 Record.push_back(N->getCount()); 828 Record.push_back(rotateSign(N->getLowerBound())); 829 830 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 831 Record.clear(); 832 } 833 834 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 835 BitstreamWriter &Stream, 836 SmallVectorImpl<uint64_t> &Record, 837 unsigned Abbrev) { 838 Record.push_back(N->isDistinct()); 839 Record.push_back(rotateSign(N->getValue())); 840 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 841 842 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 843 Record.clear(); 844 } 845 846 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 847 BitstreamWriter &Stream, 848 SmallVectorImpl<uint64_t> &Record, 849 unsigned Abbrev) { 850 Record.push_back(N->isDistinct()); 851 Record.push_back(N->getTag()); 852 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 853 Record.push_back(N->getSizeInBits()); 854 Record.push_back(N->getAlignInBits()); 855 Record.push_back(N->getEncoding()); 856 857 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 858 Record.clear(); 859 } 860 861 static void WriteMDDerivedType(const MDDerivedType *N, 862 const ValueEnumerator &VE, 863 BitstreamWriter &Stream, 864 SmallVectorImpl<uint64_t> &Record, 865 unsigned Abbrev) { 866 Record.push_back(N->isDistinct()); 867 Record.push_back(N->getTag()); 868 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 869 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 870 Record.push_back(N->getLine()); 871 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 872 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 873 Record.push_back(N->getSizeInBits()); 874 Record.push_back(N->getAlignInBits()); 875 Record.push_back(N->getOffsetInBits()); 876 Record.push_back(N->getFlags()); 877 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 878 879 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 880 Record.clear(); 881 } 882 883 static void WriteMDCompositeType(const MDCompositeType *N, 884 const ValueEnumerator &VE, 885 BitstreamWriter &Stream, 886 SmallVectorImpl<uint64_t> &Record, 887 unsigned Abbrev) { 888 Record.push_back(N->isDistinct()); 889 Record.push_back(N->getTag()); 890 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 891 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 892 Record.push_back(N->getLine()); 893 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 894 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 895 Record.push_back(N->getSizeInBits()); 896 Record.push_back(N->getAlignInBits()); 897 Record.push_back(N->getOffsetInBits()); 898 Record.push_back(N->getFlags()); 899 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 900 Record.push_back(N->getRuntimeLang()); 901 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 902 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 903 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 904 905 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 906 Record.clear(); 907 } 908 909 static void WriteMDSubroutineType(const MDSubroutineType *N, 910 const ValueEnumerator &VE, 911 BitstreamWriter &Stream, 912 SmallVectorImpl<uint64_t> &Record, 913 unsigned Abbrev) { 914 Record.push_back(N->isDistinct()); 915 Record.push_back(N->getFlags()); 916 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 917 918 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 919 Record.clear(); 920 } 921 922 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 923 BitstreamWriter &Stream, 924 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 925 Record.push_back(N->isDistinct()); 926 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 927 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 928 929 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 930 Record.clear(); 931 } 932 933 static void WriteMDCompileUnit(const MDCompileUnit *N, 934 const ValueEnumerator &VE, 935 BitstreamWriter &Stream, 936 SmallVectorImpl<uint64_t> &Record, 937 unsigned Abbrev) { 938 Record.push_back(N->isDistinct()); 939 Record.push_back(N->getSourceLanguage()); 940 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 941 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 942 Record.push_back(N->isOptimized()); 943 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 944 Record.push_back(N->getRuntimeVersion()); 945 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 946 Record.push_back(N->getEmissionKind()); 947 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 948 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 949 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 950 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 951 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 952 953 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 954 Record.clear(); 955 } 956 957 static void WriteMDSubprogram(const MDSubprogram *N, 958 const ValueEnumerator &VE, 959 BitstreamWriter &Stream, 960 SmallVectorImpl<uint64_t> &Record, 961 unsigned Abbrev) { 962 Record.push_back(N->isDistinct()); 963 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 964 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 965 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 966 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 967 Record.push_back(N->getLine()); 968 Record.push_back(VE.getMetadataOrNullID(N->getType())); 969 Record.push_back(N->isLocalToUnit()); 970 Record.push_back(N->isDefinition()); 971 Record.push_back(N->getScopeLine()); 972 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 973 Record.push_back(N->getVirtuality()); 974 Record.push_back(N->getVirtualIndex()); 975 Record.push_back(N->getFlags()); 976 Record.push_back(N->isOptimized()); 977 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 978 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 979 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 980 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 981 982 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 983 Record.clear(); 984 } 985 986 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 987 const ValueEnumerator &VE, 988 BitstreamWriter &Stream, 989 SmallVectorImpl<uint64_t> &Record, 990 unsigned Abbrev) { 991 Record.push_back(N->isDistinct()); 992 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 993 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 994 Record.push_back(N->getLine()); 995 Record.push_back(N->getColumn()); 996 997 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 998 Record.clear(); 999 } 1000 1001 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N, 1002 const ValueEnumerator &VE, 1003 BitstreamWriter &Stream, 1004 SmallVectorImpl<uint64_t> &Record, 1005 unsigned Abbrev) { 1006 Record.push_back(N->isDistinct()); 1007 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1008 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1009 Record.push_back(N->getDiscriminator()); 1010 1011 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1012 Record.clear(); 1013 } 1014 1015 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE, 1016 BitstreamWriter &Stream, 1017 SmallVectorImpl<uint64_t> &Record, 1018 unsigned Abbrev) { 1019 Record.push_back(N->isDistinct()); 1020 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1021 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1022 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1023 Record.push_back(N->getLine()); 1024 1025 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1026 Record.clear(); 1027 } 1028 1029 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N, 1030 const ValueEnumerator &VE, 1031 BitstreamWriter &Stream, 1032 SmallVectorImpl<uint64_t> &Record, 1033 unsigned Abbrev) { 1034 Record.push_back(N->isDistinct()); 1035 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1036 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1037 1038 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1039 Record.clear(); 1040 } 1041 1042 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N, 1043 const ValueEnumerator &VE, 1044 BitstreamWriter &Stream, 1045 SmallVectorImpl<uint64_t> &Record, 1046 unsigned Abbrev) { 1047 Record.push_back(N->isDistinct()); 1048 Record.push_back(N->getTag()); 1049 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1050 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1051 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1052 1053 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1054 Record.clear(); 1055 } 1056 1057 static void WriteMDGlobalVariable(const MDGlobalVariable *N, 1058 const ValueEnumerator &VE, 1059 BitstreamWriter &Stream, 1060 SmallVectorImpl<uint64_t> &Record, 1061 unsigned Abbrev) { 1062 Record.push_back(N->isDistinct()); 1063 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1064 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1065 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1066 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1067 Record.push_back(N->getLine()); 1068 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1069 Record.push_back(N->isLocalToUnit()); 1070 Record.push_back(N->isDefinition()); 1071 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1072 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1073 1074 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1075 Record.clear(); 1076 } 1077 1078 static void WriteMDLocalVariable(const MDLocalVariable *N, 1079 const ValueEnumerator &VE, 1080 BitstreamWriter &Stream, 1081 SmallVectorImpl<uint64_t> &Record, 1082 unsigned Abbrev) { 1083 Record.push_back(N->isDistinct()); 1084 Record.push_back(N->getTag()); 1085 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1086 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1087 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1088 Record.push_back(N->getLine()); 1089 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1090 Record.push_back(N->getArg()); 1091 Record.push_back(N->getFlags()); 1092 1093 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1094 Record.clear(); 1095 } 1096 1097 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &, 1098 BitstreamWriter &Stream, 1099 SmallVectorImpl<uint64_t> &Record, 1100 unsigned Abbrev) { 1101 Record.reserve(N->getElements().size() + 1); 1102 1103 Record.push_back(N->isDistinct()); 1104 Record.append(N->elements_begin(), N->elements_end()); 1105 1106 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1107 Record.clear(); 1108 } 1109 1110 static void WriteMDObjCProperty(const MDObjCProperty *N, 1111 const ValueEnumerator &VE, 1112 BitstreamWriter &Stream, 1113 SmallVectorImpl<uint64_t> &Record, 1114 unsigned Abbrev) { 1115 Record.push_back(N->isDistinct()); 1116 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1117 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1118 Record.push_back(N->getLine()); 1119 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1120 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1121 Record.push_back(N->getAttributes()); 1122 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1123 1124 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1125 Record.clear(); 1126 } 1127 1128 static void WriteMDImportedEntity(const MDImportedEntity *N, 1129 const ValueEnumerator &VE, 1130 BitstreamWriter &Stream, 1131 SmallVectorImpl<uint64_t> &Record, 1132 unsigned Abbrev) { 1133 Record.push_back(N->isDistinct()); 1134 Record.push_back(N->getTag()); 1135 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1136 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1137 Record.push_back(N->getLine()); 1138 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1139 1140 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1141 Record.clear(); 1142 } 1143 1144 static void WriteModuleMetadata(const Module *M, 1145 const ValueEnumerator &VE, 1146 BitstreamWriter &Stream) { 1147 const auto &MDs = VE.getMDs(); 1148 if (MDs.empty() && M->named_metadata_empty()) 1149 return; 1150 1151 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1152 1153 unsigned MDSAbbrev = 0; 1154 if (VE.hasMDString()) { 1155 // Abbrev for METADATA_STRING. 1156 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1157 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1160 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1161 } 1162 1163 // Initialize MDNode abbreviations. 1164 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1165 #include "llvm/IR/Metadata.def" 1166 1167 if (VE.hasMDLocation()) { 1168 // Abbrev for METADATA_LOCATION. 1169 // 1170 // Assume the column is usually under 128, and always output the inlined-at 1171 // location (it's never more expensive than building an array size 1). 1172 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1173 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1179 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1180 } 1181 1182 if (VE.hasGenericDebugNode()) { 1183 // Abbrev for METADATA_GENERIC_DEBUG. 1184 // 1185 // Assume the column is usually under 128, and always output the inlined-at 1186 // location (it's never more expensive than building an array size 1). 1187 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1188 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1195 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1196 } 1197 1198 unsigned NameAbbrev = 0; 1199 if (!M->named_metadata_empty()) { 1200 // Abbrev for METADATA_NAME. 1201 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1202 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1205 NameAbbrev = Stream.EmitAbbrev(Abbv); 1206 } 1207 1208 SmallVector<uint64_t, 64> Record; 1209 for (const Metadata *MD : MDs) { 1210 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1211 assert(N->isResolved() && "Expected forward references to be resolved"); 1212 1213 switch (N->getMetadataID()) { 1214 default: 1215 llvm_unreachable("Invalid MDNode subclass"); 1216 #define HANDLE_MDNODE_LEAF(CLASS) \ 1217 case Metadata::CLASS##Kind: \ 1218 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1219 continue; 1220 #include "llvm/IR/Metadata.def" 1221 } 1222 } 1223 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1224 WriteValueAsMetadata(MDC, VE, Stream, Record); 1225 continue; 1226 } 1227 const MDString *MDS = cast<MDString>(MD); 1228 // Code: [strchar x N] 1229 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1230 1231 // Emit the finished record. 1232 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1233 Record.clear(); 1234 } 1235 1236 // Write named metadata. 1237 for (const NamedMDNode &NMD : M->named_metadata()) { 1238 // Write name. 1239 StringRef Str = NMD.getName(); 1240 Record.append(Str.bytes_begin(), Str.bytes_end()); 1241 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1242 Record.clear(); 1243 1244 // Write named metadata operands. 1245 for (const MDNode *N : NMD.operands()) 1246 Record.push_back(VE.getMetadataID(N)); 1247 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1248 Record.clear(); 1249 } 1250 1251 Stream.ExitBlock(); 1252 } 1253 1254 static void WriteFunctionLocalMetadata(const Function &F, 1255 const ValueEnumerator &VE, 1256 BitstreamWriter &Stream) { 1257 bool StartedMetadataBlock = false; 1258 SmallVector<uint64_t, 64> Record; 1259 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1260 VE.getFunctionLocalMDs(); 1261 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1262 assert(MDs[i] && "Expected valid function-local metadata"); 1263 if (!StartedMetadataBlock) { 1264 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1265 StartedMetadataBlock = true; 1266 } 1267 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1268 } 1269 1270 if (StartedMetadataBlock) 1271 Stream.ExitBlock(); 1272 } 1273 1274 static void WriteMetadataAttachment(const Function &F, 1275 const ValueEnumerator &VE, 1276 BitstreamWriter &Stream) { 1277 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1278 1279 SmallVector<uint64_t, 64> Record; 1280 1281 // Write metadata attachments 1282 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1283 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1284 F.getAllMetadata(MDs); 1285 if (!MDs.empty()) { 1286 for (const auto &I : MDs) { 1287 Record.push_back(I.first); 1288 Record.push_back(VE.getMetadataID(I.second)); 1289 } 1290 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1291 Record.clear(); 1292 } 1293 1294 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1295 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1296 I != E; ++I) { 1297 MDs.clear(); 1298 I->getAllMetadataOtherThanDebugLoc(MDs); 1299 1300 // If no metadata, ignore instruction. 1301 if (MDs.empty()) continue; 1302 1303 Record.push_back(VE.getInstructionID(I)); 1304 1305 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1306 Record.push_back(MDs[i].first); 1307 Record.push_back(VE.getMetadataID(MDs[i].second)); 1308 } 1309 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1310 Record.clear(); 1311 } 1312 1313 Stream.ExitBlock(); 1314 } 1315 1316 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1317 SmallVector<uint64_t, 64> Record; 1318 1319 // Write metadata kinds 1320 // METADATA_KIND - [n x [id, name]] 1321 SmallVector<StringRef, 8> Names; 1322 M->getMDKindNames(Names); 1323 1324 if (Names.empty()) return; 1325 1326 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1327 1328 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1329 Record.push_back(MDKindID); 1330 StringRef KName = Names[MDKindID]; 1331 Record.append(KName.begin(), KName.end()); 1332 1333 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1334 Record.clear(); 1335 } 1336 1337 Stream.ExitBlock(); 1338 } 1339 1340 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1341 if ((int64_t)V >= 0) 1342 Vals.push_back(V << 1); 1343 else 1344 Vals.push_back((-V << 1) | 1); 1345 } 1346 1347 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1348 const ValueEnumerator &VE, 1349 BitstreamWriter &Stream, bool isGlobal) { 1350 if (FirstVal == LastVal) return; 1351 1352 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1353 1354 unsigned AggregateAbbrev = 0; 1355 unsigned String8Abbrev = 0; 1356 unsigned CString7Abbrev = 0; 1357 unsigned CString6Abbrev = 0; 1358 // If this is a constant pool for the module, emit module-specific abbrevs. 1359 if (isGlobal) { 1360 // Abbrev for CST_CODE_AGGREGATE. 1361 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1362 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1365 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1366 1367 // Abbrev for CST_CODE_STRING. 1368 Abbv = new BitCodeAbbrev(); 1369 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1372 String8Abbrev = Stream.EmitAbbrev(Abbv); 1373 // Abbrev for CST_CODE_CSTRING. 1374 Abbv = new BitCodeAbbrev(); 1375 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1378 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1379 // Abbrev for CST_CODE_CSTRING. 1380 Abbv = new BitCodeAbbrev(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1384 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1385 } 1386 1387 SmallVector<uint64_t, 64> Record; 1388 1389 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1390 Type *LastTy = nullptr; 1391 for (unsigned i = FirstVal; i != LastVal; ++i) { 1392 const Value *V = Vals[i].first; 1393 // If we need to switch types, do so now. 1394 if (V->getType() != LastTy) { 1395 LastTy = V->getType(); 1396 Record.push_back(VE.getTypeID(LastTy)); 1397 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1398 CONSTANTS_SETTYPE_ABBREV); 1399 Record.clear(); 1400 } 1401 1402 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1403 Record.push_back(unsigned(IA->hasSideEffects()) | 1404 unsigned(IA->isAlignStack()) << 1 | 1405 unsigned(IA->getDialect()&1) << 2); 1406 1407 // Add the asm string. 1408 const std::string &AsmStr = IA->getAsmString(); 1409 Record.push_back(AsmStr.size()); 1410 Record.append(AsmStr.begin(), AsmStr.end()); 1411 1412 // Add the constraint string. 1413 const std::string &ConstraintStr = IA->getConstraintString(); 1414 Record.push_back(ConstraintStr.size()); 1415 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1416 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1417 Record.clear(); 1418 continue; 1419 } 1420 const Constant *C = cast<Constant>(V); 1421 unsigned Code = -1U; 1422 unsigned AbbrevToUse = 0; 1423 if (C->isNullValue()) { 1424 Code = bitc::CST_CODE_NULL; 1425 } else if (isa<UndefValue>(C)) { 1426 Code = bitc::CST_CODE_UNDEF; 1427 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1428 if (IV->getBitWidth() <= 64) { 1429 uint64_t V = IV->getSExtValue(); 1430 emitSignedInt64(Record, V); 1431 Code = bitc::CST_CODE_INTEGER; 1432 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1433 } else { // Wide integers, > 64 bits in size. 1434 // We have an arbitrary precision integer value to write whose 1435 // bit width is > 64. However, in canonical unsigned integer 1436 // format it is likely that the high bits are going to be zero. 1437 // So, we only write the number of active words. 1438 unsigned NWords = IV->getValue().getActiveWords(); 1439 const uint64_t *RawWords = IV->getValue().getRawData(); 1440 for (unsigned i = 0; i != NWords; ++i) { 1441 emitSignedInt64(Record, RawWords[i]); 1442 } 1443 Code = bitc::CST_CODE_WIDE_INTEGER; 1444 } 1445 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1446 Code = bitc::CST_CODE_FLOAT; 1447 Type *Ty = CFP->getType(); 1448 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1449 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1450 } else if (Ty->isX86_FP80Ty()) { 1451 // api needed to prevent premature destruction 1452 // bits are not in the same order as a normal i80 APInt, compensate. 1453 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1454 const uint64_t *p = api.getRawData(); 1455 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1456 Record.push_back(p[0] & 0xffffLL); 1457 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1458 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1459 const uint64_t *p = api.getRawData(); 1460 Record.push_back(p[0]); 1461 Record.push_back(p[1]); 1462 } else { 1463 assert (0 && "Unknown FP type!"); 1464 } 1465 } else if (isa<ConstantDataSequential>(C) && 1466 cast<ConstantDataSequential>(C)->isString()) { 1467 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1468 // Emit constant strings specially. 1469 unsigned NumElts = Str->getNumElements(); 1470 // If this is a null-terminated string, use the denser CSTRING encoding. 1471 if (Str->isCString()) { 1472 Code = bitc::CST_CODE_CSTRING; 1473 --NumElts; // Don't encode the null, which isn't allowed by char6. 1474 } else { 1475 Code = bitc::CST_CODE_STRING; 1476 AbbrevToUse = String8Abbrev; 1477 } 1478 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1479 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1480 for (unsigned i = 0; i != NumElts; ++i) { 1481 unsigned char V = Str->getElementAsInteger(i); 1482 Record.push_back(V); 1483 isCStr7 &= (V & 128) == 0; 1484 if (isCStrChar6) 1485 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1486 } 1487 1488 if (isCStrChar6) 1489 AbbrevToUse = CString6Abbrev; 1490 else if (isCStr7) 1491 AbbrevToUse = CString7Abbrev; 1492 } else if (const ConstantDataSequential *CDS = 1493 dyn_cast<ConstantDataSequential>(C)) { 1494 Code = bitc::CST_CODE_DATA; 1495 Type *EltTy = CDS->getType()->getElementType(); 1496 if (isa<IntegerType>(EltTy)) { 1497 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1498 Record.push_back(CDS->getElementAsInteger(i)); 1499 } else if (EltTy->isFloatTy()) { 1500 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1501 union { float F; uint32_t I; }; 1502 F = CDS->getElementAsFloat(i); 1503 Record.push_back(I); 1504 } 1505 } else { 1506 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1507 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1508 union { double F; uint64_t I; }; 1509 F = CDS->getElementAsDouble(i); 1510 Record.push_back(I); 1511 } 1512 } 1513 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1514 isa<ConstantVector>(C)) { 1515 Code = bitc::CST_CODE_AGGREGATE; 1516 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1517 Record.push_back(VE.getValueID(C->getOperand(i))); 1518 AbbrevToUse = AggregateAbbrev; 1519 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1520 switch (CE->getOpcode()) { 1521 default: 1522 if (Instruction::isCast(CE->getOpcode())) { 1523 Code = bitc::CST_CODE_CE_CAST; 1524 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1525 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1526 Record.push_back(VE.getValueID(C->getOperand(0))); 1527 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1528 } else { 1529 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1530 Code = bitc::CST_CODE_CE_BINOP; 1531 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1532 Record.push_back(VE.getValueID(C->getOperand(0))); 1533 Record.push_back(VE.getValueID(C->getOperand(1))); 1534 uint64_t Flags = GetOptimizationFlags(CE); 1535 if (Flags != 0) 1536 Record.push_back(Flags); 1537 } 1538 break; 1539 case Instruction::GetElementPtr: { 1540 Code = bitc::CST_CODE_CE_GEP; 1541 const auto *GO = cast<GEPOperator>(C); 1542 if (GO->isInBounds()) 1543 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1544 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1545 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1546 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1547 Record.push_back(VE.getValueID(C->getOperand(i))); 1548 } 1549 break; 1550 } 1551 case Instruction::Select: 1552 Code = bitc::CST_CODE_CE_SELECT; 1553 Record.push_back(VE.getValueID(C->getOperand(0))); 1554 Record.push_back(VE.getValueID(C->getOperand(1))); 1555 Record.push_back(VE.getValueID(C->getOperand(2))); 1556 break; 1557 case Instruction::ExtractElement: 1558 Code = bitc::CST_CODE_CE_EXTRACTELT; 1559 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1560 Record.push_back(VE.getValueID(C->getOperand(0))); 1561 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1562 Record.push_back(VE.getValueID(C->getOperand(1))); 1563 break; 1564 case Instruction::InsertElement: 1565 Code = bitc::CST_CODE_CE_INSERTELT; 1566 Record.push_back(VE.getValueID(C->getOperand(0))); 1567 Record.push_back(VE.getValueID(C->getOperand(1))); 1568 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1569 Record.push_back(VE.getValueID(C->getOperand(2))); 1570 break; 1571 case Instruction::ShuffleVector: 1572 // If the return type and argument types are the same, this is a 1573 // standard shufflevector instruction. If the types are different, 1574 // then the shuffle is widening or truncating the input vectors, and 1575 // the argument type must also be encoded. 1576 if (C->getType() == C->getOperand(0)->getType()) { 1577 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1578 } else { 1579 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1580 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1581 } 1582 Record.push_back(VE.getValueID(C->getOperand(0))); 1583 Record.push_back(VE.getValueID(C->getOperand(1))); 1584 Record.push_back(VE.getValueID(C->getOperand(2))); 1585 break; 1586 case Instruction::ICmp: 1587 case Instruction::FCmp: 1588 Code = bitc::CST_CODE_CE_CMP; 1589 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1590 Record.push_back(VE.getValueID(C->getOperand(0))); 1591 Record.push_back(VE.getValueID(C->getOperand(1))); 1592 Record.push_back(CE->getPredicate()); 1593 break; 1594 } 1595 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1596 Code = bitc::CST_CODE_BLOCKADDRESS; 1597 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1598 Record.push_back(VE.getValueID(BA->getFunction())); 1599 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1600 } else { 1601 #ifndef NDEBUG 1602 C->dump(); 1603 #endif 1604 llvm_unreachable("Unknown constant!"); 1605 } 1606 Stream.EmitRecord(Code, Record, AbbrevToUse); 1607 Record.clear(); 1608 } 1609 1610 Stream.ExitBlock(); 1611 } 1612 1613 static void WriteModuleConstants(const ValueEnumerator &VE, 1614 BitstreamWriter &Stream) { 1615 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1616 1617 // Find the first constant to emit, which is the first non-globalvalue value. 1618 // We know globalvalues have been emitted by WriteModuleInfo. 1619 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1620 if (!isa<GlobalValue>(Vals[i].first)) { 1621 WriteConstants(i, Vals.size(), VE, Stream, true); 1622 return; 1623 } 1624 } 1625 } 1626 1627 /// PushValueAndType - The file has to encode both the value and type id for 1628 /// many values, because we need to know what type to create for forward 1629 /// references. However, most operands are not forward references, so this type 1630 /// field is not needed. 1631 /// 1632 /// This function adds V's value ID to Vals. If the value ID is higher than the 1633 /// instruction ID, then it is a forward reference, and it also includes the 1634 /// type ID. The value ID that is written is encoded relative to the InstID. 1635 static bool PushValueAndType(const Value *V, unsigned InstID, 1636 SmallVectorImpl<unsigned> &Vals, 1637 ValueEnumerator &VE) { 1638 unsigned ValID = VE.getValueID(V); 1639 // Make encoding relative to the InstID. 1640 Vals.push_back(InstID - ValID); 1641 if (ValID >= InstID) { 1642 Vals.push_back(VE.getTypeID(V->getType())); 1643 return true; 1644 } 1645 return false; 1646 } 1647 1648 /// pushValue - Like PushValueAndType, but where the type of the value is 1649 /// omitted (perhaps it was already encoded in an earlier operand). 1650 static void pushValue(const Value *V, unsigned InstID, 1651 SmallVectorImpl<unsigned> &Vals, 1652 ValueEnumerator &VE) { 1653 unsigned ValID = VE.getValueID(V); 1654 Vals.push_back(InstID - ValID); 1655 } 1656 1657 static void pushValueSigned(const Value *V, unsigned InstID, 1658 SmallVectorImpl<uint64_t> &Vals, 1659 ValueEnumerator &VE) { 1660 unsigned ValID = VE.getValueID(V); 1661 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1662 emitSignedInt64(Vals, diff); 1663 } 1664 1665 /// WriteInstruction - Emit an instruction to the specified stream. 1666 static void WriteInstruction(const Instruction &I, unsigned InstID, 1667 ValueEnumerator &VE, BitstreamWriter &Stream, 1668 SmallVectorImpl<unsigned> &Vals) { 1669 unsigned Code = 0; 1670 unsigned AbbrevToUse = 0; 1671 VE.setInstructionID(&I); 1672 switch (I.getOpcode()) { 1673 default: 1674 if (Instruction::isCast(I.getOpcode())) { 1675 Code = bitc::FUNC_CODE_INST_CAST; 1676 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1677 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1678 Vals.push_back(VE.getTypeID(I.getType())); 1679 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1680 } else { 1681 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1682 Code = bitc::FUNC_CODE_INST_BINOP; 1683 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1684 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1685 pushValue(I.getOperand(1), InstID, Vals, VE); 1686 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1687 uint64_t Flags = GetOptimizationFlags(&I); 1688 if (Flags != 0) { 1689 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1690 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1691 Vals.push_back(Flags); 1692 } 1693 } 1694 break; 1695 1696 case Instruction::GetElementPtr: { 1697 Code = bitc::FUNC_CODE_INST_GEP; 1698 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1699 auto &GEPInst = cast<GetElementPtrInst>(I); 1700 Vals.push_back(GEPInst.isInBounds()); 1701 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1702 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1703 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1704 break; 1705 } 1706 case Instruction::ExtractValue: { 1707 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1708 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1709 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1710 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1711 break; 1712 } 1713 case Instruction::InsertValue: { 1714 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1715 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1716 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1717 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1718 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1719 break; 1720 } 1721 case Instruction::Select: 1722 Code = bitc::FUNC_CODE_INST_VSELECT; 1723 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1724 pushValue(I.getOperand(2), InstID, Vals, VE); 1725 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1726 break; 1727 case Instruction::ExtractElement: 1728 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1729 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1730 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1731 break; 1732 case Instruction::InsertElement: 1733 Code = bitc::FUNC_CODE_INST_INSERTELT; 1734 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1735 pushValue(I.getOperand(1), InstID, Vals, VE); 1736 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1737 break; 1738 case Instruction::ShuffleVector: 1739 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1740 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1741 pushValue(I.getOperand(1), InstID, Vals, VE); 1742 pushValue(I.getOperand(2), InstID, Vals, VE); 1743 break; 1744 case Instruction::ICmp: 1745 case Instruction::FCmp: 1746 // compare returning Int1Ty or vector of Int1Ty 1747 Code = bitc::FUNC_CODE_INST_CMP2; 1748 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1749 pushValue(I.getOperand(1), InstID, Vals, VE); 1750 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1751 break; 1752 1753 case Instruction::Ret: 1754 { 1755 Code = bitc::FUNC_CODE_INST_RET; 1756 unsigned NumOperands = I.getNumOperands(); 1757 if (NumOperands == 0) 1758 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1759 else if (NumOperands == 1) { 1760 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1761 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1762 } else { 1763 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1764 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1765 } 1766 } 1767 break; 1768 case Instruction::Br: 1769 { 1770 Code = bitc::FUNC_CODE_INST_BR; 1771 const BranchInst &II = cast<BranchInst>(I); 1772 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1773 if (II.isConditional()) { 1774 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1775 pushValue(II.getCondition(), InstID, Vals, VE); 1776 } 1777 } 1778 break; 1779 case Instruction::Switch: 1780 { 1781 Code = bitc::FUNC_CODE_INST_SWITCH; 1782 const SwitchInst &SI = cast<SwitchInst>(I); 1783 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1784 pushValue(SI.getCondition(), InstID, Vals, VE); 1785 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1786 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1787 i != e; ++i) { 1788 Vals.push_back(VE.getValueID(i.getCaseValue())); 1789 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1790 } 1791 } 1792 break; 1793 case Instruction::IndirectBr: 1794 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1795 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1796 // Encode the address operand as relative, but not the basic blocks. 1797 pushValue(I.getOperand(0), InstID, Vals, VE); 1798 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1799 Vals.push_back(VE.getValueID(I.getOperand(i))); 1800 break; 1801 1802 case Instruction::Invoke: { 1803 const InvokeInst *II = cast<InvokeInst>(&I); 1804 const Value *Callee = II->getCalledValue(); 1805 FunctionType *FTy = II->getFunctionType(); 1806 Code = bitc::FUNC_CODE_INST_INVOKE; 1807 1808 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1809 Vals.push_back(II->getCallingConv() | 1 << 13); 1810 Vals.push_back(VE.getValueID(II->getNormalDest())); 1811 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1812 Vals.push_back(VE.getTypeID(FTy)); 1813 PushValueAndType(Callee, InstID, Vals, VE); 1814 1815 // Emit value #'s for the fixed parameters. 1816 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1817 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1818 1819 // Emit type/value pairs for varargs params. 1820 if (FTy->isVarArg()) { 1821 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1822 i != e; ++i) 1823 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1824 } 1825 break; 1826 } 1827 case Instruction::Resume: 1828 Code = bitc::FUNC_CODE_INST_RESUME; 1829 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1830 break; 1831 case Instruction::Unreachable: 1832 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1833 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1834 break; 1835 1836 case Instruction::PHI: { 1837 const PHINode &PN = cast<PHINode>(I); 1838 Code = bitc::FUNC_CODE_INST_PHI; 1839 // With the newer instruction encoding, forward references could give 1840 // negative valued IDs. This is most common for PHIs, so we use 1841 // signed VBRs. 1842 SmallVector<uint64_t, 128> Vals64; 1843 Vals64.push_back(VE.getTypeID(PN.getType())); 1844 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1845 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1846 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1847 } 1848 // Emit a Vals64 vector and exit. 1849 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1850 Vals64.clear(); 1851 return; 1852 } 1853 1854 case Instruction::LandingPad: { 1855 const LandingPadInst &LP = cast<LandingPadInst>(I); 1856 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1857 Vals.push_back(VE.getTypeID(LP.getType())); 1858 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1859 Vals.push_back(LP.isCleanup()); 1860 Vals.push_back(LP.getNumClauses()); 1861 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1862 if (LP.isCatch(I)) 1863 Vals.push_back(LandingPadInst::Catch); 1864 else 1865 Vals.push_back(LandingPadInst::Filter); 1866 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1867 } 1868 break; 1869 } 1870 1871 case Instruction::Alloca: { 1872 Code = bitc::FUNC_CODE_INST_ALLOCA; 1873 const AllocaInst &AI = cast<AllocaInst>(I); 1874 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1875 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1876 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1877 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1878 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1879 "not enough bits for maximum alignment"); 1880 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1881 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1882 AlignRecord |= 1 << 6; 1883 Vals.push_back(AlignRecord); 1884 break; 1885 } 1886 1887 case Instruction::Load: 1888 if (cast<LoadInst>(I).isAtomic()) { 1889 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1890 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1891 } else { 1892 Code = bitc::FUNC_CODE_INST_LOAD; 1893 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1894 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1895 } 1896 Vals.push_back(VE.getTypeID(I.getType())); 1897 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1898 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1899 if (cast<LoadInst>(I).isAtomic()) { 1900 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1901 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1902 } 1903 break; 1904 case Instruction::Store: 1905 if (cast<StoreInst>(I).isAtomic()) 1906 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1907 else 1908 Code = bitc::FUNC_CODE_INST_STORE; 1909 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1910 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1911 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1912 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1913 if (cast<StoreInst>(I).isAtomic()) { 1914 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1915 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1916 } 1917 break; 1918 case Instruction::AtomicCmpXchg: 1919 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1920 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1921 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 1922 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1923 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1924 Vals.push_back(GetEncodedOrdering( 1925 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1926 Vals.push_back(GetEncodedSynchScope( 1927 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1928 Vals.push_back(GetEncodedOrdering( 1929 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1930 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1931 break; 1932 case Instruction::AtomicRMW: 1933 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1934 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1935 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1936 Vals.push_back(GetEncodedRMWOperation( 1937 cast<AtomicRMWInst>(I).getOperation())); 1938 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1939 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1940 Vals.push_back(GetEncodedSynchScope( 1941 cast<AtomicRMWInst>(I).getSynchScope())); 1942 break; 1943 case Instruction::Fence: 1944 Code = bitc::FUNC_CODE_INST_FENCE; 1945 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1946 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1947 break; 1948 case Instruction::Call: { 1949 const CallInst &CI = cast<CallInst>(I); 1950 FunctionType *FTy = CI.getFunctionType(); 1951 1952 Code = bitc::FUNC_CODE_INST_CALL; 1953 1954 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1955 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1956 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 1957 Vals.push_back(VE.getTypeID(FTy)); 1958 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1959 1960 // Emit value #'s for the fixed parameters. 1961 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1962 // Check for labels (can happen with asm labels). 1963 if (FTy->getParamType(i)->isLabelTy()) 1964 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1965 else 1966 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1967 } 1968 1969 // Emit type/value pairs for varargs params. 1970 if (FTy->isVarArg()) { 1971 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1972 i != e; ++i) 1973 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1974 } 1975 break; 1976 } 1977 case Instruction::VAArg: 1978 Code = bitc::FUNC_CODE_INST_VAARG; 1979 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1980 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1981 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1982 break; 1983 } 1984 1985 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1986 Vals.clear(); 1987 } 1988 1989 // Emit names for globals/functions etc. 1990 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1991 const ValueEnumerator &VE, 1992 BitstreamWriter &Stream) { 1993 if (VST.empty()) return; 1994 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1995 1996 // FIXME: Set up the abbrev, we know how many values there are! 1997 // FIXME: We know if the type names can use 7-bit ascii. 1998 SmallVector<unsigned, 64> NameVals; 1999 2000 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 2001 SI != SE; ++SI) { 2002 2003 const ValueName &Name = *SI; 2004 2005 // Figure out the encoding to use for the name. 2006 bool is7Bit = true; 2007 bool isChar6 = true; 2008 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2009 C != E; ++C) { 2010 if (isChar6) 2011 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2012 if ((unsigned char)*C & 128) { 2013 is7Bit = false; 2014 break; // don't bother scanning the rest. 2015 } 2016 } 2017 2018 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2019 2020 // VST_ENTRY: [valueid, namechar x N] 2021 // VST_BBENTRY: [bbid, namechar x N] 2022 unsigned Code; 2023 if (isa<BasicBlock>(SI->getValue())) { 2024 Code = bitc::VST_CODE_BBENTRY; 2025 if (isChar6) 2026 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2027 } else { 2028 Code = bitc::VST_CODE_ENTRY; 2029 if (isChar6) 2030 AbbrevToUse = VST_ENTRY_6_ABBREV; 2031 else if (is7Bit) 2032 AbbrevToUse = VST_ENTRY_7_ABBREV; 2033 } 2034 2035 NameVals.push_back(VE.getValueID(SI->getValue())); 2036 for (const char *P = Name.getKeyData(), 2037 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2038 NameVals.push_back((unsigned char)*P); 2039 2040 // Emit the finished record. 2041 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2042 NameVals.clear(); 2043 } 2044 Stream.ExitBlock(); 2045 } 2046 2047 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2048 BitstreamWriter &Stream) { 2049 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2050 unsigned Code; 2051 if (isa<BasicBlock>(Order.V)) 2052 Code = bitc::USELIST_CODE_BB; 2053 else 2054 Code = bitc::USELIST_CODE_DEFAULT; 2055 2056 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2057 Record.push_back(VE.getValueID(Order.V)); 2058 Stream.EmitRecord(Code, Record); 2059 } 2060 2061 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2062 BitstreamWriter &Stream) { 2063 assert(VE.shouldPreserveUseListOrder() && 2064 "Expected to be preserving use-list order"); 2065 2066 auto hasMore = [&]() { 2067 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2068 }; 2069 if (!hasMore()) 2070 // Nothing to do. 2071 return; 2072 2073 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2074 while (hasMore()) { 2075 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2076 VE.UseListOrders.pop_back(); 2077 } 2078 Stream.ExitBlock(); 2079 } 2080 2081 /// WriteFunction - Emit a function body to the module stream. 2082 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2083 BitstreamWriter &Stream) { 2084 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2085 VE.incorporateFunction(F); 2086 2087 SmallVector<unsigned, 64> Vals; 2088 2089 // Emit the number of basic blocks, so the reader can create them ahead of 2090 // time. 2091 Vals.push_back(VE.getBasicBlocks().size()); 2092 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2093 Vals.clear(); 2094 2095 // If there are function-local constants, emit them now. 2096 unsigned CstStart, CstEnd; 2097 VE.getFunctionConstantRange(CstStart, CstEnd); 2098 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2099 2100 // If there is function-local metadata, emit it now. 2101 WriteFunctionLocalMetadata(F, VE, Stream); 2102 2103 // Keep a running idea of what the instruction ID is. 2104 unsigned InstID = CstEnd; 2105 2106 bool NeedsMetadataAttachment = F.hasMetadata(); 2107 2108 MDLocation *LastDL = nullptr; 2109 2110 // Finally, emit all the instructions, in order. 2111 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2112 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2113 I != E; ++I) { 2114 WriteInstruction(*I, InstID, VE, Stream, Vals); 2115 2116 if (!I->getType()->isVoidTy()) 2117 ++InstID; 2118 2119 // If the instruction has metadata, write a metadata attachment later. 2120 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2121 2122 // If the instruction has a debug location, emit it. 2123 MDLocation *DL = I->getDebugLoc(); 2124 if (!DL) 2125 continue; 2126 2127 if (DL == LastDL) { 2128 // Just repeat the same debug loc as last time. 2129 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2130 continue; 2131 } 2132 2133 Vals.push_back(DL->getLine()); 2134 Vals.push_back(DL->getColumn()); 2135 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2136 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2137 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2138 Vals.clear(); 2139 } 2140 2141 // Emit names for all the instructions etc. 2142 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2143 2144 if (NeedsMetadataAttachment) 2145 WriteMetadataAttachment(F, VE, Stream); 2146 if (VE.shouldPreserveUseListOrder()) 2147 WriteUseListBlock(&F, VE, Stream); 2148 VE.purgeFunction(); 2149 Stream.ExitBlock(); 2150 } 2151 2152 // Emit blockinfo, which defines the standard abbreviations etc. 2153 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2154 // We only want to emit block info records for blocks that have multiple 2155 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2156 // Other blocks can define their abbrevs inline. 2157 Stream.EnterBlockInfoBlock(2); 2158 2159 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2165 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2166 Abbv) != VST_ENTRY_8_ABBREV) 2167 llvm_unreachable("Unexpected abbrev ordering!"); 2168 } 2169 2170 { // 7-bit fixed width VST_ENTRY strings. 2171 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2172 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2176 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2177 Abbv) != VST_ENTRY_7_ABBREV) 2178 llvm_unreachable("Unexpected abbrev ordering!"); 2179 } 2180 { // 6-bit char6 VST_ENTRY strings. 2181 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2182 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2186 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2187 Abbv) != VST_ENTRY_6_ABBREV) 2188 llvm_unreachable("Unexpected abbrev ordering!"); 2189 } 2190 { // 6-bit char6 VST_BBENTRY strings. 2191 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2192 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2196 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2197 Abbv) != VST_BBENTRY_6_ABBREV) 2198 llvm_unreachable("Unexpected abbrev ordering!"); 2199 } 2200 2201 2202 2203 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2204 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2205 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2207 VE.computeBitsRequiredForTypeIndicies())); 2208 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2209 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2210 llvm_unreachable("Unexpected abbrev ordering!"); 2211 } 2212 2213 { // INTEGER abbrev for CONSTANTS_BLOCK. 2214 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2215 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2217 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2218 Abbv) != CONSTANTS_INTEGER_ABBREV) 2219 llvm_unreachable("Unexpected abbrev ordering!"); 2220 } 2221 2222 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2223 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2224 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2227 VE.computeBitsRequiredForTypeIndicies())); 2228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2229 2230 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2231 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2232 llvm_unreachable("Unexpected abbrev ordering!"); 2233 } 2234 { // NULL abbrev for CONSTANTS_BLOCK. 2235 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2236 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2237 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2238 Abbv) != CONSTANTS_NULL_Abbrev) 2239 llvm_unreachable("Unexpected abbrev ordering!"); 2240 } 2241 2242 // FIXME: This should only use space for first class types! 2243 2244 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2245 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2246 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2249 VE.computeBitsRequiredForTypeIndicies())); 2250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2252 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2253 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2254 llvm_unreachable("Unexpected abbrev ordering!"); 2255 } 2256 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2257 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2258 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2263 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2264 llvm_unreachable("Unexpected abbrev ordering!"); 2265 } 2266 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2267 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2268 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2273 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2274 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2275 llvm_unreachable("Unexpected abbrev ordering!"); 2276 } 2277 { // INST_CAST abbrev for FUNCTION_BLOCK. 2278 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2279 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2282 VE.computeBitsRequiredForTypeIndicies())); 2283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2284 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2285 Abbv) != FUNCTION_INST_CAST_ABBREV) 2286 llvm_unreachable("Unexpected abbrev ordering!"); 2287 } 2288 2289 { // INST_RET abbrev for FUNCTION_BLOCK. 2290 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2291 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2292 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2293 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2294 llvm_unreachable("Unexpected abbrev ordering!"); 2295 } 2296 { // INST_RET abbrev for FUNCTION_BLOCK. 2297 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2298 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2300 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2301 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2302 llvm_unreachable("Unexpected abbrev ordering!"); 2303 } 2304 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2305 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2306 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2307 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2308 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2309 llvm_unreachable("Unexpected abbrev ordering!"); 2310 } 2311 { 2312 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2313 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2316 Log2_32_Ceil(VE.getTypes().size() + 1))); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2319 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2320 FUNCTION_INST_GEP_ABBREV) 2321 llvm_unreachable("Unexpected abbrev ordering!"); 2322 } 2323 2324 Stream.ExitBlock(); 2325 } 2326 2327 /// WriteModule - Emit the specified module to the bitstream. 2328 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2329 bool ShouldPreserveUseListOrder) { 2330 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2331 2332 SmallVector<unsigned, 1> Vals; 2333 unsigned CurVersion = 1; 2334 Vals.push_back(CurVersion); 2335 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2336 2337 // Analyze the module, enumerating globals, functions, etc. 2338 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2339 2340 // Emit blockinfo, which defines the standard abbreviations etc. 2341 WriteBlockInfo(VE, Stream); 2342 2343 // Emit information about attribute groups. 2344 WriteAttributeGroupTable(VE, Stream); 2345 2346 // Emit information about parameter attributes. 2347 WriteAttributeTable(VE, Stream); 2348 2349 // Emit information describing all of the types in the module. 2350 WriteTypeTable(VE, Stream); 2351 2352 writeComdats(VE, Stream); 2353 2354 // Emit top-level description of module, including target triple, inline asm, 2355 // descriptors for global variables, and function prototype info. 2356 WriteModuleInfo(M, VE, Stream); 2357 2358 // Emit constants. 2359 WriteModuleConstants(VE, Stream); 2360 2361 // Emit metadata. 2362 WriteModuleMetadata(M, VE, Stream); 2363 2364 // Emit metadata. 2365 WriteModuleMetadataStore(M, Stream); 2366 2367 // Emit names for globals/functions etc. 2368 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2369 2370 // Emit module-level use-lists. 2371 if (VE.shouldPreserveUseListOrder()) 2372 WriteUseListBlock(nullptr, VE, Stream); 2373 2374 // Emit function bodies. 2375 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2376 if (!F->isDeclaration()) 2377 WriteFunction(*F, VE, Stream); 2378 2379 Stream.ExitBlock(); 2380 } 2381 2382 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2383 /// header and trailer to make it compatible with the system archiver. To do 2384 /// this we emit the following header, and then emit a trailer that pads the 2385 /// file out to be a multiple of 16 bytes. 2386 /// 2387 /// struct bc_header { 2388 /// uint32_t Magic; // 0x0B17C0DE 2389 /// uint32_t Version; // Version, currently always 0. 2390 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2391 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2392 /// uint32_t CPUType; // CPU specifier. 2393 /// ... potentially more later ... 2394 /// }; 2395 enum { 2396 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2397 DarwinBCHeaderSize = 5*4 2398 }; 2399 2400 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2401 uint32_t &Position) { 2402 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2403 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2404 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2405 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2406 Position += 4; 2407 } 2408 2409 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2410 const Triple &TT) { 2411 unsigned CPUType = ~0U; 2412 2413 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2414 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2415 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2416 // specific constants here because they are implicitly part of the Darwin ABI. 2417 enum { 2418 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2419 DARWIN_CPU_TYPE_X86 = 7, 2420 DARWIN_CPU_TYPE_ARM = 12, 2421 DARWIN_CPU_TYPE_POWERPC = 18 2422 }; 2423 2424 Triple::ArchType Arch = TT.getArch(); 2425 if (Arch == Triple::x86_64) 2426 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2427 else if (Arch == Triple::x86) 2428 CPUType = DARWIN_CPU_TYPE_X86; 2429 else if (Arch == Triple::ppc) 2430 CPUType = DARWIN_CPU_TYPE_POWERPC; 2431 else if (Arch == Triple::ppc64) 2432 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2433 else if (Arch == Triple::arm || Arch == Triple::thumb) 2434 CPUType = DARWIN_CPU_TYPE_ARM; 2435 2436 // Traditional Bitcode starts after header. 2437 assert(Buffer.size() >= DarwinBCHeaderSize && 2438 "Expected header size to be reserved"); 2439 unsigned BCOffset = DarwinBCHeaderSize; 2440 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2441 2442 // Write the magic and version. 2443 unsigned Position = 0; 2444 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2445 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2446 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2447 WriteInt32ToBuffer(BCSize , Buffer, Position); 2448 WriteInt32ToBuffer(CPUType , Buffer, Position); 2449 2450 // If the file is not a multiple of 16 bytes, insert dummy padding. 2451 while (Buffer.size() & 15) 2452 Buffer.push_back(0); 2453 } 2454 2455 /// WriteBitcodeToFile - Write the specified module to the specified output 2456 /// stream. 2457 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2458 bool ShouldPreserveUseListOrder) { 2459 SmallVector<char, 0> Buffer; 2460 Buffer.reserve(256*1024); 2461 2462 // If this is darwin or another generic macho target, reserve space for the 2463 // header. 2464 Triple TT(M->getTargetTriple()); 2465 if (TT.isOSDarwin()) 2466 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2467 2468 // Emit the module into the buffer. 2469 { 2470 BitstreamWriter Stream(Buffer); 2471 2472 // Emit the file header. 2473 Stream.Emit((unsigned)'B', 8); 2474 Stream.Emit((unsigned)'C', 8); 2475 Stream.Emit(0x0, 4); 2476 Stream.Emit(0xC, 4); 2477 Stream.Emit(0xE, 4); 2478 Stream.Emit(0xD, 4); 2479 2480 // Emit the module. 2481 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2482 } 2483 2484 if (TT.isOSDarwin()) 2485 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2486 2487 // Write the generated bitstream to "Out". 2488 Out.write((char*)&Buffer.front(), Buffer.size()); 2489 } 2490