1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParamAttrsList.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 145 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 146 147 // Abbrev for TYPE_CODE_FUNCTION. 148 Abbv = new BitCodeAbbrev(); 149 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 151 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_STRUCT. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_ARRAY. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Emit an entry count so the reader can reserve space. 175 TypeVals.push_back(TypeList.size()); 176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 177 TypeVals.clear(); 178 179 // Loop over all of the types, emitting each in turn. 180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 181 const Type *T = TypeList[i].first; 182 int AbbrevToUse = 0; 183 unsigned Code = 0; 184 185 switch (T->getTypeID()) { 186 default: assert(0 && "Unknown type!"); 187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 190 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 191 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 192 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 193 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 194 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 195 case Type::IntegerTyID: 196 // INTEGER: [width] 197 Code = bitc::TYPE_CODE_INTEGER; 198 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 199 break; 200 case Type::PointerTyID: { 201 const PointerType *PTy = cast<PointerType>(T); 202 // POINTER: [pointee type, address space] 203 Code = bitc::TYPE_CODE_POINTER; 204 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 205 unsigned AddressSpace = PTy->getAddressSpace(); 206 TypeVals.push_back(AddressSpace); 207 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 208 break; 209 } 210 case Type::FunctionTyID: { 211 const FunctionType *FT = cast<FunctionType>(T); 212 // FUNCTION: [isvararg, attrid, retty, paramty x N] 213 Code = bitc::TYPE_CODE_FUNCTION; 214 TypeVals.push_back(FT->isVarArg()); 215 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 216 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 217 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 218 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 219 AbbrevToUse = FunctionAbbrev; 220 break; 221 } 222 case Type::StructTyID: { 223 const StructType *ST = cast<StructType>(T); 224 // STRUCT: [ispacked, eltty x N] 225 Code = bitc::TYPE_CODE_STRUCT; 226 TypeVals.push_back(ST->isPacked()); 227 // Output all of the element types. 228 for (StructType::element_iterator I = ST->element_begin(), 229 E = ST->element_end(); I != E; ++I) 230 TypeVals.push_back(VE.getTypeID(*I)); 231 AbbrevToUse = StructAbbrev; 232 break; 233 } 234 case Type::ArrayTyID: { 235 const ArrayType *AT = cast<ArrayType>(T); 236 // ARRAY: [numelts, eltty] 237 Code = bitc::TYPE_CODE_ARRAY; 238 TypeVals.push_back(AT->getNumElements()); 239 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 240 AbbrevToUse = ArrayAbbrev; 241 break; 242 } 243 case Type::VectorTyID: { 244 const VectorType *VT = cast<VectorType>(T); 245 // VECTOR [numelts, eltty] 246 Code = bitc::TYPE_CODE_VECTOR; 247 TypeVals.push_back(VT->getNumElements()); 248 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 249 break; 250 } 251 } 252 253 // Emit the finished record. 254 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 255 TypeVals.clear(); 256 } 257 258 Stream.ExitBlock(); 259 } 260 261 static unsigned getEncodedLinkage(const GlobalValue *GV) { 262 switch (GV->getLinkage()) { 263 default: assert(0 && "Invalid linkage!"); 264 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 265 case GlobalValue::ExternalLinkage: return 0; 266 case GlobalValue::WeakLinkage: return 1; 267 case GlobalValue::AppendingLinkage: return 2; 268 case GlobalValue::InternalLinkage: return 3; 269 case GlobalValue::LinkOnceLinkage: return 4; 270 case GlobalValue::DLLImportLinkage: return 5; 271 case GlobalValue::DLLExportLinkage: return 6; 272 case GlobalValue::ExternalWeakLinkage: return 7; 273 } 274 } 275 276 static unsigned getEncodedVisibility(const GlobalValue *GV) { 277 switch (GV->getVisibility()) { 278 default: assert(0 && "Invalid visibility!"); 279 case GlobalValue::DefaultVisibility: return 0; 280 case GlobalValue::HiddenVisibility: return 1; 281 case GlobalValue::ProtectedVisibility: return 2; 282 } 283 } 284 285 // Emit top-level description of module, including target triple, inline asm, 286 // descriptors for global variables, and function prototype info. 287 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 288 BitstreamWriter &Stream) { 289 // Emit the list of dependent libraries for the Module. 290 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 291 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 292 293 // Emit various pieces of data attached to a module. 294 if (!M->getTargetTriple().empty()) 295 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 296 0/*TODO*/, Stream); 297 if (!M->getDataLayout().empty()) 298 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 299 0/*TODO*/, Stream); 300 if (!M->getModuleInlineAsm().empty()) 301 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 302 0/*TODO*/, Stream); 303 304 // Emit information about sections and collectors, computing how many there 305 // are. Also compute the maximum alignment value. 306 std::map<std::string, unsigned> SectionMap; 307 std::map<std::string, unsigned> CollectorMap; 308 unsigned MaxAlignment = 0; 309 unsigned MaxGlobalType = 0; 310 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 311 GV != E; ++GV) { 312 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 313 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 314 315 if (!GV->hasSection()) continue; 316 // Give section names unique ID's. 317 unsigned &Entry = SectionMap[GV->getSection()]; 318 if (Entry != 0) continue; 319 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 320 0/*TODO*/, Stream); 321 Entry = SectionMap.size(); 322 } 323 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 324 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 325 if (F->hasSection()) { 326 // Give section names unique ID's. 327 unsigned &Entry = SectionMap[F->getSection()]; 328 if (!Entry) { 329 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 330 0/*TODO*/, Stream); 331 Entry = SectionMap.size(); 332 } 333 } 334 if (F->hasCollector()) { 335 // Same for collector names. 336 unsigned &Entry = CollectorMap[F->getCollector()]; 337 if (!Entry) { 338 WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(), 339 0/*TODO*/, Stream); 340 Entry = CollectorMap.size(); 341 } 342 } 343 } 344 345 // Emit abbrev for globals, now that we know # sections and max alignment. 346 unsigned SimpleGVarAbbrev = 0; 347 if (!M->global_empty()) { 348 // Add an abbrev for common globals with no visibility or thread localness. 349 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 350 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 352 Log2_32_Ceil(MaxGlobalType+1))); 353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 356 if (MaxAlignment == 0) // Alignment. 357 Abbv->Add(BitCodeAbbrevOp(0)); 358 else { 359 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 361 Log2_32_Ceil(MaxEncAlignment+1))); 362 } 363 if (SectionMap.empty()) // Section. 364 Abbv->Add(BitCodeAbbrevOp(0)); 365 else 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 367 Log2_32_Ceil(SectionMap.size()+1))); 368 // Don't bother emitting vis + thread local. 369 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 370 } 371 372 // Emit the global variable information. 373 SmallVector<unsigned, 64> Vals; 374 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 375 GV != E; ++GV) { 376 unsigned AbbrevToUse = 0; 377 378 // GLOBALVAR: [type, isconst, initid, 379 // linkage, alignment, section, visibility, threadlocal] 380 Vals.push_back(VE.getTypeID(GV->getType())); 381 Vals.push_back(GV->isConstant()); 382 Vals.push_back(GV->isDeclaration() ? 0 : 383 (VE.getValueID(GV->getInitializer()) + 1)); 384 Vals.push_back(getEncodedLinkage(GV)); 385 Vals.push_back(Log2_32(GV->getAlignment())+1); 386 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 387 if (GV->isThreadLocal() || 388 GV->getVisibility() != GlobalValue::DefaultVisibility) { 389 Vals.push_back(getEncodedVisibility(GV)); 390 Vals.push_back(GV->isThreadLocal()); 391 } else { 392 AbbrevToUse = SimpleGVarAbbrev; 393 } 394 395 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 396 Vals.clear(); 397 } 398 399 // Emit the function proto information. 400 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 401 // FUNCTION: [type, callingconv, isproto, paramattr, 402 // linkage, alignment, section, visibility, collector] 403 Vals.push_back(VE.getTypeID(F->getType())); 404 Vals.push_back(F->getCallingConv()); 405 Vals.push_back(F->isDeclaration()); 406 Vals.push_back(getEncodedLinkage(F)); 407 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 408 Vals.push_back(Log2_32(F->getAlignment())+1); 409 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 410 Vals.push_back(getEncodedVisibility(F)); 411 Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0); 412 413 unsigned AbbrevToUse = 0; 414 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 415 Vals.clear(); 416 } 417 418 419 // Emit the alias information. 420 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 421 AI != E; ++AI) { 422 Vals.push_back(VE.getTypeID(AI->getType())); 423 Vals.push_back(VE.getValueID(AI->getAliasee())); 424 Vals.push_back(getEncodedLinkage(AI)); 425 unsigned AbbrevToUse = 0; 426 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 427 Vals.clear(); 428 } 429 } 430 431 432 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 433 const ValueEnumerator &VE, 434 BitstreamWriter &Stream, bool isGlobal) { 435 if (FirstVal == LastVal) return; 436 437 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 438 439 unsigned AggregateAbbrev = 0; 440 unsigned String8Abbrev = 0; 441 unsigned CString7Abbrev = 0; 442 unsigned CString6Abbrev = 0; 443 // If this is a constant pool for the module, emit module-specific abbrevs. 444 if (isGlobal) { 445 // Abbrev for CST_CODE_AGGREGATE. 446 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 447 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 450 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 451 452 // Abbrev for CST_CODE_STRING. 453 Abbv = new BitCodeAbbrev(); 454 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 457 String8Abbrev = Stream.EmitAbbrev(Abbv); 458 // Abbrev for CST_CODE_CSTRING. 459 Abbv = new BitCodeAbbrev(); 460 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 463 CString7Abbrev = Stream.EmitAbbrev(Abbv); 464 // Abbrev for CST_CODE_CSTRING. 465 Abbv = new BitCodeAbbrev(); 466 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 469 CString6Abbrev = Stream.EmitAbbrev(Abbv); 470 } 471 472 SmallVector<uint64_t, 64> Record; 473 474 const ValueEnumerator::ValueList &Vals = VE.getValues(); 475 const Type *LastTy = 0; 476 for (unsigned i = FirstVal; i != LastVal; ++i) { 477 const Value *V = Vals[i].first; 478 // If we need to switch types, do so now. 479 if (V->getType() != LastTy) { 480 LastTy = V->getType(); 481 Record.push_back(VE.getTypeID(LastTy)); 482 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 483 CONSTANTS_SETTYPE_ABBREV); 484 Record.clear(); 485 } 486 487 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 488 Record.push_back(unsigned(IA->hasSideEffects())); 489 490 // Add the asm string. 491 const std::string &AsmStr = IA->getAsmString(); 492 Record.push_back(AsmStr.size()); 493 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 494 Record.push_back(AsmStr[i]); 495 496 // Add the constraint string. 497 const std::string &ConstraintStr = IA->getConstraintString(); 498 Record.push_back(ConstraintStr.size()); 499 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 500 Record.push_back(ConstraintStr[i]); 501 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 502 Record.clear(); 503 continue; 504 } 505 const Constant *C = cast<Constant>(V); 506 unsigned Code = -1U; 507 unsigned AbbrevToUse = 0; 508 if (C->isNullValue()) { 509 Code = bitc::CST_CODE_NULL; 510 } else if (isa<UndefValue>(C)) { 511 Code = bitc::CST_CODE_UNDEF; 512 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 513 if (IV->getBitWidth() <= 64) { 514 int64_t V = IV->getSExtValue(); 515 if (V >= 0) 516 Record.push_back(V << 1); 517 else 518 Record.push_back((-V << 1) | 1); 519 Code = bitc::CST_CODE_INTEGER; 520 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 521 } else { // Wide integers, > 64 bits in size. 522 // We have an arbitrary precision integer value to write whose 523 // bit width is > 64. However, in canonical unsigned integer 524 // format it is likely that the high bits are going to be zero. 525 // So, we only write the number of active words. 526 unsigned NWords = IV->getValue().getActiveWords(); 527 const uint64_t *RawWords = IV->getValue().getRawData(); 528 for (unsigned i = 0; i != NWords; ++i) { 529 int64_t V = RawWords[i]; 530 if (V >= 0) 531 Record.push_back(V << 1); 532 else 533 Record.push_back((-V << 1) | 1); 534 } 535 Code = bitc::CST_CODE_WIDE_INTEGER; 536 } 537 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 538 Code = bitc::CST_CODE_FLOAT; 539 const Type *Ty = CFP->getType(); 540 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 541 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 542 } else if (Ty == Type::X86_FP80Ty) { 543 // api needed to prevent premature destruction 544 APInt api = CFP->getValueAPF().convertToAPInt(); 545 const uint64_t *p = api.getRawData(); 546 Record.push_back(p[0]); 547 Record.push_back((uint16_t)p[1]); 548 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 549 APInt api = CFP->getValueAPF().convertToAPInt(); 550 const uint64_t *p = api.getRawData(); 551 Record.push_back(p[0]); 552 Record.push_back(p[1]); 553 } else { 554 assert (0 && "Unknown FP type!"); 555 } 556 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 557 // Emit constant strings specially. 558 unsigned NumOps = C->getNumOperands(); 559 // If this is a null-terminated string, use the denser CSTRING encoding. 560 if (C->getOperand(NumOps-1)->isNullValue()) { 561 Code = bitc::CST_CODE_CSTRING; 562 --NumOps; // Don't encode the null, which isn't allowed by char6. 563 } else { 564 Code = bitc::CST_CODE_STRING; 565 AbbrevToUse = String8Abbrev; 566 } 567 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 568 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 569 for (unsigned i = 0; i != NumOps; ++i) { 570 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 571 Record.push_back(V); 572 isCStr7 &= (V & 128) == 0; 573 if (isCStrChar6) 574 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 575 } 576 577 if (isCStrChar6) 578 AbbrevToUse = CString6Abbrev; 579 else if (isCStr7) 580 AbbrevToUse = CString7Abbrev; 581 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 582 isa<ConstantVector>(V)) { 583 Code = bitc::CST_CODE_AGGREGATE; 584 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 585 Record.push_back(VE.getValueID(C->getOperand(i))); 586 AbbrevToUse = AggregateAbbrev; 587 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 588 switch (CE->getOpcode()) { 589 default: 590 if (Instruction::isCast(CE->getOpcode())) { 591 Code = bitc::CST_CODE_CE_CAST; 592 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 593 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 594 Record.push_back(VE.getValueID(C->getOperand(0))); 595 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 596 } else { 597 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 598 Code = bitc::CST_CODE_CE_BINOP; 599 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 600 Record.push_back(VE.getValueID(C->getOperand(0))); 601 Record.push_back(VE.getValueID(C->getOperand(1))); 602 } 603 break; 604 case Instruction::GetElementPtr: 605 Code = bitc::CST_CODE_CE_GEP; 606 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 607 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 608 Record.push_back(VE.getValueID(C->getOperand(i))); 609 } 610 break; 611 case Instruction::Select: 612 Code = bitc::CST_CODE_CE_SELECT; 613 Record.push_back(VE.getValueID(C->getOperand(0))); 614 Record.push_back(VE.getValueID(C->getOperand(1))); 615 Record.push_back(VE.getValueID(C->getOperand(2))); 616 break; 617 case Instruction::ExtractElement: 618 Code = bitc::CST_CODE_CE_EXTRACTELT; 619 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 620 Record.push_back(VE.getValueID(C->getOperand(0))); 621 Record.push_back(VE.getValueID(C->getOperand(1))); 622 break; 623 case Instruction::InsertElement: 624 Code = bitc::CST_CODE_CE_INSERTELT; 625 Record.push_back(VE.getValueID(C->getOperand(0))); 626 Record.push_back(VE.getValueID(C->getOperand(1))); 627 Record.push_back(VE.getValueID(C->getOperand(2))); 628 break; 629 case Instruction::ShuffleVector: 630 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 631 Record.push_back(VE.getValueID(C->getOperand(0))); 632 Record.push_back(VE.getValueID(C->getOperand(1))); 633 Record.push_back(VE.getValueID(C->getOperand(2))); 634 break; 635 case Instruction::ICmp: 636 case Instruction::FCmp: 637 Code = bitc::CST_CODE_CE_CMP; 638 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 639 Record.push_back(VE.getValueID(C->getOperand(0))); 640 Record.push_back(VE.getValueID(C->getOperand(1))); 641 Record.push_back(CE->getPredicate()); 642 break; 643 } 644 } else { 645 assert(0 && "Unknown constant!"); 646 } 647 Stream.EmitRecord(Code, Record, AbbrevToUse); 648 Record.clear(); 649 } 650 651 Stream.ExitBlock(); 652 } 653 654 static void WriteModuleConstants(const ValueEnumerator &VE, 655 BitstreamWriter &Stream) { 656 const ValueEnumerator::ValueList &Vals = VE.getValues(); 657 658 // Find the first constant to emit, which is the first non-globalvalue value. 659 // We know globalvalues have been emitted by WriteModuleInfo. 660 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 661 if (!isa<GlobalValue>(Vals[i].first)) { 662 WriteConstants(i, Vals.size(), VE, Stream, true); 663 return; 664 } 665 } 666 } 667 668 /// PushValueAndType - The file has to encode both the value and type id for 669 /// many values, because we need to know what type to create for forward 670 /// references. However, most operands are not forward references, so this type 671 /// field is not needed. 672 /// 673 /// This function adds V's value ID to Vals. If the value ID is higher than the 674 /// instruction ID, then it is a forward reference, and it also includes the 675 /// type ID. 676 static bool PushValueAndType(Value *V, unsigned InstID, 677 SmallVector<unsigned, 64> &Vals, 678 ValueEnumerator &VE) { 679 unsigned ValID = VE.getValueID(V); 680 Vals.push_back(ValID); 681 if (ValID >= InstID) { 682 Vals.push_back(VE.getTypeID(V->getType())); 683 return true; 684 } 685 return false; 686 } 687 688 /// WriteInstruction - Emit an instruction to the specified stream. 689 static void WriteInstruction(const Instruction &I, unsigned InstID, 690 ValueEnumerator &VE, BitstreamWriter &Stream, 691 SmallVector<unsigned, 64> &Vals) { 692 unsigned Code = 0; 693 unsigned AbbrevToUse = 0; 694 switch (I.getOpcode()) { 695 default: 696 if (Instruction::isCast(I.getOpcode())) { 697 Code = bitc::FUNC_CODE_INST_CAST; 698 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 699 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 700 Vals.push_back(VE.getTypeID(I.getType())); 701 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 702 } else { 703 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 704 Code = bitc::FUNC_CODE_INST_BINOP; 705 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 706 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 707 Vals.push_back(VE.getValueID(I.getOperand(1))); 708 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 709 } 710 break; 711 712 case Instruction::GetElementPtr: 713 Code = bitc::FUNC_CODE_INST_GEP; 714 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 715 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 716 break; 717 case Instruction::Select: 718 Code = bitc::FUNC_CODE_INST_SELECT; 719 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 720 Vals.push_back(VE.getValueID(I.getOperand(2))); 721 Vals.push_back(VE.getValueID(I.getOperand(0))); 722 break; 723 case Instruction::ExtractElement: 724 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 725 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 726 Vals.push_back(VE.getValueID(I.getOperand(1))); 727 break; 728 case Instruction::InsertElement: 729 Code = bitc::FUNC_CODE_INST_INSERTELT; 730 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 731 Vals.push_back(VE.getValueID(I.getOperand(1))); 732 Vals.push_back(VE.getValueID(I.getOperand(2))); 733 break; 734 case Instruction::ShuffleVector: 735 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 736 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 737 Vals.push_back(VE.getValueID(I.getOperand(1))); 738 Vals.push_back(VE.getValueID(I.getOperand(2))); 739 break; 740 case Instruction::ICmp: 741 case Instruction::FCmp: 742 Code = bitc::FUNC_CODE_INST_CMP; 743 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 744 Vals.push_back(VE.getValueID(I.getOperand(1))); 745 Vals.push_back(cast<CmpInst>(I).getPredicate()); 746 break; 747 case Instruction::GetResult: 748 Code = bitc::FUNC_CODE_INST_GETRESULT; 749 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 750 Vals.push_back(cast<GetResultInst>(I).getIndex()); 751 break; 752 753 case Instruction::Ret: 754 { 755 Code = bitc::FUNC_CODE_INST_RET; 756 unsigned NumOperands = I.getNumOperands(); 757 // printf ("dpatel write %d\n", NumOperands); 758 if (NumOperands == 0) 759 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 760 else if (NumOperands == 1) { 761 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 762 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 763 } else { 764 for (unsigned i = 0, e = NumOperands; i != e; ++i) 765 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 766 } 767 } 768 break; 769 case Instruction::Br: 770 Code = bitc::FUNC_CODE_INST_BR; 771 Vals.push_back(VE.getValueID(I.getOperand(0))); 772 if (cast<BranchInst>(I).isConditional()) { 773 Vals.push_back(VE.getValueID(I.getOperand(1))); 774 Vals.push_back(VE.getValueID(I.getOperand(2))); 775 } 776 break; 777 case Instruction::Switch: 778 Code = bitc::FUNC_CODE_INST_SWITCH; 779 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 780 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 781 Vals.push_back(VE.getValueID(I.getOperand(i))); 782 break; 783 case Instruction::Invoke: { 784 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 785 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 786 Code = bitc::FUNC_CODE_INST_INVOKE; 787 788 const InvokeInst *II = cast<InvokeInst>(&I); 789 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 790 Vals.push_back(II->getCallingConv()); 791 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 792 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 793 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 794 795 // Emit value #'s for the fixed parameters. 796 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 797 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 798 799 // Emit type/value pairs for varargs params. 800 if (FTy->isVarArg()) { 801 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 802 i != e; ++i) 803 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 804 } 805 break; 806 } 807 case Instruction::Unwind: 808 Code = bitc::FUNC_CODE_INST_UNWIND; 809 break; 810 case Instruction::Unreachable: 811 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 812 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 813 break; 814 815 case Instruction::PHI: 816 Code = bitc::FUNC_CODE_INST_PHI; 817 Vals.push_back(VE.getTypeID(I.getType())); 818 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 819 Vals.push_back(VE.getValueID(I.getOperand(i))); 820 break; 821 822 case Instruction::Malloc: 823 Code = bitc::FUNC_CODE_INST_MALLOC; 824 Vals.push_back(VE.getTypeID(I.getType())); 825 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 826 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 827 break; 828 829 case Instruction::Free: 830 Code = bitc::FUNC_CODE_INST_FREE; 831 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 832 break; 833 834 case Instruction::Alloca: 835 Code = bitc::FUNC_CODE_INST_ALLOCA; 836 Vals.push_back(VE.getTypeID(I.getType())); 837 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 838 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 839 break; 840 841 case Instruction::Load: 842 Code = bitc::FUNC_CODE_INST_LOAD; 843 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 844 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 845 846 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 847 Vals.push_back(cast<LoadInst>(I).isVolatile()); 848 break; 849 case Instruction::Store: 850 Code = bitc::FUNC_CODE_INST_STORE2; 851 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 852 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 853 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 854 Vals.push_back(cast<StoreInst>(I).isVolatile()); 855 break; 856 case Instruction::Call: { 857 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 858 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 859 860 Code = bitc::FUNC_CODE_INST_CALL; 861 862 const CallInst *CI = cast<CallInst>(&I); 863 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 864 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 865 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 866 867 // Emit value #'s for the fixed parameters. 868 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 869 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 870 871 // Emit type/value pairs for varargs params. 872 if (FTy->isVarArg()) { 873 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 874 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 875 i != e; ++i) 876 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 877 } 878 break; 879 } 880 case Instruction::VAArg: 881 Code = bitc::FUNC_CODE_INST_VAARG; 882 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 883 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 884 Vals.push_back(VE.getTypeID(I.getType())); // restype. 885 break; 886 } 887 888 Stream.EmitRecord(Code, Vals, AbbrevToUse); 889 Vals.clear(); 890 } 891 892 // Emit names for globals/functions etc. 893 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 894 const ValueEnumerator &VE, 895 BitstreamWriter &Stream) { 896 if (VST.empty()) return; 897 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 898 899 // FIXME: Set up the abbrev, we know how many values there are! 900 // FIXME: We know if the type names can use 7-bit ascii. 901 SmallVector<unsigned, 64> NameVals; 902 903 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 904 SI != SE; ++SI) { 905 906 const ValueName &Name = *SI; 907 908 // Figure out the encoding to use for the name. 909 bool is7Bit = true; 910 bool isChar6 = true; 911 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 912 C != E; ++C) { 913 if (isChar6) 914 isChar6 = BitCodeAbbrevOp::isChar6(*C); 915 if ((unsigned char)*C & 128) { 916 is7Bit = false; 917 break; // don't bother scanning the rest. 918 } 919 } 920 921 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 922 923 // VST_ENTRY: [valueid, namechar x N] 924 // VST_BBENTRY: [bbid, namechar x N] 925 unsigned Code; 926 if (isa<BasicBlock>(SI->getValue())) { 927 Code = bitc::VST_CODE_BBENTRY; 928 if (isChar6) 929 AbbrevToUse = VST_BBENTRY_6_ABBREV; 930 } else { 931 Code = bitc::VST_CODE_ENTRY; 932 if (isChar6) 933 AbbrevToUse = VST_ENTRY_6_ABBREV; 934 else if (is7Bit) 935 AbbrevToUse = VST_ENTRY_7_ABBREV; 936 } 937 938 NameVals.push_back(VE.getValueID(SI->getValue())); 939 for (const char *P = Name.getKeyData(), 940 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 941 NameVals.push_back((unsigned char)*P); 942 943 // Emit the finished record. 944 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 945 NameVals.clear(); 946 } 947 Stream.ExitBlock(); 948 } 949 950 /// WriteFunction - Emit a function body to the module stream. 951 static void WriteFunction(const Function &F, ValueEnumerator &VE, 952 BitstreamWriter &Stream) { 953 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 954 VE.incorporateFunction(F); 955 956 SmallVector<unsigned, 64> Vals; 957 958 // Emit the number of basic blocks, so the reader can create them ahead of 959 // time. 960 Vals.push_back(VE.getBasicBlocks().size()); 961 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 962 Vals.clear(); 963 964 // If there are function-local constants, emit them now. 965 unsigned CstStart, CstEnd; 966 VE.getFunctionConstantRange(CstStart, CstEnd); 967 WriteConstants(CstStart, CstEnd, VE, Stream, false); 968 969 // Keep a running idea of what the instruction ID is. 970 unsigned InstID = CstEnd; 971 972 // Finally, emit all the instructions, in order. 973 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 974 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 975 I != E; ++I) { 976 WriteInstruction(*I, InstID, VE, Stream, Vals); 977 if (I->getType() != Type::VoidTy) 978 ++InstID; 979 } 980 981 // Emit names for all the instructions etc. 982 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 983 984 VE.purgeFunction(); 985 Stream.ExitBlock(); 986 } 987 988 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 989 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 990 const ValueEnumerator &VE, 991 BitstreamWriter &Stream) { 992 if (TST.empty()) return; 993 994 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 995 996 // 7-bit fixed width VST_CODE_ENTRY strings. 997 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 998 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1000 Log2_32_Ceil(VE.getTypes().size()+1))); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1003 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1004 1005 SmallVector<unsigned, 64> NameVals; 1006 1007 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1008 TI != TE; ++TI) { 1009 // TST_ENTRY: [typeid, namechar x N] 1010 NameVals.push_back(VE.getTypeID(TI->second)); 1011 1012 const std::string &Str = TI->first; 1013 bool is7Bit = true; 1014 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1015 NameVals.push_back((unsigned char)Str[i]); 1016 if (Str[i] & 128) 1017 is7Bit = false; 1018 } 1019 1020 // Emit the finished record. 1021 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1022 NameVals.clear(); 1023 } 1024 1025 Stream.ExitBlock(); 1026 } 1027 1028 // Emit blockinfo, which defines the standard abbreviations etc. 1029 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1030 // We only want to emit block info records for blocks that have multiple 1031 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1032 // blocks can defined their abbrevs inline. 1033 Stream.EnterBlockInfoBlock(2); 1034 1035 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1036 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1041 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1042 Abbv) != VST_ENTRY_8_ABBREV) 1043 assert(0 && "Unexpected abbrev ordering!"); 1044 } 1045 1046 { // 7-bit fixed width VST_ENTRY strings. 1047 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1048 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1052 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1053 Abbv) != VST_ENTRY_7_ABBREV) 1054 assert(0 && "Unexpected abbrev ordering!"); 1055 } 1056 { // 6-bit char6 VST_ENTRY strings. 1057 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1058 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1062 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1063 Abbv) != VST_ENTRY_6_ABBREV) 1064 assert(0 && "Unexpected abbrev ordering!"); 1065 } 1066 { // 6-bit char6 VST_BBENTRY strings. 1067 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1068 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1072 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1073 Abbv) != VST_BBENTRY_6_ABBREV) 1074 assert(0 && "Unexpected abbrev ordering!"); 1075 } 1076 1077 1078 1079 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1081 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1083 Log2_32_Ceil(VE.getTypes().size()+1))); 1084 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1085 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1086 assert(0 && "Unexpected abbrev ordering!"); 1087 } 1088 1089 { // INTEGER abbrev for CONSTANTS_BLOCK. 1090 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1091 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1093 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1094 Abbv) != CONSTANTS_INTEGER_ABBREV) 1095 assert(0 && "Unexpected abbrev ordering!"); 1096 } 1097 1098 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1099 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1100 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1103 Log2_32_Ceil(VE.getTypes().size()+1))); 1104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1105 1106 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1107 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1108 assert(0 && "Unexpected abbrev ordering!"); 1109 } 1110 { // NULL abbrev for CONSTANTS_BLOCK. 1111 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1112 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1113 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1114 Abbv) != CONSTANTS_NULL_Abbrev) 1115 assert(0 && "Unexpected abbrev ordering!"); 1116 } 1117 1118 // FIXME: This should only use space for first class types! 1119 1120 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1121 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1122 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1126 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1127 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1128 assert(0 && "Unexpected abbrev ordering!"); 1129 } 1130 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1131 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1132 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1136 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1137 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1138 assert(0 && "Unexpected abbrev ordering!"); 1139 } 1140 { // INST_CAST abbrev for FUNCTION_BLOCK. 1141 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1142 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1145 Log2_32_Ceil(VE.getTypes().size()+1))); 1146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1147 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1148 Abbv) != FUNCTION_INST_CAST_ABBREV) 1149 assert(0 && "Unexpected abbrev ordering!"); 1150 } 1151 1152 { // INST_RET abbrev for FUNCTION_BLOCK. 1153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1154 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1155 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1156 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1157 assert(0 && "Unexpected abbrev ordering!"); 1158 } 1159 { // INST_RET abbrev for FUNCTION_BLOCK. 1160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1161 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1163 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1164 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1165 assert(0 && "Unexpected abbrev ordering!"); 1166 } 1167 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1168 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1169 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1170 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1171 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1172 assert(0 && "Unexpected abbrev ordering!"); 1173 } 1174 1175 Stream.ExitBlock(); 1176 } 1177 1178 1179 /// WriteModule - Emit the specified module to the bitstream. 1180 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1181 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1182 1183 // Emit the version number if it is non-zero. 1184 if (CurVersion) { 1185 SmallVector<unsigned, 1> Vals; 1186 Vals.push_back(CurVersion); 1187 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1188 } 1189 1190 // Analyze the module, enumerating globals, functions, etc. 1191 ValueEnumerator VE(M); 1192 1193 // Emit blockinfo, which defines the standard abbreviations etc. 1194 WriteBlockInfo(VE, Stream); 1195 1196 // Emit information about parameter attributes. 1197 WriteParamAttrTable(VE, Stream); 1198 1199 // Emit information describing all of the types in the module. 1200 WriteTypeTable(VE, Stream); 1201 1202 // Emit top-level description of module, including target triple, inline asm, 1203 // descriptors for global variables, and function prototype info. 1204 WriteModuleInfo(M, VE, Stream); 1205 1206 // Emit constants. 1207 WriteModuleConstants(VE, Stream); 1208 1209 // If we have any aggregate values in the value table, purge them - these can 1210 // only be used to initialize global variables. Doing so makes the value 1211 // namespace smaller for code in functions. 1212 int NumNonAggregates = VE.PurgeAggregateValues(); 1213 if (NumNonAggregates != -1) { 1214 SmallVector<unsigned, 1> Vals; 1215 Vals.push_back(NumNonAggregates); 1216 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1217 } 1218 1219 // Emit function bodies. 1220 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1221 if (!I->isDeclaration()) 1222 WriteFunction(*I, VE, Stream); 1223 1224 // Emit the type symbol table information. 1225 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1226 1227 // Emit names for globals/functions etc. 1228 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1229 1230 Stream.ExitBlock(); 1231 } 1232 1233 1234 /// WriteBitcodeToFile - Write the specified module to the specified output 1235 /// stream. 1236 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1237 std::vector<unsigned char> Buffer; 1238 BitstreamWriter Stream(Buffer); 1239 1240 Buffer.reserve(256*1024); 1241 1242 // Emit the file header. 1243 Stream.Emit((unsigned)'B', 8); 1244 Stream.Emit((unsigned)'C', 8); 1245 Stream.Emit(0x0, 4); 1246 Stream.Emit(0xC, 4); 1247 Stream.Emit(0xE, 4); 1248 Stream.Emit(0xD, 4); 1249 1250 // Emit the module. 1251 WriteModule(M, Stream); 1252 1253 // Write the generated bitstream to "Out". 1254 Out.write((char*)&Buffer.front(), Buffer.size()); 1255 1256 // Make sure it hits disk now. 1257 Out.flush(); 1258 } 1259