1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::Builtin: 166 return bitc::ATTR_KIND_BUILTIN; 167 case Attribute::ByVal: 168 return bitc::ATTR_KIND_BY_VAL; 169 case Attribute::InAlloca: 170 return bitc::ATTR_KIND_IN_ALLOCA; 171 case Attribute::Cold: 172 return bitc::ATTR_KIND_COLD; 173 case Attribute::InlineHint: 174 return bitc::ATTR_KIND_INLINE_HINT; 175 case Attribute::InReg: 176 return bitc::ATTR_KIND_IN_REG; 177 case Attribute::JumpTable: 178 return bitc::ATTR_KIND_JUMP_TABLE; 179 case Attribute::MinSize: 180 return bitc::ATTR_KIND_MIN_SIZE; 181 case Attribute::Naked: 182 return bitc::ATTR_KIND_NAKED; 183 case Attribute::Nest: 184 return bitc::ATTR_KIND_NEST; 185 case Attribute::NoAlias: 186 return bitc::ATTR_KIND_NO_ALIAS; 187 case Attribute::NoBuiltin: 188 return bitc::ATTR_KIND_NO_BUILTIN; 189 case Attribute::NoCapture: 190 return bitc::ATTR_KIND_NO_CAPTURE; 191 case Attribute::NoDuplicate: 192 return bitc::ATTR_KIND_NO_DUPLICATE; 193 case Attribute::NoImplicitFloat: 194 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 195 case Attribute::NoInline: 196 return bitc::ATTR_KIND_NO_INLINE; 197 case Attribute::NonLazyBind: 198 return bitc::ATTR_KIND_NON_LAZY_BIND; 199 case Attribute::NonNull: 200 return bitc::ATTR_KIND_NON_NULL; 201 case Attribute::Dereferenceable: 202 return bitc::ATTR_KIND_DEREFERENCEABLE; 203 case Attribute::NoRedZone: 204 return bitc::ATTR_KIND_NO_RED_ZONE; 205 case Attribute::NoReturn: 206 return bitc::ATTR_KIND_NO_RETURN; 207 case Attribute::NoUnwind: 208 return bitc::ATTR_KIND_NO_UNWIND; 209 case Attribute::OptimizeForSize: 210 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 211 case Attribute::OptimizeNone: 212 return bitc::ATTR_KIND_OPTIMIZE_NONE; 213 case Attribute::ReadNone: 214 return bitc::ATTR_KIND_READ_NONE; 215 case Attribute::ReadOnly: 216 return bitc::ATTR_KIND_READ_ONLY; 217 case Attribute::Returned: 218 return bitc::ATTR_KIND_RETURNED; 219 case Attribute::ReturnsTwice: 220 return bitc::ATTR_KIND_RETURNS_TWICE; 221 case Attribute::SExt: 222 return bitc::ATTR_KIND_S_EXT; 223 case Attribute::StackAlignment: 224 return bitc::ATTR_KIND_STACK_ALIGNMENT; 225 case Attribute::StackProtect: 226 return bitc::ATTR_KIND_STACK_PROTECT; 227 case Attribute::StackProtectReq: 228 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 229 case Attribute::StackProtectStrong: 230 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 231 case Attribute::StructRet: 232 return bitc::ATTR_KIND_STRUCT_RET; 233 case Attribute::SanitizeAddress: 234 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 235 case Attribute::SanitizeThread: 236 return bitc::ATTR_KIND_SANITIZE_THREAD; 237 case Attribute::SanitizeMemory: 238 return bitc::ATTR_KIND_SANITIZE_MEMORY; 239 case Attribute::UWTable: 240 return bitc::ATTR_KIND_UW_TABLE; 241 case Attribute::ZExt: 242 return bitc::ATTR_KIND_Z_EXT; 243 case Attribute::EndAttrKinds: 244 llvm_unreachable("Can not encode end-attribute kinds marker."); 245 case Attribute::None: 246 llvm_unreachable("Can not encode none-attribute."); 247 } 248 249 llvm_unreachable("Trying to encode unknown attribute"); 250 } 251 252 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 253 BitstreamWriter &Stream) { 254 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 255 if (AttrGrps.empty()) return; 256 257 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 258 259 SmallVector<uint64_t, 64> Record; 260 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 261 AttributeSet AS = AttrGrps[i]; 262 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 263 AttributeSet A = AS.getSlotAttributes(i); 264 265 Record.push_back(VE.getAttributeGroupID(A)); 266 Record.push_back(AS.getSlotIndex(i)); 267 268 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 269 I != E; ++I) { 270 Attribute Attr = *I; 271 if (Attr.isEnumAttribute()) { 272 Record.push_back(0); 273 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 274 } else if (Attr.isIntAttribute()) { 275 Record.push_back(1); 276 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 277 Record.push_back(Attr.getValueAsInt()); 278 } else { 279 StringRef Kind = Attr.getKindAsString(); 280 StringRef Val = Attr.getValueAsString(); 281 282 Record.push_back(Val.empty() ? 3 : 4); 283 Record.append(Kind.begin(), Kind.end()); 284 Record.push_back(0); 285 if (!Val.empty()) { 286 Record.append(Val.begin(), Val.end()); 287 Record.push_back(0); 288 } 289 } 290 } 291 292 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 293 Record.clear(); 294 } 295 } 296 297 Stream.ExitBlock(); 298 } 299 300 static void WriteAttributeTable(const ValueEnumerator &VE, 301 BitstreamWriter &Stream) { 302 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 303 if (Attrs.empty()) return; 304 305 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 306 307 SmallVector<uint64_t, 64> Record; 308 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 309 const AttributeSet &A = Attrs[i]; 310 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 311 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 312 313 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 314 Record.clear(); 315 } 316 317 Stream.ExitBlock(); 318 } 319 320 /// WriteTypeTable - Write out the type table for a module. 321 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 322 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 323 324 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 325 SmallVector<uint64_t, 64> TypeVals; 326 327 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 328 329 // Abbrev for TYPE_CODE_POINTER. 330 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 331 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 333 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 334 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 335 336 // Abbrev for TYPE_CODE_FUNCTION. 337 Abbv = new BitCodeAbbrev(); 338 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 342 343 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 344 345 // Abbrev for TYPE_CODE_STRUCT_ANON. 346 Abbv = new BitCodeAbbrev(); 347 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 351 352 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 353 354 // Abbrev for TYPE_CODE_STRUCT_NAME. 355 Abbv = new BitCodeAbbrev(); 356 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 359 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 360 361 // Abbrev for TYPE_CODE_STRUCT_NAMED. 362 Abbv = new BitCodeAbbrev(); 363 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 367 368 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 369 370 // Abbrev for TYPE_CODE_ARRAY. 371 Abbv = new BitCodeAbbrev(); 372 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 375 376 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 377 378 // Emit an entry count so the reader can reserve space. 379 TypeVals.push_back(TypeList.size()); 380 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 381 TypeVals.clear(); 382 383 // Loop over all of the types, emitting each in turn. 384 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 385 Type *T = TypeList[i]; 386 int AbbrevToUse = 0; 387 unsigned Code = 0; 388 389 switch (T->getTypeID()) { 390 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 391 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 392 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 393 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 394 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 395 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 396 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 397 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 398 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 399 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 400 case Type::IntegerTyID: 401 // INTEGER: [width] 402 Code = bitc::TYPE_CODE_INTEGER; 403 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 404 break; 405 case Type::PointerTyID: { 406 PointerType *PTy = cast<PointerType>(T); 407 // POINTER: [pointee type, address space] 408 Code = bitc::TYPE_CODE_POINTER; 409 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 410 unsigned AddressSpace = PTy->getAddressSpace(); 411 TypeVals.push_back(AddressSpace); 412 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 413 break; 414 } 415 case Type::FunctionTyID: { 416 FunctionType *FT = cast<FunctionType>(T); 417 // FUNCTION: [isvararg, retty, paramty x N] 418 Code = bitc::TYPE_CODE_FUNCTION; 419 TypeVals.push_back(FT->isVarArg()); 420 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 421 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 422 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 423 AbbrevToUse = FunctionAbbrev; 424 break; 425 } 426 case Type::StructTyID: { 427 StructType *ST = cast<StructType>(T); 428 // STRUCT: [ispacked, eltty x N] 429 TypeVals.push_back(ST->isPacked()); 430 // Output all of the element types. 431 for (StructType::element_iterator I = ST->element_begin(), 432 E = ST->element_end(); I != E; ++I) 433 TypeVals.push_back(VE.getTypeID(*I)); 434 435 if (ST->isLiteral()) { 436 Code = bitc::TYPE_CODE_STRUCT_ANON; 437 AbbrevToUse = StructAnonAbbrev; 438 } else { 439 if (ST->isOpaque()) { 440 Code = bitc::TYPE_CODE_OPAQUE; 441 } else { 442 Code = bitc::TYPE_CODE_STRUCT_NAMED; 443 AbbrevToUse = StructNamedAbbrev; 444 } 445 446 // Emit the name if it is present. 447 if (!ST->getName().empty()) 448 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 449 StructNameAbbrev, Stream); 450 } 451 break; 452 } 453 case Type::ArrayTyID: { 454 ArrayType *AT = cast<ArrayType>(T); 455 // ARRAY: [numelts, eltty] 456 Code = bitc::TYPE_CODE_ARRAY; 457 TypeVals.push_back(AT->getNumElements()); 458 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 459 AbbrevToUse = ArrayAbbrev; 460 break; 461 } 462 case Type::VectorTyID: { 463 VectorType *VT = cast<VectorType>(T); 464 // VECTOR [numelts, eltty] 465 Code = bitc::TYPE_CODE_VECTOR; 466 TypeVals.push_back(VT->getNumElements()); 467 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 468 break; 469 } 470 } 471 472 // Emit the finished record. 473 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 474 TypeVals.clear(); 475 } 476 477 Stream.ExitBlock(); 478 } 479 480 static unsigned getEncodedLinkage(const GlobalValue &GV) { 481 switch (GV.getLinkage()) { 482 case GlobalValue::ExternalLinkage: 483 return 0; 484 case GlobalValue::WeakAnyLinkage: 485 return 16; 486 case GlobalValue::AppendingLinkage: 487 return 2; 488 case GlobalValue::InternalLinkage: 489 return 3; 490 case GlobalValue::LinkOnceAnyLinkage: 491 return 18; 492 case GlobalValue::ExternalWeakLinkage: 493 return 7; 494 case GlobalValue::CommonLinkage: 495 return 8; 496 case GlobalValue::PrivateLinkage: 497 return 9; 498 case GlobalValue::WeakODRLinkage: 499 return 17; 500 case GlobalValue::LinkOnceODRLinkage: 501 return 19; 502 case GlobalValue::AvailableExternallyLinkage: 503 return 12; 504 } 505 llvm_unreachable("Invalid linkage"); 506 } 507 508 static unsigned getEncodedVisibility(const GlobalValue &GV) { 509 switch (GV.getVisibility()) { 510 case GlobalValue::DefaultVisibility: return 0; 511 case GlobalValue::HiddenVisibility: return 1; 512 case GlobalValue::ProtectedVisibility: return 2; 513 } 514 llvm_unreachable("Invalid visibility"); 515 } 516 517 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 518 switch (GV.getDLLStorageClass()) { 519 case GlobalValue::DefaultStorageClass: return 0; 520 case GlobalValue::DLLImportStorageClass: return 1; 521 case GlobalValue::DLLExportStorageClass: return 2; 522 } 523 llvm_unreachable("Invalid DLL storage class"); 524 } 525 526 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 527 switch (GV.getThreadLocalMode()) { 528 case GlobalVariable::NotThreadLocal: return 0; 529 case GlobalVariable::GeneralDynamicTLSModel: return 1; 530 case GlobalVariable::LocalDynamicTLSModel: return 2; 531 case GlobalVariable::InitialExecTLSModel: return 3; 532 case GlobalVariable::LocalExecTLSModel: return 4; 533 } 534 llvm_unreachable("Invalid TLS model"); 535 } 536 537 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 538 switch (C.getSelectionKind()) { 539 case Comdat::Any: 540 return bitc::COMDAT_SELECTION_KIND_ANY; 541 case Comdat::ExactMatch: 542 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 543 case Comdat::Largest: 544 return bitc::COMDAT_SELECTION_KIND_LARGEST; 545 case Comdat::NoDuplicates: 546 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 547 case Comdat::SameSize: 548 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 549 } 550 llvm_unreachable("Invalid selection kind"); 551 } 552 553 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 554 SmallVector<uint16_t, 64> Vals; 555 for (const Comdat *C : VE.getComdats()) { 556 // COMDAT: [selection_kind, name] 557 Vals.push_back(getEncodedComdatSelectionKind(*C)); 558 size_t Size = C->getName().size(); 559 assert(isUInt<16>(Size)); 560 Vals.push_back(Size); 561 for (char Chr : C->getName()) 562 Vals.push_back((unsigned char)Chr); 563 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 564 Vals.clear(); 565 } 566 } 567 568 // Emit top-level description of module, including target triple, inline asm, 569 // descriptors for global variables, and function prototype info. 570 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 571 BitstreamWriter &Stream) { 572 // Emit various pieces of data attached to a module. 573 if (!M->getTargetTriple().empty()) 574 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 575 0/*TODO*/, Stream); 576 const std::string &DL = M->getDataLayoutStr(); 577 if (!DL.empty()) 578 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 579 if (!M->getModuleInlineAsm().empty()) 580 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 581 0/*TODO*/, Stream); 582 583 // Emit information about sections and GC, computing how many there are. Also 584 // compute the maximum alignment value. 585 std::map<std::string, unsigned> SectionMap; 586 std::map<std::string, unsigned> GCMap; 587 unsigned MaxAlignment = 0; 588 unsigned MaxGlobalType = 0; 589 for (const GlobalValue &GV : M->globals()) { 590 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 591 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 592 if (GV.hasSection()) { 593 // Give section names unique ID's. 594 unsigned &Entry = SectionMap[GV.getSection()]; 595 if (!Entry) { 596 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 597 0/*TODO*/, Stream); 598 Entry = SectionMap.size(); 599 } 600 } 601 } 602 for (const Function &F : *M) { 603 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 604 if (F.hasSection()) { 605 // Give section names unique ID's. 606 unsigned &Entry = SectionMap[F.getSection()]; 607 if (!Entry) { 608 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 609 0/*TODO*/, Stream); 610 Entry = SectionMap.size(); 611 } 612 } 613 if (F.hasGC()) { 614 // Same for GC names. 615 unsigned &Entry = GCMap[F.getGC()]; 616 if (!Entry) { 617 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 618 0/*TODO*/, Stream); 619 Entry = GCMap.size(); 620 } 621 } 622 } 623 624 // Emit abbrev for globals, now that we know # sections and max alignment. 625 unsigned SimpleGVarAbbrev = 0; 626 if (!M->global_empty()) { 627 // Add an abbrev for common globals with no visibility or thread localness. 628 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 629 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 631 Log2_32_Ceil(MaxGlobalType+1))); 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 635 if (MaxAlignment == 0) // Alignment. 636 Abbv->Add(BitCodeAbbrevOp(0)); 637 else { 638 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 640 Log2_32_Ceil(MaxEncAlignment+1))); 641 } 642 if (SectionMap.empty()) // Section. 643 Abbv->Add(BitCodeAbbrevOp(0)); 644 else 645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 646 Log2_32_Ceil(SectionMap.size()+1))); 647 // Don't bother emitting vis + thread local. 648 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 649 } 650 651 // Emit the global variable information. 652 SmallVector<unsigned, 64> Vals; 653 for (const GlobalVariable &GV : M->globals()) { 654 unsigned AbbrevToUse = 0; 655 656 // GLOBALVAR: [type, isconst, initid, 657 // linkage, alignment, section, visibility, threadlocal, 658 // unnamed_addr, externally_initialized, dllstorageclass, 659 // comdat] 660 Vals.push_back(VE.getTypeID(GV.getType())); 661 Vals.push_back(GV.isConstant()); 662 Vals.push_back(GV.isDeclaration() ? 0 : 663 (VE.getValueID(GV.getInitializer()) + 1)); 664 Vals.push_back(getEncodedLinkage(GV)); 665 Vals.push_back(Log2_32(GV.getAlignment())+1); 666 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 667 if (GV.isThreadLocal() || 668 GV.getVisibility() != GlobalValue::DefaultVisibility || 669 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 670 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 671 GV.hasComdat()) { 672 Vals.push_back(getEncodedVisibility(GV)); 673 Vals.push_back(getEncodedThreadLocalMode(GV)); 674 Vals.push_back(GV.hasUnnamedAddr()); 675 Vals.push_back(GV.isExternallyInitialized()); 676 Vals.push_back(getEncodedDLLStorageClass(GV)); 677 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 678 } else { 679 AbbrevToUse = SimpleGVarAbbrev; 680 } 681 682 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 683 Vals.clear(); 684 } 685 686 // Emit the function proto information. 687 for (const Function &F : *M) { 688 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 689 // section, visibility, gc, unnamed_addr, prologuedata, 690 // dllstorageclass, comdat, prefixdata] 691 Vals.push_back(VE.getTypeID(F.getType())); 692 Vals.push_back(F.getCallingConv()); 693 Vals.push_back(F.isDeclaration()); 694 Vals.push_back(getEncodedLinkage(F)); 695 Vals.push_back(VE.getAttributeID(F.getAttributes())); 696 Vals.push_back(Log2_32(F.getAlignment())+1); 697 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 698 Vals.push_back(getEncodedVisibility(F)); 699 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 700 Vals.push_back(F.hasUnnamedAddr()); 701 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 702 : 0); 703 Vals.push_back(getEncodedDLLStorageClass(F)); 704 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 705 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 706 : 0); 707 708 unsigned AbbrevToUse = 0; 709 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 710 Vals.clear(); 711 } 712 713 // Emit the alias information. 714 for (const GlobalAlias &A : M->aliases()) { 715 // ALIAS: [alias type, aliasee val#, linkage, visibility] 716 Vals.push_back(VE.getTypeID(A.getType())); 717 Vals.push_back(VE.getValueID(A.getAliasee())); 718 Vals.push_back(getEncodedLinkage(A)); 719 Vals.push_back(getEncodedVisibility(A)); 720 Vals.push_back(getEncodedDLLStorageClass(A)); 721 Vals.push_back(getEncodedThreadLocalMode(A)); 722 Vals.push_back(A.hasUnnamedAddr()); 723 unsigned AbbrevToUse = 0; 724 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 725 Vals.clear(); 726 } 727 } 728 729 static uint64_t GetOptimizationFlags(const Value *V) { 730 uint64_t Flags = 0; 731 732 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 733 if (OBO->hasNoSignedWrap()) 734 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 735 if (OBO->hasNoUnsignedWrap()) 736 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 737 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 738 if (PEO->isExact()) 739 Flags |= 1 << bitc::PEO_EXACT; 740 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 741 if (FPMO->hasUnsafeAlgebra()) 742 Flags |= FastMathFlags::UnsafeAlgebra; 743 if (FPMO->hasNoNaNs()) 744 Flags |= FastMathFlags::NoNaNs; 745 if (FPMO->hasNoInfs()) 746 Flags |= FastMathFlags::NoInfs; 747 if (FPMO->hasNoSignedZeros()) 748 Flags |= FastMathFlags::NoSignedZeros; 749 if (FPMO->hasAllowReciprocal()) 750 Flags |= FastMathFlags::AllowReciprocal; 751 } 752 753 return Flags; 754 } 755 756 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 757 const ValueEnumerator &VE, 758 BitstreamWriter &Stream, 759 SmallVectorImpl<uint64_t> &Record) { 760 // Mimic an MDNode with a value as one operand. 761 Value *V = MD->getValue(); 762 Record.push_back(VE.getTypeID(V->getType())); 763 Record.push_back(VE.getValueID(V)); 764 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 765 Record.clear(); 766 } 767 768 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 769 BitstreamWriter &Stream, 770 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 771 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 772 Metadata *MD = N->getOperand(i); 773 assert(!(MD && isa<LocalAsMetadata>(MD)) && 774 "Unexpected function-local metadata"); 775 Record.push_back(VE.getMetadataOrNullID(MD)); 776 } 777 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 778 : bitc::METADATA_NODE, 779 Record, Abbrev); 780 Record.clear(); 781 } 782 783 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 784 BitstreamWriter &Stream, 785 SmallVectorImpl<uint64_t> &Record, 786 unsigned Abbrev) { 787 Record.push_back(N->isDistinct()); 788 Record.push_back(N->getLine()); 789 Record.push_back(N->getColumn()); 790 Record.push_back(VE.getMetadataID(N->getScope())); 791 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 792 793 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 794 Record.clear(); 795 } 796 797 static void WriteGenericDebugNode(const GenericDebugNode *N, 798 const ValueEnumerator &VE, 799 BitstreamWriter &Stream, 800 SmallVectorImpl<uint64_t> &Record, 801 unsigned Abbrev) { 802 Record.push_back(N->isDistinct()); 803 Record.push_back(N->getTag()); 804 Record.push_back(0); // Per-tag version field; unused for now. 805 806 for (auto &I : N->operands()) 807 Record.push_back(VE.getMetadataOrNullID(I)); 808 809 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 810 Record.clear(); 811 } 812 813 static uint64_t rotateSign(int64_t I) { 814 uint64_t U = I; 815 return I < 0 ? ~(U << 1) : U << 1; 816 } 817 818 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 819 BitstreamWriter &Stream, 820 SmallVectorImpl<uint64_t> &Record, 821 unsigned Abbrev) { 822 Record.push_back(N->isDistinct()); 823 Record.push_back(N->getCount()); 824 Record.push_back(rotateSign(N->getLo())); 825 826 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 827 Record.clear(); 828 } 829 830 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 831 BitstreamWriter &Stream, 832 SmallVectorImpl<uint64_t> &Record, 833 unsigned Abbrev) { 834 Record.push_back(N->isDistinct()); 835 Record.push_back(rotateSign(N->getValue())); 836 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 837 838 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 839 Record.clear(); 840 } 841 842 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 843 BitstreamWriter &Stream, 844 SmallVectorImpl<uint64_t> &Record, 845 unsigned Abbrev) { 846 Record.push_back(N->isDistinct()); 847 Record.push_back(N->getTag()); 848 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 849 Record.push_back(N->getSizeInBits()); 850 Record.push_back(N->getAlignInBits()); 851 Record.push_back(N->getEncoding()); 852 853 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 854 Record.clear(); 855 } 856 857 static void WriteMDDerivedType(const MDDerivedType *N, 858 const ValueEnumerator &VE, 859 BitstreamWriter &Stream, 860 SmallVectorImpl<uint64_t> &Record, 861 unsigned Abbrev) { 862 Record.push_back(N->isDistinct()); 863 Record.push_back(N->getTag()); 864 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 865 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 866 Record.push_back(N->getLine()); 867 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 868 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 869 Record.push_back(N->getSizeInBits()); 870 Record.push_back(N->getAlignInBits()); 871 Record.push_back(N->getOffsetInBits()); 872 Record.push_back(N->getFlags()); 873 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 874 875 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 876 Record.clear(); 877 } 878 879 static void WriteMDCompositeType(const MDCompositeType *N, 880 const ValueEnumerator &VE, 881 BitstreamWriter &Stream, 882 SmallVectorImpl<uint64_t> &Record, 883 unsigned Abbrev) { 884 Record.push_back(N->isDistinct()); 885 Record.push_back(N->getTag()); 886 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 887 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 888 Record.push_back(N->getLine()); 889 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 890 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 891 Record.push_back(N->getSizeInBits()); 892 Record.push_back(N->getAlignInBits()); 893 Record.push_back(N->getOffsetInBits()); 894 Record.push_back(N->getFlags()); 895 Record.push_back(VE.getMetadataOrNullID(N->getElements())); 896 Record.push_back(N->getRuntimeLang()); 897 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 898 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 899 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 900 901 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 902 Record.clear(); 903 } 904 905 static void WriteMDSubroutineType(const MDSubroutineType *N, 906 const ValueEnumerator &VE, 907 BitstreamWriter &Stream, 908 SmallVectorImpl<uint64_t> &Record, 909 unsigned Abbrev) { 910 Record.push_back(N->isDistinct()); 911 Record.push_back(N->getFlags()); 912 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray())); 913 914 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 915 Record.clear(); 916 } 917 918 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 919 BitstreamWriter &Stream, 920 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 921 Record.push_back(N->isDistinct()); 922 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 923 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 924 925 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 926 Record.clear(); 927 } 928 929 static void WriteMDCompileUnit(const MDCompileUnit *N, 930 const ValueEnumerator &VE, 931 BitstreamWriter &Stream, 932 SmallVectorImpl<uint64_t> &Record, 933 unsigned Abbrev) { 934 Record.push_back(N->isDistinct()); 935 Record.push_back(N->getSourceLanguage()); 936 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 937 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 938 Record.push_back(N->isOptimized()); 939 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 940 Record.push_back(N->getRuntimeVersion()); 941 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 942 Record.push_back(N->getEmissionKind()); 943 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes())); 944 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes())); 945 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms())); 946 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables())); 947 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities())); 948 949 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 950 Record.clear(); 951 } 952 953 static void WriteMDSubprogram(const MDSubprogram *N, 954 const ValueEnumerator &VE, 955 BitstreamWriter &Stream, 956 SmallVectorImpl<uint64_t> &Record, 957 unsigned Abbrev) { 958 Record.push_back(N->isDistinct()); 959 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 960 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 961 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 962 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 963 Record.push_back(N->getLine()); 964 Record.push_back(VE.getMetadataOrNullID(N->getType())); 965 Record.push_back(N->isLocalToUnit()); 966 Record.push_back(N->isDefinition()); 967 Record.push_back(N->getScopeLine()); 968 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 969 Record.push_back(N->getVirtuality()); 970 Record.push_back(N->getVirtualIndex()); 971 Record.push_back(N->getFlags()); 972 Record.push_back(N->isOptimized()); 973 Record.push_back(VE.getMetadataOrNullID(N->getFunction())); 974 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 975 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 976 Record.push_back(VE.getMetadataOrNullID(N->getVariables())); 977 978 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 979 Record.clear(); 980 } 981 982 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 983 const ValueEnumerator &VE, 984 BitstreamWriter &Stream, 985 SmallVectorImpl<uint64_t> &Record, 986 unsigned Abbrev) { 987 Record.push_back(N->isDistinct()); 988 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 989 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 990 Record.push_back(N->getLine()); 991 Record.push_back(N->getColumn()); 992 993 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 994 Record.clear(); 995 } 996 997 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N, 998 const ValueEnumerator &VE, 999 BitstreamWriter &Stream, 1000 SmallVectorImpl<uint64_t> &Record, 1001 unsigned Abbrev) { 1002 Record.push_back(N->isDistinct()); 1003 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1004 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1005 Record.push_back(N->getDiscriminator()); 1006 1007 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1008 Record.clear(); 1009 } 1010 1011 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE, 1012 BitstreamWriter &Stream, 1013 SmallVectorImpl<uint64_t> &Record, 1014 unsigned Abbrev) { 1015 Record.push_back(N->isDistinct()); 1016 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1017 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1018 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1019 Record.push_back(N->getLine()); 1020 1021 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1022 Record.clear(); 1023 } 1024 1025 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N, 1026 const ValueEnumerator &VE, 1027 BitstreamWriter &Stream, 1028 SmallVectorImpl<uint64_t> &Record, 1029 unsigned Abbrev) { 1030 Record.push_back(N->isDistinct()); 1031 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1033 1034 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1035 Record.clear(); 1036 } 1037 1038 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N, 1039 const ValueEnumerator &VE, 1040 BitstreamWriter &Stream, 1041 SmallVectorImpl<uint64_t> &Record, 1042 unsigned Abbrev) { 1043 Record.push_back(N->isDistinct()); 1044 Record.push_back(N->getTag()); 1045 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1046 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1047 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1048 1049 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1050 Record.clear(); 1051 } 1052 1053 static void WriteMDGlobalVariable(const MDGlobalVariable *N, 1054 const ValueEnumerator &VE, 1055 BitstreamWriter &Stream, 1056 SmallVectorImpl<uint64_t> &Record, 1057 unsigned Abbrev) { 1058 Record.push_back(N->isDistinct()); 1059 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1060 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1061 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1062 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1063 Record.push_back(N->getLine()); 1064 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1065 Record.push_back(N->isLocalToUnit()); 1066 Record.push_back(N->isDefinition()); 1067 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1068 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1069 1070 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1071 Record.clear(); 1072 } 1073 1074 static void WriteMDLocalVariable(const MDLocalVariable *N, 1075 const ValueEnumerator &VE, 1076 BitstreamWriter &Stream, 1077 SmallVectorImpl<uint64_t> &Record, 1078 unsigned Abbrev) { 1079 Record.push_back(N->isDistinct()); 1080 Record.push_back(N->getTag()); 1081 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1082 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1083 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1084 Record.push_back(N->getLine()); 1085 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1086 Record.push_back(N->getArg()); 1087 Record.push_back(N->getFlags()); 1088 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1089 1090 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1091 Record.clear(); 1092 } 1093 1094 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &, 1095 BitstreamWriter &Stream, 1096 SmallVectorImpl<uint64_t> &Record, 1097 unsigned Abbrev) { 1098 Record.reserve(N->getElements().size() + 1); 1099 1100 Record.push_back(N->isDistinct()); 1101 Record.append(N->elements_begin(), N->elements_end()); 1102 1103 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1104 Record.clear(); 1105 } 1106 1107 static void WriteMDObjCProperty(const MDObjCProperty *N, 1108 const ValueEnumerator &VE, 1109 BitstreamWriter &Stream, 1110 SmallVectorImpl<uint64_t> &Record, 1111 unsigned Abbrev) { 1112 Record.push_back(N->isDistinct()); 1113 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1114 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1115 Record.push_back(N->getLine()); 1116 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1117 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1118 Record.push_back(N->getAttributes()); 1119 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1120 1121 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1122 Record.clear(); 1123 } 1124 1125 static void WriteMDImportedEntity(const MDImportedEntity *N, 1126 const ValueEnumerator &VE, 1127 BitstreamWriter &Stream, 1128 SmallVectorImpl<uint64_t> &Record, 1129 unsigned Abbrev) { 1130 Record.push_back(N->isDistinct()); 1131 Record.push_back(N->getTag()); 1132 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1133 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1134 Record.push_back(N->getLine()); 1135 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1136 1137 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1138 Record.clear(); 1139 } 1140 1141 static void WriteModuleMetadata(const Module *M, 1142 const ValueEnumerator &VE, 1143 BitstreamWriter &Stream) { 1144 const auto &MDs = VE.getMDs(); 1145 if (MDs.empty() && M->named_metadata_empty()) 1146 return; 1147 1148 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1149 1150 unsigned MDSAbbrev = 0; 1151 if (VE.hasMDString()) { 1152 // Abbrev for METADATA_STRING. 1153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1154 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1157 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1158 } 1159 1160 // Initialize MDNode abbreviations. 1161 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1162 #include "llvm/IR/Metadata.def" 1163 1164 if (VE.hasMDLocation()) { 1165 // Abbrev for METADATA_LOCATION. 1166 // 1167 // Assume the column is usually under 128, and always output the inlined-at 1168 // location (it's never more expensive than building an array size 1). 1169 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1170 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1176 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1177 } 1178 1179 if (VE.hasGenericDebugNode()) { 1180 // Abbrev for METADATA_GENERIC_DEBUG. 1181 // 1182 // Assume the column is usually under 128, and always output the inlined-at 1183 // location (it's never more expensive than building an array size 1). 1184 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1185 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1192 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1193 } 1194 1195 unsigned NameAbbrev = 0; 1196 if (!M->named_metadata_empty()) { 1197 // Abbrev for METADATA_NAME. 1198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1199 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1202 NameAbbrev = Stream.EmitAbbrev(Abbv); 1203 } 1204 1205 SmallVector<uint64_t, 64> Record; 1206 for (const Metadata *MD : MDs) { 1207 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1208 switch (N->getMetadataID()) { 1209 default: 1210 llvm_unreachable("Invalid MDNode subclass"); 1211 #define HANDLE_MDNODE_LEAF(CLASS) \ 1212 case Metadata::CLASS##Kind: \ 1213 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1214 continue; 1215 #include "llvm/IR/Metadata.def" 1216 } 1217 } 1218 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1219 WriteValueAsMetadata(MDC, VE, Stream, Record); 1220 continue; 1221 } 1222 const MDString *MDS = cast<MDString>(MD); 1223 // Code: [strchar x N] 1224 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1225 1226 // Emit the finished record. 1227 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1228 Record.clear(); 1229 } 1230 1231 // Write named metadata. 1232 for (const NamedMDNode &NMD : M->named_metadata()) { 1233 // Write name. 1234 StringRef Str = NMD.getName(); 1235 Record.append(Str.bytes_begin(), Str.bytes_end()); 1236 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1237 Record.clear(); 1238 1239 // Write named metadata operands. 1240 for (const MDNode *N : NMD.operands()) 1241 Record.push_back(VE.getMetadataID(N)); 1242 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1243 Record.clear(); 1244 } 1245 1246 Stream.ExitBlock(); 1247 } 1248 1249 static void WriteFunctionLocalMetadata(const Function &F, 1250 const ValueEnumerator &VE, 1251 BitstreamWriter &Stream) { 1252 bool StartedMetadataBlock = false; 1253 SmallVector<uint64_t, 64> Record; 1254 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1255 VE.getFunctionLocalMDs(); 1256 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1257 assert(MDs[i] && "Expected valid function-local metadata"); 1258 if (!StartedMetadataBlock) { 1259 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1260 StartedMetadataBlock = true; 1261 } 1262 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1263 } 1264 1265 if (StartedMetadataBlock) 1266 Stream.ExitBlock(); 1267 } 1268 1269 static void WriteMetadataAttachment(const Function &F, 1270 const ValueEnumerator &VE, 1271 BitstreamWriter &Stream) { 1272 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1273 1274 SmallVector<uint64_t, 64> Record; 1275 1276 // Write metadata attachments 1277 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1278 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1279 1280 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1281 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1282 I != E; ++I) { 1283 MDs.clear(); 1284 I->getAllMetadataOtherThanDebugLoc(MDs); 1285 1286 // If no metadata, ignore instruction. 1287 if (MDs.empty()) continue; 1288 1289 Record.push_back(VE.getInstructionID(I)); 1290 1291 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1292 Record.push_back(MDs[i].first); 1293 Record.push_back(VE.getMetadataID(MDs[i].second)); 1294 } 1295 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1296 Record.clear(); 1297 } 1298 1299 Stream.ExitBlock(); 1300 } 1301 1302 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1303 SmallVector<uint64_t, 64> Record; 1304 1305 // Write metadata kinds 1306 // METADATA_KIND - [n x [id, name]] 1307 SmallVector<StringRef, 8> Names; 1308 M->getMDKindNames(Names); 1309 1310 if (Names.empty()) return; 1311 1312 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1313 1314 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1315 Record.push_back(MDKindID); 1316 StringRef KName = Names[MDKindID]; 1317 Record.append(KName.begin(), KName.end()); 1318 1319 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1320 Record.clear(); 1321 } 1322 1323 Stream.ExitBlock(); 1324 } 1325 1326 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1327 if ((int64_t)V >= 0) 1328 Vals.push_back(V << 1); 1329 else 1330 Vals.push_back((-V << 1) | 1); 1331 } 1332 1333 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1334 const ValueEnumerator &VE, 1335 BitstreamWriter &Stream, bool isGlobal) { 1336 if (FirstVal == LastVal) return; 1337 1338 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1339 1340 unsigned AggregateAbbrev = 0; 1341 unsigned String8Abbrev = 0; 1342 unsigned CString7Abbrev = 0; 1343 unsigned CString6Abbrev = 0; 1344 // If this is a constant pool for the module, emit module-specific abbrevs. 1345 if (isGlobal) { 1346 // Abbrev for CST_CODE_AGGREGATE. 1347 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1348 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1351 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1352 1353 // Abbrev for CST_CODE_STRING. 1354 Abbv = new BitCodeAbbrev(); 1355 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1358 String8Abbrev = Stream.EmitAbbrev(Abbv); 1359 // Abbrev for CST_CODE_CSTRING. 1360 Abbv = new BitCodeAbbrev(); 1361 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1364 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1365 // Abbrev for CST_CODE_CSTRING. 1366 Abbv = new BitCodeAbbrev(); 1367 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1370 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1371 } 1372 1373 SmallVector<uint64_t, 64> Record; 1374 1375 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1376 Type *LastTy = nullptr; 1377 for (unsigned i = FirstVal; i != LastVal; ++i) { 1378 const Value *V = Vals[i].first; 1379 // If we need to switch types, do so now. 1380 if (V->getType() != LastTy) { 1381 LastTy = V->getType(); 1382 Record.push_back(VE.getTypeID(LastTy)); 1383 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1384 CONSTANTS_SETTYPE_ABBREV); 1385 Record.clear(); 1386 } 1387 1388 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1389 Record.push_back(unsigned(IA->hasSideEffects()) | 1390 unsigned(IA->isAlignStack()) << 1 | 1391 unsigned(IA->getDialect()&1) << 2); 1392 1393 // Add the asm string. 1394 const std::string &AsmStr = IA->getAsmString(); 1395 Record.push_back(AsmStr.size()); 1396 Record.append(AsmStr.begin(), AsmStr.end()); 1397 1398 // Add the constraint string. 1399 const std::string &ConstraintStr = IA->getConstraintString(); 1400 Record.push_back(ConstraintStr.size()); 1401 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1402 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1403 Record.clear(); 1404 continue; 1405 } 1406 const Constant *C = cast<Constant>(V); 1407 unsigned Code = -1U; 1408 unsigned AbbrevToUse = 0; 1409 if (C->isNullValue()) { 1410 Code = bitc::CST_CODE_NULL; 1411 } else if (isa<UndefValue>(C)) { 1412 Code = bitc::CST_CODE_UNDEF; 1413 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1414 if (IV->getBitWidth() <= 64) { 1415 uint64_t V = IV->getSExtValue(); 1416 emitSignedInt64(Record, V); 1417 Code = bitc::CST_CODE_INTEGER; 1418 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1419 } else { // Wide integers, > 64 bits in size. 1420 // We have an arbitrary precision integer value to write whose 1421 // bit width is > 64. However, in canonical unsigned integer 1422 // format it is likely that the high bits are going to be zero. 1423 // So, we only write the number of active words. 1424 unsigned NWords = IV->getValue().getActiveWords(); 1425 const uint64_t *RawWords = IV->getValue().getRawData(); 1426 for (unsigned i = 0; i != NWords; ++i) { 1427 emitSignedInt64(Record, RawWords[i]); 1428 } 1429 Code = bitc::CST_CODE_WIDE_INTEGER; 1430 } 1431 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1432 Code = bitc::CST_CODE_FLOAT; 1433 Type *Ty = CFP->getType(); 1434 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1435 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1436 } else if (Ty->isX86_FP80Ty()) { 1437 // api needed to prevent premature destruction 1438 // bits are not in the same order as a normal i80 APInt, compensate. 1439 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1440 const uint64_t *p = api.getRawData(); 1441 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1442 Record.push_back(p[0] & 0xffffLL); 1443 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1444 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1445 const uint64_t *p = api.getRawData(); 1446 Record.push_back(p[0]); 1447 Record.push_back(p[1]); 1448 } else { 1449 assert (0 && "Unknown FP type!"); 1450 } 1451 } else if (isa<ConstantDataSequential>(C) && 1452 cast<ConstantDataSequential>(C)->isString()) { 1453 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1454 // Emit constant strings specially. 1455 unsigned NumElts = Str->getNumElements(); 1456 // If this is a null-terminated string, use the denser CSTRING encoding. 1457 if (Str->isCString()) { 1458 Code = bitc::CST_CODE_CSTRING; 1459 --NumElts; // Don't encode the null, which isn't allowed by char6. 1460 } else { 1461 Code = bitc::CST_CODE_STRING; 1462 AbbrevToUse = String8Abbrev; 1463 } 1464 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1465 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1466 for (unsigned i = 0; i != NumElts; ++i) { 1467 unsigned char V = Str->getElementAsInteger(i); 1468 Record.push_back(V); 1469 isCStr7 &= (V & 128) == 0; 1470 if (isCStrChar6) 1471 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1472 } 1473 1474 if (isCStrChar6) 1475 AbbrevToUse = CString6Abbrev; 1476 else if (isCStr7) 1477 AbbrevToUse = CString7Abbrev; 1478 } else if (const ConstantDataSequential *CDS = 1479 dyn_cast<ConstantDataSequential>(C)) { 1480 Code = bitc::CST_CODE_DATA; 1481 Type *EltTy = CDS->getType()->getElementType(); 1482 if (isa<IntegerType>(EltTy)) { 1483 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1484 Record.push_back(CDS->getElementAsInteger(i)); 1485 } else if (EltTy->isFloatTy()) { 1486 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1487 union { float F; uint32_t I; }; 1488 F = CDS->getElementAsFloat(i); 1489 Record.push_back(I); 1490 } 1491 } else { 1492 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1493 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1494 union { double F; uint64_t I; }; 1495 F = CDS->getElementAsDouble(i); 1496 Record.push_back(I); 1497 } 1498 } 1499 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1500 isa<ConstantVector>(C)) { 1501 Code = bitc::CST_CODE_AGGREGATE; 1502 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1503 Record.push_back(VE.getValueID(C->getOperand(i))); 1504 AbbrevToUse = AggregateAbbrev; 1505 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1506 switch (CE->getOpcode()) { 1507 default: 1508 if (Instruction::isCast(CE->getOpcode())) { 1509 Code = bitc::CST_CODE_CE_CAST; 1510 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1511 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1512 Record.push_back(VE.getValueID(C->getOperand(0))); 1513 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1514 } else { 1515 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1516 Code = bitc::CST_CODE_CE_BINOP; 1517 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1518 Record.push_back(VE.getValueID(C->getOperand(0))); 1519 Record.push_back(VE.getValueID(C->getOperand(1))); 1520 uint64_t Flags = GetOptimizationFlags(CE); 1521 if (Flags != 0) 1522 Record.push_back(Flags); 1523 } 1524 break; 1525 case Instruction::GetElementPtr: { 1526 Code = bitc::CST_CODE_CE_GEP; 1527 const auto *GO = cast<GEPOperator>(C); 1528 if (GO->isInBounds()) 1529 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1530 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1531 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1532 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1533 Record.push_back(VE.getValueID(C->getOperand(i))); 1534 } 1535 break; 1536 } 1537 case Instruction::Select: 1538 Code = bitc::CST_CODE_CE_SELECT; 1539 Record.push_back(VE.getValueID(C->getOperand(0))); 1540 Record.push_back(VE.getValueID(C->getOperand(1))); 1541 Record.push_back(VE.getValueID(C->getOperand(2))); 1542 break; 1543 case Instruction::ExtractElement: 1544 Code = bitc::CST_CODE_CE_EXTRACTELT; 1545 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1546 Record.push_back(VE.getValueID(C->getOperand(0))); 1547 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1548 Record.push_back(VE.getValueID(C->getOperand(1))); 1549 break; 1550 case Instruction::InsertElement: 1551 Code = bitc::CST_CODE_CE_INSERTELT; 1552 Record.push_back(VE.getValueID(C->getOperand(0))); 1553 Record.push_back(VE.getValueID(C->getOperand(1))); 1554 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1555 Record.push_back(VE.getValueID(C->getOperand(2))); 1556 break; 1557 case Instruction::ShuffleVector: 1558 // If the return type and argument types are the same, this is a 1559 // standard shufflevector instruction. If the types are different, 1560 // then the shuffle is widening or truncating the input vectors, and 1561 // the argument type must also be encoded. 1562 if (C->getType() == C->getOperand(0)->getType()) { 1563 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1564 } else { 1565 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1566 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1567 } 1568 Record.push_back(VE.getValueID(C->getOperand(0))); 1569 Record.push_back(VE.getValueID(C->getOperand(1))); 1570 Record.push_back(VE.getValueID(C->getOperand(2))); 1571 break; 1572 case Instruction::ICmp: 1573 case Instruction::FCmp: 1574 Code = bitc::CST_CODE_CE_CMP; 1575 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1576 Record.push_back(VE.getValueID(C->getOperand(0))); 1577 Record.push_back(VE.getValueID(C->getOperand(1))); 1578 Record.push_back(CE->getPredicate()); 1579 break; 1580 } 1581 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1582 Code = bitc::CST_CODE_BLOCKADDRESS; 1583 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1584 Record.push_back(VE.getValueID(BA->getFunction())); 1585 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1586 } else { 1587 #ifndef NDEBUG 1588 C->dump(); 1589 #endif 1590 llvm_unreachable("Unknown constant!"); 1591 } 1592 Stream.EmitRecord(Code, Record, AbbrevToUse); 1593 Record.clear(); 1594 } 1595 1596 Stream.ExitBlock(); 1597 } 1598 1599 static void WriteModuleConstants(const ValueEnumerator &VE, 1600 BitstreamWriter &Stream) { 1601 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1602 1603 // Find the first constant to emit, which is the first non-globalvalue value. 1604 // We know globalvalues have been emitted by WriteModuleInfo. 1605 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1606 if (!isa<GlobalValue>(Vals[i].first)) { 1607 WriteConstants(i, Vals.size(), VE, Stream, true); 1608 return; 1609 } 1610 } 1611 } 1612 1613 /// PushValueAndType - The file has to encode both the value and type id for 1614 /// many values, because we need to know what type to create for forward 1615 /// references. However, most operands are not forward references, so this type 1616 /// field is not needed. 1617 /// 1618 /// This function adds V's value ID to Vals. If the value ID is higher than the 1619 /// instruction ID, then it is a forward reference, and it also includes the 1620 /// type ID. The value ID that is written is encoded relative to the InstID. 1621 static bool PushValueAndType(const Value *V, unsigned InstID, 1622 SmallVectorImpl<unsigned> &Vals, 1623 ValueEnumerator &VE) { 1624 unsigned ValID = VE.getValueID(V); 1625 // Make encoding relative to the InstID. 1626 Vals.push_back(InstID - ValID); 1627 if (ValID >= InstID) { 1628 Vals.push_back(VE.getTypeID(V->getType())); 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 /// pushValue - Like PushValueAndType, but where the type of the value is 1635 /// omitted (perhaps it was already encoded in an earlier operand). 1636 static void pushValue(const Value *V, unsigned InstID, 1637 SmallVectorImpl<unsigned> &Vals, 1638 ValueEnumerator &VE) { 1639 unsigned ValID = VE.getValueID(V); 1640 Vals.push_back(InstID - ValID); 1641 } 1642 1643 static void pushValueSigned(const Value *V, unsigned InstID, 1644 SmallVectorImpl<uint64_t> &Vals, 1645 ValueEnumerator &VE) { 1646 unsigned ValID = VE.getValueID(V); 1647 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1648 emitSignedInt64(Vals, diff); 1649 } 1650 1651 /// WriteInstruction - Emit an instruction to the specified stream. 1652 static void WriteInstruction(const Instruction &I, unsigned InstID, 1653 ValueEnumerator &VE, BitstreamWriter &Stream, 1654 SmallVectorImpl<unsigned> &Vals) { 1655 unsigned Code = 0; 1656 unsigned AbbrevToUse = 0; 1657 VE.setInstructionID(&I); 1658 switch (I.getOpcode()) { 1659 default: 1660 if (Instruction::isCast(I.getOpcode())) { 1661 Code = bitc::FUNC_CODE_INST_CAST; 1662 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1663 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1664 Vals.push_back(VE.getTypeID(I.getType())); 1665 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1666 } else { 1667 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1668 Code = bitc::FUNC_CODE_INST_BINOP; 1669 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1670 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1671 pushValue(I.getOperand(1), InstID, Vals, VE); 1672 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1673 uint64_t Flags = GetOptimizationFlags(&I); 1674 if (Flags != 0) { 1675 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1676 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1677 Vals.push_back(Flags); 1678 } 1679 } 1680 break; 1681 1682 case Instruction::GetElementPtr: { 1683 Code = bitc::FUNC_CODE_INST_GEP; 1684 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1685 auto &GEPInst = cast<GetElementPtrInst>(I); 1686 Vals.push_back(GEPInst.isInBounds()); 1687 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1688 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1689 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1690 break; 1691 } 1692 case Instruction::ExtractValue: { 1693 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1694 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1695 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1696 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1697 break; 1698 } 1699 case Instruction::InsertValue: { 1700 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1701 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1702 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1703 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1704 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1705 break; 1706 } 1707 case Instruction::Select: 1708 Code = bitc::FUNC_CODE_INST_VSELECT; 1709 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1710 pushValue(I.getOperand(2), InstID, Vals, VE); 1711 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1712 break; 1713 case Instruction::ExtractElement: 1714 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1715 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1716 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1717 break; 1718 case Instruction::InsertElement: 1719 Code = bitc::FUNC_CODE_INST_INSERTELT; 1720 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1721 pushValue(I.getOperand(1), InstID, Vals, VE); 1722 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1723 break; 1724 case Instruction::ShuffleVector: 1725 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1726 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1727 pushValue(I.getOperand(1), InstID, Vals, VE); 1728 pushValue(I.getOperand(2), InstID, Vals, VE); 1729 break; 1730 case Instruction::ICmp: 1731 case Instruction::FCmp: 1732 // compare returning Int1Ty or vector of Int1Ty 1733 Code = bitc::FUNC_CODE_INST_CMP2; 1734 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1735 pushValue(I.getOperand(1), InstID, Vals, VE); 1736 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1737 break; 1738 1739 case Instruction::Ret: 1740 { 1741 Code = bitc::FUNC_CODE_INST_RET; 1742 unsigned NumOperands = I.getNumOperands(); 1743 if (NumOperands == 0) 1744 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1745 else if (NumOperands == 1) { 1746 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1747 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1748 } else { 1749 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1750 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1751 } 1752 } 1753 break; 1754 case Instruction::Br: 1755 { 1756 Code = bitc::FUNC_CODE_INST_BR; 1757 const BranchInst &II = cast<BranchInst>(I); 1758 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1759 if (II.isConditional()) { 1760 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1761 pushValue(II.getCondition(), InstID, Vals, VE); 1762 } 1763 } 1764 break; 1765 case Instruction::Switch: 1766 { 1767 Code = bitc::FUNC_CODE_INST_SWITCH; 1768 const SwitchInst &SI = cast<SwitchInst>(I); 1769 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1770 pushValue(SI.getCondition(), InstID, Vals, VE); 1771 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1772 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1773 i != e; ++i) { 1774 Vals.push_back(VE.getValueID(i.getCaseValue())); 1775 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1776 } 1777 } 1778 break; 1779 case Instruction::IndirectBr: 1780 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1781 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1782 // Encode the address operand as relative, but not the basic blocks. 1783 pushValue(I.getOperand(0), InstID, Vals, VE); 1784 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1785 Vals.push_back(VE.getValueID(I.getOperand(i))); 1786 break; 1787 1788 case Instruction::Invoke: { 1789 const InvokeInst *II = cast<InvokeInst>(&I); 1790 const Value *Callee(II->getCalledValue()); 1791 PointerType *PTy = cast<PointerType>(Callee->getType()); 1792 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1793 Code = bitc::FUNC_CODE_INST_INVOKE; 1794 1795 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1796 Vals.push_back(II->getCallingConv()); 1797 Vals.push_back(VE.getValueID(II->getNormalDest())); 1798 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1799 PushValueAndType(Callee, InstID, Vals, VE); 1800 1801 // Emit value #'s for the fixed parameters. 1802 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1803 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1804 1805 // Emit type/value pairs for varargs params. 1806 if (FTy->isVarArg()) { 1807 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1808 i != e; ++i) 1809 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1810 } 1811 break; 1812 } 1813 case Instruction::Resume: 1814 Code = bitc::FUNC_CODE_INST_RESUME; 1815 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1816 break; 1817 case Instruction::Unreachable: 1818 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1819 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1820 break; 1821 1822 case Instruction::PHI: { 1823 const PHINode &PN = cast<PHINode>(I); 1824 Code = bitc::FUNC_CODE_INST_PHI; 1825 // With the newer instruction encoding, forward references could give 1826 // negative valued IDs. This is most common for PHIs, so we use 1827 // signed VBRs. 1828 SmallVector<uint64_t, 128> Vals64; 1829 Vals64.push_back(VE.getTypeID(PN.getType())); 1830 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1831 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1832 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1833 } 1834 // Emit a Vals64 vector and exit. 1835 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1836 Vals64.clear(); 1837 return; 1838 } 1839 1840 case Instruction::LandingPad: { 1841 const LandingPadInst &LP = cast<LandingPadInst>(I); 1842 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1843 Vals.push_back(VE.getTypeID(LP.getType())); 1844 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1845 Vals.push_back(LP.isCleanup()); 1846 Vals.push_back(LP.getNumClauses()); 1847 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1848 if (LP.isCatch(I)) 1849 Vals.push_back(LandingPadInst::Catch); 1850 else 1851 Vals.push_back(LandingPadInst::Filter); 1852 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1853 } 1854 break; 1855 } 1856 1857 case Instruction::Alloca: { 1858 Code = bitc::FUNC_CODE_INST_ALLOCA; 1859 Vals.push_back(VE.getTypeID(I.getType())); 1860 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1861 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1862 const AllocaInst &AI = cast<AllocaInst>(I); 1863 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1864 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1865 "not enough bits for maximum alignment"); 1866 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1867 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1868 Vals.push_back(AlignRecord); 1869 break; 1870 } 1871 1872 case Instruction::Load: 1873 if (cast<LoadInst>(I).isAtomic()) { 1874 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1875 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1876 } else { 1877 Code = bitc::FUNC_CODE_INST_LOAD; 1878 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1879 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1880 } 1881 Vals.push_back(VE.getTypeID(I.getType())); 1882 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1883 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1884 if (cast<LoadInst>(I).isAtomic()) { 1885 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1886 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1887 } 1888 break; 1889 case Instruction::Store: 1890 if (cast<StoreInst>(I).isAtomic()) 1891 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1892 else 1893 Code = bitc::FUNC_CODE_INST_STORE; 1894 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1895 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1896 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1897 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1898 if (cast<StoreInst>(I).isAtomic()) { 1899 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1900 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1901 } 1902 break; 1903 case Instruction::AtomicCmpXchg: 1904 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1905 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1906 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1907 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1908 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1909 Vals.push_back(GetEncodedOrdering( 1910 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1911 Vals.push_back(GetEncodedSynchScope( 1912 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1913 Vals.push_back(GetEncodedOrdering( 1914 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1915 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1916 break; 1917 case Instruction::AtomicRMW: 1918 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1919 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1920 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1921 Vals.push_back(GetEncodedRMWOperation( 1922 cast<AtomicRMWInst>(I).getOperation())); 1923 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1924 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1925 Vals.push_back(GetEncodedSynchScope( 1926 cast<AtomicRMWInst>(I).getSynchScope())); 1927 break; 1928 case Instruction::Fence: 1929 Code = bitc::FUNC_CODE_INST_FENCE; 1930 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1931 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1932 break; 1933 case Instruction::Call: { 1934 const CallInst &CI = cast<CallInst>(I); 1935 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1936 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1937 1938 Code = bitc::FUNC_CODE_INST_CALL; 1939 1940 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1941 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1942 unsigned(CI.isMustTailCall()) << 14); 1943 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1944 1945 // Emit value #'s for the fixed parameters. 1946 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1947 // Check for labels (can happen with asm labels). 1948 if (FTy->getParamType(i)->isLabelTy()) 1949 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1950 else 1951 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1952 } 1953 1954 // Emit type/value pairs for varargs params. 1955 if (FTy->isVarArg()) { 1956 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1957 i != e; ++i) 1958 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1959 } 1960 break; 1961 } 1962 case Instruction::VAArg: 1963 Code = bitc::FUNC_CODE_INST_VAARG; 1964 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1965 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1966 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1967 break; 1968 } 1969 1970 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1971 Vals.clear(); 1972 } 1973 1974 // Emit names for globals/functions etc. 1975 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1976 const ValueEnumerator &VE, 1977 BitstreamWriter &Stream) { 1978 if (VST.empty()) return; 1979 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1980 1981 // FIXME: Set up the abbrev, we know how many values there are! 1982 // FIXME: We know if the type names can use 7-bit ascii. 1983 SmallVector<unsigned, 64> NameVals; 1984 1985 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1986 SI != SE; ++SI) { 1987 1988 const ValueName &Name = *SI; 1989 1990 // Figure out the encoding to use for the name. 1991 bool is7Bit = true; 1992 bool isChar6 = true; 1993 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1994 C != E; ++C) { 1995 if (isChar6) 1996 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1997 if ((unsigned char)*C & 128) { 1998 is7Bit = false; 1999 break; // don't bother scanning the rest. 2000 } 2001 } 2002 2003 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2004 2005 // VST_ENTRY: [valueid, namechar x N] 2006 // VST_BBENTRY: [bbid, namechar x N] 2007 unsigned Code; 2008 if (isa<BasicBlock>(SI->getValue())) { 2009 Code = bitc::VST_CODE_BBENTRY; 2010 if (isChar6) 2011 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2012 } else { 2013 Code = bitc::VST_CODE_ENTRY; 2014 if (isChar6) 2015 AbbrevToUse = VST_ENTRY_6_ABBREV; 2016 else if (is7Bit) 2017 AbbrevToUse = VST_ENTRY_7_ABBREV; 2018 } 2019 2020 NameVals.push_back(VE.getValueID(SI->getValue())); 2021 for (const char *P = Name.getKeyData(), 2022 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2023 NameVals.push_back((unsigned char)*P); 2024 2025 // Emit the finished record. 2026 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2027 NameVals.clear(); 2028 } 2029 Stream.ExitBlock(); 2030 } 2031 2032 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2033 BitstreamWriter &Stream) { 2034 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2035 unsigned Code; 2036 if (isa<BasicBlock>(Order.V)) 2037 Code = bitc::USELIST_CODE_BB; 2038 else 2039 Code = bitc::USELIST_CODE_DEFAULT; 2040 2041 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2042 Record.push_back(VE.getValueID(Order.V)); 2043 Stream.EmitRecord(Code, Record); 2044 } 2045 2046 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2047 BitstreamWriter &Stream) { 2048 auto hasMore = [&]() { 2049 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2050 }; 2051 if (!hasMore()) 2052 // Nothing to do. 2053 return; 2054 2055 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2056 while (hasMore()) { 2057 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2058 VE.UseListOrders.pop_back(); 2059 } 2060 Stream.ExitBlock(); 2061 } 2062 2063 /// WriteFunction - Emit a function body to the module stream. 2064 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2065 BitstreamWriter &Stream) { 2066 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2067 VE.incorporateFunction(F); 2068 2069 SmallVector<unsigned, 64> Vals; 2070 2071 // Emit the number of basic blocks, so the reader can create them ahead of 2072 // time. 2073 Vals.push_back(VE.getBasicBlocks().size()); 2074 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2075 Vals.clear(); 2076 2077 // If there are function-local constants, emit them now. 2078 unsigned CstStart, CstEnd; 2079 VE.getFunctionConstantRange(CstStart, CstEnd); 2080 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2081 2082 // If there is function-local metadata, emit it now. 2083 WriteFunctionLocalMetadata(F, VE, Stream); 2084 2085 // Keep a running idea of what the instruction ID is. 2086 unsigned InstID = CstEnd; 2087 2088 bool NeedsMetadataAttachment = false; 2089 2090 DebugLoc LastDL; 2091 2092 // Finally, emit all the instructions, in order. 2093 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2094 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2095 I != E; ++I) { 2096 WriteInstruction(*I, InstID, VE, Stream, Vals); 2097 2098 if (!I->getType()->isVoidTy()) 2099 ++InstID; 2100 2101 // If the instruction has metadata, write a metadata attachment later. 2102 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2103 2104 // If the instruction has a debug location, emit it. 2105 DebugLoc DL = I->getDebugLoc(); 2106 if (DL.isUnknown()) { 2107 // nothing todo. 2108 } else if (DL == LastDL) { 2109 // Just repeat the same debug loc as last time. 2110 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2111 } else { 2112 MDNode *Scope, *IA; 2113 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 2114 assert(Scope && "Expected valid scope"); 2115 2116 Vals.push_back(DL.getLine()); 2117 Vals.push_back(DL.getCol()); 2118 Vals.push_back(VE.getMetadataOrNullID(Scope)); 2119 Vals.push_back(VE.getMetadataOrNullID(IA)); 2120 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2121 Vals.clear(); 2122 2123 LastDL = DL; 2124 } 2125 } 2126 2127 // Emit names for all the instructions etc. 2128 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2129 2130 if (NeedsMetadataAttachment) 2131 WriteMetadataAttachment(F, VE, Stream); 2132 if (shouldPreserveBitcodeUseListOrder()) 2133 WriteUseListBlock(&F, VE, Stream); 2134 VE.purgeFunction(); 2135 Stream.ExitBlock(); 2136 } 2137 2138 // Emit blockinfo, which defines the standard abbreviations etc. 2139 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2140 // We only want to emit block info records for blocks that have multiple 2141 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2142 // Other blocks can define their abbrevs inline. 2143 Stream.EnterBlockInfoBlock(2); 2144 2145 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2146 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2151 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2152 Abbv) != VST_ENTRY_8_ABBREV) 2153 llvm_unreachable("Unexpected abbrev ordering!"); 2154 } 2155 2156 { // 7-bit fixed width VST_ENTRY strings. 2157 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2158 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2162 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2163 Abbv) != VST_ENTRY_7_ABBREV) 2164 llvm_unreachable("Unexpected abbrev ordering!"); 2165 } 2166 { // 6-bit char6 VST_ENTRY strings. 2167 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2168 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2172 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2173 Abbv) != VST_ENTRY_6_ABBREV) 2174 llvm_unreachable("Unexpected abbrev ordering!"); 2175 } 2176 { // 6-bit char6 VST_BBENTRY strings. 2177 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2178 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2182 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2183 Abbv) != VST_BBENTRY_6_ABBREV) 2184 llvm_unreachable("Unexpected abbrev ordering!"); 2185 } 2186 2187 2188 2189 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2190 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2191 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2193 VE.computeBitsRequiredForTypeIndicies())); 2194 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2195 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2196 llvm_unreachable("Unexpected abbrev ordering!"); 2197 } 2198 2199 { // INTEGER abbrev for CONSTANTS_BLOCK. 2200 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2201 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2203 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2204 Abbv) != CONSTANTS_INTEGER_ABBREV) 2205 llvm_unreachable("Unexpected abbrev ordering!"); 2206 } 2207 2208 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2209 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2210 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2213 VE.computeBitsRequiredForTypeIndicies())); 2214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2215 2216 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2217 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2218 llvm_unreachable("Unexpected abbrev ordering!"); 2219 } 2220 { // NULL abbrev for CONSTANTS_BLOCK. 2221 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2222 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2223 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2224 Abbv) != CONSTANTS_NULL_Abbrev) 2225 llvm_unreachable("Unexpected abbrev ordering!"); 2226 } 2227 2228 // FIXME: This should only use space for first class types! 2229 2230 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2231 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2232 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2235 VE.computeBitsRequiredForTypeIndicies())); 2236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2238 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2239 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2240 llvm_unreachable("Unexpected abbrev ordering!"); 2241 } 2242 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2243 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2244 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2248 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2249 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2250 llvm_unreachable("Unexpected abbrev ordering!"); 2251 } 2252 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2253 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2254 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2259 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2260 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2261 llvm_unreachable("Unexpected abbrev ordering!"); 2262 } 2263 { // INST_CAST abbrev for FUNCTION_BLOCK. 2264 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2265 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2268 VE.computeBitsRequiredForTypeIndicies())); 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2270 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2271 Abbv) != FUNCTION_INST_CAST_ABBREV) 2272 llvm_unreachable("Unexpected abbrev ordering!"); 2273 } 2274 2275 { // INST_RET abbrev for FUNCTION_BLOCK. 2276 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2277 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2278 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2279 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2280 llvm_unreachable("Unexpected abbrev ordering!"); 2281 } 2282 { // INST_RET abbrev for FUNCTION_BLOCK. 2283 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2284 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2286 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2287 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2288 llvm_unreachable("Unexpected abbrev ordering!"); 2289 } 2290 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2291 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2292 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2293 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2294 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2295 llvm_unreachable("Unexpected abbrev ordering!"); 2296 } 2297 { 2298 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2299 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2302 Log2_32_Ceil(VE.getTypes().size() + 1))); 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2305 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2306 FUNCTION_INST_GEP_ABBREV) 2307 llvm_unreachable("Unexpected abbrev ordering!"); 2308 } 2309 2310 Stream.ExitBlock(); 2311 } 2312 2313 /// WriteModule - Emit the specified module to the bitstream. 2314 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2315 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2316 2317 SmallVector<unsigned, 1> Vals; 2318 unsigned CurVersion = 1; 2319 Vals.push_back(CurVersion); 2320 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2321 2322 // Analyze the module, enumerating globals, functions, etc. 2323 ValueEnumerator VE(*M); 2324 2325 // Emit blockinfo, which defines the standard abbreviations etc. 2326 WriteBlockInfo(VE, Stream); 2327 2328 // Emit information about attribute groups. 2329 WriteAttributeGroupTable(VE, Stream); 2330 2331 // Emit information about parameter attributes. 2332 WriteAttributeTable(VE, Stream); 2333 2334 // Emit information describing all of the types in the module. 2335 WriteTypeTable(VE, Stream); 2336 2337 writeComdats(VE, Stream); 2338 2339 // Emit top-level description of module, including target triple, inline asm, 2340 // descriptors for global variables, and function prototype info. 2341 WriteModuleInfo(M, VE, Stream); 2342 2343 // Emit constants. 2344 WriteModuleConstants(VE, Stream); 2345 2346 // Emit metadata. 2347 WriteModuleMetadata(M, VE, Stream); 2348 2349 // Emit metadata. 2350 WriteModuleMetadataStore(M, Stream); 2351 2352 // Emit names for globals/functions etc. 2353 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2354 2355 // Emit module-level use-lists. 2356 if (shouldPreserveBitcodeUseListOrder()) 2357 WriteUseListBlock(nullptr, VE, Stream); 2358 2359 // Emit function bodies. 2360 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2361 if (!F->isDeclaration()) 2362 WriteFunction(*F, VE, Stream); 2363 2364 Stream.ExitBlock(); 2365 } 2366 2367 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2368 /// header and trailer to make it compatible with the system archiver. To do 2369 /// this we emit the following header, and then emit a trailer that pads the 2370 /// file out to be a multiple of 16 bytes. 2371 /// 2372 /// struct bc_header { 2373 /// uint32_t Magic; // 0x0B17C0DE 2374 /// uint32_t Version; // Version, currently always 0. 2375 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2376 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2377 /// uint32_t CPUType; // CPU specifier. 2378 /// ... potentially more later ... 2379 /// }; 2380 enum { 2381 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2382 DarwinBCHeaderSize = 5*4 2383 }; 2384 2385 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2386 uint32_t &Position) { 2387 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2388 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2389 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2390 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2391 Position += 4; 2392 } 2393 2394 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2395 const Triple &TT) { 2396 unsigned CPUType = ~0U; 2397 2398 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2399 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2400 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2401 // specific constants here because they are implicitly part of the Darwin ABI. 2402 enum { 2403 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2404 DARWIN_CPU_TYPE_X86 = 7, 2405 DARWIN_CPU_TYPE_ARM = 12, 2406 DARWIN_CPU_TYPE_POWERPC = 18 2407 }; 2408 2409 Triple::ArchType Arch = TT.getArch(); 2410 if (Arch == Triple::x86_64) 2411 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2412 else if (Arch == Triple::x86) 2413 CPUType = DARWIN_CPU_TYPE_X86; 2414 else if (Arch == Triple::ppc) 2415 CPUType = DARWIN_CPU_TYPE_POWERPC; 2416 else if (Arch == Triple::ppc64) 2417 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2418 else if (Arch == Triple::arm || Arch == Triple::thumb) 2419 CPUType = DARWIN_CPU_TYPE_ARM; 2420 2421 // Traditional Bitcode starts after header. 2422 assert(Buffer.size() >= DarwinBCHeaderSize && 2423 "Expected header size to be reserved"); 2424 unsigned BCOffset = DarwinBCHeaderSize; 2425 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2426 2427 // Write the magic and version. 2428 unsigned Position = 0; 2429 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2430 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2431 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2432 WriteInt32ToBuffer(BCSize , Buffer, Position); 2433 WriteInt32ToBuffer(CPUType , Buffer, Position); 2434 2435 // If the file is not a multiple of 16 bytes, insert dummy padding. 2436 while (Buffer.size() & 15) 2437 Buffer.push_back(0); 2438 } 2439 2440 /// WriteBitcodeToFile - Write the specified module to the specified output 2441 /// stream. 2442 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2443 SmallVector<char, 0> Buffer; 2444 Buffer.reserve(256*1024); 2445 2446 // If this is darwin or another generic macho target, reserve space for the 2447 // header. 2448 Triple TT(M->getTargetTriple()); 2449 if (TT.isOSDarwin()) 2450 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2451 2452 // Emit the module into the buffer. 2453 { 2454 BitstreamWriter Stream(Buffer); 2455 2456 // Emit the file header. 2457 Stream.Emit((unsigned)'B', 8); 2458 Stream.Emit((unsigned)'C', 8); 2459 Stream.Emit(0x0, 4); 2460 Stream.Emit(0xC, 4); 2461 Stream.Emit(0xE, 4); 2462 Stream.Emit(0xD, 4); 2463 2464 // Emit the module. 2465 WriteModule(M, Stream); 2466 } 2467 2468 if (TT.isOSDarwin()) 2469 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2470 2471 // Write the generated bitstream to "Out". 2472 Out.write((char*)&Buffer.front(), Buffer.size()); 2473 } 2474