1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (!CallEdge.first.getValue()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (!VI.getValue()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 forEachSummary([&](GVInfo I) { 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 }); 346 } 347 348 /// The below iterator returns the GUID and associated summary. 349 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 350 351 /// Calls the callback for each value GUID and summary to be written to 352 /// bitcode. This hides the details of whether they are being pulled from the 353 /// entire index or just those in a provided ModuleToSummariesForIndex map. 354 void forEachSummary(std::function<void(GVInfo)> Callback) { 355 if (ModuleToSummariesForIndex) { 356 for (auto &M : *ModuleToSummariesForIndex) 357 for (auto &Summary : M.second) 358 Callback(Summary); 359 } else { 360 for (auto &Summaries : Index) 361 for (auto &Summary : Summaries.second.SummaryList) 362 Callback({Summaries.first, Summary.get()}); 363 } 364 } 365 366 /// Calls the callback for each entry in the modulePaths StringMap that 367 /// should be written to the module path string table. This hides the details 368 /// of whether they are being pulled from the entire index or just those in a 369 /// provided ModuleToSummariesForIndex map. 370 template <typename Functor> void forEachModule(Functor Callback) { 371 if (ModuleToSummariesForIndex) { 372 for (const auto &M : *ModuleToSummariesForIndex) { 373 const auto &MPI = Index.modulePaths().find(M.first); 374 if (MPI == Index.modulePaths().end()) { 375 // This should only happen if the bitcode file was empty, in which 376 // case we shouldn't be importing (the ModuleToSummariesForIndex 377 // would only include the module we are writing and index for). 378 assert(ModuleToSummariesForIndex->size() == 1); 379 continue; 380 } 381 Callback(*MPI); 382 } 383 } else { 384 for (const auto &MPSE : Index.modulePaths()) 385 Callback(MPSE); 386 } 387 } 388 389 /// Main entry point for writing a combined index to bitcode. 390 void write(); 391 392 private: 393 void writeModStrings(); 394 void writeCombinedGlobalValueSummary(); 395 396 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 397 auto VMI = GUIDToValueIdMap.find(ValGUID); 398 if (VMI == GUIDToValueIdMap.end()) 399 return None; 400 return VMI->second; 401 } 402 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 403 }; 404 } // end anonymous namespace 405 406 static unsigned getEncodedCastOpcode(unsigned Opcode) { 407 switch (Opcode) { 408 default: llvm_unreachable("Unknown cast instruction!"); 409 case Instruction::Trunc : return bitc::CAST_TRUNC; 410 case Instruction::ZExt : return bitc::CAST_ZEXT; 411 case Instruction::SExt : return bitc::CAST_SEXT; 412 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 413 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 414 case Instruction::UIToFP : return bitc::CAST_UITOFP; 415 case Instruction::SIToFP : return bitc::CAST_SITOFP; 416 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 417 case Instruction::FPExt : return bitc::CAST_FPEXT; 418 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 419 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 420 case Instruction::BitCast : return bitc::CAST_BITCAST; 421 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 422 } 423 } 424 425 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 426 switch (Opcode) { 427 default: llvm_unreachable("Unknown binary instruction!"); 428 case Instruction::Add: 429 case Instruction::FAdd: return bitc::BINOP_ADD; 430 case Instruction::Sub: 431 case Instruction::FSub: return bitc::BINOP_SUB; 432 case Instruction::Mul: 433 case Instruction::FMul: return bitc::BINOP_MUL; 434 case Instruction::UDiv: return bitc::BINOP_UDIV; 435 case Instruction::FDiv: 436 case Instruction::SDiv: return bitc::BINOP_SDIV; 437 case Instruction::URem: return bitc::BINOP_UREM; 438 case Instruction::FRem: 439 case Instruction::SRem: return bitc::BINOP_SREM; 440 case Instruction::Shl: return bitc::BINOP_SHL; 441 case Instruction::LShr: return bitc::BINOP_LSHR; 442 case Instruction::AShr: return bitc::BINOP_ASHR; 443 case Instruction::And: return bitc::BINOP_AND; 444 case Instruction::Or: return bitc::BINOP_OR; 445 case Instruction::Xor: return bitc::BINOP_XOR; 446 } 447 } 448 449 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 450 switch (Op) { 451 default: llvm_unreachable("Unknown RMW operation!"); 452 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 453 case AtomicRMWInst::Add: return bitc::RMW_ADD; 454 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 455 case AtomicRMWInst::And: return bitc::RMW_AND; 456 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 457 case AtomicRMWInst::Or: return bitc::RMW_OR; 458 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 459 case AtomicRMWInst::Max: return bitc::RMW_MAX; 460 case AtomicRMWInst::Min: return bitc::RMW_MIN; 461 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 462 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 463 } 464 } 465 466 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 467 switch (Ordering) { 468 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 469 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 470 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 471 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 472 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 473 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 474 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 475 } 476 llvm_unreachable("Invalid ordering"); 477 } 478 479 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 480 switch (SynchScope) { 481 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 482 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 483 } 484 llvm_unreachable("Invalid synch scope"); 485 } 486 487 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 488 StringRef Str, unsigned AbbrevToUse) { 489 SmallVector<unsigned, 64> Vals; 490 491 // Code: [strchar x N] 492 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 493 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 494 AbbrevToUse = 0; 495 Vals.push_back(Str[i]); 496 } 497 498 // Emit the finished record. 499 Stream.EmitRecord(Code, Vals, AbbrevToUse); 500 } 501 502 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 503 switch (Kind) { 504 case Attribute::Alignment: 505 return bitc::ATTR_KIND_ALIGNMENT; 506 case Attribute::AllocSize: 507 return bitc::ATTR_KIND_ALLOC_SIZE; 508 case Attribute::AlwaysInline: 509 return bitc::ATTR_KIND_ALWAYS_INLINE; 510 case Attribute::ArgMemOnly: 511 return bitc::ATTR_KIND_ARGMEMONLY; 512 case Attribute::Builtin: 513 return bitc::ATTR_KIND_BUILTIN; 514 case Attribute::ByVal: 515 return bitc::ATTR_KIND_BY_VAL; 516 case Attribute::Convergent: 517 return bitc::ATTR_KIND_CONVERGENT; 518 case Attribute::InAlloca: 519 return bitc::ATTR_KIND_IN_ALLOCA; 520 case Attribute::Cold: 521 return bitc::ATTR_KIND_COLD; 522 case Attribute::InaccessibleMemOnly: 523 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 524 case Attribute::InaccessibleMemOrArgMemOnly: 525 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 526 case Attribute::InlineHint: 527 return bitc::ATTR_KIND_INLINE_HINT; 528 case Attribute::InReg: 529 return bitc::ATTR_KIND_IN_REG; 530 case Attribute::JumpTable: 531 return bitc::ATTR_KIND_JUMP_TABLE; 532 case Attribute::MinSize: 533 return bitc::ATTR_KIND_MIN_SIZE; 534 case Attribute::Naked: 535 return bitc::ATTR_KIND_NAKED; 536 case Attribute::Nest: 537 return bitc::ATTR_KIND_NEST; 538 case Attribute::NoAlias: 539 return bitc::ATTR_KIND_NO_ALIAS; 540 case Attribute::NoBuiltin: 541 return bitc::ATTR_KIND_NO_BUILTIN; 542 case Attribute::NoCapture: 543 return bitc::ATTR_KIND_NO_CAPTURE; 544 case Attribute::NoDuplicate: 545 return bitc::ATTR_KIND_NO_DUPLICATE; 546 case Attribute::NoImplicitFloat: 547 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 548 case Attribute::NoInline: 549 return bitc::ATTR_KIND_NO_INLINE; 550 case Attribute::NoRecurse: 551 return bitc::ATTR_KIND_NO_RECURSE; 552 case Attribute::NonLazyBind: 553 return bitc::ATTR_KIND_NON_LAZY_BIND; 554 case Attribute::NonNull: 555 return bitc::ATTR_KIND_NON_NULL; 556 case Attribute::Dereferenceable: 557 return bitc::ATTR_KIND_DEREFERENCEABLE; 558 case Attribute::DereferenceableOrNull: 559 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 560 case Attribute::NoRedZone: 561 return bitc::ATTR_KIND_NO_RED_ZONE; 562 case Attribute::NoReturn: 563 return bitc::ATTR_KIND_NO_RETURN; 564 case Attribute::NoUnwind: 565 return bitc::ATTR_KIND_NO_UNWIND; 566 case Attribute::OptimizeForSize: 567 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 568 case Attribute::OptimizeNone: 569 return bitc::ATTR_KIND_OPTIMIZE_NONE; 570 case Attribute::ReadNone: 571 return bitc::ATTR_KIND_READ_NONE; 572 case Attribute::ReadOnly: 573 return bitc::ATTR_KIND_READ_ONLY; 574 case Attribute::Returned: 575 return bitc::ATTR_KIND_RETURNED; 576 case Attribute::ReturnsTwice: 577 return bitc::ATTR_KIND_RETURNS_TWICE; 578 case Attribute::SExt: 579 return bitc::ATTR_KIND_S_EXT; 580 case Attribute::Speculatable: 581 return bitc::ATTR_KIND_SPECULATABLE; 582 case Attribute::StackAlignment: 583 return bitc::ATTR_KIND_STACK_ALIGNMENT; 584 case Attribute::StackProtect: 585 return bitc::ATTR_KIND_STACK_PROTECT; 586 case Attribute::StackProtectReq: 587 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 588 case Attribute::StackProtectStrong: 589 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 590 case Attribute::SafeStack: 591 return bitc::ATTR_KIND_SAFESTACK; 592 case Attribute::StructRet: 593 return bitc::ATTR_KIND_STRUCT_RET; 594 case Attribute::SanitizeAddress: 595 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 596 case Attribute::SanitizeThread: 597 return bitc::ATTR_KIND_SANITIZE_THREAD; 598 case Attribute::SanitizeMemory: 599 return bitc::ATTR_KIND_SANITIZE_MEMORY; 600 case Attribute::SwiftError: 601 return bitc::ATTR_KIND_SWIFT_ERROR; 602 case Attribute::SwiftSelf: 603 return bitc::ATTR_KIND_SWIFT_SELF; 604 case Attribute::UWTable: 605 return bitc::ATTR_KIND_UW_TABLE; 606 case Attribute::WriteOnly: 607 return bitc::ATTR_KIND_WRITEONLY; 608 case Attribute::ZExt: 609 return bitc::ATTR_KIND_Z_EXT; 610 case Attribute::EndAttrKinds: 611 llvm_unreachable("Can not encode end-attribute kinds marker."); 612 case Attribute::None: 613 llvm_unreachable("Can not encode none-attribute."); 614 } 615 616 llvm_unreachable("Trying to encode unknown attribute"); 617 } 618 619 void ModuleBitcodeWriter::writeAttributeGroupTable() { 620 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 621 VE.getAttributeGroups(); 622 if (AttrGrps.empty()) return; 623 624 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 625 626 SmallVector<uint64_t, 64> Record; 627 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 628 unsigned AttrListIndex = Pair.first; 629 AttributeSet AS = Pair.second; 630 Record.push_back(VE.getAttributeGroupID(Pair)); 631 Record.push_back(AttrListIndex); 632 633 for (Attribute Attr : AS) { 634 if (Attr.isEnumAttribute()) { 635 Record.push_back(0); 636 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 637 } else if (Attr.isIntAttribute()) { 638 Record.push_back(1); 639 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 640 Record.push_back(Attr.getValueAsInt()); 641 } else { 642 StringRef Kind = Attr.getKindAsString(); 643 StringRef Val = Attr.getValueAsString(); 644 645 Record.push_back(Val.empty() ? 3 : 4); 646 Record.append(Kind.begin(), Kind.end()); 647 Record.push_back(0); 648 if (!Val.empty()) { 649 Record.append(Val.begin(), Val.end()); 650 Record.push_back(0); 651 } 652 } 653 } 654 655 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 656 Record.clear(); 657 } 658 659 Stream.ExitBlock(); 660 } 661 662 void ModuleBitcodeWriter::writeAttributeTable() { 663 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 664 if (Attrs.empty()) return; 665 666 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 667 668 SmallVector<uint64_t, 64> Record; 669 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 670 AttributeList AL = Attrs[i]; 671 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 672 AttributeSet AS = AL.getAttributes(i); 673 if (AS.hasAttributes()) 674 Record.push_back(VE.getAttributeGroupID({i, AS})); 675 } 676 677 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 678 Record.clear(); 679 } 680 681 Stream.ExitBlock(); 682 } 683 684 /// WriteTypeTable - Write out the type table for a module. 685 void ModuleBitcodeWriter::writeTypeTable() { 686 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 687 688 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 689 SmallVector<uint64_t, 64> TypeVals; 690 691 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 692 693 // Abbrev for TYPE_CODE_POINTER. 694 auto Abbv = std::make_shared<BitCodeAbbrev>(); 695 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 697 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 698 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 699 700 // Abbrev for TYPE_CODE_FUNCTION. 701 Abbv = std::make_shared<BitCodeAbbrev>(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 706 707 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 708 709 // Abbrev for TYPE_CODE_STRUCT_ANON. 710 Abbv = std::make_shared<BitCodeAbbrev>(); 711 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 715 716 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 717 718 // Abbrev for TYPE_CODE_STRUCT_NAME. 719 Abbv = std::make_shared<BitCodeAbbrev>(); 720 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 723 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 724 725 // Abbrev for TYPE_CODE_STRUCT_NAMED. 726 Abbv = std::make_shared<BitCodeAbbrev>(); 727 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 731 732 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 733 734 // Abbrev for TYPE_CODE_ARRAY. 735 Abbv = std::make_shared<BitCodeAbbrev>(); 736 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 739 740 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 741 742 // Emit an entry count so the reader can reserve space. 743 TypeVals.push_back(TypeList.size()); 744 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 745 TypeVals.clear(); 746 747 // Loop over all of the types, emitting each in turn. 748 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 749 Type *T = TypeList[i]; 750 int AbbrevToUse = 0; 751 unsigned Code = 0; 752 753 switch (T->getTypeID()) { 754 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 755 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 756 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 757 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 758 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 759 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 760 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 761 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 762 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 763 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 764 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 765 case Type::IntegerTyID: 766 // INTEGER: [width] 767 Code = bitc::TYPE_CODE_INTEGER; 768 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 769 break; 770 case Type::PointerTyID: { 771 PointerType *PTy = cast<PointerType>(T); 772 // POINTER: [pointee type, address space] 773 Code = bitc::TYPE_CODE_POINTER; 774 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 775 unsigned AddressSpace = PTy->getAddressSpace(); 776 TypeVals.push_back(AddressSpace); 777 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 778 break; 779 } 780 case Type::FunctionTyID: { 781 FunctionType *FT = cast<FunctionType>(T); 782 // FUNCTION: [isvararg, retty, paramty x N] 783 Code = bitc::TYPE_CODE_FUNCTION; 784 TypeVals.push_back(FT->isVarArg()); 785 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 786 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 787 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 788 AbbrevToUse = FunctionAbbrev; 789 break; 790 } 791 case Type::StructTyID: { 792 StructType *ST = cast<StructType>(T); 793 // STRUCT: [ispacked, eltty x N] 794 TypeVals.push_back(ST->isPacked()); 795 // Output all of the element types. 796 for (StructType::element_iterator I = ST->element_begin(), 797 E = ST->element_end(); I != E; ++I) 798 TypeVals.push_back(VE.getTypeID(*I)); 799 800 if (ST->isLiteral()) { 801 Code = bitc::TYPE_CODE_STRUCT_ANON; 802 AbbrevToUse = StructAnonAbbrev; 803 } else { 804 if (ST->isOpaque()) { 805 Code = bitc::TYPE_CODE_OPAQUE; 806 } else { 807 Code = bitc::TYPE_CODE_STRUCT_NAMED; 808 AbbrevToUse = StructNamedAbbrev; 809 } 810 811 // Emit the name if it is present. 812 if (!ST->getName().empty()) 813 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 814 StructNameAbbrev); 815 } 816 break; 817 } 818 case Type::ArrayTyID: { 819 ArrayType *AT = cast<ArrayType>(T); 820 // ARRAY: [numelts, eltty] 821 Code = bitc::TYPE_CODE_ARRAY; 822 TypeVals.push_back(AT->getNumElements()); 823 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 824 AbbrevToUse = ArrayAbbrev; 825 break; 826 } 827 case Type::VectorTyID: { 828 VectorType *VT = cast<VectorType>(T); 829 // VECTOR [numelts, eltty] 830 Code = bitc::TYPE_CODE_VECTOR; 831 TypeVals.push_back(VT->getNumElements()); 832 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 833 break; 834 } 835 } 836 837 // Emit the finished record. 838 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 839 TypeVals.clear(); 840 } 841 842 Stream.ExitBlock(); 843 } 844 845 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 846 switch (Linkage) { 847 case GlobalValue::ExternalLinkage: 848 return 0; 849 case GlobalValue::WeakAnyLinkage: 850 return 16; 851 case GlobalValue::AppendingLinkage: 852 return 2; 853 case GlobalValue::InternalLinkage: 854 return 3; 855 case GlobalValue::LinkOnceAnyLinkage: 856 return 18; 857 case GlobalValue::ExternalWeakLinkage: 858 return 7; 859 case GlobalValue::CommonLinkage: 860 return 8; 861 case GlobalValue::PrivateLinkage: 862 return 9; 863 case GlobalValue::WeakODRLinkage: 864 return 17; 865 case GlobalValue::LinkOnceODRLinkage: 866 return 19; 867 case GlobalValue::AvailableExternallyLinkage: 868 return 12; 869 } 870 llvm_unreachable("Invalid linkage"); 871 } 872 873 static unsigned getEncodedLinkage(const GlobalValue &GV) { 874 return getEncodedLinkage(GV.getLinkage()); 875 } 876 877 // Decode the flags for GlobalValue in the summary 878 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 879 uint64_t RawFlags = 0; 880 881 RawFlags |= Flags.NotEligibleToImport; // bool 882 RawFlags |= (Flags.Live << 1); 883 // Linkage don't need to be remapped at that time for the summary. Any future 884 // change to the getEncodedLinkage() function will need to be taken into 885 // account here as well. 886 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 887 888 return RawFlags; 889 } 890 891 static unsigned getEncodedVisibility(const GlobalValue &GV) { 892 switch (GV.getVisibility()) { 893 case GlobalValue::DefaultVisibility: return 0; 894 case GlobalValue::HiddenVisibility: return 1; 895 case GlobalValue::ProtectedVisibility: return 2; 896 } 897 llvm_unreachable("Invalid visibility"); 898 } 899 900 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 901 switch (GV.getDLLStorageClass()) { 902 case GlobalValue::DefaultStorageClass: return 0; 903 case GlobalValue::DLLImportStorageClass: return 1; 904 case GlobalValue::DLLExportStorageClass: return 2; 905 } 906 llvm_unreachable("Invalid DLL storage class"); 907 } 908 909 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 910 switch (GV.getThreadLocalMode()) { 911 case GlobalVariable::NotThreadLocal: return 0; 912 case GlobalVariable::GeneralDynamicTLSModel: return 1; 913 case GlobalVariable::LocalDynamicTLSModel: return 2; 914 case GlobalVariable::InitialExecTLSModel: return 3; 915 case GlobalVariable::LocalExecTLSModel: return 4; 916 } 917 llvm_unreachable("Invalid TLS model"); 918 } 919 920 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 921 switch (C.getSelectionKind()) { 922 case Comdat::Any: 923 return bitc::COMDAT_SELECTION_KIND_ANY; 924 case Comdat::ExactMatch: 925 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 926 case Comdat::Largest: 927 return bitc::COMDAT_SELECTION_KIND_LARGEST; 928 case Comdat::NoDuplicates: 929 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 930 case Comdat::SameSize: 931 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 932 } 933 llvm_unreachable("Invalid selection kind"); 934 } 935 936 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 937 switch (GV.getUnnamedAddr()) { 938 case GlobalValue::UnnamedAddr::None: return 0; 939 case GlobalValue::UnnamedAddr::Local: return 2; 940 case GlobalValue::UnnamedAddr::Global: return 1; 941 } 942 llvm_unreachable("Invalid unnamed_addr"); 943 } 944 945 void ModuleBitcodeWriter::writeComdats() { 946 SmallVector<unsigned, 64> Vals; 947 for (const Comdat *C : VE.getComdats()) { 948 // COMDAT: [strtab offset, strtab size, selection_kind] 949 Vals.push_back(StrtabBuilder.add(C->getName())); 950 Vals.push_back(C->getName().size()); 951 Vals.push_back(getEncodedComdatSelectionKind(*C)); 952 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 953 Vals.clear(); 954 } 955 } 956 957 /// Write a record that will eventually hold the word offset of the 958 /// module-level VST. For now the offset is 0, which will be backpatched 959 /// after the real VST is written. Saves the bit offset to backpatch. 960 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 961 // Write a placeholder value in for the offset of the real VST, 962 // which is written after the function blocks so that it can include 963 // the offset of each function. The placeholder offset will be 964 // updated when the real VST is written. 965 auto Abbv = std::make_shared<BitCodeAbbrev>(); 966 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 967 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 968 // hold the real VST offset. Must use fixed instead of VBR as we don't 969 // know how many VBR chunks to reserve ahead of time. 970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 971 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 972 973 // Emit the placeholder 974 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 975 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 976 977 // Compute and save the bit offset to the placeholder, which will be 978 // patched when the real VST is written. We can simply subtract the 32-bit 979 // fixed size from the current bit number to get the location to backpatch. 980 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 981 } 982 983 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 984 985 /// Determine the encoding to use for the given string name and length. 986 static StringEncoding getStringEncoding(StringRef Str) { 987 bool isChar6 = true; 988 for (char C : Str) { 989 if (isChar6) 990 isChar6 = BitCodeAbbrevOp::isChar6(C); 991 if ((unsigned char)C & 128) 992 // don't bother scanning the rest. 993 return SE_Fixed8; 994 } 995 if (isChar6) 996 return SE_Char6; 997 return SE_Fixed7; 998 } 999 1000 /// Emit top-level description of module, including target triple, inline asm, 1001 /// descriptors for global variables, and function prototype info. 1002 /// Returns the bit offset to backpatch with the location of the real VST. 1003 void ModuleBitcodeWriter::writeModuleInfo() { 1004 // Emit various pieces of data attached to a module. 1005 if (!M.getTargetTriple().empty()) 1006 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1007 0 /*TODO*/); 1008 const std::string &DL = M.getDataLayoutStr(); 1009 if (!DL.empty()) 1010 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1011 if (!M.getModuleInlineAsm().empty()) 1012 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1013 0 /*TODO*/); 1014 1015 // Emit information about sections and GC, computing how many there are. Also 1016 // compute the maximum alignment value. 1017 std::map<std::string, unsigned> SectionMap; 1018 std::map<std::string, unsigned> GCMap; 1019 unsigned MaxAlignment = 0; 1020 unsigned MaxGlobalType = 0; 1021 for (const GlobalValue &GV : M.globals()) { 1022 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1023 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1024 if (GV.hasSection()) { 1025 // Give section names unique ID's. 1026 unsigned &Entry = SectionMap[GV.getSection()]; 1027 if (!Entry) { 1028 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1029 0 /*TODO*/); 1030 Entry = SectionMap.size(); 1031 } 1032 } 1033 } 1034 for (const Function &F : M) { 1035 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1036 if (F.hasSection()) { 1037 // Give section names unique ID's. 1038 unsigned &Entry = SectionMap[F.getSection()]; 1039 if (!Entry) { 1040 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1041 0 /*TODO*/); 1042 Entry = SectionMap.size(); 1043 } 1044 } 1045 if (F.hasGC()) { 1046 // Same for GC names. 1047 unsigned &Entry = GCMap[F.getGC()]; 1048 if (!Entry) { 1049 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1050 0 /*TODO*/); 1051 Entry = GCMap.size(); 1052 } 1053 } 1054 } 1055 1056 // Emit abbrev for globals, now that we know # sections and max alignment. 1057 unsigned SimpleGVarAbbrev = 0; 1058 if (!M.global_empty()) { 1059 // Add an abbrev for common globals with no visibility or thread localness. 1060 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1061 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1065 Log2_32_Ceil(MaxGlobalType+1))); 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1067 //| explicitType << 1 1068 //| constant 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1071 if (MaxAlignment == 0) // Alignment. 1072 Abbv->Add(BitCodeAbbrevOp(0)); 1073 else { 1074 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1076 Log2_32_Ceil(MaxEncAlignment+1))); 1077 } 1078 if (SectionMap.empty()) // Section. 1079 Abbv->Add(BitCodeAbbrevOp(0)); 1080 else 1081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1082 Log2_32_Ceil(SectionMap.size()+1))); 1083 // Don't bother emitting vis + thread local. 1084 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1085 } 1086 1087 SmallVector<unsigned, 64> Vals; 1088 // Emit the module's source file name. 1089 { 1090 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1091 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1092 if (Bits == SE_Char6) 1093 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1094 else if (Bits == SE_Fixed7) 1095 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1096 1097 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1098 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1099 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1101 Abbv->Add(AbbrevOpToUse); 1102 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1103 1104 for (const auto P : M.getSourceFileName()) 1105 Vals.push_back((unsigned char)P); 1106 1107 // Emit the finished record. 1108 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1109 Vals.clear(); 1110 } 1111 1112 // Emit the global variable information. 1113 for (const GlobalVariable &GV : M.globals()) { 1114 unsigned AbbrevToUse = 0; 1115 1116 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1117 // linkage, alignment, section, visibility, threadlocal, 1118 // unnamed_addr, externally_initialized, dllstorageclass, 1119 // comdat, attributes] 1120 Vals.push_back(StrtabBuilder.add(GV.getName())); 1121 Vals.push_back(GV.getName().size()); 1122 Vals.push_back(VE.getTypeID(GV.getValueType())); 1123 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1124 Vals.push_back(GV.isDeclaration() ? 0 : 1125 (VE.getValueID(GV.getInitializer()) + 1)); 1126 Vals.push_back(getEncodedLinkage(GV)); 1127 Vals.push_back(Log2_32(GV.getAlignment())+1); 1128 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1129 if (GV.isThreadLocal() || 1130 GV.getVisibility() != GlobalValue::DefaultVisibility || 1131 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1132 GV.isExternallyInitialized() || 1133 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1134 GV.hasComdat() || 1135 GV.hasAttributes()) { 1136 Vals.push_back(getEncodedVisibility(GV)); 1137 Vals.push_back(getEncodedThreadLocalMode(GV)); 1138 Vals.push_back(getEncodedUnnamedAddr(GV)); 1139 Vals.push_back(GV.isExternallyInitialized()); 1140 Vals.push_back(getEncodedDLLStorageClass(GV)); 1141 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1142 1143 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1144 Vals.push_back(VE.getAttributeListID(AL)); 1145 } else { 1146 AbbrevToUse = SimpleGVarAbbrev; 1147 } 1148 1149 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1150 Vals.clear(); 1151 } 1152 1153 // Emit the function proto information. 1154 for (const Function &F : M) { 1155 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1156 // linkage, paramattrs, alignment, section, visibility, gc, 1157 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1158 // prefixdata, personalityfn] 1159 Vals.push_back(StrtabBuilder.add(F.getName())); 1160 Vals.push_back(F.getName().size()); 1161 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1162 Vals.push_back(F.getCallingConv()); 1163 Vals.push_back(F.isDeclaration()); 1164 Vals.push_back(getEncodedLinkage(F)); 1165 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1166 Vals.push_back(Log2_32(F.getAlignment())+1); 1167 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1168 Vals.push_back(getEncodedVisibility(F)); 1169 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1170 Vals.push_back(getEncodedUnnamedAddr(F)); 1171 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1172 : 0); 1173 Vals.push_back(getEncodedDLLStorageClass(F)); 1174 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1175 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1176 : 0); 1177 Vals.push_back( 1178 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1179 1180 unsigned AbbrevToUse = 0; 1181 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1182 Vals.clear(); 1183 } 1184 1185 // Emit the alias information. 1186 for (const GlobalAlias &A : M.aliases()) { 1187 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1188 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1189 Vals.push_back(StrtabBuilder.add(A.getName())); 1190 Vals.push_back(A.getName().size()); 1191 Vals.push_back(VE.getTypeID(A.getValueType())); 1192 Vals.push_back(A.getType()->getAddressSpace()); 1193 Vals.push_back(VE.getValueID(A.getAliasee())); 1194 Vals.push_back(getEncodedLinkage(A)); 1195 Vals.push_back(getEncodedVisibility(A)); 1196 Vals.push_back(getEncodedDLLStorageClass(A)); 1197 Vals.push_back(getEncodedThreadLocalMode(A)); 1198 Vals.push_back(getEncodedUnnamedAddr(A)); 1199 unsigned AbbrevToUse = 0; 1200 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1201 Vals.clear(); 1202 } 1203 1204 // Emit the ifunc information. 1205 for (const GlobalIFunc &I : M.ifuncs()) { 1206 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1207 // val#, linkage, visibility] 1208 Vals.push_back(StrtabBuilder.add(I.getName())); 1209 Vals.push_back(I.getName().size()); 1210 Vals.push_back(VE.getTypeID(I.getValueType())); 1211 Vals.push_back(I.getType()->getAddressSpace()); 1212 Vals.push_back(VE.getValueID(I.getResolver())); 1213 Vals.push_back(getEncodedLinkage(I)); 1214 Vals.push_back(getEncodedVisibility(I)); 1215 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1216 Vals.clear(); 1217 } 1218 1219 writeValueSymbolTableForwardDecl(); 1220 } 1221 1222 static uint64_t getOptimizationFlags(const Value *V) { 1223 uint64_t Flags = 0; 1224 1225 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1226 if (OBO->hasNoSignedWrap()) 1227 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1228 if (OBO->hasNoUnsignedWrap()) 1229 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1230 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1231 if (PEO->isExact()) 1232 Flags |= 1 << bitc::PEO_EXACT; 1233 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1234 if (FPMO->hasUnsafeAlgebra()) 1235 Flags |= FastMathFlags::UnsafeAlgebra; 1236 if (FPMO->hasNoNaNs()) 1237 Flags |= FastMathFlags::NoNaNs; 1238 if (FPMO->hasNoInfs()) 1239 Flags |= FastMathFlags::NoInfs; 1240 if (FPMO->hasNoSignedZeros()) 1241 Flags |= FastMathFlags::NoSignedZeros; 1242 if (FPMO->hasAllowReciprocal()) 1243 Flags |= FastMathFlags::AllowReciprocal; 1244 if (FPMO->hasAllowContract()) 1245 Flags |= FastMathFlags::AllowContract; 1246 } 1247 1248 return Flags; 1249 } 1250 1251 void ModuleBitcodeWriter::writeValueAsMetadata( 1252 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1253 // Mimic an MDNode with a value as one operand. 1254 Value *V = MD->getValue(); 1255 Record.push_back(VE.getTypeID(V->getType())); 1256 Record.push_back(VE.getValueID(V)); 1257 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1258 Record.clear(); 1259 } 1260 1261 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1262 SmallVectorImpl<uint64_t> &Record, 1263 unsigned Abbrev) { 1264 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1265 Metadata *MD = N->getOperand(i); 1266 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1267 "Unexpected function-local metadata"); 1268 Record.push_back(VE.getMetadataOrNullID(MD)); 1269 } 1270 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1271 : bitc::METADATA_NODE, 1272 Record, Abbrev); 1273 Record.clear(); 1274 } 1275 1276 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1277 // Assume the column is usually under 128, and always output the inlined-at 1278 // location (it's never more expensive than building an array size 1). 1279 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1280 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1286 return Stream.EmitAbbrev(std::move(Abbv)); 1287 } 1288 1289 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1290 SmallVectorImpl<uint64_t> &Record, 1291 unsigned &Abbrev) { 1292 if (!Abbrev) 1293 Abbrev = createDILocationAbbrev(); 1294 1295 Record.push_back(N->isDistinct()); 1296 Record.push_back(N->getLine()); 1297 Record.push_back(N->getColumn()); 1298 Record.push_back(VE.getMetadataID(N->getScope())); 1299 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1300 1301 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1302 Record.clear(); 1303 } 1304 1305 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1306 // Assume the column is usually under 128, and always output the inlined-at 1307 // location (it's never more expensive than building an array size 1). 1308 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1309 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1316 return Stream.EmitAbbrev(std::move(Abbv)); 1317 } 1318 1319 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1320 SmallVectorImpl<uint64_t> &Record, 1321 unsigned &Abbrev) { 1322 if (!Abbrev) 1323 Abbrev = createGenericDINodeAbbrev(); 1324 1325 Record.push_back(N->isDistinct()); 1326 Record.push_back(N->getTag()); 1327 Record.push_back(0); // Per-tag version field; unused for now. 1328 1329 for (auto &I : N->operands()) 1330 Record.push_back(VE.getMetadataOrNullID(I)); 1331 1332 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1333 Record.clear(); 1334 } 1335 1336 static uint64_t rotateSign(int64_t I) { 1337 uint64_t U = I; 1338 return I < 0 ? ~(U << 1) : U << 1; 1339 } 1340 1341 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1342 SmallVectorImpl<uint64_t> &Record, 1343 unsigned Abbrev) { 1344 Record.push_back(N->isDistinct()); 1345 Record.push_back(N->getCount()); 1346 Record.push_back(rotateSign(N->getLowerBound())); 1347 1348 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1349 Record.clear(); 1350 } 1351 1352 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1353 SmallVectorImpl<uint64_t> &Record, 1354 unsigned Abbrev) { 1355 Record.push_back(N->isDistinct()); 1356 Record.push_back(rotateSign(N->getValue())); 1357 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1358 1359 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1360 Record.clear(); 1361 } 1362 1363 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1364 SmallVectorImpl<uint64_t> &Record, 1365 unsigned Abbrev) { 1366 Record.push_back(N->isDistinct()); 1367 Record.push_back(N->getTag()); 1368 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1369 Record.push_back(N->getSizeInBits()); 1370 Record.push_back(N->getAlignInBits()); 1371 Record.push_back(N->getEncoding()); 1372 1373 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1374 Record.clear(); 1375 } 1376 1377 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1378 SmallVectorImpl<uint64_t> &Record, 1379 unsigned Abbrev) { 1380 Record.push_back(N->isDistinct()); 1381 Record.push_back(N->getTag()); 1382 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1383 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1384 Record.push_back(N->getLine()); 1385 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1386 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1387 Record.push_back(N->getSizeInBits()); 1388 Record.push_back(N->getAlignInBits()); 1389 Record.push_back(N->getOffsetInBits()); 1390 Record.push_back(N->getFlags()); 1391 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1392 1393 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1394 // that there is no DWARF address space associated with DIDerivedType. 1395 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1396 Record.push_back(*DWARFAddressSpace + 1); 1397 else 1398 Record.push_back(0); 1399 1400 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1401 Record.clear(); 1402 } 1403 1404 void ModuleBitcodeWriter::writeDICompositeType( 1405 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1406 unsigned Abbrev) { 1407 const unsigned IsNotUsedInOldTypeRef = 0x2; 1408 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1409 Record.push_back(N->getTag()); 1410 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1411 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1412 Record.push_back(N->getLine()); 1413 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1414 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1415 Record.push_back(N->getSizeInBits()); 1416 Record.push_back(N->getAlignInBits()); 1417 Record.push_back(N->getOffsetInBits()); 1418 Record.push_back(N->getFlags()); 1419 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1420 Record.push_back(N->getRuntimeLang()); 1421 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1422 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1423 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1424 1425 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1426 Record.clear(); 1427 } 1428 1429 void ModuleBitcodeWriter::writeDISubroutineType( 1430 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1431 unsigned Abbrev) { 1432 const unsigned HasNoOldTypeRefs = 0x2; 1433 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1434 Record.push_back(N->getFlags()); 1435 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1436 Record.push_back(N->getCC()); 1437 1438 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1439 Record.clear(); 1440 } 1441 1442 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1443 SmallVectorImpl<uint64_t> &Record, 1444 unsigned Abbrev) { 1445 Record.push_back(N->isDistinct()); 1446 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1447 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1448 Record.push_back(N->getChecksumKind()); 1449 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1450 1451 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1452 Record.clear(); 1453 } 1454 1455 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1456 SmallVectorImpl<uint64_t> &Record, 1457 unsigned Abbrev) { 1458 assert(N->isDistinct() && "Expected distinct compile units"); 1459 Record.push_back(/* IsDistinct */ true); 1460 Record.push_back(N->getSourceLanguage()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1463 Record.push_back(N->isOptimized()); 1464 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1465 Record.push_back(N->getRuntimeVersion()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1467 Record.push_back(N->getEmissionKind()); 1468 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1470 Record.push_back(/* subprograms */ 0); 1471 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1472 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1473 Record.push_back(N->getDWOId()); 1474 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1475 Record.push_back(N->getSplitDebugInlining()); 1476 Record.push_back(N->getDebugInfoForProfiling()); 1477 1478 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1479 Record.clear(); 1480 } 1481 1482 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1483 SmallVectorImpl<uint64_t> &Record, 1484 unsigned Abbrev) { 1485 uint64_t HasUnitFlag = 1 << 1; 1486 Record.push_back(N->isDistinct() | HasUnitFlag); 1487 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1488 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1489 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1490 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1491 Record.push_back(N->getLine()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1493 Record.push_back(N->isLocalToUnit()); 1494 Record.push_back(N->isDefinition()); 1495 Record.push_back(N->getScopeLine()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1497 Record.push_back(N->getVirtuality()); 1498 Record.push_back(N->getVirtualIndex()); 1499 Record.push_back(N->getFlags()); 1500 Record.push_back(N->isOptimized()); 1501 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1502 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1503 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1504 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1505 Record.push_back(N->getThisAdjustment()); 1506 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1507 1508 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1509 Record.clear(); 1510 } 1511 1512 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1513 SmallVectorImpl<uint64_t> &Record, 1514 unsigned Abbrev) { 1515 Record.push_back(N->isDistinct()); 1516 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1518 Record.push_back(N->getLine()); 1519 Record.push_back(N->getColumn()); 1520 1521 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1522 Record.clear(); 1523 } 1524 1525 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1526 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1527 unsigned Abbrev) { 1528 Record.push_back(N->isDistinct()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1531 Record.push_back(N->getDiscriminator()); 1532 1533 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1538 SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1541 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1543 1544 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1549 SmallVectorImpl<uint64_t> &Record, 1550 unsigned Abbrev) { 1551 Record.push_back(N->isDistinct()); 1552 Record.push_back(N->getMacinfoType()); 1553 Record.push_back(N->getLine()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1556 1557 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1558 Record.clear(); 1559 } 1560 1561 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned Abbrev) { 1564 Record.push_back(N->isDistinct()); 1565 Record.push_back(N->getMacinfoType()); 1566 Record.push_back(N->getLine()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1569 1570 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1571 Record.clear(); 1572 } 1573 1574 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1575 SmallVectorImpl<uint64_t> &Record, 1576 unsigned Abbrev) { 1577 Record.push_back(N->isDistinct()); 1578 for (auto &I : N->operands()) 1579 Record.push_back(VE.getMetadataOrNullID(I)); 1580 1581 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1582 Record.clear(); 1583 } 1584 1585 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1586 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1587 unsigned Abbrev) { 1588 Record.push_back(N->isDistinct()); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1591 1592 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1593 Record.clear(); 1594 } 1595 1596 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1597 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1598 unsigned Abbrev) { 1599 Record.push_back(N->isDistinct()); 1600 Record.push_back(N->getTag()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1604 1605 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1606 Record.clear(); 1607 } 1608 1609 void ModuleBitcodeWriter::writeDIGlobalVariable( 1610 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1611 unsigned Abbrev) { 1612 const uint64_t Version = 1 << 1; 1613 Record.push_back((uint64_t)N->isDistinct() | Version); 1614 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1615 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1618 Record.push_back(N->getLine()); 1619 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1620 Record.push_back(N->isLocalToUnit()); 1621 Record.push_back(N->isDefinition()); 1622 Record.push_back(/* expr */ 0); 1623 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1624 Record.push_back(N->getAlignInBits()); 1625 1626 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void ModuleBitcodeWriter::writeDILocalVariable( 1631 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 // In order to support all possible bitcode formats in BitcodeReader we need 1634 // to distinguish the following cases: 1635 // 1) Record has no artificial tag (Record[1]), 1636 // has no obsolete inlinedAt field (Record[9]). 1637 // In this case Record size will be 8, HasAlignment flag is false. 1638 // 2) Record has artificial tag (Record[1]), 1639 // has no obsolete inlignedAt field (Record[9]). 1640 // In this case Record size will be 9, HasAlignment flag is false. 1641 // 3) Record has both artificial tag (Record[1]) and 1642 // obsolete inlignedAt field (Record[9]). 1643 // In this case Record size will be 10, HasAlignment flag is false. 1644 // 4) Record has neither artificial tag, nor inlignedAt field, but 1645 // HasAlignment flag is true and Record[8] contains alignment value. 1646 const uint64_t HasAlignmentFlag = 1 << 1; 1647 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1648 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1651 Record.push_back(N->getLine()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1653 Record.push_back(N->getArg()); 1654 Record.push_back(N->getFlags()); 1655 Record.push_back(N->getAlignInBits()); 1656 1657 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1662 SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.reserve(N->getElements().size() + 1); 1665 const uint64_t Version = 2 << 1; 1666 Record.push_back((uint64_t)N->isDistinct() | Version); 1667 Record.append(N->elements_begin(), N->elements_end()); 1668 1669 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1674 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.push_back(N->isDistinct()); 1677 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1679 1680 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1681 Record.clear(); 1682 } 1683 1684 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1685 SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 Record.push_back(N->isDistinct()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1690 Record.push_back(N->getLine()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1693 Record.push_back(N->getAttributes()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1695 1696 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDIImportedEntity( 1701 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 Record.push_back(N->isDistinct()); 1704 Record.push_back(N->getTag()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1707 Record.push_back(N->getLine()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1709 1710 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1711 Record.clear(); 1712 } 1713 1714 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1715 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1716 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1719 return Stream.EmitAbbrev(std::move(Abbv)); 1720 } 1721 1722 void ModuleBitcodeWriter::writeNamedMetadata( 1723 SmallVectorImpl<uint64_t> &Record) { 1724 if (M.named_metadata_empty()) 1725 return; 1726 1727 unsigned Abbrev = createNamedMetadataAbbrev(); 1728 for (const NamedMDNode &NMD : M.named_metadata()) { 1729 // Write name. 1730 StringRef Str = NMD.getName(); 1731 Record.append(Str.bytes_begin(), Str.bytes_end()); 1732 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1733 Record.clear(); 1734 1735 // Write named metadata operands. 1736 for (const MDNode *N : NMD.operands()) 1737 Record.push_back(VE.getMetadataID(N)); 1738 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1739 Record.clear(); 1740 } 1741 } 1742 1743 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1744 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1745 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1749 return Stream.EmitAbbrev(std::move(Abbv)); 1750 } 1751 1752 /// Write out a record for MDString. 1753 /// 1754 /// All the metadata strings in a metadata block are emitted in a single 1755 /// record. The sizes and strings themselves are shoved into a blob. 1756 void ModuleBitcodeWriter::writeMetadataStrings( 1757 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1758 if (Strings.empty()) 1759 return; 1760 1761 // Start the record with the number of strings. 1762 Record.push_back(bitc::METADATA_STRINGS); 1763 Record.push_back(Strings.size()); 1764 1765 // Emit the sizes of the strings in the blob. 1766 SmallString<256> Blob; 1767 { 1768 BitstreamWriter W(Blob); 1769 for (const Metadata *MD : Strings) 1770 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1771 W.FlushToWord(); 1772 } 1773 1774 // Add the offset to the strings to the record. 1775 Record.push_back(Blob.size()); 1776 1777 // Add the strings to the blob. 1778 for (const Metadata *MD : Strings) 1779 Blob.append(cast<MDString>(MD)->getString()); 1780 1781 // Emit the final record. 1782 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1783 Record.clear(); 1784 } 1785 1786 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1787 enum MetadataAbbrev : unsigned { 1788 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1789 #include "llvm/IR/Metadata.def" 1790 LastPlusOne 1791 }; 1792 1793 void ModuleBitcodeWriter::writeMetadataRecords( 1794 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1795 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1796 if (MDs.empty()) 1797 return; 1798 1799 // Initialize MDNode abbreviations. 1800 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1801 #include "llvm/IR/Metadata.def" 1802 1803 for (const Metadata *MD : MDs) { 1804 if (IndexPos) 1805 IndexPos->push_back(Stream.GetCurrentBitNo()); 1806 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1807 assert(N->isResolved() && "Expected forward references to be resolved"); 1808 1809 switch (N->getMetadataID()) { 1810 default: 1811 llvm_unreachable("Invalid MDNode subclass"); 1812 #define HANDLE_MDNODE_LEAF(CLASS) \ 1813 case Metadata::CLASS##Kind: \ 1814 if (MDAbbrevs) \ 1815 write##CLASS(cast<CLASS>(N), Record, \ 1816 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1817 else \ 1818 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1819 continue; 1820 #include "llvm/IR/Metadata.def" 1821 } 1822 } 1823 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1824 } 1825 } 1826 1827 void ModuleBitcodeWriter::writeModuleMetadata() { 1828 if (!VE.hasMDs() && M.named_metadata_empty()) 1829 return; 1830 1831 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1832 SmallVector<uint64_t, 64> Record; 1833 1834 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1835 // block and load any metadata. 1836 std::vector<unsigned> MDAbbrevs; 1837 1838 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1839 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1840 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1841 createGenericDINodeAbbrev(); 1842 1843 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1844 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1847 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1848 1849 Abbv = std::make_shared<BitCodeAbbrev>(); 1850 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1853 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1854 1855 // Emit MDStrings together upfront. 1856 writeMetadataStrings(VE.getMDStrings(), Record); 1857 1858 // We only emit an index for the metadata record if we have more than a given 1859 // (naive) threshold of metadatas, otherwise it is not worth it. 1860 if (VE.getNonMDStrings().size() > IndexThreshold) { 1861 // Write a placeholder value in for the offset of the metadata index, 1862 // which is written after the records, so that it can include 1863 // the offset of each entry. The placeholder offset will be 1864 // updated after all records are emitted. 1865 uint64_t Vals[] = {0, 0}; 1866 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1867 } 1868 1869 // Compute and save the bit offset to the current position, which will be 1870 // patched when we emit the index later. We can simply subtract the 64-bit 1871 // fixed size from the current bit number to get the location to backpatch. 1872 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1873 1874 // This index will contain the bitpos for each individual record. 1875 std::vector<uint64_t> IndexPos; 1876 IndexPos.reserve(VE.getNonMDStrings().size()); 1877 1878 // Write all the records 1879 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1880 1881 if (VE.getNonMDStrings().size() > IndexThreshold) { 1882 // Now that we have emitted all the records we will emit the index. But 1883 // first 1884 // backpatch the forward reference so that the reader can skip the records 1885 // efficiently. 1886 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1887 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1888 1889 // Delta encode the index. 1890 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1891 for (auto &Elt : IndexPos) { 1892 auto EltDelta = Elt - PreviousValue; 1893 PreviousValue = Elt; 1894 Elt = EltDelta; 1895 } 1896 // Emit the index record. 1897 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1898 IndexPos.clear(); 1899 } 1900 1901 // Write the named metadata now. 1902 writeNamedMetadata(Record); 1903 1904 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1905 SmallVector<uint64_t, 4> Record; 1906 Record.push_back(VE.getValueID(&GO)); 1907 pushGlobalMetadataAttachment(Record, GO); 1908 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1909 }; 1910 for (const Function &F : M) 1911 if (F.isDeclaration() && F.hasMetadata()) 1912 AddDeclAttachedMetadata(F); 1913 // FIXME: Only store metadata for declarations here, and move data for global 1914 // variable definitions to a separate block (PR28134). 1915 for (const GlobalVariable &GV : M.globals()) 1916 if (GV.hasMetadata()) 1917 AddDeclAttachedMetadata(GV); 1918 1919 Stream.ExitBlock(); 1920 } 1921 1922 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1923 if (!VE.hasMDs()) 1924 return; 1925 1926 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1927 SmallVector<uint64_t, 64> Record; 1928 writeMetadataStrings(VE.getMDStrings(), Record); 1929 writeMetadataRecords(VE.getNonMDStrings(), Record); 1930 Stream.ExitBlock(); 1931 } 1932 1933 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1934 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1935 // [n x [id, mdnode]] 1936 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1937 GO.getAllMetadata(MDs); 1938 for (const auto &I : MDs) { 1939 Record.push_back(I.first); 1940 Record.push_back(VE.getMetadataID(I.second)); 1941 } 1942 } 1943 1944 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1945 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1946 1947 SmallVector<uint64_t, 64> Record; 1948 1949 if (F.hasMetadata()) { 1950 pushGlobalMetadataAttachment(Record, F); 1951 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1952 Record.clear(); 1953 } 1954 1955 // Write metadata attachments 1956 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1957 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1958 for (const BasicBlock &BB : F) 1959 for (const Instruction &I : BB) { 1960 MDs.clear(); 1961 I.getAllMetadataOtherThanDebugLoc(MDs); 1962 1963 // If no metadata, ignore instruction. 1964 if (MDs.empty()) continue; 1965 1966 Record.push_back(VE.getInstructionID(&I)); 1967 1968 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1969 Record.push_back(MDs[i].first); 1970 Record.push_back(VE.getMetadataID(MDs[i].second)); 1971 } 1972 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1973 Record.clear(); 1974 } 1975 1976 Stream.ExitBlock(); 1977 } 1978 1979 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1980 SmallVector<uint64_t, 64> Record; 1981 1982 // Write metadata kinds 1983 // METADATA_KIND - [n x [id, name]] 1984 SmallVector<StringRef, 8> Names; 1985 M.getMDKindNames(Names); 1986 1987 if (Names.empty()) return; 1988 1989 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1990 1991 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1992 Record.push_back(MDKindID); 1993 StringRef KName = Names[MDKindID]; 1994 Record.append(KName.begin(), KName.end()); 1995 1996 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1997 Record.clear(); 1998 } 1999 2000 Stream.ExitBlock(); 2001 } 2002 2003 void ModuleBitcodeWriter::writeOperandBundleTags() { 2004 // Write metadata kinds 2005 // 2006 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2007 // 2008 // OPERAND_BUNDLE_TAG - [strchr x N] 2009 2010 SmallVector<StringRef, 8> Tags; 2011 M.getOperandBundleTags(Tags); 2012 2013 if (Tags.empty()) 2014 return; 2015 2016 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2017 2018 SmallVector<uint64_t, 64> Record; 2019 2020 for (auto Tag : Tags) { 2021 Record.append(Tag.begin(), Tag.end()); 2022 2023 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2024 Record.clear(); 2025 } 2026 2027 Stream.ExitBlock(); 2028 } 2029 2030 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2031 if ((int64_t)V >= 0) 2032 Vals.push_back(V << 1); 2033 else 2034 Vals.push_back((-V << 1) | 1); 2035 } 2036 2037 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2038 bool isGlobal) { 2039 if (FirstVal == LastVal) return; 2040 2041 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2042 2043 unsigned AggregateAbbrev = 0; 2044 unsigned String8Abbrev = 0; 2045 unsigned CString7Abbrev = 0; 2046 unsigned CString6Abbrev = 0; 2047 // If this is a constant pool for the module, emit module-specific abbrevs. 2048 if (isGlobal) { 2049 // Abbrev for CST_CODE_AGGREGATE. 2050 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2051 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2054 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2055 2056 // Abbrev for CST_CODE_STRING. 2057 Abbv = std::make_shared<BitCodeAbbrev>(); 2058 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2061 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2062 // Abbrev for CST_CODE_CSTRING. 2063 Abbv = std::make_shared<BitCodeAbbrev>(); 2064 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2067 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2068 // Abbrev for CST_CODE_CSTRING. 2069 Abbv = std::make_shared<BitCodeAbbrev>(); 2070 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2073 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2074 } 2075 2076 SmallVector<uint64_t, 64> Record; 2077 2078 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2079 Type *LastTy = nullptr; 2080 for (unsigned i = FirstVal; i != LastVal; ++i) { 2081 const Value *V = Vals[i].first; 2082 // If we need to switch types, do so now. 2083 if (V->getType() != LastTy) { 2084 LastTy = V->getType(); 2085 Record.push_back(VE.getTypeID(LastTy)); 2086 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2087 CONSTANTS_SETTYPE_ABBREV); 2088 Record.clear(); 2089 } 2090 2091 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2092 Record.push_back(unsigned(IA->hasSideEffects()) | 2093 unsigned(IA->isAlignStack()) << 1 | 2094 unsigned(IA->getDialect()&1) << 2); 2095 2096 // Add the asm string. 2097 const std::string &AsmStr = IA->getAsmString(); 2098 Record.push_back(AsmStr.size()); 2099 Record.append(AsmStr.begin(), AsmStr.end()); 2100 2101 // Add the constraint string. 2102 const std::string &ConstraintStr = IA->getConstraintString(); 2103 Record.push_back(ConstraintStr.size()); 2104 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2105 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2106 Record.clear(); 2107 continue; 2108 } 2109 const Constant *C = cast<Constant>(V); 2110 unsigned Code = -1U; 2111 unsigned AbbrevToUse = 0; 2112 if (C->isNullValue()) { 2113 Code = bitc::CST_CODE_NULL; 2114 } else if (isa<UndefValue>(C)) { 2115 Code = bitc::CST_CODE_UNDEF; 2116 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2117 if (IV->getBitWidth() <= 64) { 2118 uint64_t V = IV->getSExtValue(); 2119 emitSignedInt64(Record, V); 2120 Code = bitc::CST_CODE_INTEGER; 2121 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2122 } else { // Wide integers, > 64 bits in size. 2123 // We have an arbitrary precision integer value to write whose 2124 // bit width is > 64. However, in canonical unsigned integer 2125 // format it is likely that the high bits are going to be zero. 2126 // So, we only write the number of active words. 2127 unsigned NWords = IV->getValue().getActiveWords(); 2128 const uint64_t *RawWords = IV->getValue().getRawData(); 2129 for (unsigned i = 0; i != NWords; ++i) { 2130 emitSignedInt64(Record, RawWords[i]); 2131 } 2132 Code = bitc::CST_CODE_WIDE_INTEGER; 2133 } 2134 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2135 Code = bitc::CST_CODE_FLOAT; 2136 Type *Ty = CFP->getType(); 2137 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2138 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2139 } else if (Ty->isX86_FP80Ty()) { 2140 // api needed to prevent premature destruction 2141 // bits are not in the same order as a normal i80 APInt, compensate. 2142 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2143 const uint64_t *p = api.getRawData(); 2144 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2145 Record.push_back(p[0] & 0xffffLL); 2146 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2147 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2148 const uint64_t *p = api.getRawData(); 2149 Record.push_back(p[0]); 2150 Record.push_back(p[1]); 2151 } else { 2152 assert (0 && "Unknown FP type!"); 2153 } 2154 } else if (isa<ConstantDataSequential>(C) && 2155 cast<ConstantDataSequential>(C)->isString()) { 2156 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2157 // Emit constant strings specially. 2158 unsigned NumElts = Str->getNumElements(); 2159 // If this is a null-terminated string, use the denser CSTRING encoding. 2160 if (Str->isCString()) { 2161 Code = bitc::CST_CODE_CSTRING; 2162 --NumElts; // Don't encode the null, which isn't allowed by char6. 2163 } else { 2164 Code = bitc::CST_CODE_STRING; 2165 AbbrevToUse = String8Abbrev; 2166 } 2167 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2168 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2169 for (unsigned i = 0; i != NumElts; ++i) { 2170 unsigned char V = Str->getElementAsInteger(i); 2171 Record.push_back(V); 2172 isCStr7 &= (V & 128) == 0; 2173 if (isCStrChar6) 2174 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2175 } 2176 2177 if (isCStrChar6) 2178 AbbrevToUse = CString6Abbrev; 2179 else if (isCStr7) 2180 AbbrevToUse = CString7Abbrev; 2181 } else if (const ConstantDataSequential *CDS = 2182 dyn_cast<ConstantDataSequential>(C)) { 2183 Code = bitc::CST_CODE_DATA; 2184 Type *EltTy = CDS->getType()->getElementType(); 2185 if (isa<IntegerType>(EltTy)) { 2186 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2187 Record.push_back(CDS->getElementAsInteger(i)); 2188 } else { 2189 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2190 Record.push_back( 2191 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2192 } 2193 } else if (isa<ConstantAggregate>(C)) { 2194 Code = bitc::CST_CODE_AGGREGATE; 2195 for (const Value *Op : C->operands()) 2196 Record.push_back(VE.getValueID(Op)); 2197 AbbrevToUse = AggregateAbbrev; 2198 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2199 switch (CE->getOpcode()) { 2200 default: 2201 if (Instruction::isCast(CE->getOpcode())) { 2202 Code = bitc::CST_CODE_CE_CAST; 2203 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2204 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2205 Record.push_back(VE.getValueID(C->getOperand(0))); 2206 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2207 } else { 2208 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2209 Code = bitc::CST_CODE_CE_BINOP; 2210 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2211 Record.push_back(VE.getValueID(C->getOperand(0))); 2212 Record.push_back(VE.getValueID(C->getOperand(1))); 2213 uint64_t Flags = getOptimizationFlags(CE); 2214 if (Flags != 0) 2215 Record.push_back(Flags); 2216 } 2217 break; 2218 case Instruction::GetElementPtr: { 2219 Code = bitc::CST_CODE_CE_GEP; 2220 const auto *GO = cast<GEPOperator>(C); 2221 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2222 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2223 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2224 Record.push_back((*Idx << 1) | GO->isInBounds()); 2225 } else if (GO->isInBounds()) 2226 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2227 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2228 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2229 Record.push_back(VE.getValueID(C->getOperand(i))); 2230 } 2231 break; 2232 } 2233 case Instruction::Select: 2234 Code = bitc::CST_CODE_CE_SELECT; 2235 Record.push_back(VE.getValueID(C->getOperand(0))); 2236 Record.push_back(VE.getValueID(C->getOperand(1))); 2237 Record.push_back(VE.getValueID(C->getOperand(2))); 2238 break; 2239 case Instruction::ExtractElement: 2240 Code = bitc::CST_CODE_CE_EXTRACTELT; 2241 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2242 Record.push_back(VE.getValueID(C->getOperand(0))); 2243 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2244 Record.push_back(VE.getValueID(C->getOperand(1))); 2245 break; 2246 case Instruction::InsertElement: 2247 Code = bitc::CST_CODE_CE_INSERTELT; 2248 Record.push_back(VE.getValueID(C->getOperand(0))); 2249 Record.push_back(VE.getValueID(C->getOperand(1))); 2250 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2251 Record.push_back(VE.getValueID(C->getOperand(2))); 2252 break; 2253 case Instruction::ShuffleVector: 2254 // If the return type and argument types are the same, this is a 2255 // standard shufflevector instruction. If the types are different, 2256 // then the shuffle is widening or truncating the input vectors, and 2257 // the argument type must also be encoded. 2258 if (C->getType() == C->getOperand(0)->getType()) { 2259 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2260 } else { 2261 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2262 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2263 } 2264 Record.push_back(VE.getValueID(C->getOperand(0))); 2265 Record.push_back(VE.getValueID(C->getOperand(1))); 2266 Record.push_back(VE.getValueID(C->getOperand(2))); 2267 break; 2268 case Instruction::ICmp: 2269 case Instruction::FCmp: 2270 Code = bitc::CST_CODE_CE_CMP; 2271 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2272 Record.push_back(VE.getValueID(C->getOperand(0))); 2273 Record.push_back(VE.getValueID(C->getOperand(1))); 2274 Record.push_back(CE->getPredicate()); 2275 break; 2276 } 2277 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2278 Code = bitc::CST_CODE_BLOCKADDRESS; 2279 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2280 Record.push_back(VE.getValueID(BA->getFunction())); 2281 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2282 } else { 2283 #ifndef NDEBUG 2284 C->dump(); 2285 #endif 2286 llvm_unreachable("Unknown constant!"); 2287 } 2288 Stream.EmitRecord(Code, Record, AbbrevToUse); 2289 Record.clear(); 2290 } 2291 2292 Stream.ExitBlock(); 2293 } 2294 2295 void ModuleBitcodeWriter::writeModuleConstants() { 2296 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2297 2298 // Find the first constant to emit, which is the first non-globalvalue value. 2299 // We know globalvalues have been emitted by WriteModuleInfo. 2300 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2301 if (!isa<GlobalValue>(Vals[i].first)) { 2302 writeConstants(i, Vals.size(), true); 2303 return; 2304 } 2305 } 2306 } 2307 2308 /// pushValueAndType - The file has to encode both the value and type id for 2309 /// many values, because we need to know what type to create for forward 2310 /// references. However, most operands are not forward references, so this type 2311 /// field is not needed. 2312 /// 2313 /// This function adds V's value ID to Vals. If the value ID is higher than the 2314 /// instruction ID, then it is a forward reference, and it also includes the 2315 /// type ID. The value ID that is written is encoded relative to the InstID. 2316 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2317 SmallVectorImpl<unsigned> &Vals) { 2318 unsigned ValID = VE.getValueID(V); 2319 // Make encoding relative to the InstID. 2320 Vals.push_back(InstID - ValID); 2321 if (ValID >= InstID) { 2322 Vals.push_back(VE.getTypeID(V->getType())); 2323 return true; 2324 } 2325 return false; 2326 } 2327 2328 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2329 unsigned InstID) { 2330 SmallVector<unsigned, 64> Record; 2331 LLVMContext &C = CS.getInstruction()->getContext(); 2332 2333 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2334 const auto &Bundle = CS.getOperandBundleAt(i); 2335 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2336 2337 for (auto &Input : Bundle.Inputs) 2338 pushValueAndType(Input, InstID, Record); 2339 2340 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2341 Record.clear(); 2342 } 2343 } 2344 2345 /// pushValue - Like pushValueAndType, but where the type of the value is 2346 /// omitted (perhaps it was already encoded in an earlier operand). 2347 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2348 SmallVectorImpl<unsigned> &Vals) { 2349 unsigned ValID = VE.getValueID(V); 2350 Vals.push_back(InstID - ValID); 2351 } 2352 2353 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2354 SmallVectorImpl<uint64_t> &Vals) { 2355 unsigned ValID = VE.getValueID(V); 2356 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2357 emitSignedInt64(Vals, diff); 2358 } 2359 2360 /// WriteInstruction - Emit an instruction to the specified stream. 2361 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2362 unsigned InstID, 2363 SmallVectorImpl<unsigned> &Vals) { 2364 unsigned Code = 0; 2365 unsigned AbbrevToUse = 0; 2366 VE.setInstructionID(&I); 2367 switch (I.getOpcode()) { 2368 default: 2369 if (Instruction::isCast(I.getOpcode())) { 2370 Code = bitc::FUNC_CODE_INST_CAST; 2371 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2372 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2373 Vals.push_back(VE.getTypeID(I.getType())); 2374 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2375 } else { 2376 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2377 Code = bitc::FUNC_CODE_INST_BINOP; 2378 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2379 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2380 pushValue(I.getOperand(1), InstID, Vals); 2381 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2382 uint64_t Flags = getOptimizationFlags(&I); 2383 if (Flags != 0) { 2384 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2385 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2386 Vals.push_back(Flags); 2387 } 2388 } 2389 break; 2390 2391 case Instruction::GetElementPtr: { 2392 Code = bitc::FUNC_CODE_INST_GEP; 2393 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2394 auto &GEPInst = cast<GetElementPtrInst>(I); 2395 Vals.push_back(GEPInst.isInBounds()); 2396 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2397 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2398 pushValueAndType(I.getOperand(i), InstID, Vals); 2399 break; 2400 } 2401 case Instruction::ExtractValue: { 2402 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2403 pushValueAndType(I.getOperand(0), InstID, Vals); 2404 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2405 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2406 break; 2407 } 2408 case Instruction::InsertValue: { 2409 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2410 pushValueAndType(I.getOperand(0), InstID, Vals); 2411 pushValueAndType(I.getOperand(1), InstID, Vals); 2412 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2413 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2414 break; 2415 } 2416 case Instruction::Select: 2417 Code = bitc::FUNC_CODE_INST_VSELECT; 2418 pushValueAndType(I.getOperand(1), InstID, Vals); 2419 pushValue(I.getOperand(2), InstID, Vals); 2420 pushValueAndType(I.getOperand(0), InstID, Vals); 2421 break; 2422 case Instruction::ExtractElement: 2423 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2424 pushValueAndType(I.getOperand(0), InstID, Vals); 2425 pushValueAndType(I.getOperand(1), InstID, Vals); 2426 break; 2427 case Instruction::InsertElement: 2428 Code = bitc::FUNC_CODE_INST_INSERTELT; 2429 pushValueAndType(I.getOperand(0), InstID, Vals); 2430 pushValue(I.getOperand(1), InstID, Vals); 2431 pushValueAndType(I.getOperand(2), InstID, Vals); 2432 break; 2433 case Instruction::ShuffleVector: 2434 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2435 pushValueAndType(I.getOperand(0), InstID, Vals); 2436 pushValue(I.getOperand(1), InstID, Vals); 2437 pushValue(I.getOperand(2), InstID, Vals); 2438 break; 2439 case Instruction::ICmp: 2440 case Instruction::FCmp: { 2441 // compare returning Int1Ty or vector of Int1Ty 2442 Code = bitc::FUNC_CODE_INST_CMP2; 2443 pushValueAndType(I.getOperand(0), InstID, Vals); 2444 pushValue(I.getOperand(1), InstID, Vals); 2445 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2446 uint64_t Flags = getOptimizationFlags(&I); 2447 if (Flags != 0) 2448 Vals.push_back(Flags); 2449 break; 2450 } 2451 2452 case Instruction::Ret: 2453 { 2454 Code = bitc::FUNC_CODE_INST_RET; 2455 unsigned NumOperands = I.getNumOperands(); 2456 if (NumOperands == 0) 2457 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2458 else if (NumOperands == 1) { 2459 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2460 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2461 } else { 2462 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2463 pushValueAndType(I.getOperand(i), InstID, Vals); 2464 } 2465 } 2466 break; 2467 case Instruction::Br: 2468 { 2469 Code = bitc::FUNC_CODE_INST_BR; 2470 const BranchInst &II = cast<BranchInst>(I); 2471 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2472 if (II.isConditional()) { 2473 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2474 pushValue(II.getCondition(), InstID, Vals); 2475 } 2476 } 2477 break; 2478 case Instruction::Switch: 2479 { 2480 Code = bitc::FUNC_CODE_INST_SWITCH; 2481 const SwitchInst &SI = cast<SwitchInst>(I); 2482 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2483 pushValue(SI.getCondition(), InstID, Vals); 2484 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2485 for (auto Case : SI.cases()) { 2486 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2487 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2488 } 2489 } 2490 break; 2491 case Instruction::IndirectBr: 2492 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2493 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2494 // Encode the address operand as relative, but not the basic blocks. 2495 pushValue(I.getOperand(0), InstID, Vals); 2496 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2497 Vals.push_back(VE.getValueID(I.getOperand(i))); 2498 break; 2499 2500 case Instruction::Invoke: { 2501 const InvokeInst *II = cast<InvokeInst>(&I); 2502 const Value *Callee = II->getCalledValue(); 2503 FunctionType *FTy = II->getFunctionType(); 2504 2505 if (II->hasOperandBundles()) 2506 writeOperandBundles(II, InstID); 2507 2508 Code = bitc::FUNC_CODE_INST_INVOKE; 2509 2510 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2511 Vals.push_back(II->getCallingConv() | 1 << 13); 2512 Vals.push_back(VE.getValueID(II->getNormalDest())); 2513 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2514 Vals.push_back(VE.getTypeID(FTy)); 2515 pushValueAndType(Callee, InstID, Vals); 2516 2517 // Emit value #'s for the fixed parameters. 2518 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2519 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2520 2521 // Emit type/value pairs for varargs params. 2522 if (FTy->isVarArg()) { 2523 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2524 i != e; ++i) 2525 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2526 } 2527 break; 2528 } 2529 case Instruction::Resume: 2530 Code = bitc::FUNC_CODE_INST_RESUME; 2531 pushValueAndType(I.getOperand(0), InstID, Vals); 2532 break; 2533 case Instruction::CleanupRet: { 2534 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2535 const auto &CRI = cast<CleanupReturnInst>(I); 2536 pushValue(CRI.getCleanupPad(), InstID, Vals); 2537 if (CRI.hasUnwindDest()) 2538 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2539 break; 2540 } 2541 case Instruction::CatchRet: { 2542 Code = bitc::FUNC_CODE_INST_CATCHRET; 2543 const auto &CRI = cast<CatchReturnInst>(I); 2544 pushValue(CRI.getCatchPad(), InstID, Vals); 2545 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2546 break; 2547 } 2548 case Instruction::CleanupPad: 2549 case Instruction::CatchPad: { 2550 const auto &FuncletPad = cast<FuncletPadInst>(I); 2551 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2552 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2553 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2554 2555 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2556 Vals.push_back(NumArgOperands); 2557 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2558 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2559 break; 2560 } 2561 case Instruction::CatchSwitch: { 2562 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2563 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2564 2565 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2566 2567 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2568 Vals.push_back(NumHandlers); 2569 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2570 Vals.push_back(VE.getValueID(CatchPadBB)); 2571 2572 if (CatchSwitch.hasUnwindDest()) 2573 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2574 break; 2575 } 2576 case Instruction::Unreachable: 2577 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2578 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2579 break; 2580 2581 case Instruction::PHI: { 2582 const PHINode &PN = cast<PHINode>(I); 2583 Code = bitc::FUNC_CODE_INST_PHI; 2584 // With the newer instruction encoding, forward references could give 2585 // negative valued IDs. This is most common for PHIs, so we use 2586 // signed VBRs. 2587 SmallVector<uint64_t, 128> Vals64; 2588 Vals64.push_back(VE.getTypeID(PN.getType())); 2589 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2590 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2591 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2592 } 2593 // Emit a Vals64 vector and exit. 2594 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2595 Vals64.clear(); 2596 return; 2597 } 2598 2599 case Instruction::LandingPad: { 2600 const LandingPadInst &LP = cast<LandingPadInst>(I); 2601 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2602 Vals.push_back(VE.getTypeID(LP.getType())); 2603 Vals.push_back(LP.isCleanup()); 2604 Vals.push_back(LP.getNumClauses()); 2605 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2606 if (LP.isCatch(I)) 2607 Vals.push_back(LandingPadInst::Catch); 2608 else 2609 Vals.push_back(LandingPadInst::Filter); 2610 pushValueAndType(LP.getClause(I), InstID, Vals); 2611 } 2612 break; 2613 } 2614 2615 case Instruction::Alloca: { 2616 Code = bitc::FUNC_CODE_INST_ALLOCA; 2617 const AllocaInst &AI = cast<AllocaInst>(I); 2618 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2619 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2620 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2621 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2622 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2623 "not enough bits for maximum alignment"); 2624 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2625 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2626 AlignRecord |= 1 << 6; 2627 AlignRecord |= AI.isSwiftError() << 7; 2628 Vals.push_back(AlignRecord); 2629 break; 2630 } 2631 2632 case Instruction::Load: 2633 if (cast<LoadInst>(I).isAtomic()) { 2634 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2635 pushValueAndType(I.getOperand(0), InstID, Vals); 2636 } else { 2637 Code = bitc::FUNC_CODE_INST_LOAD; 2638 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2639 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2640 } 2641 Vals.push_back(VE.getTypeID(I.getType())); 2642 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2643 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2644 if (cast<LoadInst>(I).isAtomic()) { 2645 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2646 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2647 } 2648 break; 2649 case Instruction::Store: 2650 if (cast<StoreInst>(I).isAtomic()) 2651 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2652 else 2653 Code = bitc::FUNC_CODE_INST_STORE; 2654 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2655 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2656 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2657 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2658 if (cast<StoreInst>(I).isAtomic()) { 2659 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2660 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2661 } 2662 break; 2663 case Instruction::AtomicCmpXchg: 2664 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2665 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2666 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2667 pushValue(I.getOperand(2), InstID, Vals); // newval. 2668 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2669 Vals.push_back( 2670 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2671 Vals.push_back( 2672 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2673 Vals.push_back( 2674 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2675 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2676 break; 2677 case Instruction::AtomicRMW: 2678 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2679 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2680 pushValue(I.getOperand(1), InstID, Vals); // val. 2681 Vals.push_back( 2682 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2683 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2684 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2685 Vals.push_back( 2686 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2687 break; 2688 case Instruction::Fence: 2689 Code = bitc::FUNC_CODE_INST_FENCE; 2690 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2691 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2692 break; 2693 case Instruction::Call: { 2694 const CallInst &CI = cast<CallInst>(I); 2695 FunctionType *FTy = CI.getFunctionType(); 2696 2697 if (CI.hasOperandBundles()) 2698 writeOperandBundles(&CI, InstID); 2699 2700 Code = bitc::FUNC_CODE_INST_CALL; 2701 2702 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2703 2704 unsigned Flags = getOptimizationFlags(&I); 2705 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2706 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2707 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2708 1 << bitc::CALL_EXPLICIT_TYPE | 2709 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2710 unsigned(Flags != 0) << bitc::CALL_FMF); 2711 if (Flags != 0) 2712 Vals.push_back(Flags); 2713 2714 Vals.push_back(VE.getTypeID(FTy)); 2715 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2716 2717 // Emit value #'s for the fixed parameters. 2718 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2719 // Check for labels (can happen with asm labels). 2720 if (FTy->getParamType(i)->isLabelTy()) 2721 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2722 else 2723 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2724 } 2725 2726 // Emit type/value pairs for varargs params. 2727 if (FTy->isVarArg()) { 2728 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2729 i != e; ++i) 2730 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2731 } 2732 break; 2733 } 2734 case Instruction::VAArg: 2735 Code = bitc::FUNC_CODE_INST_VAARG; 2736 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2737 pushValue(I.getOperand(0), InstID, Vals); // valist. 2738 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2739 break; 2740 } 2741 2742 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2743 Vals.clear(); 2744 } 2745 2746 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2747 /// to allow clients to efficiently find the function body. 2748 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2749 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2750 // Get the offset of the VST we are writing, and backpatch it into 2751 // the VST forward declaration record. 2752 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2753 // The BitcodeStartBit was the stream offset of the identification block. 2754 VSTOffset -= bitcodeStartBit(); 2755 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2756 // Note that we add 1 here because the offset is relative to one word 2757 // before the start of the identification block, which was historically 2758 // always the start of the regular bitcode header. 2759 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2760 2761 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2762 2763 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2764 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2767 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2768 2769 for (const Function &F : M) { 2770 uint64_t Record[2]; 2771 2772 if (F.isDeclaration()) 2773 continue; 2774 2775 Record[0] = VE.getValueID(&F); 2776 2777 // Save the word offset of the function (from the start of the 2778 // actual bitcode written to the stream). 2779 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2780 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2781 // Note that we add 1 here because the offset is relative to one word 2782 // before the start of the identification block, which was historically 2783 // always the start of the regular bitcode header. 2784 Record[1] = BitcodeIndex / 32 + 1; 2785 2786 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2787 } 2788 2789 Stream.ExitBlock(); 2790 } 2791 2792 /// Emit names for arguments, instructions and basic blocks in a function. 2793 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2794 const ValueSymbolTable &VST) { 2795 if (VST.empty()) 2796 return; 2797 2798 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2799 2800 // FIXME: Set up the abbrev, we know how many values there are! 2801 // FIXME: We know if the type names can use 7-bit ascii. 2802 SmallVector<uint64_t, 64> NameVals; 2803 2804 for (const ValueName &Name : VST) { 2805 // Figure out the encoding to use for the name. 2806 StringEncoding Bits = getStringEncoding(Name.getKey()); 2807 2808 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2809 NameVals.push_back(VE.getValueID(Name.getValue())); 2810 2811 // VST_CODE_ENTRY: [valueid, namechar x N] 2812 // VST_CODE_BBENTRY: [bbid, namechar x N] 2813 unsigned Code; 2814 if (isa<BasicBlock>(Name.getValue())) { 2815 Code = bitc::VST_CODE_BBENTRY; 2816 if (Bits == SE_Char6) 2817 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2818 } else { 2819 Code = bitc::VST_CODE_ENTRY; 2820 if (Bits == SE_Char6) 2821 AbbrevToUse = VST_ENTRY_6_ABBREV; 2822 else if (Bits == SE_Fixed7) 2823 AbbrevToUse = VST_ENTRY_7_ABBREV; 2824 } 2825 2826 for (const auto P : Name.getKey()) 2827 NameVals.push_back((unsigned char)P); 2828 2829 // Emit the finished record. 2830 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2831 NameVals.clear(); 2832 } 2833 2834 Stream.ExitBlock(); 2835 } 2836 2837 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2838 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2839 unsigned Code; 2840 if (isa<BasicBlock>(Order.V)) 2841 Code = bitc::USELIST_CODE_BB; 2842 else 2843 Code = bitc::USELIST_CODE_DEFAULT; 2844 2845 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2846 Record.push_back(VE.getValueID(Order.V)); 2847 Stream.EmitRecord(Code, Record); 2848 } 2849 2850 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2851 assert(VE.shouldPreserveUseListOrder() && 2852 "Expected to be preserving use-list order"); 2853 2854 auto hasMore = [&]() { 2855 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2856 }; 2857 if (!hasMore()) 2858 // Nothing to do. 2859 return; 2860 2861 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2862 while (hasMore()) { 2863 writeUseList(std::move(VE.UseListOrders.back())); 2864 VE.UseListOrders.pop_back(); 2865 } 2866 Stream.ExitBlock(); 2867 } 2868 2869 /// Emit a function body to the module stream. 2870 void ModuleBitcodeWriter::writeFunction( 2871 const Function &F, 2872 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2873 // Save the bitcode index of the start of this function block for recording 2874 // in the VST. 2875 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2876 2877 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2878 VE.incorporateFunction(F); 2879 2880 SmallVector<unsigned, 64> Vals; 2881 2882 // Emit the number of basic blocks, so the reader can create them ahead of 2883 // time. 2884 Vals.push_back(VE.getBasicBlocks().size()); 2885 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2886 Vals.clear(); 2887 2888 // If there are function-local constants, emit them now. 2889 unsigned CstStart, CstEnd; 2890 VE.getFunctionConstantRange(CstStart, CstEnd); 2891 writeConstants(CstStart, CstEnd, false); 2892 2893 // If there is function-local metadata, emit it now. 2894 writeFunctionMetadata(F); 2895 2896 // Keep a running idea of what the instruction ID is. 2897 unsigned InstID = CstEnd; 2898 2899 bool NeedsMetadataAttachment = F.hasMetadata(); 2900 2901 DILocation *LastDL = nullptr; 2902 // Finally, emit all the instructions, in order. 2903 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2904 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2905 I != E; ++I) { 2906 writeInstruction(*I, InstID, Vals); 2907 2908 if (!I->getType()->isVoidTy()) 2909 ++InstID; 2910 2911 // If the instruction has metadata, write a metadata attachment later. 2912 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2913 2914 // If the instruction has a debug location, emit it. 2915 DILocation *DL = I->getDebugLoc(); 2916 if (!DL) 2917 continue; 2918 2919 if (DL == LastDL) { 2920 // Just repeat the same debug loc as last time. 2921 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2922 continue; 2923 } 2924 2925 Vals.push_back(DL->getLine()); 2926 Vals.push_back(DL->getColumn()); 2927 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2928 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2929 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2930 Vals.clear(); 2931 2932 LastDL = DL; 2933 } 2934 2935 // Emit names for all the instructions etc. 2936 if (auto *Symtab = F.getValueSymbolTable()) 2937 writeFunctionLevelValueSymbolTable(*Symtab); 2938 2939 if (NeedsMetadataAttachment) 2940 writeFunctionMetadataAttachment(F); 2941 if (VE.shouldPreserveUseListOrder()) 2942 writeUseListBlock(&F); 2943 VE.purgeFunction(); 2944 Stream.ExitBlock(); 2945 } 2946 2947 // Emit blockinfo, which defines the standard abbreviations etc. 2948 void ModuleBitcodeWriter::writeBlockInfo() { 2949 // We only want to emit block info records for blocks that have multiple 2950 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2951 // Other blocks can define their abbrevs inline. 2952 Stream.EnterBlockInfoBlock(); 2953 2954 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2955 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2960 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2961 VST_ENTRY_8_ABBREV) 2962 llvm_unreachable("Unexpected abbrev ordering!"); 2963 } 2964 2965 { // 7-bit fixed width VST_CODE_ENTRY strings. 2966 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2967 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2971 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2972 VST_ENTRY_7_ABBREV) 2973 llvm_unreachable("Unexpected abbrev ordering!"); 2974 } 2975 { // 6-bit char6 VST_CODE_ENTRY strings. 2976 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2977 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2981 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2982 VST_ENTRY_6_ABBREV) 2983 llvm_unreachable("Unexpected abbrev ordering!"); 2984 } 2985 { // 6-bit char6 VST_CODE_BBENTRY strings. 2986 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2987 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2991 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2992 VST_BBENTRY_6_ABBREV) 2993 llvm_unreachable("Unexpected abbrev ordering!"); 2994 } 2995 2996 2997 2998 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2999 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3000 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3002 VE.computeBitsRequiredForTypeIndicies())); 3003 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3004 CONSTANTS_SETTYPE_ABBREV) 3005 llvm_unreachable("Unexpected abbrev ordering!"); 3006 } 3007 3008 { // INTEGER abbrev for CONSTANTS_BLOCK. 3009 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3010 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3012 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3013 CONSTANTS_INTEGER_ABBREV) 3014 llvm_unreachable("Unexpected abbrev ordering!"); 3015 } 3016 3017 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3018 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3019 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3022 VE.computeBitsRequiredForTypeIndicies())); 3023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3024 3025 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3026 CONSTANTS_CE_CAST_Abbrev) 3027 llvm_unreachable("Unexpected abbrev ordering!"); 3028 } 3029 { // NULL abbrev for CONSTANTS_BLOCK. 3030 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3031 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3032 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3033 CONSTANTS_NULL_Abbrev) 3034 llvm_unreachable("Unexpected abbrev ordering!"); 3035 } 3036 3037 // FIXME: This should only use space for first class types! 3038 3039 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3040 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3041 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3044 VE.computeBitsRequiredForTypeIndicies())); 3045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3047 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3048 FUNCTION_INST_LOAD_ABBREV) 3049 llvm_unreachable("Unexpected abbrev ordering!"); 3050 } 3051 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3053 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3057 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3058 FUNCTION_INST_BINOP_ABBREV) 3059 llvm_unreachable("Unexpected abbrev ordering!"); 3060 } 3061 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3062 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3063 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3068 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3069 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3070 llvm_unreachable("Unexpected abbrev ordering!"); 3071 } 3072 { // INST_CAST abbrev for FUNCTION_BLOCK. 3073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3074 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3077 VE.computeBitsRequiredForTypeIndicies())); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3079 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3080 FUNCTION_INST_CAST_ABBREV) 3081 llvm_unreachable("Unexpected abbrev ordering!"); 3082 } 3083 3084 { // INST_RET abbrev for FUNCTION_BLOCK. 3085 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3086 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3087 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3088 FUNCTION_INST_RET_VOID_ABBREV) 3089 llvm_unreachable("Unexpected abbrev ordering!"); 3090 } 3091 { // INST_RET abbrev for FUNCTION_BLOCK. 3092 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3093 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3095 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3096 FUNCTION_INST_RET_VAL_ABBREV) 3097 llvm_unreachable("Unexpected abbrev ordering!"); 3098 } 3099 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3100 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3101 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3102 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3103 FUNCTION_INST_UNREACHABLE_ABBREV) 3104 llvm_unreachable("Unexpected abbrev ordering!"); 3105 } 3106 { 3107 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3108 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3111 Log2_32_Ceil(VE.getTypes().size() + 1))); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3114 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3115 FUNCTION_INST_GEP_ABBREV) 3116 llvm_unreachable("Unexpected abbrev ordering!"); 3117 } 3118 3119 Stream.ExitBlock(); 3120 } 3121 3122 /// Write the module path strings, currently only used when generating 3123 /// a combined index file. 3124 void IndexBitcodeWriter::writeModStrings() { 3125 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3126 3127 // TODO: See which abbrev sizes we actually need to emit 3128 3129 // 8-bit fixed-width MST_ENTRY strings. 3130 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3131 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3135 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3136 3137 // 7-bit fixed width MST_ENTRY strings. 3138 Abbv = std::make_shared<BitCodeAbbrev>(); 3139 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3143 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3144 3145 // 6-bit char6 MST_ENTRY strings. 3146 Abbv = std::make_shared<BitCodeAbbrev>(); 3147 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3151 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3152 3153 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3154 Abbv = std::make_shared<BitCodeAbbrev>(); 3155 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3161 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3162 3163 SmallVector<unsigned, 64> Vals; 3164 forEachModule( 3165 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3166 StringRef Key = MPSE.getKey(); 3167 const auto &Value = MPSE.getValue(); 3168 StringEncoding Bits = getStringEncoding(Key); 3169 unsigned AbbrevToUse = Abbrev8Bit; 3170 if (Bits == SE_Char6) 3171 AbbrevToUse = Abbrev6Bit; 3172 else if (Bits == SE_Fixed7) 3173 AbbrevToUse = Abbrev7Bit; 3174 3175 Vals.push_back(Value.first); 3176 Vals.append(Key.begin(), Key.end()); 3177 3178 // Emit the finished record. 3179 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3180 3181 // Emit an optional hash for the module now 3182 const auto &Hash = Value.second; 3183 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3184 Vals.assign(Hash.begin(), Hash.end()); 3185 // Emit the hash record. 3186 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3187 } 3188 3189 Vals.clear(); 3190 }); 3191 Stream.ExitBlock(); 3192 } 3193 3194 /// Write the function type metadata related records that need to appear before 3195 /// a function summary entry (whether per-module or combined). 3196 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3197 FunctionSummary *FS) { 3198 if (!FS->type_tests().empty()) 3199 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3200 3201 SmallVector<uint64_t, 64> Record; 3202 3203 auto WriteVFuncIdVec = [&](uint64_t Ty, 3204 ArrayRef<FunctionSummary::VFuncId> VFs) { 3205 if (VFs.empty()) 3206 return; 3207 Record.clear(); 3208 for (auto &VF : VFs) { 3209 Record.push_back(VF.GUID); 3210 Record.push_back(VF.Offset); 3211 } 3212 Stream.EmitRecord(Ty, Record); 3213 }; 3214 3215 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3216 FS->type_test_assume_vcalls()); 3217 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3218 FS->type_checked_load_vcalls()); 3219 3220 auto WriteConstVCallVec = [&](uint64_t Ty, 3221 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3222 for (auto &VC : VCs) { 3223 Record.clear(); 3224 Record.push_back(VC.VFunc.GUID); 3225 Record.push_back(VC.VFunc.Offset); 3226 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3227 Stream.EmitRecord(Ty, Record); 3228 } 3229 }; 3230 3231 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3232 FS->type_test_assume_const_vcalls()); 3233 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3234 FS->type_checked_load_const_vcalls()); 3235 } 3236 3237 // Helper to emit a single function summary record. 3238 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3239 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3240 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3241 const Function &F) { 3242 NameVals.push_back(ValueID); 3243 3244 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3245 writeFunctionTypeMetadataRecords(Stream, FS); 3246 3247 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3248 NameVals.push_back(FS->instCount()); 3249 NameVals.push_back(FS->refs().size()); 3250 3251 for (auto &RI : FS->refs()) 3252 NameVals.push_back(VE.getValueID(RI.getValue())); 3253 3254 bool HasProfileData = F.getEntryCount().hasValue(); 3255 for (auto &ECI : FS->calls()) { 3256 NameVals.push_back(getValueId(ECI.first)); 3257 if (HasProfileData) 3258 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3259 } 3260 3261 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3262 unsigned Code = 3263 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3264 3265 // Emit the finished record. 3266 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3267 NameVals.clear(); 3268 } 3269 3270 // Collect the global value references in the given variable's initializer, 3271 // and emit them in a summary record. 3272 void ModuleBitcodeWriter::writeModuleLevelReferences( 3273 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3274 unsigned FSModRefsAbbrev) { 3275 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3276 if (!VI || VI.getSummaryList().empty()) { 3277 // Only declarations should not have a summary (a declaration might however 3278 // have a summary if the def was in module level asm). 3279 assert(V.isDeclaration()); 3280 return; 3281 } 3282 auto *Summary = VI.getSummaryList()[0].get(); 3283 NameVals.push_back(VE.getValueID(&V)); 3284 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3285 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3286 3287 unsigned SizeBeforeRefs = NameVals.size(); 3288 for (auto &RI : VS->refs()) 3289 NameVals.push_back(VE.getValueID(RI.getValue())); 3290 // Sort the refs for determinism output, the vector returned by FS->refs() has 3291 // been initialized from a DenseSet. 3292 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3293 3294 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3295 FSModRefsAbbrev); 3296 NameVals.clear(); 3297 } 3298 3299 // Current version for the summary. 3300 // This is bumped whenever we introduce changes in the way some record are 3301 // interpreted, like flags for instance. 3302 static const uint64_t INDEX_VERSION = 3; 3303 3304 /// Emit the per-module summary section alongside the rest of 3305 /// the module's bitcode. 3306 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3307 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3308 3309 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3310 3311 if (Index->begin() == Index->end()) { 3312 Stream.ExitBlock(); 3313 return; 3314 } 3315 3316 for (const auto &GVI : valueIds()) { 3317 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3318 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3319 } 3320 3321 // Abbrev for FS_PERMODULE. 3322 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3323 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3328 // numrefs x valueid, n x (valueid) 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3331 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3332 3333 // Abbrev for FS_PERMODULE_PROFILE. 3334 Abbv = std::make_shared<BitCodeAbbrev>(); 3335 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3340 // numrefs x valueid, n x (valueid, hotness) 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3343 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3344 3345 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3346 Abbv = std::make_shared<BitCodeAbbrev>(); 3347 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3352 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3353 3354 // Abbrev for FS_ALIAS. 3355 Abbv = std::make_shared<BitCodeAbbrev>(); 3356 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3360 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3361 3362 SmallVector<uint64_t, 64> NameVals; 3363 // Iterate over the list of functions instead of the Index to 3364 // ensure the ordering is stable. 3365 for (const Function &F : M) { 3366 // Summary emission does not support anonymous functions, they have to 3367 // renamed using the anonymous function renaming pass. 3368 if (!F.hasName()) 3369 report_fatal_error("Unexpected anonymous function when writing summary"); 3370 3371 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3372 if (!VI || VI.getSummaryList().empty()) { 3373 // Only declarations should not have a summary (a declaration might 3374 // however have a summary if the def was in module level asm). 3375 assert(F.isDeclaration()); 3376 continue; 3377 } 3378 auto *Summary = VI.getSummaryList()[0].get(); 3379 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3380 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3381 } 3382 3383 // Capture references from GlobalVariable initializers, which are outside 3384 // of a function scope. 3385 for (const GlobalVariable &G : M.globals()) 3386 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3387 3388 for (const GlobalAlias &A : M.aliases()) { 3389 auto *Aliasee = A.getBaseObject(); 3390 if (!Aliasee->hasName()) 3391 // Nameless function don't have an entry in the summary, skip it. 3392 continue; 3393 auto AliasId = VE.getValueID(&A); 3394 auto AliaseeId = VE.getValueID(Aliasee); 3395 NameVals.push_back(AliasId); 3396 auto *Summary = Index->getGlobalValueSummary(A); 3397 AliasSummary *AS = cast<AliasSummary>(Summary); 3398 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3399 NameVals.push_back(AliaseeId); 3400 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3401 NameVals.clear(); 3402 } 3403 3404 Stream.ExitBlock(); 3405 } 3406 3407 /// Emit the combined summary section into the combined index file. 3408 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3409 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3410 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3411 3412 for (const auto &GVI : valueIds()) { 3413 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3414 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3415 } 3416 3417 // Abbrev for FS_COMBINED. 3418 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3419 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3425 // numrefs x valueid, n x (valueid) 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3428 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3429 3430 // Abbrev for FS_COMBINED_PROFILE. 3431 Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3438 // numrefs x valueid, n x (valueid, hotness) 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3441 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3442 3443 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3444 Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3451 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3452 3453 // Abbrev for FS_COMBINED_ALIAS. 3454 Abbv = std::make_shared<BitCodeAbbrev>(); 3455 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3460 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3461 3462 // The aliases are emitted as a post-pass, and will point to the value 3463 // id of the aliasee. Save them in a vector for post-processing. 3464 SmallVector<AliasSummary *, 64> Aliases; 3465 3466 // Save the value id for each summary for alias emission. 3467 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3468 3469 SmallVector<uint64_t, 64> NameVals; 3470 3471 // For local linkage, we also emit the original name separately 3472 // immediately after the record. 3473 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3474 if (!GlobalValue::isLocalLinkage(S.linkage())) 3475 return; 3476 NameVals.push_back(S.getOriginalName()); 3477 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3478 NameVals.clear(); 3479 }; 3480 3481 forEachSummary([&](GVInfo I) { 3482 GlobalValueSummary *S = I.second; 3483 assert(S); 3484 3485 auto ValueId = getValueId(I.first); 3486 assert(ValueId); 3487 SummaryToValueIdMap[S] = *ValueId; 3488 3489 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3490 // Will process aliases as a post-pass because the reader wants all 3491 // global to be loaded first. 3492 Aliases.push_back(AS); 3493 return; 3494 } 3495 3496 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3497 NameVals.push_back(*ValueId); 3498 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3499 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3500 for (auto &RI : VS->refs()) { 3501 auto RefValueId = getValueId(RI.getGUID()); 3502 if (!RefValueId) 3503 continue; 3504 NameVals.push_back(*RefValueId); 3505 } 3506 3507 // Emit the finished record. 3508 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3509 FSModRefsAbbrev); 3510 NameVals.clear(); 3511 MaybeEmitOriginalName(*S); 3512 return; 3513 } 3514 3515 auto *FS = cast<FunctionSummary>(S); 3516 writeFunctionTypeMetadataRecords(Stream, FS); 3517 3518 NameVals.push_back(*ValueId); 3519 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3520 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3521 NameVals.push_back(FS->instCount()); 3522 // Fill in below 3523 NameVals.push_back(0); 3524 3525 unsigned Count = 0; 3526 for (auto &RI : FS->refs()) { 3527 auto RefValueId = getValueId(RI.getGUID()); 3528 if (!RefValueId) 3529 continue; 3530 NameVals.push_back(*RefValueId); 3531 Count++; 3532 } 3533 NameVals[4] = Count; 3534 3535 bool HasProfileData = false; 3536 for (auto &EI : FS->calls()) { 3537 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3538 if (HasProfileData) 3539 break; 3540 } 3541 3542 for (auto &EI : FS->calls()) { 3543 // If this GUID doesn't have a value id, it doesn't have a function 3544 // summary and we don't need to record any calls to it. 3545 GlobalValue::GUID GUID = EI.first.getGUID(); 3546 auto CallValueId = getValueId(GUID); 3547 if (!CallValueId) { 3548 // For SamplePGO, the indirect call targets for local functions will 3549 // have its original name annotated in profile. We try to find the 3550 // corresponding PGOFuncName as the GUID. 3551 GUID = Index.getGUIDFromOriginalID(GUID); 3552 if (GUID == 0) 3553 continue; 3554 CallValueId = getValueId(GUID); 3555 if (!CallValueId) 3556 continue; 3557 } 3558 NameVals.push_back(*CallValueId); 3559 if (HasProfileData) 3560 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3561 } 3562 3563 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3564 unsigned Code = 3565 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3566 3567 // Emit the finished record. 3568 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3569 NameVals.clear(); 3570 MaybeEmitOriginalName(*S); 3571 }); 3572 3573 for (auto *AS : Aliases) { 3574 auto AliasValueId = SummaryToValueIdMap[AS]; 3575 assert(AliasValueId); 3576 NameVals.push_back(AliasValueId); 3577 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3578 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3579 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3580 assert(AliaseeValueId); 3581 NameVals.push_back(AliaseeValueId); 3582 3583 // Emit the finished record. 3584 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3585 NameVals.clear(); 3586 MaybeEmitOriginalName(*AS); 3587 } 3588 3589 Stream.ExitBlock(); 3590 } 3591 3592 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3593 /// current llvm version, and a record for the epoch number. 3594 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3595 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3596 3597 // Write the "user readable" string identifying the bitcode producer 3598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3599 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3602 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3603 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3604 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3605 3606 // Write the epoch version 3607 Abbv = std::make_shared<BitCodeAbbrev>(); 3608 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3610 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3611 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3612 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3613 Stream.ExitBlock(); 3614 } 3615 3616 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3617 // Emit the module's hash. 3618 // MODULE_CODE_HASH: [5*i32] 3619 if (GenerateHash) { 3620 SHA1 Hasher; 3621 uint32_t Vals[5]; 3622 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3623 Buffer.size() - BlockStartPos)); 3624 StringRef Hash = Hasher.result(); 3625 for (int Pos = 0; Pos < 20; Pos += 4) { 3626 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3627 } 3628 3629 // Emit the finished record. 3630 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3631 3632 if (ModHash) 3633 // Save the written hash value. 3634 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3635 } else if (ModHash) 3636 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3637 } 3638 3639 void ModuleBitcodeWriter::write() { 3640 writeIdentificationBlock(Stream); 3641 3642 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3643 size_t BlockStartPos = Buffer.size(); 3644 3645 writeModuleVersion(); 3646 3647 // Emit blockinfo, which defines the standard abbreviations etc. 3648 writeBlockInfo(); 3649 3650 // Emit information about attribute groups. 3651 writeAttributeGroupTable(); 3652 3653 // Emit information about parameter attributes. 3654 writeAttributeTable(); 3655 3656 // Emit information describing all of the types in the module. 3657 writeTypeTable(); 3658 3659 writeComdats(); 3660 3661 // Emit top-level description of module, including target triple, inline asm, 3662 // descriptors for global variables, and function prototype info. 3663 writeModuleInfo(); 3664 3665 // Emit constants. 3666 writeModuleConstants(); 3667 3668 // Emit metadata kind names. 3669 writeModuleMetadataKinds(); 3670 3671 // Emit metadata. 3672 writeModuleMetadata(); 3673 3674 // Emit module-level use-lists. 3675 if (VE.shouldPreserveUseListOrder()) 3676 writeUseListBlock(nullptr); 3677 3678 writeOperandBundleTags(); 3679 3680 // Emit function bodies. 3681 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3682 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3683 if (!F->isDeclaration()) 3684 writeFunction(*F, FunctionToBitcodeIndex); 3685 3686 // Need to write after the above call to WriteFunction which populates 3687 // the summary information in the index. 3688 if (Index) 3689 writePerModuleGlobalValueSummary(); 3690 3691 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3692 3693 writeModuleHash(BlockStartPos); 3694 3695 Stream.ExitBlock(); 3696 } 3697 3698 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3699 uint32_t &Position) { 3700 support::endian::write32le(&Buffer[Position], Value); 3701 Position += 4; 3702 } 3703 3704 /// If generating a bc file on darwin, we have to emit a 3705 /// header and trailer to make it compatible with the system archiver. To do 3706 /// this we emit the following header, and then emit a trailer that pads the 3707 /// file out to be a multiple of 16 bytes. 3708 /// 3709 /// struct bc_header { 3710 /// uint32_t Magic; // 0x0B17C0DE 3711 /// uint32_t Version; // Version, currently always 0. 3712 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3713 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3714 /// uint32_t CPUType; // CPU specifier. 3715 /// ... potentially more later ... 3716 /// }; 3717 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3718 const Triple &TT) { 3719 unsigned CPUType = ~0U; 3720 3721 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3722 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3723 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3724 // specific constants here because they are implicitly part of the Darwin ABI. 3725 enum { 3726 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3727 DARWIN_CPU_TYPE_X86 = 7, 3728 DARWIN_CPU_TYPE_ARM = 12, 3729 DARWIN_CPU_TYPE_POWERPC = 18 3730 }; 3731 3732 Triple::ArchType Arch = TT.getArch(); 3733 if (Arch == Triple::x86_64) 3734 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3735 else if (Arch == Triple::x86) 3736 CPUType = DARWIN_CPU_TYPE_X86; 3737 else if (Arch == Triple::ppc) 3738 CPUType = DARWIN_CPU_TYPE_POWERPC; 3739 else if (Arch == Triple::ppc64) 3740 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3741 else if (Arch == Triple::arm || Arch == Triple::thumb) 3742 CPUType = DARWIN_CPU_TYPE_ARM; 3743 3744 // Traditional Bitcode starts after header. 3745 assert(Buffer.size() >= BWH_HeaderSize && 3746 "Expected header size to be reserved"); 3747 unsigned BCOffset = BWH_HeaderSize; 3748 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3749 3750 // Write the magic and version. 3751 unsigned Position = 0; 3752 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3753 writeInt32ToBuffer(0, Buffer, Position); // Version. 3754 writeInt32ToBuffer(BCOffset, Buffer, Position); 3755 writeInt32ToBuffer(BCSize, Buffer, Position); 3756 writeInt32ToBuffer(CPUType, Buffer, Position); 3757 3758 // If the file is not a multiple of 16 bytes, insert dummy padding. 3759 while (Buffer.size() & 15) 3760 Buffer.push_back(0); 3761 } 3762 3763 /// Helper to write the header common to all bitcode files. 3764 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3765 // Emit the file header. 3766 Stream.Emit((unsigned)'B', 8); 3767 Stream.Emit((unsigned)'C', 8); 3768 Stream.Emit(0x0, 4); 3769 Stream.Emit(0xC, 4); 3770 Stream.Emit(0xE, 4); 3771 Stream.Emit(0xD, 4); 3772 } 3773 3774 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3775 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3776 writeBitcodeHeader(*Stream); 3777 } 3778 3779 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3780 3781 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3782 Stream->EnterSubblock(Block, 3); 3783 3784 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3785 Abbv->Add(BitCodeAbbrevOp(Record)); 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3787 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3788 3789 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3790 3791 Stream->ExitBlock(); 3792 } 3793 3794 void BitcodeWriter::writeStrtab() { 3795 assert(!WroteStrtab); 3796 3797 std::vector<char> Strtab; 3798 StrtabBuilder.finalizeInOrder(); 3799 Strtab.resize(StrtabBuilder.getSize()); 3800 StrtabBuilder.write((uint8_t *)Strtab.data()); 3801 3802 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3803 {Strtab.data(), Strtab.size()}); 3804 3805 WroteStrtab = true; 3806 } 3807 3808 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3809 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3810 WroteStrtab = true; 3811 } 3812 3813 void BitcodeWriter::writeModule(const Module *M, 3814 bool ShouldPreserveUseListOrder, 3815 const ModuleSummaryIndex *Index, 3816 bool GenerateHash, ModuleHash *ModHash) { 3817 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3818 ShouldPreserveUseListOrder, Index, 3819 GenerateHash, ModHash); 3820 ModuleWriter.write(); 3821 } 3822 3823 /// WriteBitcodeToFile - Write the specified module to the specified output 3824 /// stream. 3825 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3826 bool ShouldPreserveUseListOrder, 3827 const ModuleSummaryIndex *Index, 3828 bool GenerateHash, ModuleHash *ModHash) { 3829 SmallVector<char, 0> Buffer; 3830 Buffer.reserve(256*1024); 3831 3832 // If this is darwin or another generic macho target, reserve space for the 3833 // header. 3834 Triple TT(M->getTargetTriple()); 3835 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3836 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3837 3838 BitcodeWriter Writer(Buffer); 3839 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3840 ModHash); 3841 Writer.writeStrtab(); 3842 3843 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3844 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3845 3846 // Write the generated bitstream to "Out". 3847 Out.write((char*)&Buffer.front(), Buffer.size()); 3848 } 3849 3850 void IndexBitcodeWriter::write() { 3851 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3852 3853 writeModuleVersion(); 3854 3855 // Write the module paths in the combined index. 3856 writeModStrings(); 3857 3858 // Write the summary combined index records. 3859 writeCombinedGlobalValueSummary(); 3860 3861 Stream.ExitBlock(); 3862 } 3863 3864 // Write the specified module summary index to the given raw output stream, 3865 // where it will be written in a new bitcode block. This is used when 3866 // writing the combined index file for ThinLTO. When writing a subset of the 3867 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3868 void llvm::WriteIndexToFile( 3869 const ModuleSummaryIndex &Index, raw_ostream &Out, 3870 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3871 SmallVector<char, 0> Buffer; 3872 Buffer.reserve(256 * 1024); 3873 3874 BitstreamWriter Stream(Buffer); 3875 writeBitcodeHeader(Stream); 3876 3877 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3878 IndexWriter.write(); 3879 3880 Out.write((char *)&Buffer.front(), Buffer.size()); 3881 } 3882