1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Support/SHA1.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 68 switch (Opcode) { 69 default: llvm_unreachable("Unknown cast instruction!"); 70 case Instruction::Trunc : return bitc::CAST_TRUNC; 71 case Instruction::ZExt : return bitc::CAST_ZEXT; 72 case Instruction::SExt : return bitc::CAST_SEXT; 73 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 74 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 75 case Instruction::UIToFP : return bitc::CAST_UITOFP; 76 case Instruction::SIToFP : return bitc::CAST_SITOFP; 77 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 78 case Instruction::FPExt : return bitc::CAST_FPEXT; 79 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 80 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 81 case Instruction::BitCast : return bitc::CAST_BITCAST; 82 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 83 } 84 } 85 86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 87 switch (Opcode) { 88 default: llvm_unreachable("Unknown binary instruction!"); 89 case Instruction::Add: 90 case Instruction::FAdd: return bitc::BINOP_ADD; 91 case Instruction::Sub: 92 case Instruction::FSub: return bitc::BINOP_SUB; 93 case Instruction::Mul: 94 case Instruction::FMul: return bitc::BINOP_MUL; 95 case Instruction::UDiv: return bitc::BINOP_UDIV; 96 case Instruction::FDiv: 97 case Instruction::SDiv: return bitc::BINOP_SDIV; 98 case Instruction::URem: return bitc::BINOP_UREM; 99 case Instruction::FRem: 100 case Instruction::SRem: return bitc::BINOP_SREM; 101 case Instruction::Shl: return bitc::BINOP_SHL; 102 case Instruction::LShr: return bitc::BINOP_LSHR; 103 case Instruction::AShr: return bitc::BINOP_ASHR; 104 case Instruction::And: return bitc::BINOP_AND; 105 case Instruction::Or: return bitc::BINOP_OR; 106 case Instruction::Xor: return bitc::BINOP_XOR; 107 } 108 } 109 110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 111 switch (Op) { 112 default: llvm_unreachable("Unknown RMW operation!"); 113 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 114 case AtomicRMWInst::Add: return bitc::RMW_ADD; 115 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 116 case AtomicRMWInst::And: return bitc::RMW_AND; 117 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 118 case AtomicRMWInst::Or: return bitc::RMW_OR; 119 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 120 case AtomicRMWInst::Max: return bitc::RMW_MAX; 121 case AtomicRMWInst::Min: return bitc::RMW_MIN; 122 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 123 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 124 } 125 } 126 127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 128 switch (Ordering) { 129 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 130 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 131 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 132 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 133 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 134 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 135 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 136 } 137 llvm_unreachable("Invalid ordering"); 138 } 139 140 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 141 switch (SynchScope) { 142 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 143 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 144 } 145 llvm_unreachable("Invalid synch scope"); 146 } 147 148 static void WriteStringRecord(unsigned Code, StringRef Str, 149 unsigned AbbrevToUse, BitstreamWriter &Stream) { 150 SmallVector<unsigned, 64> Vals; 151 152 // Code: [strchar x N] 153 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 154 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 155 AbbrevToUse = 0; 156 Vals.push_back(Str[i]); 157 } 158 159 // Emit the finished record. 160 Stream.EmitRecord(Code, Vals, AbbrevToUse); 161 } 162 163 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 164 switch (Kind) { 165 case Attribute::Alignment: 166 return bitc::ATTR_KIND_ALIGNMENT; 167 case Attribute::AllocSize: 168 return bitc::ATTR_KIND_ALLOC_SIZE; 169 case Attribute::AlwaysInline: 170 return bitc::ATTR_KIND_ALWAYS_INLINE; 171 case Attribute::ArgMemOnly: 172 return bitc::ATTR_KIND_ARGMEMONLY; 173 case Attribute::Builtin: 174 return bitc::ATTR_KIND_BUILTIN; 175 case Attribute::ByVal: 176 return bitc::ATTR_KIND_BY_VAL; 177 case Attribute::Convergent: 178 return bitc::ATTR_KIND_CONVERGENT; 179 case Attribute::InAlloca: 180 return bitc::ATTR_KIND_IN_ALLOCA; 181 case Attribute::Cold: 182 return bitc::ATTR_KIND_COLD; 183 case Attribute::InaccessibleMemOnly: 184 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 185 case Attribute::InaccessibleMemOrArgMemOnly: 186 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 187 case Attribute::InlineHint: 188 return bitc::ATTR_KIND_INLINE_HINT; 189 case Attribute::InReg: 190 return bitc::ATTR_KIND_IN_REG; 191 case Attribute::JumpTable: 192 return bitc::ATTR_KIND_JUMP_TABLE; 193 case Attribute::MinSize: 194 return bitc::ATTR_KIND_MIN_SIZE; 195 case Attribute::Naked: 196 return bitc::ATTR_KIND_NAKED; 197 case Attribute::Nest: 198 return bitc::ATTR_KIND_NEST; 199 case Attribute::NoAlias: 200 return bitc::ATTR_KIND_NO_ALIAS; 201 case Attribute::NoBuiltin: 202 return bitc::ATTR_KIND_NO_BUILTIN; 203 case Attribute::NoCapture: 204 return bitc::ATTR_KIND_NO_CAPTURE; 205 case Attribute::NoDuplicate: 206 return bitc::ATTR_KIND_NO_DUPLICATE; 207 case Attribute::NoImplicitFloat: 208 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 209 case Attribute::NoInline: 210 return bitc::ATTR_KIND_NO_INLINE; 211 case Attribute::NoRecurse: 212 return bitc::ATTR_KIND_NO_RECURSE; 213 case Attribute::NonLazyBind: 214 return bitc::ATTR_KIND_NON_LAZY_BIND; 215 case Attribute::NonNull: 216 return bitc::ATTR_KIND_NON_NULL; 217 case Attribute::Dereferenceable: 218 return bitc::ATTR_KIND_DEREFERENCEABLE; 219 case Attribute::DereferenceableOrNull: 220 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 221 case Attribute::NoRedZone: 222 return bitc::ATTR_KIND_NO_RED_ZONE; 223 case Attribute::NoReturn: 224 return bitc::ATTR_KIND_NO_RETURN; 225 case Attribute::NoUnwind: 226 return bitc::ATTR_KIND_NO_UNWIND; 227 case Attribute::OptimizeForSize: 228 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 229 case Attribute::OptimizeNone: 230 return bitc::ATTR_KIND_OPTIMIZE_NONE; 231 case Attribute::ReadNone: 232 return bitc::ATTR_KIND_READ_NONE; 233 case Attribute::ReadOnly: 234 return bitc::ATTR_KIND_READ_ONLY; 235 case Attribute::Returned: 236 return bitc::ATTR_KIND_RETURNED; 237 case Attribute::ReturnsTwice: 238 return bitc::ATTR_KIND_RETURNS_TWICE; 239 case Attribute::SExt: 240 return bitc::ATTR_KIND_S_EXT; 241 case Attribute::StackAlignment: 242 return bitc::ATTR_KIND_STACK_ALIGNMENT; 243 case Attribute::StackProtect: 244 return bitc::ATTR_KIND_STACK_PROTECT; 245 case Attribute::StackProtectReq: 246 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 247 case Attribute::StackProtectStrong: 248 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 249 case Attribute::SafeStack: 250 return bitc::ATTR_KIND_SAFESTACK; 251 case Attribute::StructRet: 252 return bitc::ATTR_KIND_STRUCT_RET; 253 case Attribute::SanitizeAddress: 254 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 255 case Attribute::SanitizeThread: 256 return bitc::ATTR_KIND_SANITIZE_THREAD; 257 case Attribute::SanitizeMemory: 258 return bitc::ATTR_KIND_SANITIZE_MEMORY; 259 case Attribute::SwiftError: 260 return bitc::ATTR_KIND_SWIFT_ERROR; 261 case Attribute::SwiftSelf: 262 return bitc::ATTR_KIND_SWIFT_SELF; 263 case Attribute::UWTable: 264 return bitc::ATTR_KIND_UW_TABLE; 265 case Attribute::ZExt: 266 return bitc::ATTR_KIND_Z_EXT; 267 case Attribute::EndAttrKinds: 268 llvm_unreachable("Can not encode end-attribute kinds marker."); 269 case Attribute::None: 270 llvm_unreachable("Can not encode none-attribute."); 271 } 272 273 llvm_unreachable("Trying to encode unknown attribute"); 274 } 275 276 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 277 BitstreamWriter &Stream) { 278 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 279 if (AttrGrps.empty()) return; 280 281 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 282 283 SmallVector<uint64_t, 64> Record; 284 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 285 AttributeSet AS = AttrGrps[i]; 286 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 287 AttributeSet A = AS.getSlotAttributes(i); 288 289 Record.push_back(VE.getAttributeGroupID(A)); 290 Record.push_back(AS.getSlotIndex(i)); 291 292 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 293 I != E; ++I) { 294 Attribute Attr = *I; 295 if (Attr.isEnumAttribute()) { 296 Record.push_back(0); 297 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 298 } else if (Attr.isIntAttribute()) { 299 Record.push_back(1); 300 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 301 Record.push_back(Attr.getValueAsInt()); 302 } else { 303 StringRef Kind = Attr.getKindAsString(); 304 StringRef Val = Attr.getValueAsString(); 305 306 Record.push_back(Val.empty() ? 3 : 4); 307 Record.append(Kind.begin(), Kind.end()); 308 Record.push_back(0); 309 if (!Val.empty()) { 310 Record.append(Val.begin(), Val.end()); 311 Record.push_back(0); 312 } 313 } 314 } 315 316 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 317 Record.clear(); 318 } 319 } 320 321 Stream.ExitBlock(); 322 } 323 324 static void WriteAttributeTable(const ValueEnumerator &VE, 325 BitstreamWriter &Stream) { 326 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 327 if (Attrs.empty()) return; 328 329 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 330 331 SmallVector<uint64_t, 64> Record; 332 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 333 const AttributeSet &A = Attrs[i]; 334 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 335 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 336 337 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 338 Record.clear(); 339 } 340 341 Stream.ExitBlock(); 342 } 343 344 /// WriteTypeTable - Write out the type table for a module. 345 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 346 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 347 348 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 349 SmallVector<uint64_t, 64> TypeVals; 350 351 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 352 353 // Abbrev for TYPE_CODE_POINTER. 354 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 357 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 358 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_FUNCTION. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_STRUCT_ANON. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 375 376 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 377 378 // Abbrev for TYPE_CODE_STRUCT_NAME. 379 Abbv = new BitCodeAbbrev(); 380 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 383 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 384 385 // Abbrev for TYPE_CODE_STRUCT_NAMED. 386 Abbv = new BitCodeAbbrev(); 387 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 391 392 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 393 394 // Abbrev for TYPE_CODE_ARRAY. 395 Abbv = new BitCodeAbbrev(); 396 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 399 400 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 401 402 // Emit an entry count so the reader can reserve space. 403 TypeVals.push_back(TypeList.size()); 404 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 405 TypeVals.clear(); 406 407 // Loop over all of the types, emitting each in turn. 408 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 409 Type *T = TypeList[i]; 410 int AbbrevToUse = 0; 411 unsigned Code = 0; 412 413 switch (T->getTypeID()) { 414 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 415 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 416 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 417 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 418 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 419 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 420 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 421 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 422 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 423 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 424 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 425 case Type::IntegerTyID: 426 // INTEGER: [width] 427 Code = bitc::TYPE_CODE_INTEGER; 428 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 429 break; 430 case Type::PointerTyID: { 431 PointerType *PTy = cast<PointerType>(T); 432 // POINTER: [pointee type, address space] 433 Code = bitc::TYPE_CODE_POINTER; 434 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 435 unsigned AddressSpace = PTy->getAddressSpace(); 436 TypeVals.push_back(AddressSpace); 437 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 438 break; 439 } 440 case Type::FunctionTyID: { 441 FunctionType *FT = cast<FunctionType>(T); 442 // FUNCTION: [isvararg, retty, paramty x N] 443 Code = bitc::TYPE_CODE_FUNCTION; 444 TypeVals.push_back(FT->isVarArg()); 445 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 446 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 447 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 448 AbbrevToUse = FunctionAbbrev; 449 break; 450 } 451 case Type::StructTyID: { 452 StructType *ST = cast<StructType>(T); 453 // STRUCT: [ispacked, eltty x N] 454 TypeVals.push_back(ST->isPacked()); 455 // Output all of the element types. 456 for (StructType::element_iterator I = ST->element_begin(), 457 E = ST->element_end(); I != E; ++I) 458 TypeVals.push_back(VE.getTypeID(*I)); 459 460 if (ST->isLiteral()) { 461 Code = bitc::TYPE_CODE_STRUCT_ANON; 462 AbbrevToUse = StructAnonAbbrev; 463 } else { 464 if (ST->isOpaque()) { 465 Code = bitc::TYPE_CODE_OPAQUE; 466 } else { 467 Code = bitc::TYPE_CODE_STRUCT_NAMED; 468 AbbrevToUse = StructNamedAbbrev; 469 } 470 471 // Emit the name if it is present. 472 if (!ST->getName().empty()) 473 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 474 StructNameAbbrev, Stream); 475 } 476 break; 477 } 478 case Type::ArrayTyID: { 479 ArrayType *AT = cast<ArrayType>(T); 480 // ARRAY: [numelts, eltty] 481 Code = bitc::TYPE_CODE_ARRAY; 482 TypeVals.push_back(AT->getNumElements()); 483 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 484 AbbrevToUse = ArrayAbbrev; 485 break; 486 } 487 case Type::VectorTyID: { 488 VectorType *VT = cast<VectorType>(T); 489 // VECTOR [numelts, eltty] 490 Code = bitc::TYPE_CODE_VECTOR; 491 TypeVals.push_back(VT->getNumElements()); 492 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 493 break; 494 } 495 } 496 497 // Emit the finished record. 498 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 499 TypeVals.clear(); 500 } 501 502 Stream.ExitBlock(); 503 } 504 505 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 506 switch (Linkage) { 507 case GlobalValue::ExternalLinkage: 508 return 0; 509 case GlobalValue::WeakAnyLinkage: 510 return 16; 511 case GlobalValue::AppendingLinkage: 512 return 2; 513 case GlobalValue::InternalLinkage: 514 return 3; 515 case GlobalValue::LinkOnceAnyLinkage: 516 return 18; 517 case GlobalValue::ExternalWeakLinkage: 518 return 7; 519 case GlobalValue::CommonLinkage: 520 return 8; 521 case GlobalValue::PrivateLinkage: 522 return 9; 523 case GlobalValue::WeakODRLinkage: 524 return 17; 525 case GlobalValue::LinkOnceODRLinkage: 526 return 19; 527 case GlobalValue::AvailableExternallyLinkage: 528 return 12; 529 } 530 llvm_unreachable("Invalid linkage"); 531 } 532 533 static unsigned getEncodedLinkage(const GlobalValue &GV) { 534 return getEncodedLinkage(GV.getLinkage()); 535 } 536 537 static unsigned getEncodedVisibility(const GlobalValue &GV) { 538 switch (GV.getVisibility()) { 539 case GlobalValue::DefaultVisibility: return 0; 540 case GlobalValue::HiddenVisibility: return 1; 541 case GlobalValue::ProtectedVisibility: return 2; 542 } 543 llvm_unreachable("Invalid visibility"); 544 } 545 546 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 547 switch (GV.getDLLStorageClass()) { 548 case GlobalValue::DefaultStorageClass: return 0; 549 case GlobalValue::DLLImportStorageClass: return 1; 550 case GlobalValue::DLLExportStorageClass: return 2; 551 } 552 llvm_unreachable("Invalid DLL storage class"); 553 } 554 555 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 556 switch (GV.getThreadLocalMode()) { 557 case GlobalVariable::NotThreadLocal: return 0; 558 case GlobalVariable::GeneralDynamicTLSModel: return 1; 559 case GlobalVariable::LocalDynamicTLSModel: return 2; 560 case GlobalVariable::InitialExecTLSModel: return 3; 561 case GlobalVariable::LocalExecTLSModel: return 4; 562 } 563 llvm_unreachable("Invalid TLS model"); 564 } 565 566 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 567 switch (C.getSelectionKind()) { 568 case Comdat::Any: 569 return bitc::COMDAT_SELECTION_KIND_ANY; 570 case Comdat::ExactMatch: 571 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 572 case Comdat::Largest: 573 return bitc::COMDAT_SELECTION_KIND_LARGEST; 574 case Comdat::NoDuplicates: 575 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 576 case Comdat::SameSize: 577 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 578 } 579 llvm_unreachable("Invalid selection kind"); 580 } 581 582 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 583 SmallVector<unsigned, 64> Vals; 584 for (const Comdat *C : VE.getComdats()) { 585 // COMDAT: [selection_kind, name] 586 Vals.push_back(getEncodedComdatSelectionKind(*C)); 587 size_t Size = C->getName().size(); 588 assert(isUInt<32>(Size)); 589 Vals.push_back(Size); 590 for (char Chr : C->getName()) 591 Vals.push_back((unsigned char)Chr); 592 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 593 Vals.clear(); 594 } 595 } 596 597 /// Write a record that will eventually hold the word offset of the 598 /// module-level VST. For now the offset is 0, which will be backpatched 599 /// after the real VST is written. Returns the bit offset to backpatch. 600 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 601 // Write a placeholder value in for the offset of the real VST, 602 // which is written after the function blocks so that it can include 603 // the offset of each function. The placeholder offset will be 604 // updated when the real VST is written. 605 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 606 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 607 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 608 // hold the real VST offset. Must use fixed instead of VBR as we don't 609 // know how many VBR chunks to reserve ahead of time. 610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 611 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 612 613 // Emit the placeholder 614 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 615 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 616 617 // Compute and return the bit offset to the placeholder, which will be 618 // patched when the real VST is written. We can simply subtract the 32-bit 619 // fixed size from the current bit number to get the location to backpatch. 620 return Stream.GetCurrentBitNo() - 32; 621 } 622 623 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 624 625 /// Determine the encoding to use for the given string name and length. 626 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 627 bool isChar6 = true; 628 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 629 if (isChar6) 630 isChar6 = BitCodeAbbrevOp::isChar6(*C); 631 if ((unsigned char)*C & 128) 632 // don't bother scanning the rest. 633 return SE_Fixed8; 634 } 635 if (isChar6) 636 return SE_Char6; 637 else 638 return SE_Fixed7; 639 } 640 641 /// Emit top-level description of module, including target triple, inline asm, 642 /// descriptors for global variables, and function prototype info. 643 /// Returns the bit offset to backpatch with the location of the real VST. 644 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 645 BitstreamWriter &Stream) { 646 // Emit various pieces of data attached to a module. 647 if (!M->getTargetTriple().empty()) 648 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 649 0/*TODO*/, Stream); 650 const std::string &DL = M->getDataLayoutStr(); 651 if (!DL.empty()) 652 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 653 if (!M->getModuleInlineAsm().empty()) 654 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 655 0/*TODO*/, Stream); 656 657 // Emit information about sections and GC, computing how many there are. Also 658 // compute the maximum alignment value. 659 std::map<std::string, unsigned> SectionMap; 660 std::map<std::string, unsigned> GCMap; 661 unsigned MaxAlignment = 0; 662 unsigned MaxGlobalType = 0; 663 for (const GlobalValue &GV : M->globals()) { 664 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 665 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 666 if (GV.hasSection()) { 667 // Give section names unique ID's. 668 unsigned &Entry = SectionMap[GV.getSection()]; 669 if (!Entry) { 670 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 671 0/*TODO*/, Stream); 672 Entry = SectionMap.size(); 673 } 674 } 675 } 676 for (const Function &F : *M) { 677 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 678 if (F.hasSection()) { 679 // Give section names unique ID's. 680 unsigned &Entry = SectionMap[F.getSection()]; 681 if (!Entry) { 682 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 683 0/*TODO*/, Stream); 684 Entry = SectionMap.size(); 685 } 686 } 687 if (F.hasGC()) { 688 // Same for GC names. 689 unsigned &Entry = GCMap[F.getGC()]; 690 if (!Entry) { 691 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 692 0/*TODO*/, Stream); 693 Entry = GCMap.size(); 694 } 695 } 696 } 697 698 // Emit abbrev for globals, now that we know # sections and max alignment. 699 unsigned SimpleGVarAbbrev = 0; 700 if (!M->global_empty()) { 701 // Add an abbrev for common globals with no visibility or thread localness. 702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 703 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 705 Log2_32_Ceil(MaxGlobalType+1))); 706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 707 //| explicitType << 1 708 //| constant 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 711 if (MaxAlignment == 0) // Alignment. 712 Abbv->Add(BitCodeAbbrevOp(0)); 713 else { 714 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 716 Log2_32_Ceil(MaxEncAlignment+1))); 717 } 718 if (SectionMap.empty()) // Section. 719 Abbv->Add(BitCodeAbbrevOp(0)); 720 else 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 722 Log2_32_Ceil(SectionMap.size()+1))); 723 // Don't bother emitting vis + thread local. 724 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 725 } 726 727 // Emit the global variable information. 728 SmallVector<unsigned, 64> Vals; 729 for (const GlobalVariable &GV : M->globals()) { 730 unsigned AbbrevToUse = 0; 731 732 // GLOBALVAR: [type, isconst, initid, 733 // linkage, alignment, section, visibility, threadlocal, 734 // unnamed_addr, externally_initialized, dllstorageclass, 735 // comdat] 736 Vals.push_back(VE.getTypeID(GV.getValueType())); 737 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 738 Vals.push_back(GV.isDeclaration() ? 0 : 739 (VE.getValueID(GV.getInitializer()) + 1)); 740 Vals.push_back(getEncodedLinkage(GV)); 741 Vals.push_back(Log2_32(GV.getAlignment())+1); 742 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 743 if (GV.isThreadLocal() || 744 GV.getVisibility() != GlobalValue::DefaultVisibility || 745 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 746 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 747 GV.hasComdat()) { 748 Vals.push_back(getEncodedVisibility(GV)); 749 Vals.push_back(getEncodedThreadLocalMode(GV)); 750 Vals.push_back(GV.hasUnnamedAddr()); 751 Vals.push_back(GV.isExternallyInitialized()); 752 Vals.push_back(getEncodedDLLStorageClass(GV)); 753 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 754 } else { 755 AbbrevToUse = SimpleGVarAbbrev; 756 } 757 758 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 759 Vals.clear(); 760 } 761 762 // Emit the function proto information. 763 for (const Function &F : *M) { 764 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 765 // section, visibility, gc, unnamed_addr, prologuedata, 766 // dllstorageclass, comdat, prefixdata, personalityfn] 767 Vals.push_back(VE.getTypeID(F.getFunctionType())); 768 Vals.push_back(F.getCallingConv()); 769 Vals.push_back(F.isDeclaration()); 770 Vals.push_back(getEncodedLinkage(F)); 771 Vals.push_back(VE.getAttributeID(F.getAttributes())); 772 Vals.push_back(Log2_32(F.getAlignment())+1); 773 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 774 Vals.push_back(getEncodedVisibility(F)); 775 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 776 Vals.push_back(F.hasUnnamedAddr()); 777 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 778 : 0); 779 Vals.push_back(getEncodedDLLStorageClass(F)); 780 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 781 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 782 : 0); 783 Vals.push_back( 784 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 785 786 unsigned AbbrevToUse = 0; 787 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 788 Vals.clear(); 789 } 790 791 // Emit the alias information. 792 for (const GlobalAlias &A : M->aliases()) { 793 // ALIAS: [alias type, aliasee val#, linkage, visibility] 794 Vals.push_back(VE.getTypeID(A.getValueType())); 795 Vals.push_back(A.getType()->getAddressSpace()); 796 Vals.push_back(VE.getValueID(A.getAliasee())); 797 Vals.push_back(getEncodedLinkage(A)); 798 Vals.push_back(getEncodedVisibility(A)); 799 Vals.push_back(getEncodedDLLStorageClass(A)); 800 Vals.push_back(getEncodedThreadLocalMode(A)); 801 Vals.push_back(A.hasUnnamedAddr()); 802 unsigned AbbrevToUse = 0; 803 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 804 Vals.clear(); 805 } 806 807 // Emit the ifunc information. 808 for (const GlobalIFunc &I : M->ifuncs()) { 809 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 810 Vals.push_back(VE.getTypeID(I.getValueType())); 811 Vals.push_back(I.getType()->getAddressSpace()); 812 Vals.push_back(VE.getValueID(I.getResolver())); 813 Vals.push_back(getEncodedLinkage(I)); 814 Vals.push_back(getEncodedVisibility(I)); 815 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 816 Vals.clear(); 817 } 818 819 // Emit the module's source file name. 820 { 821 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 822 M->getSourceFileName().size()); 823 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 824 if (Bits == SE_Char6) 825 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 826 else if (Bits == SE_Fixed7) 827 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 828 829 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 830 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 831 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 833 Abbv->Add(AbbrevOpToUse); 834 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 835 836 for (const auto P : M->getSourceFileName()) 837 Vals.push_back((unsigned char)P); 838 839 // Emit the finished record. 840 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 841 Vals.clear(); 842 } 843 844 // If we have a VST, write the VSTOFFSET record placeholder and return 845 // its offset. 846 if (M->getValueSymbolTable().empty()) 847 return 0; 848 return WriteValueSymbolTableForwardDecl(Stream); 849 } 850 851 static uint64_t GetOptimizationFlags(const Value *V) { 852 uint64_t Flags = 0; 853 854 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 855 if (OBO->hasNoSignedWrap()) 856 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 857 if (OBO->hasNoUnsignedWrap()) 858 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 859 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 860 if (PEO->isExact()) 861 Flags |= 1 << bitc::PEO_EXACT; 862 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 863 if (FPMO->hasUnsafeAlgebra()) 864 Flags |= FastMathFlags::UnsafeAlgebra; 865 if (FPMO->hasNoNaNs()) 866 Flags |= FastMathFlags::NoNaNs; 867 if (FPMO->hasNoInfs()) 868 Flags |= FastMathFlags::NoInfs; 869 if (FPMO->hasNoSignedZeros()) 870 Flags |= FastMathFlags::NoSignedZeros; 871 if (FPMO->hasAllowReciprocal()) 872 Flags |= FastMathFlags::AllowReciprocal; 873 } 874 875 return Flags; 876 } 877 878 static void writeValueAsMetadata(const ValueAsMetadata *MD, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record) { 882 // Mimic an MDNode with a value as one operand. 883 Value *V = MD->getValue(); 884 Record.push_back(VE.getTypeID(V->getType())); 885 Record.push_back(VE.getValueID(V)); 886 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 887 Record.clear(); 888 } 889 890 static void writeMDTuple(const MDTuple *N, const ValueEnumerator &VE, 891 BitstreamWriter &Stream, 892 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 893 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 894 Metadata *MD = N->getOperand(i); 895 assert(!(MD && isa<LocalAsMetadata>(MD)) && 896 "Unexpected function-local metadata"); 897 Record.push_back(VE.getMetadataOrNullID(MD)); 898 } 899 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 900 : bitc::METADATA_NODE, 901 Record, Abbrev); 902 Record.clear(); 903 } 904 905 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 906 // Assume the column is usually under 128, and always output the inlined-at 907 // location (it's never more expensive than building an array size 1). 908 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 909 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 915 return Stream.EmitAbbrev(Abbv); 916 } 917 918 static void writeDILocation(const DILocation *N, const ValueEnumerator &VE, 919 BitstreamWriter &Stream, 920 SmallVectorImpl<uint64_t> &Record, 921 unsigned &Abbrev) { 922 if (!Abbrev) 923 Abbrev = createDILocationAbbrev(Stream); 924 925 Record.push_back(N->isDistinct()); 926 Record.push_back(N->getLine()); 927 Record.push_back(N->getColumn()); 928 Record.push_back(VE.getMetadataID(N->getScope())); 929 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 930 931 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 932 Record.clear(); 933 } 934 935 static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) { 936 // Assume the column is usually under 128, and always output the inlined-at 937 // location (it's never more expensive than building an array size 1). 938 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 939 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 946 return Stream.EmitAbbrev(Abbv); 947 } 948 949 static void writeGenericDINode(const GenericDINode *N, 950 const ValueEnumerator &VE, 951 BitstreamWriter &Stream, 952 SmallVectorImpl<uint64_t> &Record, 953 unsigned &Abbrev) { 954 if (!Abbrev) 955 Abbrev = createGenericDINodeAbbrev(Stream); 956 957 Record.push_back(N->isDistinct()); 958 Record.push_back(N->getTag()); 959 Record.push_back(0); // Per-tag version field; unused for now. 960 961 for (auto &I : N->operands()) 962 Record.push_back(VE.getMetadataOrNullID(I)); 963 964 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 965 Record.clear(); 966 } 967 968 static uint64_t rotateSign(int64_t I) { 969 uint64_t U = I; 970 return I < 0 ? ~(U << 1) : U << 1; 971 } 972 973 static void writeDISubrange(const DISubrange *N, const ValueEnumerator &, 974 BitstreamWriter &Stream, 975 SmallVectorImpl<uint64_t> &Record, 976 unsigned Abbrev) { 977 Record.push_back(N->isDistinct()); 978 Record.push_back(N->getCount()); 979 Record.push_back(rotateSign(N->getLowerBound())); 980 981 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 982 Record.clear(); 983 } 984 985 static void writeDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 986 BitstreamWriter &Stream, 987 SmallVectorImpl<uint64_t> &Record, 988 unsigned Abbrev) { 989 Record.push_back(N->isDistinct()); 990 Record.push_back(rotateSign(N->getValue())); 991 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 992 993 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 994 Record.clear(); 995 } 996 997 static void writeDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 998 BitstreamWriter &Stream, 999 SmallVectorImpl<uint64_t> &Record, 1000 unsigned Abbrev) { 1001 Record.push_back(N->isDistinct()); 1002 Record.push_back(N->getTag()); 1003 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1004 Record.push_back(N->getSizeInBits()); 1005 Record.push_back(N->getAlignInBits()); 1006 Record.push_back(N->getEncoding()); 1007 1008 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1009 Record.clear(); 1010 } 1011 1012 static void writeDIDerivedType(const DIDerivedType *N, 1013 const ValueEnumerator &VE, 1014 BitstreamWriter &Stream, 1015 SmallVectorImpl<uint64_t> &Record, 1016 unsigned Abbrev) { 1017 Record.push_back(N->isDistinct()); 1018 Record.push_back(N->getTag()); 1019 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1020 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1021 Record.push_back(N->getLine()); 1022 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1023 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1024 Record.push_back(N->getSizeInBits()); 1025 Record.push_back(N->getAlignInBits()); 1026 Record.push_back(N->getOffsetInBits()); 1027 Record.push_back(N->getFlags()); 1028 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1029 1030 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1031 Record.clear(); 1032 } 1033 1034 static void writeDICompositeType(const DICompositeType *N, 1035 const ValueEnumerator &VE, 1036 BitstreamWriter &Stream, 1037 SmallVectorImpl<uint64_t> &Record, 1038 unsigned Abbrev) { 1039 Record.push_back(N->isDistinct()); 1040 Record.push_back(N->getTag()); 1041 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1042 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1043 Record.push_back(N->getLine()); 1044 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1045 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1046 Record.push_back(N->getSizeInBits()); 1047 Record.push_back(N->getAlignInBits()); 1048 Record.push_back(N->getOffsetInBits()); 1049 Record.push_back(N->getFlags()); 1050 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1051 Record.push_back(N->getRuntimeLang()); 1052 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1053 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1054 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1055 1056 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1057 Record.clear(); 1058 } 1059 1060 static void writeDISubroutineType(const DISubroutineType *N, 1061 const ValueEnumerator &VE, 1062 BitstreamWriter &Stream, 1063 SmallVectorImpl<uint64_t> &Record, 1064 unsigned Abbrev) { 1065 Record.push_back(N->isDistinct()); 1066 Record.push_back(N->getFlags()); 1067 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1068 1069 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1070 Record.clear(); 1071 } 1072 1073 static void writeDIFile(const DIFile *N, const ValueEnumerator &VE, 1074 BitstreamWriter &Stream, 1075 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1076 Record.push_back(N->isDistinct()); 1077 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1078 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1079 1080 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1081 Record.clear(); 1082 } 1083 1084 static void writeDICompileUnit(const DICompileUnit *N, 1085 const ValueEnumerator &VE, 1086 BitstreamWriter &Stream, 1087 SmallVectorImpl<uint64_t> &Record, 1088 unsigned Abbrev) { 1089 assert(N->isDistinct() && "Expected distinct compile units"); 1090 Record.push_back(/* IsDistinct */ true); 1091 Record.push_back(N->getSourceLanguage()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1093 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1094 Record.push_back(N->isOptimized()); 1095 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1096 Record.push_back(N->getRuntimeVersion()); 1097 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1098 Record.push_back(N->getEmissionKind()); 1099 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1100 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1101 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1102 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1103 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1104 Record.push_back(N->getDWOId()); 1105 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1106 1107 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1108 Record.clear(); 1109 } 1110 1111 static void writeDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1112 BitstreamWriter &Stream, 1113 SmallVectorImpl<uint64_t> &Record, 1114 unsigned Abbrev) { 1115 Record.push_back(N->isDistinct()); 1116 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1117 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1118 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1120 Record.push_back(N->getLine()); 1121 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1122 Record.push_back(N->isLocalToUnit()); 1123 Record.push_back(N->isDefinition()); 1124 Record.push_back(N->getScopeLine()); 1125 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1126 Record.push_back(N->getVirtuality()); 1127 Record.push_back(N->getVirtualIndex()); 1128 Record.push_back(N->getFlags()); 1129 Record.push_back(N->isOptimized()); 1130 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1131 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1132 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1133 1134 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1135 Record.clear(); 1136 } 1137 1138 static void writeDILexicalBlock(const DILexicalBlock *N, 1139 const ValueEnumerator &VE, 1140 BitstreamWriter &Stream, 1141 SmallVectorImpl<uint64_t> &Record, 1142 unsigned Abbrev) { 1143 Record.push_back(N->isDistinct()); 1144 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1145 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1146 Record.push_back(N->getLine()); 1147 Record.push_back(N->getColumn()); 1148 1149 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1150 Record.clear(); 1151 } 1152 1153 static void writeDILexicalBlockFile(const DILexicalBlockFile *N, 1154 const ValueEnumerator &VE, 1155 BitstreamWriter &Stream, 1156 SmallVectorImpl<uint64_t> &Record, 1157 unsigned Abbrev) { 1158 Record.push_back(N->isDistinct()); 1159 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1160 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1161 Record.push_back(N->getDiscriminator()); 1162 1163 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1164 Record.clear(); 1165 } 1166 1167 static void writeDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1168 BitstreamWriter &Stream, 1169 SmallVectorImpl<uint64_t> &Record, 1170 unsigned Abbrev) { 1171 Record.push_back(N->isDistinct()); 1172 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1173 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1174 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1175 Record.push_back(N->getLine()); 1176 1177 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1178 Record.clear(); 1179 } 1180 1181 static void writeDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1182 BitstreamWriter &Stream, 1183 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1184 Record.push_back(N->isDistinct()); 1185 Record.push_back(N->getMacinfoType()); 1186 Record.push_back(N->getLine()); 1187 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1188 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1189 1190 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1191 Record.clear(); 1192 } 1193 1194 static void writeDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1195 BitstreamWriter &Stream, 1196 SmallVectorImpl<uint64_t> &Record, 1197 unsigned Abbrev) { 1198 Record.push_back(N->isDistinct()); 1199 Record.push_back(N->getMacinfoType()); 1200 Record.push_back(N->getLine()); 1201 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1202 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1203 1204 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1205 Record.clear(); 1206 } 1207 1208 static void writeDIModule(const DIModule *N, const ValueEnumerator &VE, 1209 BitstreamWriter &Stream, 1210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1211 Record.push_back(N->isDistinct()); 1212 for (auto &I : N->operands()) 1213 Record.push_back(VE.getMetadataOrNullID(I)); 1214 1215 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1216 Record.clear(); 1217 } 1218 1219 static void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 1220 const ValueEnumerator &VE, 1221 BitstreamWriter &Stream, 1222 SmallVectorImpl<uint64_t> &Record, 1223 unsigned Abbrev) { 1224 Record.push_back(N->isDistinct()); 1225 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1226 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1227 1228 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1229 Record.clear(); 1230 } 1231 1232 static void writeDITemplateValueParameter(const DITemplateValueParameter *N, 1233 const ValueEnumerator &VE, 1234 BitstreamWriter &Stream, 1235 SmallVectorImpl<uint64_t> &Record, 1236 unsigned Abbrev) { 1237 Record.push_back(N->isDistinct()); 1238 Record.push_back(N->getTag()); 1239 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1240 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1241 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1242 1243 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1244 Record.clear(); 1245 } 1246 1247 static void writeDIGlobalVariable(const DIGlobalVariable *N, 1248 const ValueEnumerator &VE, 1249 BitstreamWriter &Stream, 1250 SmallVectorImpl<uint64_t> &Record, 1251 unsigned Abbrev) { 1252 Record.push_back(N->isDistinct()); 1253 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1254 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1255 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1256 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1257 Record.push_back(N->getLine()); 1258 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1259 Record.push_back(N->isLocalToUnit()); 1260 Record.push_back(N->isDefinition()); 1261 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1262 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1263 1264 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1265 Record.clear(); 1266 } 1267 1268 static void writeDILocalVariable(const DILocalVariable *N, 1269 const ValueEnumerator &VE, 1270 BitstreamWriter &Stream, 1271 SmallVectorImpl<uint64_t> &Record, 1272 unsigned Abbrev) { 1273 Record.push_back(N->isDistinct()); 1274 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1275 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1276 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1277 Record.push_back(N->getLine()); 1278 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1279 Record.push_back(N->getArg()); 1280 Record.push_back(N->getFlags()); 1281 1282 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1283 Record.clear(); 1284 } 1285 1286 static void writeDIExpression(const DIExpression *N, const ValueEnumerator &, 1287 BitstreamWriter &Stream, 1288 SmallVectorImpl<uint64_t> &Record, 1289 unsigned Abbrev) { 1290 Record.reserve(N->getElements().size() + 1); 1291 1292 Record.push_back(N->isDistinct()); 1293 Record.append(N->elements_begin(), N->elements_end()); 1294 1295 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1296 Record.clear(); 1297 } 1298 1299 static void writeDIObjCProperty(const DIObjCProperty *N, 1300 const ValueEnumerator &VE, 1301 BitstreamWriter &Stream, 1302 SmallVectorImpl<uint64_t> &Record, 1303 unsigned Abbrev) { 1304 Record.push_back(N->isDistinct()); 1305 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1306 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1307 Record.push_back(N->getLine()); 1308 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1309 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1310 Record.push_back(N->getAttributes()); 1311 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1312 1313 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1314 Record.clear(); 1315 } 1316 1317 static void writeDIImportedEntity(const DIImportedEntity *N, 1318 const ValueEnumerator &VE, 1319 BitstreamWriter &Stream, 1320 SmallVectorImpl<uint64_t> &Record, 1321 unsigned Abbrev) { 1322 Record.push_back(N->isDistinct()); 1323 Record.push_back(N->getTag()); 1324 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1325 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1326 Record.push_back(N->getLine()); 1327 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1328 1329 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1330 Record.clear(); 1331 } 1332 1333 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1334 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1335 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1338 return Stream.EmitAbbrev(Abbv); 1339 } 1340 1341 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1342 BitstreamWriter &Stream, 1343 SmallVectorImpl<uint64_t> &Record) { 1344 if (M.named_metadata_empty()) 1345 return; 1346 1347 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1348 for (const NamedMDNode &NMD : M.named_metadata()) { 1349 // Write name. 1350 StringRef Str = NMD.getName(); 1351 Record.append(Str.bytes_begin(), Str.bytes_end()); 1352 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1353 Record.clear(); 1354 1355 // Write named metadata operands. 1356 for (const MDNode *N : NMD.operands()) 1357 Record.push_back(VE.getMetadataID(N)); 1358 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1359 Record.clear(); 1360 } 1361 } 1362 1363 static unsigned createMetadataStringsAbbrev(BitstreamWriter &Stream) { 1364 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1365 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1369 return Stream.EmitAbbrev(Abbv); 1370 } 1371 1372 /// Write out a record for MDString. 1373 /// 1374 /// All the metadata strings in a metadata block are emitted in a single 1375 /// record. The sizes and strings themselves are shoved into a blob. 1376 static void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 1377 BitstreamWriter &Stream, 1378 SmallVectorImpl<uint64_t> &Record) { 1379 if (Strings.empty()) 1380 return; 1381 1382 // Start the record with the number of strings. 1383 Record.push_back(bitc::METADATA_STRINGS); 1384 Record.push_back(Strings.size()); 1385 1386 // Emit the sizes of the strings in the blob. 1387 SmallString<256> Blob; 1388 { 1389 BitstreamWriter W(Blob); 1390 for (const Metadata *MD : Strings) 1391 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1392 W.FlushToWord(); 1393 } 1394 1395 // Add the offset to the strings to the record. 1396 Record.push_back(Blob.size()); 1397 1398 // Add the strings to the blob. 1399 for (const Metadata *MD : Strings) 1400 Blob.append(cast<MDString>(MD)->getString()); 1401 1402 // Emit the final record. 1403 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(Stream), Record, Blob); 1404 Record.clear(); 1405 } 1406 1407 static void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1408 const ValueEnumerator &VE, 1409 BitstreamWriter &Stream, 1410 SmallVectorImpl<uint64_t> &Record) { 1411 if (MDs.empty()) 1412 return; 1413 1414 // Initialize MDNode abbreviations. 1415 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1416 #include "llvm/IR/Metadata.def" 1417 1418 for (const Metadata *MD : MDs) { 1419 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1420 assert(N->isResolved() && "Expected forward references to be resolved"); 1421 1422 switch (N->getMetadataID()) { 1423 default: 1424 llvm_unreachable("Invalid MDNode subclass"); 1425 #define HANDLE_MDNODE_LEAF(CLASS) \ 1426 case Metadata::CLASS##Kind: \ 1427 write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1428 continue; 1429 #include "llvm/IR/Metadata.def" 1430 } 1431 } 1432 writeValueAsMetadata(cast<ValueAsMetadata>(MD), VE, Stream, Record); 1433 } 1434 } 1435 1436 static void writeModuleMetadata(const Module &M, 1437 const ValueEnumerator &VE, 1438 BitstreamWriter &Stream) { 1439 if (!VE.hasMDs() && M.named_metadata_empty()) 1440 return; 1441 1442 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1443 SmallVector<uint64_t, 64> Record; 1444 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1445 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1446 writeNamedMetadata(M, VE, Stream, Record); 1447 Stream.ExitBlock(); 1448 } 1449 1450 static void writeFunctionMetadata(const Function &F, const ValueEnumerator &VE, 1451 BitstreamWriter &Stream) { 1452 if (!VE.hasMDs()) 1453 return; 1454 1455 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1456 SmallVector<uint64_t, 64> Record; 1457 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1458 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1459 Stream.ExitBlock(); 1460 } 1461 1462 static void WriteMetadataAttachment(const Function &F, 1463 const ValueEnumerator &VE, 1464 BitstreamWriter &Stream) { 1465 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1466 1467 SmallVector<uint64_t, 64> Record; 1468 1469 // Write metadata attachments 1470 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1471 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1472 F.getAllMetadata(MDs); 1473 if (!MDs.empty()) { 1474 for (const auto &I : MDs) { 1475 Record.push_back(I.first); 1476 Record.push_back(VE.getMetadataID(I.second)); 1477 } 1478 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1479 Record.clear(); 1480 } 1481 1482 for (const BasicBlock &BB : F) 1483 for (const Instruction &I : BB) { 1484 MDs.clear(); 1485 I.getAllMetadataOtherThanDebugLoc(MDs); 1486 1487 // If no metadata, ignore instruction. 1488 if (MDs.empty()) continue; 1489 1490 Record.push_back(VE.getInstructionID(&I)); 1491 1492 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1493 Record.push_back(MDs[i].first); 1494 Record.push_back(VE.getMetadataID(MDs[i].second)); 1495 } 1496 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1497 Record.clear(); 1498 } 1499 1500 Stream.ExitBlock(); 1501 } 1502 1503 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1504 SmallVector<uint64_t, 64> Record; 1505 1506 // Write metadata kinds 1507 // METADATA_KIND - [n x [id, name]] 1508 SmallVector<StringRef, 8> Names; 1509 M->getMDKindNames(Names); 1510 1511 if (Names.empty()) return; 1512 1513 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1514 1515 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1516 Record.push_back(MDKindID); 1517 StringRef KName = Names[MDKindID]; 1518 Record.append(KName.begin(), KName.end()); 1519 1520 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1521 Record.clear(); 1522 } 1523 1524 Stream.ExitBlock(); 1525 } 1526 1527 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1528 // Write metadata kinds 1529 // 1530 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1531 // 1532 // OPERAND_BUNDLE_TAG - [strchr x N] 1533 1534 SmallVector<StringRef, 8> Tags; 1535 M->getOperandBundleTags(Tags); 1536 1537 if (Tags.empty()) 1538 return; 1539 1540 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1541 1542 SmallVector<uint64_t, 64> Record; 1543 1544 for (auto Tag : Tags) { 1545 Record.append(Tag.begin(), Tag.end()); 1546 1547 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1548 Record.clear(); 1549 } 1550 1551 Stream.ExitBlock(); 1552 } 1553 1554 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1555 if ((int64_t)V >= 0) 1556 Vals.push_back(V << 1); 1557 else 1558 Vals.push_back((-V << 1) | 1); 1559 } 1560 1561 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1562 const ValueEnumerator &VE, 1563 BitstreamWriter &Stream, bool isGlobal) { 1564 if (FirstVal == LastVal) return; 1565 1566 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1567 1568 unsigned AggregateAbbrev = 0; 1569 unsigned String8Abbrev = 0; 1570 unsigned CString7Abbrev = 0; 1571 unsigned CString6Abbrev = 0; 1572 // If this is a constant pool for the module, emit module-specific abbrevs. 1573 if (isGlobal) { 1574 // Abbrev for CST_CODE_AGGREGATE. 1575 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1576 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1579 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1580 1581 // Abbrev for CST_CODE_STRING. 1582 Abbv = new BitCodeAbbrev(); 1583 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1586 String8Abbrev = Stream.EmitAbbrev(Abbv); 1587 // Abbrev for CST_CODE_CSTRING. 1588 Abbv = new BitCodeAbbrev(); 1589 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1592 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1593 // Abbrev for CST_CODE_CSTRING. 1594 Abbv = new BitCodeAbbrev(); 1595 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1598 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1599 } 1600 1601 SmallVector<uint64_t, 64> Record; 1602 1603 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1604 Type *LastTy = nullptr; 1605 for (unsigned i = FirstVal; i != LastVal; ++i) { 1606 const Value *V = Vals[i].first; 1607 // If we need to switch types, do so now. 1608 if (V->getType() != LastTy) { 1609 LastTy = V->getType(); 1610 Record.push_back(VE.getTypeID(LastTy)); 1611 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1612 CONSTANTS_SETTYPE_ABBREV); 1613 Record.clear(); 1614 } 1615 1616 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1617 Record.push_back(unsigned(IA->hasSideEffects()) | 1618 unsigned(IA->isAlignStack()) << 1 | 1619 unsigned(IA->getDialect()&1) << 2); 1620 1621 // Add the asm string. 1622 const std::string &AsmStr = IA->getAsmString(); 1623 Record.push_back(AsmStr.size()); 1624 Record.append(AsmStr.begin(), AsmStr.end()); 1625 1626 // Add the constraint string. 1627 const std::string &ConstraintStr = IA->getConstraintString(); 1628 Record.push_back(ConstraintStr.size()); 1629 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1630 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1631 Record.clear(); 1632 continue; 1633 } 1634 const Constant *C = cast<Constant>(V); 1635 unsigned Code = -1U; 1636 unsigned AbbrevToUse = 0; 1637 if (C->isNullValue()) { 1638 Code = bitc::CST_CODE_NULL; 1639 } else if (isa<UndefValue>(C)) { 1640 Code = bitc::CST_CODE_UNDEF; 1641 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1642 if (IV->getBitWidth() <= 64) { 1643 uint64_t V = IV->getSExtValue(); 1644 emitSignedInt64(Record, V); 1645 Code = bitc::CST_CODE_INTEGER; 1646 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1647 } else { // Wide integers, > 64 bits in size. 1648 // We have an arbitrary precision integer value to write whose 1649 // bit width is > 64. However, in canonical unsigned integer 1650 // format it is likely that the high bits are going to be zero. 1651 // So, we only write the number of active words. 1652 unsigned NWords = IV->getValue().getActiveWords(); 1653 const uint64_t *RawWords = IV->getValue().getRawData(); 1654 for (unsigned i = 0; i != NWords; ++i) { 1655 emitSignedInt64(Record, RawWords[i]); 1656 } 1657 Code = bitc::CST_CODE_WIDE_INTEGER; 1658 } 1659 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1660 Code = bitc::CST_CODE_FLOAT; 1661 Type *Ty = CFP->getType(); 1662 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1663 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1664 } else if (Ty->isX86_FP80Ty()) { 1665 // api needed to prevent premature destruction 1666 // bits are not in the same order as a normal i80 APInt, compensate. 1667 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1668 const uint64_t *p = api.getRawData(); 1669 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1670 Record.push_back(p[0] & 0xffffLL); 1671 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1672 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1673 const uint64_t *p = api.getRawData(); 1674 Record.push_back(p[0]); 1675 Record.push_back(p[1]); 1676 } else { 1677 assert (0 && "Unknown FP type!"); 1678 } 1679 } else if (isa<ConstantDataSequential>(C) && 1680 cast<ConstantDataSequential>(C)->isString()) { 1681 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1682 // Emit constant strings specially. 1683 unsigned NumElts = Str->getNumElements(); 1684 // If this is a null-terminated string, use the denser CSTRING encoding. 1685 if (Str->isCString()) { 1686 Code = bitc::CST_CODE_CSTRING; 1687 --NumElts; // Don't encode the null, which isn't allowed by char6. 1688 } else { 1689 Code = bitc::CST_CODE_STRING; 1690 AbbrevToUse = String8Abbrev; 1691 } 1692 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1693 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1694 for (unsigned i = 0; i != NumElts; ++i) { 1695 unsigned char V = Str->getElementAsInteger(i); 1696 Record.push_back(V); 1697 isCStr7 &= (V & 128) == 0; 1698 if (isCStrChar6) 1699 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1700 } 1701 1702 if (isCStrChar6) 1703 AbbrevToUse = CString6Abbrev; 1704 else if (isCStr7) 1705 AbbrevToUse = CString7Abbrev; 1706 } else if (const ConstantDataSequential *CDS = 1707 dyn_cast<ConstantDataSequential>(C)) { 1708 Code = bitc::CST_CODE_DATA; 1709 Type *EltTy = CDS->getType()->getElementType(); 1710 if (isa<IntegerType>(EltTy)) { 1711 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1712 Record.push_back(CDS->getElementAsInteger(i)); 1713 } else { 1714 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1715 Record.push_back( 1716 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1717 } 1718 } else if (isa<ConstantAggregate>(C)) { 1719 Code = bitc::CST_CODE_AGGREGATE; 1720 for (const Value *Op : C->operands()) 1721 Record.push_back(VE.getValueID(Op)); 1722 AbbrevToUse = AggregateAbbrev; 1723 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1724 switch (CE->getOpcode()) { 1725 default: 1726 if (Instruction::isCast(CE->getOpcode())) { 1727 Code = bitc::CST_CODE_CE_CAST; 1728 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1729 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1730 Record.push_back(VE.getValueID(C->getOperand(0))); 1731 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1732 } else { 1733 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1734 Code = bitc::CST_CODE_CE_BINOP; 1735 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1736 Record.push_back(VE.getValueID(C->getOperand(0))); 1737 Record.push_back(VE.getValueID(C->getOperand(1))); 1738 uint64_t Flags = GetOptimizationFlags(CE); 1739 if (Flags != 0) 1740 Record.push_back(Flags); 1741 } 1742 break; 1743 case Instruction::GetElementPtr: { 1744 Code = bitc::CST_CODE_CE_GEP; 1745 const auto *GO = cast<GEPOperator>(C); 1746 if (GO->isInBounds()) 1747 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1748 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1749 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1750 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1751 Record.push_back(VE.getValueID(C->getOperand(i))); 1752 } 1753 break; 1754 } 1755 case Instruction::Select: 1756 Code = bitc::CST_CODE_CE_SELECT; 1757 Record.push_back(VE.getValueID(C->getOperand(0))); 1758 Record.push_back(VE.getValueID(C->getOperand(1))); 1759 Record.push_back(VE.getValueID(C->getOperand(2))); 1760 break; 1761 case Instruction::ExtractElement: 1762 Code = bitc::CST_CODE_CE_EXTRACTELT; 1763 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1764 Record.push_back(VE.getValueID(C->getOperand(0))); 1765 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1766 Record.push_back(VE.getValueID(C->getOperand(1))); 1767 break; 1768 case Instruction::InsertElement: 1769 Code = bitc::CST_CODE_CE_INSERTELT; 1770 Record.push_back(VE.getValueID(C->getOperand(0))); 1771 Record.push_back(VE.getValueID(C->getOperand(1))); 1772 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1773 Record.push_back(VE.getValueID(C->getOperand(2))); 1774 break; 1775 case Instruction::ShuffleVector: 1776 // If the return type and argument types are the same, this is a 1777 // standard shufflevector instruction. If the types are different, 1778 // then the shuffle is widening or truncating the input vectors, and 1779 // the argument type must also be encoded. 1780 if (C->getType() == C->getOperand(0)->getType()) { 1781 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1782 } else { 1783 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1784 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1785 } 1786 Record.push_back(VE.getValueID(C->getOperand(0))); 1787 Record.push_back(VE.getValueID(C->getOperand(1))); 1788 Record.push_back(VE.getValueID(C->getOperand(2))); 1789 break; 1790 case Instruction::ICmp: 1791 case Instruction::FCmp: 1792 Code = bitc::CST_CODE_CE_CMP; 1793 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1794 Record.push_back(VE.getValueID(C->getOperand(0))); 1795 Record.push_back(VE.getValueID(C->getOperand(1))); 1796 Record.push_back(CE->getPredicate()); 1797 break; 1798 } 1799 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1800 Code = bitc::CST_CODE_BLOCKADDRESS; 1801 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1802 Record.push_back(VE.getValueID(BA->getFunction())); 1803 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1804 } else { 1805 #ifndef NDEBUG 1806 C->dump(); 1807 #endif 1808 llvm_unreachable("Unknown constant!"); 1809 } 1810 Stream.EmitRecord(Code, Record, AbbrevToUse); 1811 Record.clear(); 1812 } 1813 1814 Stream.ExitBlock(); 1815 } 1816 1817 static void WriteModuleConstants(const ValueEnumerator &VE, 1818 BitstreamWriter &Stream) { 1819 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1820 1821 // Find the first constant to emit, which is the first non-globalvalue value. 1822 // We know globalvalues have been emitted by WriteModuleInfo. 1823 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1824 if (!isa<GlobalValue>(Vals[i].first)) { 1825 WriteConstants(i, Vals.size(), VE, Stream, true); 1826 return; 1827 } 1828 } 1829 } 1830 1831 /// PushValueAndType - The file has to encode both the value and type id for 1832 /// many values, because we need to know what type to create for forward 1833 /// references. However, most operands are not forward references, so this type 1834 /// field is not needed. 1835 /// 1836 /// This function adds V's value ID to Vals. If the value ID is higher than the 1837 /// instruction ID, then it is a forward reference, and it also includes the 1838 /// type ID. The value ID that is written is encoded relative to the InstID. 1839 static bool PushValueAndType(const Value *V, unsigned InstID, 1840 SmallVectorImpl<unsigned> &Vals, 1841 ValueEnumerator &VE) { 1842 unsigned ValID = VE.getValueID(V); 1843 // Make encoding relative to the InstID. 1844 Vals.push_back(InstID - ValID); 1845 if (ValID >= InstID) { 1846 Vals.push_back(VE.getTypeID(V->getType())); 1847 return true; 1848 } 1849 return false; 1850 } 1851 1852 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1853 unsigned InstID, ValueEnumerator &VE) { 1854 SmallVector<unsigned, 64> Record; 1855 LLVMContext &C = CS.getInstruction()->getContext(); 1856 1857 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1858 const auto &Bundle = CS.getOperandBundleAt(i); 1859 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1860 1861 for (auto &Input : Bundle.Inputs) 1862 PushValueAndType(Input, InstID, Record, VE); 1863 1864 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1865 Record.clear(); 1866 } 1867 } 1868 1869 /// pushValue - Like PushValueAndType, but where the type of the value is 1870 /// omitted (perhaps it was already encoded in an earlier operand). 1871 static void pushValue(const Value *V, unsigned InstID, 1872 SmallVectorImpl<unsigned> &Vals, 1873 ValueEnumerator &VE) { 1874 unsigned ValID = VE.getValueID(V); 1875 Vals.push_back(InstID - ValID); 1876 } 1877 1878 static void pushValueSigned(const Value *V, unsigned InstID, 1879 SmallVectorImpl<uint64_t> &Vals, 1880 ValueEnumerator &VE) { 1881 unsigned ValID = VE.getValueID(V); 1882 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1883 emitSignedInt64(Vals, diff); 1884 } 1885 1886 /// WriteInstruction - Emit an instruction to the specified stream. 1887 static void WriteInstruction(const Instruction &I, unsigned InstID, 1888 ValueEnumerator &VE, BitstreamWriter &Stream, 1889 SmallVectorImpl<unsigned> &Vals) { 1890 unsigned Code = 0; 1891 unsigned AbbrevToUse = 0; 1892 VE.setInstructionID(&I); 1893 switch (I.getOpcode()) { 1894 default: 1895 if (Instruction::isCast(I.getOpcode())) { 1896 Code = bitc::FUNC_CODE_INST_CAST; 1897 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1898 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1899 Vals.push_back(VE.getTypeID(I.getType())); 1900 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1901 } else { 1902 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1903 Code = bitc::FUNC_CODE_INST_BINOP; 1904 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1905 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1906 pushValue(I.getOperand(1), InstID, Vals, VE); 1907 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1908 uint64_t Flags = GetOptimizationFlags(&I); 1909 if (Flags != 0) { 1910 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1911 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1912 Vals.push_back(Flags); 1913 } 1914 } 1915 break; 1916 1917 case Instruction::GetElementPtr: { 1918 Code = bitc::FUNC_CODE_INST_GEP; 1919 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1920 auto &GEPInst = cast<GetElementPtrInst>(I); 1921 Vals.push_back(GEPInst.isInBounds()); 1922 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1923 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1924 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1925 break; 1926 } 1927 case Instruction::ExtractValue: { 1928 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1929 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1930 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1931 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1932 break; 1933 } 1934 case Instruction::InsertValue: { 1935 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1936 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1937 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1938 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1939 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1940 break; 1941 } 1942 case Instruction::Select: 1943 Code = bitc::FUNC_CODE_INST_VSELECT; 1944 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1945 pushValue(I.getOperand(2), InstID, Vals, VE); 1946 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1947 break; 1948 case Instruction::ExtractElement: 1949 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1950 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1951 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1952 break; 1953 case Instruction::InsertElement: 1954 Code = bitc::FUNC_CODE_INST_INSERTELT; 1955 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1956 pushValue(I.getOperand(1), InstID, Vals, VE); 1957 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1958 break; 1959 case Instruction::ShuffleVector: 1960 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1961 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1962 pushValue(I.getOperand(1), InstID, Vals, VE); 1963 pushValue(I.getOperand(2), InstID, Vals, VE); 1964 break; 1965 case Instruction::ICmp: 1966 case Instruction::FCmp: { 1967 // compare returning Int1Ty or vector of Int1Ty 1968 Code = bitc::FUNC_CODE_INST_CMP2; 1969 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1970 pushValue(I.getOperand(1), InstID, Vals, VE); 1971 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1972 uint64_t Flags = GetOptimizationFlags(&I); 1973 if (Flags != 0) 1974 Vals.push_back(Flags); 1975 break; 1976 } 1977 1978 case Instruction::Ret: 1979 { 1980 Code = bitc::FUNC_CODE_INST_RET; 1981 unsigned NumOperands = I.getNumOperands(); 1982 if (NumOperands == 0) 1983 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1984 else if (NumOperands == 1) { 1985 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1986 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1987 } else { 1988 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1989 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1990 } 1991 } 1992 break; 1993 case Instruction::Br: 1994 { 1995 Code = bitc::FUNC_CODE_INST_BR; 1996 const BranchInst &II = cast<BranchInst>(I); 1997 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1998 if (II.isConditional()) { 1999 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2000 pushValue(II.getCondition(), InstID, Vals, VE); 2001 } 2002 } 2003 break; 2004 case Instruction::Switch: 2005 { 2006 Code = bitc::FUNC_CODE_INST_SWITCH; 2007 const SwitchInst &SI = cast<SwitchInst>(I); 2008 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2009 pushValue(SI.getCondition(), InstID, Vals, VE); 2010 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2011 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2012 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2013 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2014 } 2015 } 2016 break; 2017 case Instruction::IndirectBr: 2018 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2019 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2020 // Encode the address operand as relative, but not the basic blocks. 2021 pushValue(I.getOperand(0), InstID, Vals, VE); 2022 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2023 Vals.push_back(VE.getValueID(I.getOperand(i))); 2024 break; 2025 2026 case Instruction::Invoke: { 2027 const InvokeInst *II = cast<InvokeInst>(&I); 2028 const Value *Callee = II->getCalledValue(); 2029 FunctionType *FTy = II->getFunctionType(); 2030 2031 if (II->hasOperandBundles()) 2032 WriteOperandBundles(Stream, II, InstID, VE); 2033 2034 Code = bitc::FUNC_CODE_INST_INVOKE; 2035 2036 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2037 Vals.push_back(II->getCallingConv() | 1 << 13); 2038 Vals.push_back(VE.getValueID(II->getNormalDest())); 2039 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2040 Vals.push_back(VE.getTypeID(FTy)); 2041 PushValueAndType(Callee, InstID, Vals, VE); 2042 2043 // Emit value #'s for the fixed parameters. 2044 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2045 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2046 2047 // Emit type/value pairs for varargs params. 2048 if (FTy->isVarArg()) { 2049 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2050 i != e; ++i) 2051 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2052 } 2053 break; 2054 } 2055 case Instruction::Resume: 2056 Code = bitc::FUNC_CODE_INST_RESUME; 2057 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2058 break; 2059 case Instruction::CleanupRet: { 2060 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2061 const auto &CRI = cast<CleanupReturnInst>(I); 2062 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2063 if (CRI.hasUnwindDest()) 2064 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2065 break; 2066 } 2067 case Instruction::CatchRet: { 2068 Code = bitc::FUNC_CODE_INST_CATCHRET; 2069 const auto &CRI = cast<CatchReturnInst>(I); 2070 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2071 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2072 break; 2073 } 2074 case Instruction::CleanupPad: 2075 case Instruction::CatchPad: { 2076 const auto &FuncletPad = cast<FuncletPadInst>(I); 2077 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2078 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2079 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2080 2081 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2082 Vals.push_back(NumArgOperands); 2083 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2084 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2085 break; 2086 } 2087 case Instruction::CatchSwitch: { 2088 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2089 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2090 2091 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2092 2093 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2094 Vals.push_back(NumHandlers); 2095 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2096 Vals.push_back(VE.getValueID(CatchPadBB)); 2097 2098 if (CatchSwitch.hasUnwindDest()) 2099 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2100 break; 2101 } 2102 case Instruction::Unreachable: 2103 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2104 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2105 break; 2106 2107 case Instruction::PHI: { 2108 const PHINode &PN = cast<PHINode>(I); 2109 Code = bitc::FUNC_CODE_INST_PHI; 2110 // With the newer instruction encoding, forward references could give 2111 // negative valued IDs. This is most common for PHIs, so we use 2112 // signed VBRs. 2113 SmallVector<uint64_t, 128> Vals64; 2114 Vals64.push_back(VE.getTypeID(PN.getType())); 2115 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2116 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2117 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2118 } 2119 // Emit a Vals64 vector and exit. 2120 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2121 Vals64.clear(); 2122 return; 2123 } 2124 2125 case Instruction::LandingPad: { 2126 const LandingPadInst &LP = cast<LandingPadInst>(I); 2127 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2128 Vals.push_back(VE.getTypeID(LP.getType())); 2129 Vals.push_back(LP.isCleanup()); 2130 Vals.push_back(LP.getNumClauses()); 2131 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2132 if (LP.isCatch(I)) 2133 Vals.push_back(LandingPadInst::Catch); 2134 else 2135 Vals.push_back(LandingPadInst::Filter); 2136 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2137 } 2138 break; 2139 } 2140 2141 case Instruction::Alloca: { 2142 Code = bitc::FUNC_CODE_INST_ALLOCA; 2143 const AllocaInst &AI = cast<AllocaInst>(I); 2144 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2145 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2146 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2147 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2148 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2149 "not enough bits for maximum alignment"); 2150 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2151 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2152 AlignRecord |= 1 << 6; 2153 AlignRecord |= AI.isSwiftError() << 7; 2154 Vals.push_back(AlignRecord); 2155 break; 2156 } 2157 2158 case Instruction::Load: 2159 if (cast<LoadInst>(I).isAtomic()) { 2160 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2161 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2162 } else { 2163 Code = bitc::FUNC_CODE_INST_LOAD; 2164 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2165 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2166 } 2167 Vals.push_back(VE.getTypeID(I.getType())); 2168 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2169 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2170 if (cast<LoadInst>(I).isAtomic()) { 2171 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2172 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2173 } 2174 break; 2175 case Instruction::Store: 2176 if (cast<StoreInst>(I).isAtomic()) 2177 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2178 else 2179 Code = bitc::FUNC_CODE_INST_STORE; 2180 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2181 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2182 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2183 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2184 if (cast<StoreInst>(I).isAtomic()) { 2185 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2186 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2187 } 2188 break; 2189 case Instruction::AtomicCmpXchg: 2190 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2191 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2192 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2193 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2194 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2195 Vals.push_back(GetEncodedOrdering( 2196 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2197 Vals.push_back(GetEncodedSynchScope( 2198 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2199 Vals.push_back(GetEncodedOrdering( 2200 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2201 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2202 break; 2203 case Instruction::AtomicRMW: 2204 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2205 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2206 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2207 Vals.push_back(GetEncodedRMWOperation( 2208 cast<AtomicRMWInst>(I).getOperation())); 2209 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2210 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2211 Vals.push_back(GetEncodedSynchScope( 2212 cast<AtomicRMWInst>(I).getSynchScope())); 2213 break; 2214 case Instruction::Fence: 2215 Code = bitc::FUNC_CODE_INST_FENCE; 2216 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2217 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2218 break; 2219 case Instruction::Call: { 2220 const CallInst &CI = cast<CallInst>(I); 2221 FunctionType *FTy = CI.getFunctionType(); 2222 2223 if (CI.hasOperandBundles()) 2224 WriteOperandBundles(Stream, &CI, InstID, VE); 2225 2226 Code = bitc::FUNC_CODE_INST_CALL; 2227 2228 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2229 2230 unsigned Flags = GetOptimizationFlags(&I); 2231 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2232 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2233 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2234 1 << bitc::CALL_EXPLICIT_TYPE | 2235 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2236 unsigned(Flags != 0) << bitc::CALL_FMF); 2237 if (Flags != 0) 2238 Vals.push_back(Flags); 2239 2240 Vals.push_back(VE.getTypeID(FTy)); 2241 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2242 2243 // Emit value #'s for the fixed parameters. 2244 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2245 // Check for labels (can happen with asm labels). 2246 if (FTy->getParamType(i)->isLabelTy()) 2247 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2248 else 2249 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2250 } 2251 2252 // Emit type/value pairs for varargs params. 2253 if (FTy->isVarArg()) { 2254 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2255 i != e; ++i) 2256 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2257 } 2258 break; 2259 } 2260 case Instruction::VAArg: 2261 Code = bitc::FUNC_CODE_INST_VAARG; 2262 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2263 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2264 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2265 break; 2266 } 2267 2268 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2269 Vals.clear(); 2270 } 2271 2272 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2273 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2274 /// VST, where we are including a function bitcode index and need to 2275 /// backpatch the VST forward declaration record. 2276 static void WriteValueSymbolTable( 2277 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2278 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2279 uint64_t BitcodeStartBit = 0, 2280 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr) { 2281 if (VST.empty()) { 2282 // WriteValueSymbolTableForwardDecl should have returned early as 2283 // well. Ensure this handling remains in sync by asserting that 2284 // the placeholder offset is not set. 2285 assert(VSTOffsetPlaceholder == 0); 2286 return; 2287 } 2288 2289 if (VSTOffsetPlaceholder > 0) { 2290 // Get the offset of the VST we are writing, and backpatch it into 2291 // the VST forward declaration record. 2292 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2293 // The BitcodeStartBit was the stream offset of the actual bitcode 2294 // (e.g. excluding any initial darwin header). 2295 VSTOffset -= BitcodeStartBit; 2296 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2297 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2298 } 2299 2300 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2301 2302 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2303 // records, which are not used in the per-function VSTs. 2304 unsigned FnEntry8BitAbbrev; 2305 unsigned FnEntry7BitAbbrev; 2306 unsigned FnEntry6BitAbbrev; 2307 if (VSTOffsetPlaceholder > 0) { 2308 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2309 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2310 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2315 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2316 2317 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2318 Abbv = new BitCodeAbbrev(); 2319 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2324 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2325 2326 // 6-bit char6 VST_CODE_FNENTRY function strings. 2327 Abbv = new BitCodeAbbrev(); 2328 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2333 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2334 } 2335 2336 // FIXME: Set up the abbrev, we know how many values there are! 2337 // FIXME: We know if the type names can use 7-bit ascii. 2338 SmallVector<unsigned, 64> NameVals; 2339 2340 for (const ValueName &Name : VST) { 2341 // Figure out the encoding to use for the name. 2342 StringEncoding Bits = 2343 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2344 2345 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2346 NameVals.push_back(VE.getValueID(Name.getValue())); 2347 2348 Function *F = dyn_cast<Function>(Name.getValue()); 2349 if (!F) { 2350 // If value is an alias, need to get the aliased base object to 2351 // see if it is a function. 2352 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2353 if (GA && GA->getBaseObject()) 2354 F = dyn_cast<Function>(GA->getBaseObject()); 2355 } 2356 2357 // VST_CODE_ENTRY: [valueid, namechar x N] 2358 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2359 // VST_CODE_BBENTRY: [bbid, namechar x N] 2360 unsigned Code; 2361 if (isa<BasicBlock>(Name.getValue())) { 2362 Code = bitc::VST_CODE_BBENTRY; 2363 if (Bits == SE_Char6) 2364 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2365 } else if (F && !F->isDeclaration()) { 2366 // Must be the module-level VST, where we pass in the Index and 2367 // have a VSTOffsetPlaceholder. The function-level VST should not 2368 // contain any Function symbols. 2369 assert(FunctionToBitcodeIndex); 2370 assert(VSTOffsetPlaceholder > 0); 2371 2372 // Save the word offset of the function (from the start of the 2373 // actual bitcode written to the stream). 2374 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - BitcodeStartBit; 2375 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2376 NameVals.push_back(BitcodeIndex / 32); 2377 2378 Code = bitc::VST_CODE_FNENTRY; 2379 AbbrevToUse = FnEntry8BitAbbrev; 2380 if (Bits == SE_Char6) 2381 AbbrevToUse = FnEntry6BitAbbrev; 2382 else if (Bits == SE_Fixed7) 2383 AbbrevToUse = FnEntry7BitAbbrev; 2384 } else { 2385 Code = bitc::VST_CODE_ENTRY; 2386 if (Bits == SE_Char6) 2387 AbbrevToUse = VST_ENTRY_6_ABBREV; 2388 else if (Bits == SE_Fixed7) 2389 AbbrevToUse = VST_ENTRY_7_ABBREV; 2390 } 2391 2392 for (const auto P : Name.getKey()) 2393 NameVals.push_back((unsigned char)P); 2394 2395 // Emit the finished record. 2396 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2397 NameVals.clear(); 2398 } 2399 Stream.ExitBlock(); 2400 } 2401 2402 /// Emit function names and summary offsets for the combined index 2403 /// used by ThinLTO. 2404 static void WriteCombinedValueSymbolTable( 2405 const ModuleSummaryIndex &Index, BitstreamWriter &Stream, 2406 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 2407 uint64_t VSTOffsetPlaceholder) { 2408 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2409 // Get the offset of the VST we are writing, and backpatch it into 2410 // the VST forward declaration record. 2411 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2412 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2413 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2414 2415 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2416 2417 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2418 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2422 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2423 2424 Abbv = new BitCodeAbbrev(); 2425 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2428 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2429 2430 SmallVector<uint64_t, 64> NameVals; 2431 2432 for (const auto &FII : Index) { 2433 GlobalValue::GUID FuncGUID = FII.first; 2434 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2435 assert(VMI != GUIDToValueIdMap.end()); 2436 2437 for (const auto &FI : FII.second) { 2438 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2439 NameVals.push_back(VMI->second); 2440 NameVals.push_back(FI->bitcodeIndex()); 2441 NameVals.push_back(FuncGUID); 2442 2443 // Emit the finished record. 2444 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2445 DefEntryAbbrev); 2446 NameVals.clear(); 2447 } 2448 GUIDToValueIdMap.erase(VMI); 2449 } 2450 for (const auto &GVI : GUIDToValueIdMap) { 2451 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2452 NameVals.push_back(GVI.second); 2453 NameVals.push_back(GVI.first); 2454 2455 // Emit the finished record. 2456 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2457 NameVals.clear(); 2458 } 2459 Stream.ExitBlock(); 2460 } 2461 2462 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2463 BitstreamWriter &Stream) { 2464 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2465 unsigned Code; 2466 if (isa<BasicBlock>(Order.V)) 2467 Code = bitc::USELIST_CODE_BB; 2468 else 2469 Code = bitc::USELIST_CODE_DEFAULT; 2470 2471 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2472 Record.push_back(VE.getValueID(Order.V)); 2473 Stream.EmitRecord(Code, Record); 2474 } 2475 2476 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2477 BitstreamWriter &Stream) { 2478 assert(VE.shouldPreserveUseListOrder() && 2479 "Expected to be preserving use-list order"); 2480 2481 auto hasMore = [&]() { 2482 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2483 }; 2484 if (!hasMore()) 2485 // Nothing to do. 2486 return; 2487 2488 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2489 while (hasMore()) { 2490 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2491 VE.UseListOrders.pop_back(); 2492 } 2493 Stream.ExitBlock(); 2494 } 2495 2496 /// Emit a function body to the module stream. 2497 static void 2498 WriteFunction(const Function &F, const Module *M, ValueEnumerator &VE, 2499 BitstreamWriter &Stream, 2500 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2501 // Save the bitcode index of the start of this function block for recording 2502 // in the VST. 2503 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2504 2505 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2506 VE.incorporateFunction(F); 2507 2508 SmallVector<unsigned, 64> Vals; 2509 2510 // Emit the number of basic blocks, so the reader can create them ahead of 2511 // time. 2512 Vals.push_back(VE.getBasicBlocks().size()); 2513 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2514 Vals.clear(); 2515 2516 // If there are function-local constants, emit them now. 2517 unsigned CstStart, CstEnd; 2518 VE.getFunctionConstantRange(CstStart, CstEnd); 2519 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2520 2521 // If there is function-local metadata, emit it now. 2522 writeFunctionMetadata(F, VE, Stream); 2523 2524 // Keep a running idea of what the instruction ID is. 2525 unsigned InstID = CstEnd; 2526 2527 bool NeedsMetadataAttachment = F.hasMetadata(); 2528 2529 DILocation *LastDL = nullptr; 2530 // Finally, emit all the instructions, in order. 2531 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2532 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2533 I != E; ++I) { 2534 WriteInstruction(*I, InstID, VE, Stream, Vals); 2535 2536 if (!I->getType()->isVoidTy()) 2537 ++InstID; 2538 2539 // If the instruction has metadata, write a metadata attachment later. 2540 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2541 2542 // If the instruction has a debug location, emit it. 2543 DILocation *DL = I->getDebugLoc(); 2544 if (!DL) 2545 continue; 2546 2547 if (DL == LastDL) { 2548 // Just repeat the same debug loc as last time. 2549 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2550 continue; 2551 } 2552 2553 Vals.push_back(DL->getLine()); 2554 Vals.push_back(DL->getColumn()); 2555 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2556 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2557 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2558 Vals.clear(); 2559 2560 LastDL = DL; 2561 } 2562 2563 // Emit names for all the instructions etc. 2564 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2565 2566 if (NeedsMetadataAttachment) 2567 WriteMetadataAttachment(F, VE, Stream); 2568 if (VE.shouldPreserveUseListOrder()) 2569 WriteUseListBlock(&F, VE, Stream); 2570 VE.purgeFunction(); 2571 Stream.ExitBlock(); 2572 } 2573 2574 // Emit blockinfo, which defines the standard abbreviations etc. 2575 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2576 // We only want to emit block info records for blocks that have multiple 2577 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2578 // Other blocks can define their abbrevs inline. 2579 Stream.EnterBlockInfoBlock(2); 2580 2581 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2582 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2587 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2588 Abbv) != VST_ENTRY_8_ABBREV) 2589 llvm_unreachable("Unexpected abbrev ordering!"); 2590 } 2591 2592 { // 7-bit fixed width VST_CODE_ENTRY strings. 2593 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2594 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2598 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2599 Abbv) != VST_ENTRY_7_ABBREV) 2600 llvm_unreachable("Unexpected abbrev ordering!"); 2601 } 2602 { // 6-bit char6 VST_CODE_ENTRY strings. 2603 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2604 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2608 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2609 Abbv) != VST_ENTRY_6_ABBREV) 2610 llvm_unreachable("Unexpected abbrev ordering!"); 2611 } 2612 { // 6-bit char6 VST_CODE_BBENTRY strings. 2613 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2614 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2618 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2619 Abbv) != VST_BBENTRY_6_ABBREV) 2620 llvm_unreachable("Unexpected abbrev ordering!"); 2621 } 2622 2623 2624 2625 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2626 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2627 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2629 VE.computeBitsRequiredForTypeIndicies())); 2630 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2631 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2632 llvm_unreachable("Unexpected abbrev ordering!"); 2633 } 2634 2635 { // INTEGER abbrev for CONSTANTS_BLOCK. 2636 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2637 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2639 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2640 Abbv) != CONSTANTS_INTEGER_ABBREV) 2641 llvm_unreachable("Unexpected abbrev ordering!"); 2642 } 2643 2644 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2645 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2646 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2649 VE.computeBitsRequiredForTypeIndicies())); 2650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2651 2652 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2653 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2654 llvm_unreachable("Unexpected abbrev ordering!"); 2655 } 2656 { // NULL abbrev for CONSTANTS_BLOCK. 2657 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2658 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2659 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2660 Abbv) != CONSTANTS_NULL_Abbrev) 2661 llvm_unreachable("Unexpected abbrev ordering!"); 2662 } 2663 2664 // FIXME: This should only use space for first class types! 2665 2666 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2667 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2668 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2671 VE.computeBitsRequiredForTypeIndicies())); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2674 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2675 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2676 llvm_unreachable("Unexpected abbrev ordering!"); 2677 } 2678 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2679 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2680 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2684 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2685 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2686 llvm_unreachable("Unexpected abbrev ordering!"); 2687 } 2688 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2689 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2690 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2695 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2696 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2697 llvm_unreachable("Unexpected abbrev ordering!"); 2698 } 2699 { // INST_CAST abbrev for FUNCTION_BLOCK. 2700 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2701 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2704 VE.computeBitsRequiredForTypeIndicies())); 2705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2706 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2707 Abbv) != FUNCTION_INST_CAST_ABBREV) 2708 llvm_unreachable("Unexpected abbrev ordering!"); 2709 } 2710 2711 { // INST_RET abbrev for FUNCTION_BLOCK. 2712 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2713 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2714 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2715 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2716 llvm_unreachable("Unexpected abbrev ordering!"); 2717 } 2718 { // INST_RET abbrev for FUNCTION_BLOCK. 2719 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2720 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2722 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2723 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2724 llvm_unreachable("Unexpected abbrev ordering!"); 2725 } 2726 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2727 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2728 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2729 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2730 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2731 llvm_unreachable("Unexpected abbrev ordering!"); 2732 } 2733 { 2734 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2735 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2738 Log2_32_Ceil(VE.getTypes().size() + 1))); 2739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2741 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2742 FUNCTION_INST_GEP_ABBREV) 2743 llvm_unreachable("Unexpected abbrev ordering!"); 2744 } 2745 2746 Stream.ExitBlock(); 2747 } 2748 2749 /// Write the module path strings, currently only used when generating 2750 /// a combined index file. 2751 static void WriteModStrings(const ModuleSummaryIndex &I, 2752 BitstreamWriter &Stream) { 2753 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2754 2755 // TODO: See which abbrev sizes we actually need to emit 2756 2757 // 8-bit fixed-width MST_ENTRY strings. 2758 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2759 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2763 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2764 2765 // 7-bit fixed width MST_ENTRY strings. 2766 Abbv = new BitCodeAbbrev(); 2767 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2771 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2772 2773 // 6-bit char6 MST_ENTRY strings. 2774 Abbv = new BitCodeAbbrev(); 2775 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2779 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2780 2781 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 2782 Abbv = new BitCodeAbbrev(); 2783 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 2784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2789 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 2790 2791 SmallVector<unsigned, 64> Vals; 2792 for (const auto &MPSE : I.modulePaths()) { 2793 StringEncoding Bits = 2794 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2795 unsigned AbbrevToUse = Abbrev8Bit; 2796 if (Bits == SE_Char6) 2797 AbbrevToUse = Abbrev6Bit; 2798 else if (Bits == SE_Fixed7) 2799 AbbrevToUse = Abbrev7Bit; 2800 2801 Vals.push_back(MPSE.getValue().first); 2802 2803 for (const auto P : MPSE.getKey()) 2804 Vals.push_back((unsigned char)P); 2805 2806 // Emit the finished record. 2807 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 2808 2809 Vals.clear(); 2810 // Emit an optional hash for the module now 2811 auto &Hash = MPSE.getValue().second; 2812 bool AllZero = true; // Detect if the hash is empty, and do not generate it 2813 for (auto Val : Hash) { 2814 if (Val) 2815 AllZero = false; 2816 Vals.push_back(Val); 2817 } 2818 if (!AllZero) { 2819 // Emit the hash record. 2820 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 2821 } 2822 2823 Vals.clear(); 2824 } 2825 Stream.ExitBlock(); 2826 } 2827 2828 // Helper to emit a single function summary record. 2829 static void WritePerModuleFunctionSummaryRecord( 2830 SmallVector<uint64_t, 64> &NameVals, GlobalValueInfo *Info, 2831 unsigned ValueID, const ValueEnumerator &VE, unsigned FSCallsAbbrev, 2832 unsigned FSCallsProfileAbbrev, BitstreamWriter &Stream, const Function &F) { 2833 NameVals.push_back(ValueID); 2834 2835 FunctionSummary *FS = cast<FunctionSummary>(Info->summary()); 2836 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2837 NameVals.push_back(FS->instCount()); 2838 NameVals.push_back(FS->refs().size()); 2839 2840 for (auto &RI : FS->refs()) 2841 NameVals.push_back(VE.getValueID(RI.getValue())); 2842 2843 bool HasProfileData = F.getEntryCount().hasValue(); 2844 for (auto &ECI : FS->calls()) { 2845 NameVals.push_back(VE.getValueID(ECI.first.getValue())); 2846 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2847 NameVals.push_back(ECI.second.CallsiteCount); 2848 if (HasProfileData) 2849 NameVals.push_back(ECI.second.ProfileCount); 2850 } 2851 2852 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2853 unsigned Code = 2854 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2855 2856 // Emit the finished record. 2857 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2858 NameVals.clear(); 2859 } 2860 2861 // Collect the global value references in the given variable's initializer, 2862 // and emit them in a summary record. 2863 static void WriteModuleLevelReferences(const GlobalVariable &V, 2864 const ModuleSummaryIndex &Index, 2865 const ValueEnumerator &VE, 2866 SmallVector<uint64_t, 64> &NameVals, 2867 unsigned FSModRefsAbbrev, 2868 BitstreamWriter &Stream) { 2869 // Only interested in recording variable defs in the summary. 2870 if (V.isDeclaration()) 2871 return; 2872 NameVals.push_back(VE.getValueID(&V)); 2873 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2874 auto *Info = Index.getGlobalValueInfo(V); 2875 GlobalVarSummary *VS = cast<GlobalVarSummary>(Info->summary()); 2876 for (auto Ref : VS->refs()) 2877 NameVals.push_back(VE.getValueID(Ref.getValue())); 2878 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2879 FSModRefsAbbrev); 2880 NameVals.clear(); 2881 } 2882 2883 /// Emit the per-module summary section alongside the rest of 2884 /// the module's bitcode. 2885 static void WritePerModuleGlobalValueSummary(const Module *M, 2886 const ModuleSummaryIndex &Index, 2887 const ValueEnumerator &VE, 2888 BitstreamWriter &Stream) { 2889 if (M->empty()) 2890 return; 2891 2892 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2893 2894 // Abbrev for FS_PERMODULE. 2895 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2896 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2901 // numrefs x valueid, n x (valueid, callsitecount) 2902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2904 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2905 2906 // Abbrev for FS_PERMODULE_PROFILE. 2907 Abbv = new BitCodeAbbrev(); 2908 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2913 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2916 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2917 2918 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2919 Abbv = new BitCodeAbbrev(); 2920 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2925 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2926 2927 SmallVector<uint64_t, 64> NameVals; 2928 // Iterate over the list of functions instead of the Index to 2929 // ensure the ordering is stable. 2930 for (const Function &F : *M) { 2931 if (F.isDeclaration()) 2932 continue; 2933 // Skip anonymous functions. We will emit a function summary for 2934 // any aliases below. 2935 if (!F.hasName()) 2936 continue; 2937 2938 auto *Info = Index.getGlobalValueInfo(F); 2939 WritePerModuleFunctionSummaryRecord( 2940 NameVals, Info, 2941 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), VE, 2942 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 2943 } 2944 2945 // Capture references from GlobalVariable initializers, which are outside 2946 // of a function scope. 2947 for (const GlobalVariable &G : M->globals()) 2948 WriteModuleLevelReferences(G, Index, VE, NameVals, FSModRefsAbbrev, Stream); 2949 2950 Stream.ExitBlock(); 2951 } 2952 2953 /// Emit the combined summary section into the combined index file. 2954 static void WriteCombinedGlobalValueSummary( 2955 const ModuleSummaryIndex &Index, BitstreamWriter &Stream, 2956 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 2957 unsigned GlobalValueId) { 2958 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2959 2960 // Abbrev for FS_COMBINED. 2961 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2962 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 2963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2967 // numrefs x valueid, n x (valueid, callsitecount) 2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2970 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2971 2972 // Abbrev for FS_COMBINED_PROFILE. 2973 Abbv = new BitCodeAbbrev(); 2974 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 2975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2979 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2982 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2983 2984 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 2985 Abbv = new BitCodeAbbrev(); 2986 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 2987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2991 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2992 2993 SmallVector<uint64_t, 64> NameVals; 2994 for (const auto &FII : Index) { 2995 for (auto &FI : FII.second) { 2996 GlobalValueSummary *S = FI->summary(); 2997 assert(S); 2998 2999 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3000 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3001 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3002 for (auto &RI : VS->refs()) { 3003 const auto &VMI = GUIDToValueIdMap.find(RI.getGUID()); 3004 unsigned RefId; 3005 // If this GUID doesn't have an entry, assign one. 3006 if (VMI == GUIDToValueIdMap.end()) { 3007 GUIDToValueIdMap[RI.getGUID()] = ++GlobalValueId; 3008 RefId = GlobalValueId; 3009 } else { 3010 RefId = VMI->second; 3011 } 3012 NameVals.push_back(RefId); 3013 } 3014 3015 // Record the starting offset of this summary entry for use 3016 // in the VST entry. Add the current code size since the 3017 // reader will invoke readRecord after the abbrev id read. 3018 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3019 Stream.GetAbbrevIDWidth()); 3020 3021 // Emit the finished record. 3022 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3023 FSModRefsAbbrev); 3024 NameVals.clear(); 3025 continue; 3026 } 3027 3028 auto *FS = cast<FunctionSummary>(S); 3029 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3030 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3031 NameVals.push_back(FS->instCount()); 3032 NameVals.push_back(FS->refs().size()); 3033 3034 for (auto &RI : FS->refs()) { 3035 const auto &VMI = GUIDToValueIdMap.find(RI.getGUID()); 3036 unsigned RefId; 3037 // If this GUID doesn't have an entry, assign one. 3038 if (VMI == GUIDToValueIdMap.end()) { 3039 GUIDToValueIdMap[RI.getGUID()] = ++GlobalValueId; 3040 RefId = GlobalValueId; 3041 } else { 3042 RefId = VMI->second; 3043 } 3044 NameVals.push_back(RefId); 3045 } 3046 3047 bool HasProfileData = false; 3048 for (auto &EI : FS->calls()) { 3049 HasProfileData |= EI.second.ProfileCount != 0; 3050 if (HasProfileData) 3051 break; 3052 } 3053 3054 for (auto &EI : FS->calls()) { 3055 const auto &VMI = GUIDToValueIdMap.find(EI.first.getGUID()); 3056 // If this GUID doesn't have an entry, it doesn't have a function 3057 // summary and we don't need to record any calls to it. 3058 if (VMI == GUIDToValueIdMap.end()) 3059 continue; 3060 NameVals.push_back(VMI->second); 3061 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3062 NameVals.push_back(EI.second.CallsiteCount); 3063 if (HasProfileData) 3064 NameVals.push_back(EI.second.ProfileCount); 3065 } 3066 3067 // Record the starting offset of this summary entry for use 3068 // in the VST entry. Add the current code size since the 3069 // reader will invoke readRecord after the abbrev id read. 3070 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3071 3072 unsigned FSAbbrev = 3073 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3074 unsigned Code = 3075 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3076 3077 // Emit the finished record. 3078 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3079 NameVals.clear(); 3080 } 3081 } 3082 3083 Stream.ExitBlock(); 3084 } 3085 3086 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3087 // current llvm version, and a record for the epoch number. 3088 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3089 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3090 3091 // Write the "user readable" string identifying the bitcode producer 3092 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3093 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3096 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3097 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3098 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3099 3100 // Write the epoch version 3101 Abbv = new BitCodeAbbrev(); 3102 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3104 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3105 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3106 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3107 Stream.ExitBlock(); 3108 } 3109 3110 static void writeModuleHash(BitstreamWriter &Stream, 3111 SmallVectorImpl<char> &Buffer, 3112 size_t BlockStartPos) { 3113 // Emit the module's hash. 3114 // MODULE_CODE_HASH: [5*i32] 3115 SHA1 Hasher; 3116 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&Buffer[BlockStartPos], 3117 Buffer.size() - BlockStartPos)); 3118 auto Hash = Hasher.result(); 3119 SmallVector<uint64_t, 20> Vals; 3120 auto LShift = [&](unsigned char Val, unsigned Amount) 3121 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3122 for (int Pos = 0; Pos < 20; Pos += 4) { 3123 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3124 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3125 (unsigned)(unsigned char)Hash[Pos + 3]; 3126 Vals.push_back(SubHash); 3127 } 3128 3129 // Emit the finished record. 3130 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3131 } 3132 3133 /// WriteModule - Emit the specified module to the bitstream. 3134 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3135 bool ShouldPreserveUseListOrder, 3136 uint64_t BitcodeStartBit, 3137 const ModuleSummaryIndex *Index, bool GenerateHash, 3138 SmallVectorImpl<char> &Buffer) { 3139 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3140 size_t BlockStartPos = Buffer.size(); 3141 3142 SmallVector<unsigned, 1> Vals; 3143 unsigned CurVersion = 1; 3144 Vals.push_back(CurVersion); 3145 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3146 3147 // Analyze the module, enumerating globals, functions, etc. 3148 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3149 3150 // Emit blockinfo, which defines the standard abbreviations etc. 3151 WriteBlockInfo(VE, Stream); 3152 3153 // Emit information about attribute groups. 3154 WriteAttributeGroupTable(VE, Stream); 3155 3156 // Emit information about parameter attributes. 3157 WriteAttributeTable(VE, Stream); 3158 3159 // Emit information describing all of the types in the module. 3160 WriteTypeTable(VE, Stream); 3161 3162 writeComdats(VE, Stream); 3163 3164 // Emit top-level description of module, including target triple, inline asm, 3165 // descriptors for global variables, and function prototype info. 3166 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3167 3168 // Emit constants. 3169 WriteModuleConstants(VE, Stream); 3170 3171 // Emit metadata. 3172 writeModuleMetadata(*M, VE, Stream); 3173 3174 // Emit metadata. 3175 WriteModuleMetadataStore(M, Stream); 3176 3177 // Emit module-level use-lists. 3178 if (VE.shouldPreserveUseListOrder()) 3179 WriteUseListBlock(nullptr, VE, Stream); 3180 3181 WriteOperandBundleTags(M, Stream); 3182 3183 // Emit function bodies. 3184 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3185 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3186 if (!F->isDeclaration()) 3187 WriteFunction(*F, M, VE, Stream, FunctionToBitcodeIndex); 3188 3189 // Need to write after the above call to WriteFunction which populates 3190 // the summary information in the index. 3191 if (Index) 3192 WritePerModuleGlobalValueSummary(M, *Index, VE, Stream); 3193 3194 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3195 VSTOffsetPlaceholder, BitcodeStartBit, 3196 &FunctionToBitcodeIndex); 3197 3198 if (GenerateHash) { 3199 writeModuleHash(Stream, Buffer, BlockStartPos); 3200 } 3201 3202 Stream.ExitBlock(); 3203 } 3204 3205 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3206 /// header and trailer to make it compatible with the system archiver. To do 3207 /// this we emit the following header, and then emit a trailer that pads the 3208 /// file out to be a multiple of 16 bytes. 3209 /// 3210 /// struct bc_header { 3211 /// uint32_t Magic; // 0x0B17C0DE 3212 /// uint32_t Version; // Version, currently always 0. 3213 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3214 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3215 /// uint32_t CPUType; // CPU specifier. 3216 /// ... potentially more later ... 3217 /// }; 3218 3219 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3220 uint32_t &Position) { 3221 support::endian::write32le(&Buffer[Position], Value); 3222 Position += 4; 3223 } 3224 3225 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3226 const Triple &TT) { 3227 unsigned CPUType = ~0U; 3228 3229 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3230 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3231 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3232 // specific constants here because they are implicitly part of the Darwin ABI. 3233 enum { 3234 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3235 DARWIN_CPU_TYPE_X86 = 7, 3236 DARWIN_CPU_TYPE_ARM = 12, 3237 DARWIN_CPU_TYPE_POWERPC = 18 3238 }; 3239 3240 Triple::ArchType Arch = TT.getArch(); 3241 if (Arch == Triple::x86_64) 3242 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3243 else if (Arch == Triple::x86) 3244 CPUType = DARWIN_CPU_TYPE_X86; 3245 else if (Arch == Triple::ppc) 3246 CPUType = DARWIN_CPU_TYPE_POWERPC; 3247 else if (Arch == Triple::ppc64) 3248 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3249 else if (Arch == Triple::arm || Arch == Triple::thumb) 3250 CPUType = DARWIN_CPU_TYPE_ARM; 3251 3252 // Traditional Bitcode starts after header. 3253 assert(Buffer.size() >= BWH_HeaderSize && 3254 "Expected header size to be reserved"); 3255 unsigned BCOffset = BWH_HeaderSize; 3256 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3257 3258 // Write the magic and version. 3259 unsigned Position = 0; 3260 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3261 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3262 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3263 WriteInt32ToBuffer(BCSize , Buffer, Position); 3264 WriteInt32ToBuffer(CPUType , Buffer, Position); 3265 3266 // If the file is not a multiple of 16 bytes, insert dummy padding. 3267 while (Buffer.size() & 15) 3268 Buffer.push_back(0); 3269 } 3270 3271 /// Helper to write the header common to all bitcode files. 3272 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3273 // Emit the file header. 3274 Stream.Emit((unsigned)'B', 8); 3275 Stream.Emit((unsigned)'C', 8); 3276 Stream.Emit(0x0, 4); 3277 Stream.Emit(0xC, 4); 3278 Stream.Emit(0xE, 4); 3279 Stream.Emit(0xD, 4); 3280 } 3281 3282 /// WriteBitcodeToFile - Write the specified module to the specified output 3283 /// stream. 3284 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3285 bool ShouldPreserveUseListOrder, 3286 const ModuleSummaryIndex *Index, 3287 bool GenerateHash) { 3288 SmallVector<char, 0> Buffer; 3289 Buffer.reserve(256*1024); 3290 3291 // If this is darwin or another generic macho target, reserve space for the 3292 // header. 3293 Triple TT(M->getTargetTriple()); 3294 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3295 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3296 3297 // Emit the module into the buffer. 3298 { 3299 BitstreamWriter Stream(Buffer); 3300 // Save the start bit of the actual bitcode, in case there is space 3301 // saved at the start for the darwin header above. The reader stream 3302 // will start at the bitcode, and we need the offset of the VST 3303 // to line up. 3304 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3305 3306 // Emit the file header. 3307 WriteBitcodeHeader(Stream); 3308 3309 WriteIdentificationBlock(M, Stream); 3310 3311 // Emit the module. 3312 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, Index, 3313 GenerateHash, Buffer); 3314 } 3315 3316 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3317 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3318 3319 // Write the generated bitstream to "Out". 3320 Out.write((char*)&Buffer.front(), Buffer.size()); 3321 } 3322 3323 // Write the specified module summary index to the given raw output stream, 3324 // where it will be written in a new bitcode block. This is used when 3325 // writing the combined index file for ThinLTO. 3326 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3327 SmallVector<char, 0> Buffer; 3328 Buffer.reserve(256 * 1024); 3329 3330 BitstreamWriter Stream(Buffer); 3331 3332 // Emit the bitcode header. 3333 WriteBitcodeHeader(Stream); 3334 3335 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3336 3337 SmallVector<unsigned, 1> Vals; 3338 unsigned CurVersion = 1; 3339 Vals.push_back(CurVersion); 3340 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3341 3342 // If we have a VST, write the VSTOFFSET record placeholder and record 3343 // its offset. 3344 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3345 3346 // Write the module paths in the combined index. 3347 WriteModStrings(Index, Stream); 3348 3349 // Assign unique value ids to all functions in the index for use 3350 // in writing out the call graph edges. Save the mapping from GUID 3351 // to the new global value id to use when writing those edges, which 3352 // are currently saved in the index in terms of GUID. 3353 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 3354 unsigned GlobalValueId = 0; 3355 for (auto &II : Index) 3356 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3357 3358 // Write the summary combined index records. 3359 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3360 GlobalValueId); 3361 3362 // Need a special VST writer for the combined index (we don't have a 3363 // real VST and real values when this is invoked). 3364 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3365 VSTOffsetPlaceholder); 3366 3367 Stream.ExitBlock(); 3368 3369 Out.write((char *)&Buffer.front(), Buffer.size()); 3370 } 3371