xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 8abe6bc291e81bae9f5fc5462a8d0b43cd0a256d)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Streams.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33 
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38 
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44 
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50 
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60 
61 
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79 
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103 
104 
105 
106 static void WriteStringRecord(unsigned Code, const std::string &Str,
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109 
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113 
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117 
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE,
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123 
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125 
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132 
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141 
142       Record.push_back(FauxAttr);
143     }
144 
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148 
149   Stream.ExitBlock();
150 }
151 
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155 
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158 
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166 
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176 
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185 
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193 
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198 
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204 
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273 
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278 
279   Stream.ExitBlock();
280 }
281 
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302 
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311 
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319 
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330 
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341 
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371 
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) {
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398 
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404 
405     // GLOBALVAR: [type, isconst, initid,
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() ||
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421 
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425 
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439 
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444 
445 
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458 
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461 
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedOverflow())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW;
466     if (OBO->hasNoUnsignedOverflow())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472 
473   return Flags;
474 }
475 
476 /// WriteValues - Write Constants and Metadata.
477 /// This function could use some refactoring help.
478 static void WriteValues(unsigned FirstVal, unsigned LastVal,
479                         const ValueEnumerator &VE,
480                         BitstreamWriter &Stream, bool isGlobal) {
481   if (FirstVal == LastVal) return;
482 
483   // MODULE_BLOCK_ID is 0, which is not handled here. So it is OK to use
484   // 0 as the initializer to indicate that block is not set.
485   enum bitc::BlockIDs LastBlockID = bitc::MODULE_BLOCK_ID;
486 
487   unsigned AggregateAbbrev = 0;
488   unsigned String8Abbrev = 0;
489   unsigned CString7Abbrev = 0;
490   unsigned CString6Abbrev = 0;
491   unsigned MDSAbbrev = 0;
492 
493   SmallVector<uint64_t, 64> Record;
494 
495   const ValueEnumerator::ValueList &Vals = VE.getValues();
496   const Type *LastTy = 0;
497   for (unsigned i = FirstVal; i != LastVal; ++i) {
498     const Value *V = Vals[i].first;
499     if (isa<MetadataBase>(V)) {
500       if (LastBlockID != bitc::METADATA_BLOCK_ID) {
501         // Exit privious block.
502         if (LastBlockID != bitc::MODULE_BLOCK_ID)
503           Stream.ExitBlock();
504 
505         LastBlockID = bitc::METADATA_BLOCK_ID;
506         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
507       }
508     }
509     if (const MDString *MDS = dyn_cast<MDString>(V)) {
510       if (MDSAbbrev == 0) {
511         // Abbrev for METADATA_STRING.
512         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
513         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
515         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
516         MDSAbbrev = Stream.EmitAbbrev(Abbv);
517       }
518       // Code: [strchar x N]
519       const char *StrBegin = MDS->begin();
520       for (unsigned i = 0, e = MDS->length(); i != e; ++i)
521         Record.push_back(StrBegin[i]);
522 
523       // Emit the finished record.
524       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
525       Record.clear();
526       continue;
527     } else if (const MDNode *N = dyn_cast<MDNode>(V)) {
528       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
529         if (N->getElement(i)) {
530           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
531           Record.push_back(VE.getValueID(N->getElement(i)));
532         } else {
533           Record.push_back(VE.getTypeID(Type::VoidTy));
534           Record.push_back(0);
535         }
536       }
537       Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
538       Record.clear();
539       continue;
540     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V)) {
541       // Write name.
542       std::string Str = NMD->getNameStr();
543       const char *StrBegin = Str.c_str();
544       for (unsigned i = 0, e = Str.length(); i != e; ++i)
545         Record.push_back(StrBegin[i]);
546       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
547       Record.clear();
548 
549       // Write named metadata elements.
550       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
551         if (NMD->getElement(i))
552           Record.push_back(VE.getValueID(NMD->getElement(i)));
553         else
554           Record.push_back(0);
555       }
556       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
557       Record.clear();
558       continue;
559     }
560 
561     // If we need to switch block, do so now.
562     if (LastBlockID != bitc::CONSTANTS_BLOCK_ID) {
563       // Exit privious block.
564       if (LastBlockID != bitc::MODULE_BLOCK_ID)
565         Stream.ExitBlock();
566 
567       LastBlockID = bitc::CONSTANTS_BLOCK_ID;
568       Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
569       // If this is a constant pool for the module, emit module-specific abbrevs.
570       if (isGlobal) {
571         // Abbrev for CST_CODE_AGGREGATE.
572         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
573         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
574         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
575         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
576         AggregateAbbrev = Stream.EmitAbbrev(Abbv);
577 
578         // Abbrev for CST_CODE_STRING.
579         Abbv = new BitCodeAbbrev();
580         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
581         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
582         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
583         String8Abbrev = Stream.EmitAbbrev(Abbv);
584 
585         // Abbrev for CST_CODE_CSTRING.
586         Abbv = new BitCodeAbbrev();
587         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
588         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
589         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
590         CString7Abbrev = Stream.EmitAbbrev(Abbv);
591 
592         // Abbrev for CST_CODE_CSTRING.
593         Abbv = new BitCodeAbbrev();
594         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
595         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
596         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
597         CString6Abbrev = Stream.EmitAbbrev(Abbv);
598       }
599 
600     }
601     if (isa<MetadataBase>(V))
602       continue;
603     // If we need to switch types, do so now.
604     if (V->getType() != LastTy) {
605       LastTy = V->getType();
606       Record.push_back(VE.getTypeID(LastTy));
607       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
608                         CONSTANTS_SETTYPE_ABBREV);
609       Record.clear();
610     }
611 
612     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
613       Record.push_back(unsigned(IA->hasSideEffects()));
614 
615       // Add the asm string.
616       const std::string &AsmStr = IA->getAsmString();
617       Record.push_back(AsmStr.size());
618       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
619         Record.push_back(AsmStr[i]);
620 
621       // Add the constraint string.
622       const std::string &ConstraintStr = IA->getConstraintString();
623       Record.push_back(ConstraintStr.size());
624       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
625         Record.push_back(ConstraintStr[i]);
626       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
627       Record.clear();
628       continue;
629     }
630     const Constant *C = cast<Constant>(V);
631     unsigned Code = -1U;
632     unsigned AbbrevToUse = 0;
633     if (C->isNullValue()) {
634       Code = bitc::CST_CODE_NULL;
635     } else if (isa<UndefValue>(C)) {
636       Code = bitc::CST_CODE_UNDEF;
637     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
638       if (IV->getBitWidth() <= 64) {
639         int64_t V = IV->getSExtValue();
640         if (V >= 0)
641           Record.push_back(V << 1);
642         else
643           Record.push_back((-V << 1) | 1);
644         Code = bitc::CST_CODE_INTEGER;
645         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
646       } else {                             // Wide integers, > 64 bits in size.
647         // We have an arbitrary precision integer value to write whose
648         // bit width is > 64. However, in canonical unsigned integer
649         // format it is likely that the high bits are going to be zero.
650         // So, we only write the number of active words.
651         unsigned NWords = IV->getValue().getActiveWords();
652         const uint64_t *RawWords = IV->getValue().getRawData();
653         for (unsigned i = 0; i != NWords; ++i) {
654           int64_t V = RawWords[i];
655           if (V >= 0)
656             Record.push_back(V << 1);
657           else
658             Record.push_back((-V << 1) | 1);
659         }
660         Code = bitc::CST_CODE_WIDE_INTEGER;
661       }
662     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
663       Code = bitc::CST_CODE_FLOAT;
664       const Type *Ty = CFP->getType();
665       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
666         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
667       } else if (Ty == Type::X86_FP80Ty) {
668         // api needed to prevent premature destruction
669         // bits are not in the same order as a normal i80 APInt, compensate.
670         APInt api = CFP->getValueAPF().bitcastToAPInt();
671         const uint64_t *p = api.getRawData();
672         Record.push_back((p[1] << 48) | (p[0] >> 16));
673         Record.push_back(p[0] & 0xffffLL);
674       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
675         APInt api = CFP->getValueAPF().bitcastToAPInt();
676         const uint64_t *p = api.getRawData();
677         Record.push_back(p[0]);
678         Record.push_back(p[1]);
679       } else {
680         assert (0 && "Unknown FP type!");
681       }
682     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
683       // Emit constant strings specially.
684       unsigned NumOps = C->getNumOperands();
685       // If this is a null-terminated string, use the denser CSTRING encoding.
686       if (C->getOperand(NumOps-1)->isNullValue()) {
687         Code = bitc::CST_CODE_CSTRING;
688         --NumOps;  // Don't encode the null, which isn't allowed by char6.
689       } else {
690         Code = bitc::CST_CODE_STRING;
691         AbbrevToUse = String8Abbrev;
692       }
693       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
694       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
695       for (unsigned i = 0; i != NumOps; ++i) {
696         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
697         Record.push_back(V);
698         isCStr7 &= (V & 128) == 0;
699         if (isCStrChar6)
700           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
701       }
702 
703       if (isCStrChar6)
704         AbbrevToUse = CString6Abbrev;
705       else if (isCStr7)
706         AbbrevToUse = CString7Abbrev;
707     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
708                isa<ConstantVector>(V)) {
709       Code = bitc::CST_CODE_AGGREGATE;
710       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
711         Record.push_back(VE.getValueID(C->getOperand(i)));
712       AbbrevToUse = AggregateAbbrev;
713     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
714       switch (CE->getOpcode()) {
715       default:
716         if (Instruction::isCast(CE->getOpcode())) {
717           Code = bitc::CST_CODE_CE_CAST;
718           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
719           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
720           Record.push_back(VE.getValueID(C->getOperand(0)));
721           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
722         } else {
723           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
724           Code = bitc::CST_CODE_CE_BINOP;
725           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
726           Record.push_back(VE.getValueID(C->getOperand(0)));
727           Record.push_back(VE.getValueID(C->getOperand(1)));
728           uint64_t Flags = GetOptimizationFlags(CE);
729           if (Flags != 0)
730             Record.push_back(Flags);
731         }
732         break;
733       case Instruction::GetElementPtr:
734         Code = bitc::CST_CODE_CE_GEP;
735         if (cast<GEPOperator>(C)->isInBounds())
736           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
737         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
738           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
739           Record.push_back(VE.getValueID(C->getOperand(i)));
740         }
741         break;
742       case Instruction::Select:
743         Code = bitc::CST_CODE_CE_SELECT;
744         Record.push_back(VE.getValueID(C->getOperand(0)));
745         Record.push_back(VE.getValueID(C->getOperand(1)));
746         Record.push_back(VE.getValueID(C->getOperand(2)));
747         break;
748       case Instruction::ExtractElement:
749         Code = bitc::CST_CODE_CE_EXTRACTELT;
750         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
751         Record.push_back(VE.getValueID(C->getOperand(0)));
752         Record.push_back(VE.getValueID(C->getOperand(1)));
753         break;
754       case Instruction::InsertElement:
755         Code = bitc::CST_CODE_CE_INSERTELT;
756         Record.push_back(VE.getValueID(C->getOperand(0)));
757         Record.push_back(VE.getValueID(C->getOperand(1)));
758         Record.push_back(VE.getValueID(C->getOperand(2)));
759         break;
760       case Instruction::ShuffleVector:
761         // If the return type and argument types are the same, this is a
762         // standard shufflevector instruction.  If the types are different,
763         // then the shuffle is widening or truncating the input vectors, and
764         // the argument type must also be encoded.
765         if (C->getType() == C->getOperand(0)->getType()) {
766           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
767         } else {
768           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
769           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
770         }
771         Record.push_back(VE.getValueID(C->getOperand(0)));
772         Record.push_back(VE.getValueID(C->getOperand(1)));
773         Record.push_back(VE.getValueID(C->getOperand(2)));
774         break;
775       case Instruction::ICmp:
776       case Instruction::FCmp:
777         Code = bitc::CST_CODE_CE_CMP;
778         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
779         Record.push_back(VE.getValueID(C->getOperand(0)));
780         Record.push_back(VE.getValueID(C->getOperand(1)));
781         Record.push_back(CE->getPredicate());
782         break;
783       }
784     } else {
785       llvm_unreachable("Unknown constant!");
786     }
787     Stream.EmitRecord(Code, Record, AbbrevToUse);
788     Record.clear();
789   }
790 
791   Stream.ExitBlock();
792 }
793 
794 static void WriteModuleConstants(const ValueEnumerator &VE,
795                                  BitstreamWriter &Stream) {
796   const ValueEnumerator::ValueList &Vals = VE.getValues();
797 
798   // Find the first constant to emit, which is the first non-globalvalue value.
799   // We know globalvalues have been emitted by WriteModuleInfo.
800   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
801     if (!isa<GlobalValue>(Vals[i].first)) {
802       WriteValues(i, Vals.size(), VE, Stream, true);
803       return;
804     }
805   }
806 }
807 
808 /// PushValueAndType - The file has to encode both the value and type id for
809 /// many values, because we need to know what type to create for forward
810 /// references.  However, most operands are not forward references, so this type
811 /// field is not needed.
812 ///
813 /// This function adds V's value ID to Vals.  If the value ID is higher than the
814 /// instruction ID, then it is a forward reference, and it also includes the
815 /// type ID.
816 static bool PushValueAndType(const Value *V, unsigned InstID,
817                              SmallVector<unsigned, 64> &Vals,
818                              ValueEnumerator &VE) {
819   unsigned ValID = VE.getValueID(V);
820   Vals.push_back(ValID);
821   if (ValID >= InstID) {
822     Vals.push_back(VE.getTypeID(V->getType()));
823     return true;
824   }
825   return false;
826 }
827 
828 /// WriteInstruction - Emit an instruction to the specified stream.
829 static void WriteInstruction(const Instruction &I, unsigned InstID,
830                              ValueEnumerator &VE, BitstreamWriter &Stream,
831                              SmallVector<unsigned, 64> &Vals) {
832   unsigned Code = 0;
833   unsigned AbbrevToUse = 0;
834   switch (I.getOpcode()) {
835   default:
836     if (Instruction::isCast(I.getOpcode())) {
837       Code = bitc::FUNC_CODE_INST_CAST;
838       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
839         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
840       Vals.push_back(VE.getTypeID(I.getType()));
841       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
842     } else {
843       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
844       Code = bitc::FUNC_CODE_INST_BINOP;
845       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
846         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
847       Vals.push_back(VE.getValueID(I.getOperand(1)));
848       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
849       uint64_t Flags = GetOptimizationFlags(&I);
850       if (Flags != 0) {
851         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
852           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
853         Vals.push_back(Flags);
854       }
855     }
856     break;
857 
858   case Instruction::GetElementPtr:
859     Code = bitc::FUNC_CODE_INST_GEP;
860     if (cast<GEPOperator>(&I)->isInBounds())
861       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
862     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
863       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
864     break;
865   case Instruction::ExtractValue: {
866     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
867     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
868     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
869     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
870       Vals.push_back(*i);
871     break;
872   }
873   case Instruction::InsertValue: {
874     Code = bitc::FUNC_CODE_INST_INSERTVAL;
875     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
876     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
877     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
878     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
879       Vals.push_back(*i);
880     break;
881   }
882   case Instruction::Select:
883     Code = bitc::FUNC_CODE_INST_VSELECT;
884     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
885     Vals.push_back(VE.getValueID(I.getOperand(2)));
886     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
887     break;
888   case Instruction::ExtractElement:
889     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
890     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
891     Vals.push_back(VE.getValueID(I.getOperand(1)));
892     break;
893   case Instruction::InsertElement:
894     Code = bitc::FUNC_CODE_INST_INSERTELT;
895     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
896     Vals.push_back(VE.getValueID(I.getOperand(1)));
897     Vals.push_back(VE.getValueID(I.getOperand(2)));
898     break;
899   case Instruction::ShuffleVector:
900     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
901     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
902     Vals.push_back(VE.getValueID(I.getOperand(1)));
903     Vals.push_back(VE.getValueID(I.getOperand(2)));
904     break;
905   case Instruction::ICmp:
906   case Instruction::FCmp:
907     // compare returning Int1Ty or vector of Int1Ty
908     Code = bitc::FUNC_CODE_INST_CMP2;
909     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
910     Vals.push_back(VE.getValueID(I.getOperand(1)));
911     Vals.push_back(cast<CmpInst>(I).getPredicate());
912     break;
913 
914   case Instruction::Ret:
915     {
916       Code = bitc::FUNC_CODE_INST_RET;
917       unsigned NumOperands = I.getNumOperands();
918       if (NumOperands == 0)
919         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
920       else if (NumOperands == 1) {
921         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
922           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
923       } else {
924         for (unsigned i = 0, e = NumOperands; i != e; ++i)
925           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
926       }
927     }
928     break;
929   case Instruction::Br:
930     {
931       Code = bitc::FUNC_CODE_INST_BR;
932       BranchInst &II(cast<BranchInst>(I));
933       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
934       if (II.isConditional()) {
935         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
936         Vals.push_back(VE.getValueID(II.getCondition()));
937       }
938     }
939     break;
940   case Instruction::Switch:
941     Code = bitc::FUNC_CODE_INST_SWITCH;
942     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
943     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
944       Vals.push_back(VE.getValueID(I.getOperand(i)));
945     break;
946   case Instruction::Invoke: {
947     const InvokeInst *II = cast<InvokeInst>(&I);
948     const Value *Callee(II->getCalledValue());
949     const PointerType *PTy = cast<PointerType>(Callee->getType());
950     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
951     Code = bitc::FUNC_CODE_INST_INVOKE;
952 
953     Vals.push_back(VE.getAttributeID(II->getAttributes()));
954     Vals.push_back(II->getCallingConv());
955     Vals.push_back(VE.getValueID(II->getNormalDest()));
956     Vals.push_back(VE.getValueID(II->getUnwindDest()));
957     PushValueAndType(Callee, InstID, Vals, VE);
958 
959     // Emit value #'s for the fixed parameters.
960     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
961       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
962 
963     // Emit type/value pairs for varargs params.
964     if (FTy->isVarArg()) {
965       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
966            i != e; ++i)
967         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
968     }
969     break;
970   }
971   case Instruction::Unwind:
972     Code = bitc::FUNC_CODE_INST_UNWIND;
973     break;
974   case Instruction::Unreachable:
975     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
976     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
977     break;
978 
979   case Instruction::PHI:
980     Code = bitc::FUNC_CODE_INST_PHI;
981     Vals.push_back(VE.getTypeID(I.getType()));
982     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
983       Vals.push_back(VE.getValueID(I.getOperand(i)));
984     break;
985 
986   case Instruction::Malloc:
987     Code = bitc::FUNC_CODE_INST_MALLOC;
988     Vals.push_back(VE.getTypeID(I.getType()));
989     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
990     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
991     break;
992 
993   case Instruction::Free:
994     Code = bitc::FUNC_CODE_INST_FREE;
995     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
996     break;
997 
998   case Instruction::Alloca:
999     Code = bitc::FUNC_CODE_INST_ALLOCA;
1000     Vals.push_back(VE.getTypeID(I.getType()));
1001     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1002     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1003     break;
1004 
1005   case Instruction::Load:
1006     Code = bitc::FUNC_CODE_INST_LOAD;
1007     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1008       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1009 
1010     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1011     Vals.push_back(cast<LoadInst>(I).isVolatile());
1012     break;
1013   case Instruction::Store:
1014     Code = bitc::FUNC_CODE_INST_STORE2;
1015     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1016     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1017     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1018     Vals.push_back(cast<StoreInst>(I).isVolatile());
1019     break;
1020   case Instruction::Call: {
1021     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1022     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1023 
1024     Code = bitc::FUNC_CODE_INST_CALL;
1025 
1026     const CallInst *CI = cast<CallInst>(&I);
1027     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1028     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1029     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1030 
1031     // Emit value #'s for the fixed parameters.
1032     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1033       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1034 
1035     // Emit type/value pairs for varargs params.
1036     if (FTy->isVarArg()) {
1037       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1038       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1039            i != e; ++i)
1040         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1041     }
1042     break;
1043   }
1044   case Instruction::VAArg:
1045     Code = bitc::FUNC_CODE_INST_VAARG;
1046     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1047     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1048     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1049     break;
1050   }
1051 
1052   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1053   Vals.clear();
1054 }
1055 
1056 // Emit names for globals/functions etc.
1057 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1058                                   const ValueEnumerator &VE,
1059                                   BitstreamWriter &Stream) {
1060   if (VST.empty()) return;
1061   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1062 
1063   // FIXME: Set up the abbrev, we know how many values there are!
1064   // FIXME: We know if the type names can use 7-bit ascii.
1065   SmallVector<unsigned, 64> NameVals;
1066 
1067   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1068        SI != SE; ++SI) {
1069 
1070     const ValueName &Name = *SI;
1071 
1072     // Figure out the encoding to use for the name.
1073     bool is7Bit = true;
1074     bool isChar6 = true;
1075     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1076          C != E; ++C) {
1077       if (isChar6)
1078         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1079       if ((unsigned char)*C & 128) {
1080         is7Bit = false;
1081         break;  // don't bother scanning the rest.
1082       }
1083     }
1084 
1085     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1086 
1087     // VST_ENTRY:   [valueid, namechar x N]
1088     // VST_BBENTRY: [bbid, namechar x N]
1089     unsigned Code;
1090     if (isa<BasicBlock>(SI->getValue())) {
1091       Code = bitc::VST_CODE_BBENTRY;
1092       if (isChar6)
1093         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1094     } else {
1095       Code = bitc::VST_CODE_ENTRY;
1096       if (isChar6)
1097         AbbrevToUse = VST_ENTRY_6_ABBREV;
1098       else if (is7Bit)
1099         AbbrevToUse = VST_ENTRY_7_ABBREV;
1100     }
1101 
1102     NameVals.push_back(VE.getValueID(SI->getValue()));
1103     for (const char *P = Name.getKeyData(),
1104          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1105       NameVals.push_back((unsigned char)*P);
1106 
1107     // Emit the finished record.
1108     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1109     NameVals.clear();
1110   }
1111   Stream.ExitBlock();
1112 }
1113 
1114 /// WriteFunction - Emit a function body to the module stream.
1115 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1116                           BitstreamWriter &Stream) {
1117   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1118   VE.incorporateFunction(F);
1119 
1120   SmallVector<unsigned, 64> Vals;
1121 
1122   // Emit the number of basic blocks, so the reader can create them ahead of
1123   // time.
1124   Vals.push_back(VE.getBasicBlocks().size());
1125   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1126   Vals.clear();
1127 
1128   // If there are function-local constants, emit them now.
1129   unsigned CstStart, CstEnd;
1130   VE.getFunctionConstantRange(CstStart, CstEnd);
1131   WriteValues(CstStart, CstEnd, VE, Stream, false);
1132 
1133   // Keep a running idea of what the instruction ID is.
1134   unsigned InstID = CstEnd;
1135 
1136   // Finally, emit all the instructions, in order.
1137   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1138     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1139          I != E; ++I) {
1140       WriteInstruction(*I, InstID, VE, Stream, Vals);
1141       if (I->getType() != Type::VoidTy)
1142         ++InstID;
1143     }
1144 
1145   // Emit names for all the instructions etc.
1146   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1147 
1148   VE.purgeFunction();
1149   Stream.ExitBlock();
1150 }
1151 
1152 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1153 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1154                                  const ValueEnumerator &VE,
1155                                  BitstreamWriter &Stream) {
1156   if (TST.empty()) return;
1157 
1158   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1159 
1160   // 7-bit fixed width VST_CODE_ENTRY strings.
1161   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1162   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1164                             Log2_32_Ceil(VE.getTypes().size()+1)));
1165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1167   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1168 
1169   SmallVector<unsigned, 64> NameVals;
1170 
1171   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1172        TI != TE; ++TI) {
1173     // TST_ENTRY: [typeid, namechar x N]
1174     NameVals.push_back(VE.getTypeID(TI->second));
1175 
1176     const std::string &Str = TI->first;
1177     bool is7Bit = true;
1178     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1179       NameVals.push_back((unsigned char)Str[i]);
1180       if (Str[i] & 128)
1181         is7Bit = false;
1182     }
1183 
1184     // Emit the finished record.
1185     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1186     NameVals.clear();
1187   }
1188 
1189   Stream.ExitBlock();
1190 }
1191 
1192 // Emit blockinfo, which defines the standard abbreviations etc.
1193 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1194   // We only want to emit block info records for blocks that have multiple
1195   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1196   // blocks can defined their abbrevs inline.
1197   Stream.EnterBlockInfoBlock(2);
1198 
1199   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1200     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1205     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1206                                    Abbv) != VST_ENTRY_8_ABBREV)
1207       llvm_unreachable("Unexpected abbrev ordering!");
1208   }
1209 
1210   { // 7-bit fixed width VST_ENTRY strings.
1211     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1212     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1216     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1217                                    Abbv) != VST_ENTRY_7_ABBREV)
1218       llvm_unreachable("Unexpected abbrev ordering!");
1219   }
1220   { // 6-bit char6 VST_ENTRY strings.
1221     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1222     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1226     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1227                                    Abbv) != VST_ENTRY_6_ABBREV)
1228       llvm_unreachable("Unexpected abbrev ordering!");
1229   }
1230   { // 6-bit char6 VST_BBENTRY strings.
1231     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1232     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1234     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1236     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1237                                    Abbv) != VST_BBENTRY_6_ABBREV)
1238       llvm_unreachable("Unexpected abbrev ordering!");
1239   }
1240 
1241 
1242 
1243   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1244     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1245     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1247                               Log2_32_Ceil(VE.getTypes().size()+1)));
1248     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1249                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1250       llvm_unreachable("Unexpected abbrev ordering!");
1251   }
1252 
1253   { // INTEGER abbrev for CONSTANTS_BLOCK.
1254     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1255     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1256     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1257     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1258                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1259       llvm_unreachable("Unexpected abbrev ordering!");
1260   }
1261 
1262   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1263     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1264     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1265     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1266     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1267                               Log2_32_Ceil(VE.getTypes().size()+1)));
1268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1269 
1270     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1271                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1272       llvm_unreachable("Unexpected abbrev ordering!");
1273   }
1274   { // NULL abbrev for CONSTANTS_BLOCK.
1275     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1276     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1277     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1278                                    Abbv) != CONSTANTS_NULL_Abbrev)
1279       llvm_unreachable("Unexpected abbrev ordering!");
1280   }
1281 
1282   // FIXME: This should only use space for first class types!
1283 
1284   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1285     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1286     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1290     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1291                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1292       llvm_unreachable("Unexpected abbrev ordering!");
1293   }
1294   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1295     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1296     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1297     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1298     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1300     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1301                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1302       llvm_unreachable("Unexpected abbrev ordering!");
1303   }
1304   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1305     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1306     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1307     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1308     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1309     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1311     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1312                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1313       llvm_unreachable("Unexpected abbrev ordering!");
1314   }
1315   { // INST_CAST abbrev for FUNCTION_BLOCK.
1316     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1317     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1318     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1320                               Log2_32_Ceil(VE.getTypes().size()+1)));
1321     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1322     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1323                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1324       llvm_unreachable("Unexpected abbrev ordering!");
1325   }
1326 
1327   { // INST_RET abbrev for FUNCTION_BLOCK.
1328     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1329     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1330     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1331                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1332       llvm_unreachable("Unexpected abbrev ordering!");
1333   }
1334   { // INST_RET abbrev for FUNCTION_BLOCK.
1335     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1336     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1338     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1339                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1340       llvm_unreachable("Unexpected abbrev ordering!");
1341   }
1342   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1343     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1344     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1345     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1346                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1347       llvm_unreachable("Unexpected abbrev ordering!");
1348   }
1349 
1350   Stream.ExitBlock();
1351 }
1352 
1353 
1354 /// WriteModule - Emit the specified module to the bitstream.
1355 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1356   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1357 
1358   // Emit the version number if it is non-zero.
1359   if (CurVersion) {
1360     SmallVector<unsigned, 1> Vals;
1361     Vals.push_back(CurVersion);
1362     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1363   }
1364 
1365   // Analyze the module, enumerating globals, functions, etc.
1366   ValueEnumerator VE(M);
1367 
1368   // Emit blockinfo, which defines the standard abbreviations etc.
1369   WriteBlockInfo(VE, Stream);
1370 
1371   // Emit information about parameter attributes.
1372   WriteAttributeTable(VE, Stream);
1373 
1374   // Emit information describing all of the types in the module.
1375   WriteTypeTable(VE, Stream);
1376 
1377   // Emit top-level description of module, including target triple, inline asm,
1378   // descriptors for global variables, and function prototype info.
1379   WriteModuleInfo(M, VE, Stream);
1380 
1381   // Emit constants.
1382   WriteModuleConstants(VE, Stream);
1383 
1384   // Emit function bodies.
1385   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1386     if (!I->isDeclaration())
1387       WriteFunction(*I, VE, Stream);
1388 
1389   // Emit the type symbol table information.
1390   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1391 
1392   // Emit names for globals/functions etc.
1393   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1394 
1395   Stream.ExitBlock();
1396 }
1397 
1398 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1399 /// header and trailer to make it compatible with the system archiver.  To do
1400 /// this we emit the following header, and then emit a trailer that pads the
1401 /// file out to be a multiple of 16 bytes.
1402 ///
1403 /// struct bc_header {
1404 ///   uint32_t Magic;         // 0x0B17C0DE
1405 ///   uint32_t Version;       // Version, currently always 0.
1406 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1407 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1408 ///   uint32_t CPUType;       // CPU specifier.
1409 ///   ... potentially more later ...
1410 /// };
1411 enum {
1412   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1413   DarwinBCHeaderSize = 5*4
1414 };
1415 
1416 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1417                                const std::string &TT) {
1418   unsigned CPUType = ~0U;
1419 
1420   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1421   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1422   // specific constants here because they are implicitly part of the Darwin ABI.
1423   enum {
1424     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1425     DARWIN_CPU_TYPE_X86        = 7,
1426     DARWIN_CPU_TYPE_POWERPC    = 18
1427   };
1428 
1429   if (TT.find("x86_64-") == 0)
1430     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1431   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1432            TT[4] == '-' && TT[1] - '3' < 6)
1433     CPUType = DARWIN_CPU_TYPE_X86;
1434   else if (TT.find("powerpc-") == 0)
1435     CPUType = DARWIN_CPU_TYPE_POWERPC;
1436   else if (TT.find("powerpc64-") == 0)
1437     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1438 
1439   // Traditional Bitcode starts after header.
1440   unsigned BCOffset = DarwinBCHeaderSize;
1441 
1442   Stream.Emit(0x0B17C0DE, 32);
1443   Stream.Emit(0         , 32);  // Version.
1444   Stream.Emit(BCOffset  , 32);
1445   Stream.Emit(0         , 32);  // Filled in later.
1446   Stream.Emit(CPUType   , 32);
1447 }
1448 
1449 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1450 /// finalize the header.
1451 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1452   // Update the size field in the header.
1453   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1454 
1455   // If the file is not a multiple of 16 bytes, insert dummy padding.
1456   while (BufferSize & 15) {
1457     Stream.Emit(0, 8);
1458     ++BufferSize;
1459   }
1460 }
1461 
1462 
1463 /// WriteBitcodeToFile - Write the specified module to the specified output
1464 /// stream.
1465 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1466   raw_os_ostream RawOut(Out);
1467   // If writing to stdout, set binary mode.
1468   if (llvm::cout == Out)
1469     sys::Program::ChangeStdoutToBinary();
1470   WriteBitcodeToFile(M, RawOut);
1471 }
1472 
1473 /// WriteBitcodeToFile - Write the specified module to the specified output
1474 /// stream.
1475 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1476   std::vector<unsigned char> Buffer;
1477   BitstreamWriter Stream(Buffer);
1478 
1479   Buffer.reserve(256*1024);
1480 
1481   WriteBitcodeToStream( M, Stream );
1482 
1483   // If writing to stdout, set binary mode.
1484   if (&llvm::outs() == &Out)
1485     sys::Program::ChangeStdoutToBinary();
1486 
1487   // Write the generated bitstream to "Out".
1488   Out.write((char*)&Buffer.front(), Buffer.size());
1489 
1490   // Make sure it hits disk now.
1491   Out.flush();
1492 }
1493 
1494 /// WriteBitcodeToStream - Write the specified module to the specified output
1495 /// stream.
1496 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1497   // If this is darwin, emit a file header and trailer if needed.
1498   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1499   if (isDarwin)
1500     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1501 
1502   // Emit the file header.
1503   Stream.Emit((unsigned)'B', 8);
1504   Stream.Emit((unsigned)'C', 8);
1505   Stream.Emit(0x0, 4);
1506   Stream.Emit(0xC, 4);
1507   Stream.Emit(0xE, 4);
1508   Stream.Emit(0xD, 4);
1509 
1510   // Emit the module.
1511   WriteModule(M, Stream);
1512 
1513   if (isDarwin)
1514     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1515 }
1516