1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/UseListOrder.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/Program.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 68 switch (Opcode) { 69 default: llvm_unreachable("Unknown cast instruction!"); 70 case Instruction::Trunc : return bitc::CAST_TRUNC; 71 case Instruction::ZExt : return bitc::CAST_ZEXT; 72 case Instruction::SExt : return bitc::CAST_SEXT; 73 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 74 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 75 case Instruction::UIToFP : return bitc::CAST_UITOFP; 76 case Instruction::SIToFP : return bitc::CAST_SITOFP; 77 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 78 case Instruction::FPExt : return bitc::CAST_FPEXT; 79 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 80 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 81 case Instruction::BitCast : return bitc::CAST_BITCAST; 82 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 83 } 84 } 85 86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 87 switch (Opcode) { 88 default: llvm_unreachable("Unknown binary instruction!"); 89 case Instruction::Add: 90 case Instruction::FAdd: return bitc::BINOP_ADD; 91 case Instruction::Sub: 92 case Instruction::FSub: return bitc::BINOP_SUB; 93 case Instruction::Mul: 94 case Instruction::FMul: return bitc::BINOP_MUL; 95 case Instruction::UDiv: return bitc::BINOP_UDIV; 96 case Instruction::FDiv: 97 case Instruction::SDiv: return bitc::BINOP_SDIV; 98 case Instruction::URem: return bitc::BINOP_UREM; 99 case Instruction::FRem: 100 case Instruction::SRem: return bitc::BINOP_SREM; 101 case Instruction::Shl: return bitc::BINOP_SHL; 102 case Instruction::LShr: return bitc::BINOP_LSHR; 103 case Instruction::AShr: return bitc::BINOP_ASHR; 104 case Instruction::And: return bitc::BINOP_AND; 105 case Instruction::Or: return bitc::BINOP_OR; 106 case Instruction::Xor: return bitc::BINOP_XOR; 107 } 108 } 109 110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 111 switch (Op) { 112 default: llvm_unreachable("Unknown RMW operation!"); 113 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 114 case AtomicRMWInst::Add: return bitc::RMW_ADD; 115 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 116 case AtomicRMWInst::And: return bitc::RMW_AND; 117 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 118 case AtomicRMWInst::Or: return bitc::RMW_OR; 119 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 120 case AtomicRMWInst::Max: return bitc::RMW_MAX; 121 case AtomicRMWInst::Min: return bitc::RMW_MIN; 122 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 123 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 124 } 125 } 126 127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 128 switch (Ordering) { 129 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 130 case Unordered: return bitc::ORDERING_UNORDERED; 131 case Monotonic: return bitc::ORDERING_MONOTONIC; 132 case Acquire: return bitc::ORDERING_ACQUIRE; 133 case Release: return bitc::ORDERING_RELEASE; 134 case AcquireRelease: return bitc::ORDERING_ACQREL; 135 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 136 } 137 llvm_unreachable("Invalid ordering"); 138 } 139 140 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 141 switch (SynchScope) { 142 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 143 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 144 } 145 llvm_unreachable("Invalid synch scope"); 146 } 147 148 static void WriteStringRecord(unsigned Code, StringRef Str, 149 unsigned AbbrevToUse, BitstreamWriter &Stream) { 150 SmallVector<unsigned, 64> Vals; 151 152 // Code: [strchar x N] 153 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 154 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 155 AbbrevToUse = 0; 156 Vals.push_back(Str[i]); 157 } 158 159 // Emit the finished record. 160 Stream.EmitRecord(Code, Vals, AbbrevToUse); 161 } 162 163 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 164 switch (Kind) { 165 case Attribute::Alignment: 166 return bitc::ATTR_KIND_ALIGNMENT; 167 case Attribute::AlwaysInline: 168 return bitc::ATTR_KIND_ALWAYS_INLINE; 169 case Attribute::ArgMemOnly: 170 return bitc::ATTR_KIND_ARGMEMONLY; 171 case Attribute::Builtin: 172 return bitc::ATTR_KIND_BUILTIN; 173 case Attribute::ByVal: 174 return bitc::ATTR_KIND_BY_VAL; 175 case Attribute::Convergent: 176 return bitc::ATTR_KIND_CONVERGENT; 177 case Attribute::InAlloca: 178 return bitc::ATTR_KIND_IN_ALLOCA; 179 case Attribute::Cold: 180 return bitc::ATTR_KIND_COLD; 181 case Attribute::InlineHint: 182 return bitc::ATTR_KIND_INLINE_HINT; 183 case Attribute::InReg: 184 return bitc::ATTR_KIND_IN_REG; 185 case Attribute::JumpTable: 186 return bitc::ATTR_KIND_JUMP_TABLE; 187 case Attribute::MinSize: 188 return bitc::ATTR_KIND_MIN_SIZE; 189 case Attribute::Naked: 190 return bitc::ATTR_KIND_NAKED; 191 case Attribute::Nest: 192 return bitc::ATTR_KIND_NEST; 193 case Attribute::NoAlias: 194 return bitc::ATTR_KIND_NO_ALIAS; 195 case Attribute::NoBuiltin: 196 return bitc::ATTR_KIND_NO_BUILTIN; 197 case Attribute::NoCapture: 198 return bitc::ATTR_KIND_NO_CAPTURE; 199 case Attribute::NoDuplicate: 200 return bitc::ATTR_KIND_NO_DUPLICATE; 201 case Attribute::NoImplicitFloat: 202 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 203 case Attribute::NoInline: 204 return bitc::ATTR_KIND_NO_INLINE; 205 case Attribute::NoRecurse: 206 return bitc::ATTR_KIND_NO_RECURSE; 207 case Attribute::NonLazyBind: 208 return bitc::ATTR_KIND_NON_LAZY_BIND; 209 case Attribute::NonNull: 210 return bitc::ATTR_KIND_NON_NULL; 211 case Attribute::Dereferenceable: 212 return bitc::ATTR_KIND_DEREFERENCEABLE; 213 case Attribute::DereferenceableOrNull: 214 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 215 case Attribute::NoRedZone: 216 return bitc::ATTR_KIND_NO_RED_ZONE; 217 case Attribute::NoReturn: 218 return bitc::ATTR_KIND_NO_RETURN; 219 case Attribute::NoUnwind: 220 return bitc::ATTR_KIND_NO_UNWIND; 221 case Attribute::OptimizeForSize: 222 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 223 case Attribute::OptimizeNone: 224 return bitc::ATTR_KIND_OPTIMIZE_NONE; 225 case Attribute::ReadNone: 226 return bitc::ATTR_KIND_READ_NONE; 227 case Attribute::ReadOnly: 228 return bitc::ATTR_KIND_READ_ONLY; 229 case Attribute::Returned: 230 return bitc::ATTR_KIND_RETURNED; 231 case Attribute::ReturnsTwice: 232 return bitc::ATTR_KIND_RETURNS_TWICE; 233 case Attribute::SExt: 234 return bitc::ATTR_KIND_S_EXT; 235 case Attribute::StackAlignment: 236 return bitc::ATTR_KIND_STACK_ALIGNMENT; 237 case Attribute::StackProtect: 238 return bitc::ATTR_KIND_STACK_PROTECT; 239 case Attribute::StackProtectReq: 240 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 241 case Attribute::StackProtectStrong: 242 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 243 case Attribute::SafeStack: 244 return bitc::ATTR_KIND_SAFESTACK; 245 case Attribute::StructRet: 246 return bitc::ATTR_KIND_STRUCT_RET; 247 case Attribute::SanitizeAddress: 248 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 249 case Attribute::SanitizeThread: 250 return bitc::ATTR_KIND_SANITIZE_THREAD; 251 case Attribute::SanitizeMemory: 252 return bitc::ATTR_KIND_SANITIZE_MEMORY; 253 case Attribute::UWTable: 254 return bitc::ATTR_KIND_UW_TABLE; 255 case Attribute::ZExt: 256 return bitc::ATTR_KIND_Z_EXT; 257 case Attribute::EndAttrKinds: 258 llvm_unreachable("Can not encode end-attribute kinds marker."); 259 case Attribute::None: 260 llvm_unreachable("Can not encode none-attribute."); 261 } 262 263 llvm_unreachable("Trying to encode unknown attribute"); 264 } 265 266 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 267 BitstreamWriter &Stream) { 268 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 269 if (AttrGrps.empty()) return; 270 271 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 272 273 SmallVector<uint64_t, 64> Record; 274 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 275 AttributeSet AS = AttrGrps[i]; 276 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 277 AttributeSet A = AS.getSlotAttributes(i); 278 279 Record.push_back(VE.getAttributeGroupID(A)); 280 Record.push_back(AS.getSlotIndex(i)); 281 282 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 283 I != E; ++I) { 284 Attribute Attr = *I; 285 if (Attr.isEnumAttribute()) { 286 Record.push_back(0); 287 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 288 } else if (Attr.isIntAttribute()) { 289 Record.push_back(1); 290 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 291 Record.push_back(Attr.getValueAsInt()); 292 } else { 293 StringRef Kind = Attr.getKindAsString(); 294 StringRef Val = Attr.getValueAsString(); 295 296 Record.push_back(Val.empty() ? 3 : 4); 297 Record.append(Kind.begin(), Kind.end()); 298 Record.push_back(0); 299 if (!Val.empty()) { 300 Record.append(Val.begin(), Val.end()); 301 Record.push_back(0); 302 } 303 } 304 } 305 306 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 307 Record.clear(); 308 } 309 } 310 311 Stream.ExitBlock(); 312 } 313 314 static void WriteAttributeTable(const ValueEnumerator &VE, 315 BitstreamWriter &Stream) { 316 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 317 if (Attrs.empty()) return; 318 319 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 320 321 SmallVector<uint64_t, 64> Record; 322 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 323 const AttributeSet &A = Attrs[i]; 324 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 325 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 326 327 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 328 Record.clear(); 329 } 330 331 Stream.ExitBlock(); 332 } 333 334 /// WriteTypeTable - Write out the type table for a module. 335 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 336 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 337 338 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 339 SmallVector<uint64_t, 64> TypeVals; 340 341 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 342 343 // Abbrev for TYPE_CODE_POINTER. 344 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 347 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 348 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 349 350 // Abbrev for TYPE_CODE_FUNCTION. 351 Abbv = new BitCodeAbbrev(); 352 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 356 357 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_ANON. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_STRUCT_NAME. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 373 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 374 375 // Abbrev for TYPE_CODE_STRUCT_NAMED. 376 Abbv = new BitCodeAbbrev(); 377 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 381 382 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Abbrev for TYPE_CODE_ARRAY. 385 Abbv = new BitCodeAbbrev(); 386 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 389 390 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 391 392 // Emit an entry count so the reader can reserve space. 393 TypeVals.push_back(TypeList.size()); 394 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 395 TypeVals.clear(); 396 397 // Loop over all of the types, emitting each in turn. 398 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 399 Type *T = TypeList[i]; 400 int AbbrevToUse = 0; 401 unsigned Code = 0; 402 403 switch (T->getTypeID()) { 404 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 405 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 406 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 407 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 408 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 409 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 410 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 411 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 412 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 413 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 414 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 415 case Type::IntegerTyID: 416 // INTEGER: [width] 417 Code = bitc::TYPE_CODE_INTEGER; 418 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 419 break; 420 case Type::PointerTyID: { 421 PointerType *PTy = cast<PointerType>(T); 422 // POINTER: [pointee type, address space] 423 Code = bitc::TYPE_CODE_POINTER; 424 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 425 unsigned AddressSpace = PTy->getAddressSpace(); 426 TypeVals.push_back(AddressSpace); 427 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 428 break; 429 } 430 case Type::FunctionTyID: { 431 FunctionType *FT = cast<FunctionType>(T); 432 // FUNCTION: [isvararg, retty, paramty x N] 433 Code = bitc::TYPE_CODE_FUNCTION; 434 TypeVals.push_back(FT->isVarArg()); 435 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 436 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 437 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 438 AbbrevToUse = FunctionAbbrev; 439 break; 440 } 441 case Type::StructTyID: { 442 StructType *ST = cast<StructType>(T); 443 // STRUCT: [ispacked, eltty x N] 444 TypeVals.push_back(ST->isPacked()); 445 // Output all of the element types. 446 for (StructType::element_iterator I = ST->element_begin(), 447 E = ST->element_end(); I != E; ++I) 448 TypeVals.push_back(VE.getTypeID(*I)); 449 450 if (ST->isLiteral()) { 451 Code = bitc::TYPE_CODE_STRUCT_ANON; 452 AbbrevToUse = StructAnonAbbrev; 453 } else { 454 if (ST->isOpaque()) { 455 Code = bitc::TYPE_CODE_OPAQUE; 456 } else { 457 Code = bitc::TYPE_CODE_STRUCT_NAMED; 458 AbbrevToUse = StructNamedAbbrev; 459 } 460 461 // Emit the name if it is present. 462 if (!ST->getName().empty()) 463 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 464 StructNameAbbrev, Stream); 465 } 466 break; 467 } 468 case Type::ArrayTyID: { 469 ArrayType *AT = cast<ArrayType>(T); 470 // ARRAY: [numelts, eltty] 471 Code = bitc::TYPE_CODE_ARRAY; 472 TypeVals.push_back(AT->getNumElements()); 473 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 474 AbbrevToUse = ArrayAbbrev; 475 break; 476 } 477 case Type::VectorTyID: { 478 VectorType *VT = cast<VectorType>(T); 479 // VECTOR [numelts, eltty] 480 Code = bitc::TYPE_CODE_VECTOR; 481 TypeVals.push_back(VT->getNumElements()); 482 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 483 break; 484 } 485 } 486 487 // Emit the finished record. 488 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 489 TypeVals.clear(); 490 } 491 492 Stream.ExitBlock(); 493 } 494 495 static unsigned getEncodedLinkage(const GlobalValue &GV) { 496 switch (GV.getLinkage()) { 497 case GlobalValue::ExternalLinkage: 498 return 0; 499 case GlobalValue::WeakAnyLinkage: 500 return 16; 501 case GlobalValue::AppendingLinkage: 502 return 2; 503 case GlobalValue::InternalLinkage: 504 return 3; 505 case GlobalValue::LinkOnceAnyLinkage: 506 return 18; 507 case GlobalValue::ExternalWeakLinkage: 508 return 7; 509 case GlobalValue::CommonLinkage: 510 return 8; 511 case GlobalValue::PrivateLinkage: 512 return 9; 513 case GlobalValue::WeakODRLinkage: 514 return 17; 515 case GlobalValue::LinkOnceODRLinkage: 516 return 19; 517 case GlobalValue::AvailableExternallyLinkage: 518 return 12; 519 } 520 llvm_unreachable("Invalid linkage"); 521 } 522 523 static unsigned getEncodedVisibility(const GlobalValue &GV) { 524 switch (GV.getVisibility()) { 525 case GlobalValue::DefaultVisibility: return 0; 526 case GlobalValue::HiddenVisibility: return 1; 527 case GlobalValue::ProtectedVisibility: return 2; 528 } 529 llvm_unreachable("Invalid visibility"); 530 } 531 532 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 533 switch (GV.getDLLStorageClass()) { 534 case GlobalValue::DefaultStorageClass: return 0; 535 case GlobalValue::DLLImportStorageClass: return 1; 536 case GlobalValue::DLLExportStorageClass: return 2; 537 } 538 llvm_unreachable("Invalid DLL storage class"); 539 } 540 541 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 542 switch (GV.getThreadLocalMode()) { 543 case GlobalVariable::NotThreadLocal: return 0; 544 case GlobalVariable::GeneralDynamicTLSModel: return 1; 545 case GlobalVariable::LocalDynamicTLSModel: return 2; 546 case GlobalVariable::InitialExecTLSModel: return 3; 547 case GlobalVariable::LocalExecTLSModel: return 4; 548 } 549 llvm_unreachable("Invalid TLS model"); 550 } 551 552 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 553 switch (C.getSelectionKind()) { 554 case Comdat::Any: 555 return bitc::COMDAT_SELECTION_KIND_ANY; 556 case Comdat::ExactMatch: 557 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 558 case Comdat::Largest: 559 return bitc::COMDAT_SELECTION_KIND_LARGEST; 560 case Comdat::NoDuplicates: 561 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 562 case Comdat::SameSize: 563 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 564 } 565 llvm_unreachable("Invalid selection kind"); 566 } 567 568 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 569 SmallVector<uint16_t, 64> Vals; 570 for (const Comdat *C : VE.getComdats()) { 571 // COMDAT: [selection_kind, name] 572 Vals.push_back(getEncodedComdatSelectionKind(*C)); 573 size_t Size = C->getName().size(); 574 assert(isUInt<16>(Size)); 575 Vals.push_back(Size); 576 for (char Chr : C->getName()) 577 Vals.push_back((unsigned char)Chr); 578 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 579 Vals.clear(); 580 } 581 } 582 583 /// Write a record that will eventually hold the word offset of the 584 /// module-level VST. For now the offset is 0, which will be backpatched 585 /// after the real VST is written. Returns the bit offset to backpatch. 586 static uint64_t WriteValueSymbolTableForwardDecl(const ValueSymbolTable &VST, 587 BitstreamWriter &Stream) { 588 if (VST.empty()) 589 return 0; 590 591 // Write a placeholder value in for the offset of the real VST, 592 // which is written after the function blocks so that it can include 593 // the offset of each function. The placeholder offset will be 594 // updated when the real VST is written. 595 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 596 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 597 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 598 // hold the real VST offset. Must use fixed instead of VBR as we don't 599 // know how many VBR chunks to reserve ahead of time. 600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 601 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 602 603 // Emit the placeholder 604 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 605 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 606 607 // Compute and return the bit offset to the placeholder, which will be 608 // patched when the real VST is written. We can simply subtract the 32-bit 609 // fixed size from the current bit number to get the location to backpatch. 610 return Stream.GetCurrentBitNo() - 32; 611 } 612 613 /// Emit top-level description of module, including target triple, inline asm, 614 /// descriptors for global variables, and function prototype info. 615 /// Returns the bit offset to backpatch with the location of the real VST. 616 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 617 BitstreamWriter &Stream) { 618 // Emit various pieces of data attached to a module. 619 if (!M->getTargetTriple().empty()) 620 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 621 0/*TODO*/, Stream); 622 const std::string &DL = M->getDataLayoutStr(); 623 if (!DL.empty()) 624 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 625 if (!M->getModuleInlineAsm().empty()) 626 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 627 0/*TODO*/, Stream); 628 629 // Emit information about sections and GC, computing how many there are. Also 630 // compute the maximum alignment value. 631 std::map<std::string, unsigned> SectionMap; 632 std::map<std::string, unsigned> GCMap; 633 unsigned MaxAlignment = 0; 634 unsigned MaxGlobalType = 0; 635 for (const GlobalValue &GV : M->globals()) { 636 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 637 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 638 if (GV.hasSection()) { 639 // Give section names unique ID's. 640 unsigned &Entry = SectionMap[GV.getSection()]; 641 if (!Entry) { 642 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 643 0/*TODO*/, Stream); 644 Entry = SectionMap.size(); 645 } 646 } 647 } 648 for (const Function &F : *M) { 649 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 650 if (F.hasSection()) { 651 // Give section names unique ID's. 652 unsigned &Entry = SectionMap[F.getSection()]; 653 if (!Entry) { 654 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 655 0/*TODO*/, Stream); 656 Entry = SectionMap.size(); 657 } 658 } 659 if (F.hasGC()) { 660 // Same for GC names. 661 unsigned &Entry = GCMap[F.getGC()]; 662 if (!Entry) { 663 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 664 0/*TODO*/, Stream); 665 Entry = GCMap.size(); 666 } 667 } 668 } 669 670 // Emit abbrev for globals, now that we know # sections and max alignment. 671 unsigned SimpleGVarAbbrev = 0; 672 if (!M->global_empty()) { 673 // Add an abbrev for common globals with no visibility or thread localness. 674 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 675 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 677 Log2_32_Ceil(MaxGlobalType+1))); 678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 679 //| explicitType << 1 680 //| constant 681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 683 if (MaxAlignment == 0) // Alignment. 684 Abbv->Add(BitCodeAbbrevOp(0)); 685 else { 686 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 688 Log2_32_Ceil(MaxEncAlignment+1))); 689 } 690 if (SectionMap.empty()) // Section. 691 Abbv->Add(BitCodeAbbrevOp(0)); 692 else 693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 694 Log2_32_Ceil(SectionMap.size()+1))); 695 // Don't bother emitting vis + thread local. 696 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 697 } 698 699 // Emit the global variable information. 700 SmallVector<unsigned, 64> Vals; 701 for (const GlobalVariable &GV : M->globals()) { 702 unsigned AbbrevToUse = 0; 703 704 // GLOBALVAR: [type, isconst, initid, 705 // linkage, alignment, section, visibility, threadlocal, 706 // unnamed_addr, externally_initialized, dllstorageclass, 707 // comdat] 708 Vals.push_back(VE.getTypeID(GV.getValueType())); 709 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 710 Vals.push_back(GV.isDeclaration() ? 0 : 711 (VE.getValueID(GV.getInitializer()) + 1)); 712 Vals.push_back(getEncodedLinkage(GV)); 713 Vals.push_back(Log2_32(GV.getAlignment())+1); 714 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 715 if (GV.isThreadLocal() || 716 GV.getVisibility() != GlobalValue::DefaultVisibility || 717 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 718 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 719 GV.hasComdat()) { 720 Vals.push_back(getEncodedVisibility(GV)); 721 Vals.push_back(getEncodedThreadLocalMode(GV)); 722 Vals.push_back(GV.hasUnnamedAddr()); 723 Vals.push_back(GV.isExternallyInitialized()); 724 Vals.push_back(getEncodedDLLStorageClass(GV)); 725 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 726 } else { 727 AbbrevToUse = SimpleGVarAbbrev; 728 } 729 730 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 731 Vals.clear(); 732 } 733 734 // Emit the function proto information. 735 for (const Function &F : *M) { 736 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 737 // section, visibility, gc, unnamed_addr, prologuedata, 738 // dllstorageclass, comdat, prefixdata, personalityfn] 739 Vals.push_back(VE.getTypeID(F.getFunctionType())); 740 Vals.push_back(F.getCallingConv()); 741 Vals.push_back(F.isDeclaration()); 742 Vals.push_back(getEncodedLinkage(F)); 743 Vals.push_back(VE.getAttributeID(F.getAttributes())); 744 Vals.push_back(Log2_32(F.getAlignment())+1); 745 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 746 Vals.push_back(getEncodedVisibility(F)); 747 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 748 Vals.push_back(F.hasUnnamedAddr()); 749 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 750 : 0); 751 Vals.push_back(getEncodedDLLStorageClass(F)); 752 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 753 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 754 : 0); 755 Vals.push_back( 756 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 757 758 unsigned AbbrevToUse = 0; 759 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 760 Vals.clear(); 761 } 762 763 // Emit the alias information. 764 for (const GlobalAlias &A : M->aliases()) { 765 // ALIAS: [alias type, aliasee val#, linkage, visibility] 766 Vals.push_back(VE.getTypeID(A.getValueType())); 767 Vals.push_back(A.getType()->getAddressSpace()); 768 Vals.push_back(VE.getValueID(A.getAliasee())); 769 Vals.push_back(getEncodedLinkage(A)); 770 Vals.push_back(getEncodedVisibility(A)); 771 Vals.push_back(getEncodedDLLStorageClass(A)); 772 Vals.push_back(getEncodedThreadLocalMode(A)); 773 Vals.push_back(A.hasUnnamedAddr()); 774 unsigned AbbrevToUse = 0; 775 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 776 Vals.clear(); 777 } 778 779 // Write a record indicating the number of module-level metadata IDs 780 // This is needed because the ids of metadata are assigned implicitly 781 // based on their ordering in the bitcode, with the function-level 782 // metadata ids starting after the module-level metadata ids. For 783 // function importing where we lazy load the metadata as a postpass, 784 // we want to avoid parsing the module-level metadata before parsing 785 // the imported functions. 786 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 787 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_METADATA_VALUES)); 788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 789 unsigned MDValsAbbrev = Stream.EmitAbbrev(Abbv); 790 Vals.push_back(VE.numMDs()); 791 Stream.EmitRecord(bitc::MODULE_CODE_METADATA_VALUES, Vals, MDValsAbbrev); 792 Vals.clear(); 793 794 uint64_t VSTOffsetPlaceholder = 795 WriteValueSymbolTableForwardDecl(M->getValueSymbolTable(), Stream); 796 return VSTOffsetPlaceholder; 797 } 798 799 static uint64_t GetOptimizationFlags(const Value *V) { 800 uint64_t Flags = 0; 801 802 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 803 if (OBO->hasNoSignedWrap()) 804 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 805 if (OBO->hasNoUnsignedWrap()) 806 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 807 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 808 if (PEO->isExact()) 809 Flags |= 1 << bitc::PEO_EXACT; 810 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 811 if (FPMO->hasUnsafeAlgebra()) 812 Flags |= FastMathFlags::UnsafeAlgebra; 813 if (FPMO->hasNoNaNs()) 814 Flags |= FastMathFlags::NoNaNs; 815 if (FPMO->hasNoInfs()) 816 Flags |= FastMathFlags::NoInfs; 817 if (FPMO->hasNoSignedZeros()) 818 Flags |= FastMathFlags::NoSignedZeros; 819 if (FPMO->hasAllowReciprocal()) 820 Flags |= FastMathFlags::AllowReciprocal; 821 } 822 823 return Flags; 824 } 825 826 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 827 const ValueEnumerator &VE, 828 BitstreamWriter &Stream, 829 SmallVectorImpl<uint64_t> &Record) { 830 // Mimic an MDNode with a value as one operand. 831 Value *V = MD->getValue(); 832 Record.push_back(VE.getTypeID(V->getType())); 833 Record.push_back(VE.getValueID(V)); 834 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 835 Record.clear(); 836 } 837 838 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 839 BitstreamWriter &Stream, 840 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 841 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 842 Metadata *MD = N->getOperand(i); 843 assert(!(MD && isa<LocalAsMetadata>(MD)) && 844 "Unexpected function-local metadata"); 845 Record.push_back(VE.getMetadataOrNullID(MD)); 846 } 847 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 848 : bitc::METADATA_NODE, 849 Record, Abbrev); 850 Record.clear(); 851 } 852 853 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 854 BitstreamWriter &Stream, 855 SmallVectorImpl<uint64_t> &Record, 856 unsigned Abbrev) { 857 Record.push_back(N->isDistinct()); 858 Record.push_back(N->getLine()); 859 Record.push_back(N->getColumn()); 860 Record.push_back(VE.getMetadataID(N->getScope())); 861 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 862 863 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 864 Record.clear(); 865 } 866 867 static void WriteGenericDINode(const GenericDINode *N, 868 const ValueEnumerator &VE, 869 BitstreamWriter &Stream, 870 SmallVectorImpl<uint64_t> &Record, 871 unsigned Abbrev) { 872 Record.push_back(N->isDistinct()); 873 Record.push_back(N->getTag()); 874 Record.push_back(0); // Per-tag version field; unused for now. 875 876 for (auto &I : N->operands()) 877 Record.push_back(VE.getMetadataOrNullID(I)); 878 879 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 880 Record.clear(); 881 } 882 883 static uint64_t rotateSign(int64_t I) { 884 uint64_t U = I; 885 return I < 0 ? ~(U << 1) : U << 1; 886 } 887 888 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 889 BitstreamWriter &Stream, 890 SmallVectorImpl<uint64_t> &Record, 891 unsigned Abbrev) { 892 Record.push_back(N->isDistinct()); 893 Record.push_back(N->getCount()); 894 Record.push_back(rotateSign(N->getLowerBound())); 895 896 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 897 Record.clear(); 898 } 899 900 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 901 BitstreamWriter &Stream, 902 SmallVectorImpl<uint64_t> &Record, 903 unsigned Abbrev) { 904 Record.push_back(N->isDistinct()); 905 Record.push_back(rotateSign(N->getValue())); 906 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 907 908 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 909 Record.clear(); 910 } 911 912 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 913 BitstreamWriter &Stream, 914 SmallVectorImpl<uint64_t> &Record, 915 unsigned Abbrev) { 916 Record.push_back(N->isDistinct()); 917 Record.push_back(N->getTag()); 918 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 919 Record.push_back(N->getSizeInBits()); 920 Record.push_back(N->getAlignInBits()); 921 Record.push_back(N->getEncoding()); 922 923 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 924 Record.clear(); 925 } 926 927 static void WriteDIDerivedType(const DIDerivedType *N, 928 const ValueEnumerator &VE, 929 BitstreamWriter &Stream, 930 SmallVectorImpl<uint64_t> &Record, 931 unsigned Abbrev) { 932 Record.push_back(N->isDistinct()); 933 Record.push_back(N->getTag()); 934 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 935 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 936 Record.push_back(N->getLine()); 937 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 938 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 939 Record.push_back(N->getSizeInBits()); 940 Record.push_back(N->getAlignInBits()); 941 Record.push_back(N->getOffsetInBits()); 942 Record.push_back(N->getFlags()); 943 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 944 945 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 946 Record.clear(); 947 } 948 949 static void WriteDICompositeType(const DICompositeType *N, 950 const ValueEnumerator &VE, 951 BitstreamWriter &Stream, 952 SmallVectorImpl<uint64_t> &Record, 953 unsigned Abbrev) { 954 Record.push_back(N->isDistinct()); 955 Record.push_back(N->getTag()); 956 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 957 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 958 Record.push_back(N->getLine()); 959 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 960 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 961 Record.push_back(N->getSizeInBits()); 962 Record.push_back(N->getAlignInBits()); 963 Record.push_back(N->getOffsetInBits()); 964 Record.push_back(N->getFlags()); 965 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 966 Record.push_back(N->getRuntimeLang()); 967 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 968 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 969 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 970 971 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 972 Record.clear(); 973 } 974 975 static void WriteDISubroutineType(const DISubroutineType *N, 976 const ValueEnumerator &VE, 977 BitstreamWriter &Stream, 978 SmallVectorImpl<uint64_t> &Record, 979 unsigned Abbrev) { 980 Record.push_back(N->isDistinct()); 981 Record.push_back(N->getFlags()); 982 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 983 984 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 985 Record.clear(); 986 } 987 988 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 989 BitstreamWriter &Stream, 990 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 991 Record.push_back(N->isDistinct()); 992 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 993 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 994 995 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 996 Record.clear(); 997 } 998 999 static void WriteDICompileUnit(const DICompileUnit *N, 1000 const ValueEnumerator &VE, 1001 BitstreamWriter &Stream, 1002 SmallVectorImpl<uint64_t> &Record, 1003 unsigned Abbrev) { 1004 assert(N->isDistinct() && "Expected distinct compile units"); 1005 Record.push_back(/* IsDistinct */ true); 1006 Record.push_back(N->getSourceLanguage()); 1007 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1008 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1009 Record.push_back(N->isOptimized()); 1010 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1011 Record.push_back(N->getRuntimeVersion()); 1012 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1013 Record.push_back(N->getEmissionKind()); 1014 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1015 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1016 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1017 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1018 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1019 Record.push_back(N->getDWOId()); 1020 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1021 1022 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1023 Record.clear(); 1024 } 1025 1026 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1027 BitstreamWriter &Stream, 1028 SmallVectorImpl<uint64_t> &Record, 1029 unsigned Abbrev) { 1030 Record.push_back(N->isDistinct()); 1031 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1033 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1034 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1035 Record.push_back(N->getLine()); 1036 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1037 Record.push_back(N->isLocalToUnit()); 1038 Record.push_back(N->isDefinition()); 1039 Record.push_back(N->getScopeLine()); 1040 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1041 Record.push_back(N->getVirtuality()); 1042 Record.push_back(N->getVirtualIndex()); 1043 Record.push_back(N->getFlags()); 1044 Record.push_back(N->isOptimized()); 1045 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1046 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1047 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1048 1049 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1050 Record.clear(); 1051 } 1052 1053 static void WriteDILexicalBlock(const DILexicalBlock *N, 1054 const ValueEnumerator &VE, 1055 BitstreamWriter &Stream, 1056 SmallVectorImpl<uint64_t> &Record, 1057 unsigned Abbrev) { 1058 Record.push_back(N->isDistinct()); 1059 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1060 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1061 Record.push_back(N->getLine()); 1062 Record.push_back(N->getColumn()); 1063 1064 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1065 Record.clear(); 1066 } 1067 1068 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1069 const ValueEnumerator &VE, 1070 BitstreamWriter &Stream, 1071 SmallVectorImpl<uint64_t> &Record, 1072 unsigned Abbrev) { 1073 Record.push_back(N->isDistinct()); 1074 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1075 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1076 Record.push_back(N->getDiscriminator()); 1077 1078 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1079 Record.clear(); 1080 } 1081 1082 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1083 BitstreamWriter &Stream, 1084 SmallVectorImpl<uint64_t> &Record, 1085 unsigned Abbrev) { 1086 Record.push_back(N->isDistinct()); 1087 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1088 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1090 Record.push_back(N->getLine()); 1091 1092 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1093 Record.clear(); 1094 } 1095 1096 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1097 BitstreamWriter &Stream, 1098 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1099 Record.push_back(N->isDistinct()); 1100 Record.push_back(N->getMacinfoType()); 1101 Record.push_back(N->getLine()); 1102 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1103 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1104 1105 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1106 Record.clear(); 1107 } 1108 1109 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1110 BitstreamWriter &Stream, 1111 SmallVectorImpl<uint64_t> &Record, 1112 unsigned Abbrev) { 1113 Record.push_back(N->isDistinct()); 1114 Record.push_back(N->getMacinfoType()); 1115 Record.push_back(N->getLine()); 1116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1117 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1118 1119 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1120 Record.clear(); 1121 } 1122 1123 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1124 BitstreamWriter &Stream, 1125 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1126 Record.push_back(N->isDistinct()); 1127 for (auto &I : N->operands()) 1128 Record.push_back(VE.getMetadataOrNullID(I)); 1129 1130 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1131 Record.clear(); 1132 } 1133 1134 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1135 const ValueEnumerator &VE, 1136 BitstreamWriter &Stream, 1137 SmallVectorImpl<uint64_t> &Record, 1138 unsigned Abbrev) { 1139 Record.push_back(N->isDistinct()); 1140 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1141 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1142 1143 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1144 Record.clear(); 1145 } 1146 1147 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1148 const ValueEnumerator &VE, 1149 BitstreamWriter &Stream, 1150 SmallVectorImpl<uint64_t> &Record, 1151 unsigned Abbrev) { 1152 Record.push_back(N->isDistinct()); 1153 Record.push_back(N->getTag()); 1154 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1155 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1156 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1157 1158 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1159 Record.clear(); 1160 } 1161 1162 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1163 const ValueEnumerator &VE, 1164 BitstreamWriter &Stream, 1165 SmallVectorImpl<uint64_t> &Record, 1166 unsigned Abbrev) { 1167 Record.push_back(N->isDistinct()); 1168 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1169 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1170 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1171 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1172 Record.push_back(N->getLine()); 1173 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1174 Record.push_back(N->isLocalToUnit()); 1175 Record.push_back(N->isDefinition()); 1176 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1177 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1178 1179 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1180 Record.clear(); 1181 } 1182 1183 static void WriteDILocalVariable(const DILocalVariable *N, 1184 const ValueEnumerator &VE, 1185 BitstreamWriter &Stream, 1186 SmallVectorImpl<uint64_t> &Record, 1187 unsigned Abbrev) { 1188 Record.push_back(N->isDistinct()); 1189 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1190 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1191 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1192 Record.push_back(N->getLine()); 1193 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1194 Record.push_back(N->getArg()); 1195 Record.push_back(N->getFlags()); 1196 1197 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1198 Record.clear(); 1199 } 1200 1201 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1202 BitstreamWriter &Stream, 1203 SmallVectorImpl<uint64_t> &Record, 1204 unsigned Abbrev) { 1205 Record.reserve(N->getElements().size() + 1); 1206 1207 Record.push_back(N->isDistinct()); 1208 Record.append(N->elements_begin(), N->elements_end()); 1209 1210 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1211 Record.clear(); 1212 } 1213 1214 static void WriteDIObjCProperty(const DIObjCProperty *N, 1215 const ValueEnumerator &VE, 1216 BitstreamWriter &Stream, 1217 SmallVectorImpl<uint64_t> &Record, 1218 unsigned Abbrev) { 1219 Record.push_back(N->isDistinct()); 1220 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1221 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1222 Record.push_back(N->getLine()); 1223 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1224 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1225 Record.push_back(N->getAttributes()); 1226 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1227 1228 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1229 Record.clear(); 1230 } 1231 1232 static void WriteDIImportedEntity(const DIImportedEntity *N, 1233 const ValueEnumerator &VE, 1234 BitstreamWriter &Stream, 1235 SmallVectorImpl<uint64_t> &Record, 1236 unsigned Abbrev) { 1237 Record.push_back(N->isDistinct()); 1238 Record.push_back(N->getTag()); 1239 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1240 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1241 Record.push_back(N->getLine()); 1242 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1243 1244 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1245 Record.clear(); 1246 } 1247 1248 static void WriteModuleMetadata(const Module *M, 1249 const ValueEnumerator &VE, 1250 BitstreamWriter &Stream) { 1251 const auto &MDs = VE.getMDs(); 1252 if (MDs.empty() && M->named_metadata_empty()) 1253 return; 1254 1255 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1256 1257 unsigned MDSAbbrev = 0; 1258 if (VE.hasMDString()) { 1259 // Abbrev for METADATA_STRING. 1260 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1261 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1264 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1265 } 1266 1267 // Initialize MDNode abbreviations. 1268 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1269 #include "llvm/IR/Metadata.def" 1270 1271 if (VE.hasDILocation()) { 1272 // Abbrev for METADATA_LOCATION. 1273 // 1274 // Assume the column is usually under 128, and always output the inlined-at 1275 // location (it's never more expensive than building an array size 1). 1276 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1277 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1283 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1284 } 1285 1286 if (VE.hasGenericDINode()) { 1287 // Abbrev for METADATA_GENERIC_DEBUG. 1288 // 1289 // Assume the column is usually under 128, and always output the inlined-at 1290 // location (it's never more expensive than building an array size 1). 1291 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1292 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1299 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1300 } 1301 1302 unsigned NameAbbrev = 0; 1303 if (!M->named_metadata_empty()) { 1304 // Abbrev for METADATA_NAME. 1305 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1306 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1309 NameAbbrev = Stream.EmitAbbrev(Abbv); 1310 } 1311 1312 SmallVector<uint64_t, 64> Record; 1313 for (const Metadata *MD : MDs) { 1314 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1315 assert(N->isResolved() && "Expected forward references to be resolved"); 1316 1317 switch (N->getMetadataID()) { 1318 default: 1319 llvm_unreachable("Invalid MDNode subclass"); 1320 #define HANDLE_MDNODE_LEAF(CLASS) \ 1321 case Metadata::CLASS##Kind: \ 1322 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1323 continue; 1324 #include "llvm/IR/Metadata.def" 1325 } 1326 } 1327 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1328 WriteValueAsMetadata(MDC, VE, Stream, Record); 1329 continue; 1330 } 1331 const MDString *MDS = cast<MDString>(MD); 1332 // Code: [strchar x N] 1333 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1334 1335 // Emit the finished record. 1336 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1337 Record.clear(); 1338 } 1339 1340 // Write named metadata. 1341 for (const NamedMDNode &NMD : M->named_metadata()) { 1342 // Write name. 1343 StringRef Str = NMD.getName(); 1344 Record.append(Str.bytes_begin(), Str.bytes_end()); 1345 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1346 Record.clear(); 1347 1348 // Write named metadata operands. 1349 for (const MDNode *N : NMD.operands()) 1350 Record.push_back(VE.getMetadataID(N)); 1351 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1352 Record.clear(); 1353 } 1354 1355 Stream.ExitBlock(); 1356 } 1357 1358 static void WriteFunctionLocalMetadata(const Function &F, 1359 const ValueEnumerator &VE, 1360 BitstreamWriter &Stream) { 1361 bool StartedMetadataBlock = false; 1362 SmallVector<uint64_t, 64> Record; 1363 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1364 VE.getFunctionLocalMDs(); 1365 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1366 assert(MDs[i] && "Expected valid function-local metadata"); 1367 if (!StartedMetadataBlock) { 1368 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1369 StartedMetadataBlock = true; 1370 } 1371 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1372 } 1373 1374 if (StartedMetadataBlock) 1375 Stream.ExitBlock(); 1376 } 1377 1378 static void WriteMetadataAttachment(const Function &F, 1379 const ValueEnumerator &VE, 1380 BitstreamWriter &Stream) { 1381 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1382 1383 SmallVector<uint64_t, 64> Record; 1384 1385 // Write metadata attachments 1386 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1387 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1388 F.getAllMetadata(MDs); 1389 if (!MDs.empty()) { 1390 for (const auto &I : MDs) { 1391 Record.push_back(I.first); 1392 Record.push_back(VE.getMetadataID(I.second)); 1393 } 1394 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1395 Record.clear(); 1396 } 1397 1398 for (const BasicBlock &BB : F) 1399 for (const Instruction &I : BB) { 1400 MDs.clear(); 1401 I.getAllMetadataOtherThanDebugLoc(MDs); 1402 1403 // If no metadata, ignore instruction. 1404 if (MDs.empty()) continue; 1405 1406 Record.push_back(VE.getInstructionID(&I)); 1407 1408 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1409 Record.push_back(MDs[i].first); 1410 Record.push_back(VE.getMetadataID(MDs[i].second)); 1411 } 1412 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1413 Record.clear(); 1414 } 1415 1416 Stream.ExitBlock(); 1417 } 1418 1419 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1420 SmallVector<uint64_t, 64> Record; 1421 1422 // Write metadata kinds 1423 // METADATA_KIND - [n x [id, name]] 1424 SmallVector<StringRef, 8> Names; 1425 M->getMDKindNames(Names); 1426 1427 if (Names.empty()) return; 1428 1429 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1430 1431 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1432 Record.push_back(MDKindID); 1433 StringRef KName = Names[MDKindID]; 1434 Record.append(KName.begin(), KName.end()); 1435 1436 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1437 Record.clear(); 1438 } 1439 1440 Stream.ExitBlock(); 1441 } 1442 1443 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1444 // Write metadata kinds 1445 // 1446 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1447 // 1448 // OPERAND_BUNDLE_TAG - [strchr x N] 1449 1450 SmallVector<StringRef, 8> Tags; 1451 M->getOperandBundleTags(Tags); 1452 1453 if (Tags.empty()) 1454 return; 1455 1456 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1457 1458 SmallVector<uint64_t, 64> Record; 1459 1460 for (auto Tag : Tags) { 1461 Record.append(Tag.begin(), Tag.end()); 1462 1463 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1464 Record.clear(); 1465 } 1466 1467 Stream.ExitBlock(); 1468 } 1469 1470 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1471 if ((int64_t)V >= 0) 1472 Vals.push_back(V << 1); 1473 else 1474 Vals.push_back((-V << 1) | 1); 1475 } 1476 1477 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1478 const ValueEnumerator &VE, 1479 BitstreamWriter &Stream, bool isGlobal) { 1480 if (FirstVal == LastVal) return; 1481 1482 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1483 1484 unsigned AggregateAbbrev = 0; 1485 unsigned String8Abbrev = 0; 1486 unsigned CString7Abbrev = 0; 1487 unsigned CString6Abbrev = 0; 1488 // If this is a constant pool for the module, emit module-specific abbrevs. 1489 if (isGlobal) { 1490 // Abbrev for CST_CODE_AGGREGATE. 1491 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1492 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1495 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1496 1497 // Abbrev for CST_CODE_STRING. 1498 Abbv = new BitCodeAbbrev(); 1499 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1502 String8Abbrev = Stream.EmitAbbrev(Abbv); 1503 // Abbrev for CST_CODE_CSTRING. 1504 Abbv = new BitCodeAbbrev(); 1505 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1508 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1509 // Abbrev for CST_CODE_CSTRING. 1510 Abbv = new BitCodeAbbrev(); 1511 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1514 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1515 } 1516 1517 SmallVector<uint64_t, 64> Record; 1518 1519 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1520 Type *LastTy = nullptr; 1521 for (unsigned i = FirstVal; i != LastVal; ++i) { 1522 const Value *V = Vals[i].first; 1523 // If we need to switch types, do so now. 1524 if (V->getType() != LastTy) { 1525 LastTy = V->getType(); 1526 Record.push_back(VE.getTypeID(LastTy)); 1527 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1528 CONSTANTS_SETTYPE_ABBREV); 1529 Record.clear(); 1530 } 1531 1532 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1533 Record.push_back(unsigned(IA->hasSideEffects()) | 1534 unsigned(IA->isAlignStack()) << 1 | 1535 unsigned(IA->getDialect()&1) << 2); 1536 1537 // Add the asm string. 1538 const std::string &AsmStr = IA->getAsmString(); 1539 Record.push_back(AsmStr.size()); 1540 Record.append(AsmStr.begin(), AsmStr.end()); 1541 1542 // Add the constraint string. 1543 const std::string &ConstraintStr = IA->getConstraintString(); 1544 Record.push_back(ConstraintStr.size()); 1545 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1546 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1547 Record.clear(); 1548 continue; 1549 } 1550 const Constant *C = cast<Constant>(V); 1551 unsigned Code = -1U; 1552 unsigned AbbrevToUse = 0; 1553 if (C->isNullValue()) { 1554 Code = bitc::CST_CODE_NULL; 1555 } else if (isa<UndefValue>(C)) { 1556 Code = bitc::CST_CODE_UNDEF; 1557 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1558 if (IV->getBitWidth() <= 64) { 1559 uint64_t V = IV->getSExtValue(); 1560 emitSignedInt64(Record, V); 1561 Code = bitc::CST_CODE_INTEGER; 1562 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1563 } else { // Wide integers, > 64 bits in size. 1564 // We have an arbitrary precision integer value to write whose 1565 // bit width is > 64. However, in canonical unsigned integer 1566 // format it is likely that the high bits are going to be zero. 1567 // So, we only write the number of active words. 1568 unsigned NWords = IV->getValue().getActiveWords(); 1569 const uint64_t *RawWords = IV->getValue().getRawData(); 1570 for (unsigned i = 0; i != NWords; ++i) { 1571 emitSignedInt64(Record, RawWords[i]); 1572 } 1573 Code = bitc::CST_CODE_WIDE_INTEGER; 1574 } 1575 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1576 Code = bitc::CST_CODE_FLOAT; 1577 Type *Ty = CFP->getType(); 1578 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1579 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1580 } else if (Ty->isX86_FP80Ty()) { 1581 // api needed to prevent premature destruction 1582 // bits are not in the same order as a normal i80 APInt, compensate. 1583 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1584 const uint64_t *p = api.getRawData(); 1585 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1586 Record.push_back(p[0] & 0xffffLL); 1587 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1588 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1589 const uint64_t *p = api.getRawData(); 1590 Record.push_back(p[0]); 1591 Record.push_back(p[1]); 1592 } else { 1593 assert (0 && "Unknown FP type!"); 1594 } 1595 } else if (isa<ConstantDataSequential>(C) && 1596 cast<ConstantDataSequential>(C)->isString()) { 1597 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1598 // Emit constant strings specially. 1599 unsigned NumElts = Str->getNumElements(); 1600 // If this is a null-terminated string, use the denser CSTRING encoding. 1601 if (Str->isCString()) { 1602 Code = bitc::CST_CODE_CSTRING; 1603 --NumElts; // Don't encode the null, which isn't allowed by char6. 1604 } else { 1605 Code = bitc::CST_CODE_STRING; 1606 AbbrevToUse = String8Abbrev; 1607 } 1608 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1609 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1610 for (unsigned i = 0; i != NumElts; ++i) { 1611 unsigned char V = Str->getElementAsInteger(i); 1612 Record.push_back(V); 1613 isCStr7 &= (V & 128) == 0; 1614 if (isCStrChar6) 1615 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1616 } 1617 1618 if (isCStrChar6) 1619 AbbrevToUse = CString6Abbrev; 1620 else if (isCStr7) 1621 AbbrevToUse = CString7Abbrev; 1622 } else if (const ConstantDataSequential *CDS = 1623 dyn_cast<ConstantDataSequential>(C)) { 1624 Code = bitc::CST_CODE_DATA; 1625 Type *EltTy = CDS->getType()->getElementType(); 1626 if (isa<IntegerType>(EltTy)) { 1627 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1628 Record.push_back(CDS->getElementAsInteger(i)); 1629 } else if (EltTy->isFloatTy()) { 1630 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1631 union { float F; uint32_t I; }; 1632 F = CDS->getElementAsFloat(i); 1633 Record.push_back(I); 1634 } 1635 } else { 1636 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1637 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1638 union { double F; uint64_t I; }; 1639 F = CDS->getElementAsDouble(i); 1640 Record.push_back(I); 1641 } 1642 } 1643 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1644 isa<ConstantVector>(C)) { 1645 Code = bitc::CST_CODE_AGGREGATE; 1646 for (const Value *Op : C->operands()) 1647 Record.push_back(VE.getValueID(Op)); 1648 AbbrevToUse = AggregateAbbrev; 1649 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1650 switch (CE->getOpcode()) { 1651 default: 1652 if (Instruction::isCast(CE->getOpcode())) { 1653 Code = bitc::CST_CODE_CE_CAST; 1654 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1655 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1656 Record.push_back(VE.getValueID(C->getOperand(0))); 1657 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1658 } else { 1659 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1660 Code = bitc::CST_CODE_CE_BINOP; 1661 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1662 Record.push_back(VE.getValueID(C->getOperand(0))); 1663 Record.push_back(VE.getValueID(C->getOperand(1))); 1664 uint64_t Flags = GetOptimizationFlags(CE); 1665 if (Flags != 0) 1666 Record.push_back(Flags); 1667 } 1668 break; 1669 case Instruction::GetElementPtr: { 1670 Code = bitc::CST_CODE_CE_GEP; 1671 const auto *GO = cast<GEPOperator>(C); 1672 if (GO->isInBounds()) 1673 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1674 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1675 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1676 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1677 Record.push_back(VE.getValueID(C->getOperand(i))); 1678 } 1679 break; 1680 } 1681 case Instruction::Select: 1682 Code = bitc::CST_CODE_CE_SELECT; 1683 Record.push_back(VE.getValueID(C->getOperand(0))); 1684 Record.push_back(VE.getValueID(C->getOperand(1))); 1685 Record.push_back(VE.getValueID(C->getOperand(2))); 1686 break; 1687 case Instruction::ExtractElement: 1688 Code = bitc::CST_CODE_CE_EXTRACTELT; 1689 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1690 Record.push_back(VE.getValueID(C->getOperand(0))); 1691 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1692 Record.push_back(VE.getValueID(C->getOperand(1))); 1693 break; 1694 case Instruction::InsertElement: 1695 Code = bitc::CST_CODE_CE_INSERTELT; 1696 Record.push_back(VE.getValueID(C->getOperand(0))); 1697 Record.push_back(VE.getValueID(C->getOperand(1))); 1698 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1699 Record.push_back(VE.getValueID(C->getOperand(2))); 1700 break; 1701 case Instruction::ShuffleVector: 1702 // If the return type and argument types are the same, this is a 1703 // standard shufflevector instruction. If the types are different, 1704 // then the shuffle is widening or truncating the input vectors, and 1705 // the argument type must also be encoded. 1706 if (C->getType() == C->getOperand(0)->getType()) { 1707 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1708 } else { 1709 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1710 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1711 } 1712 Record.push_back(VE.getValueID(C->getOperand(0))); 1713 Record.push_back(VE.getValueID(C->getOperand(1))); 1714 Record.push_back(VE.getValueID(C->getOperand(2))); 1715 break; 1716 case Instruction::ICmp: 1717 case Instruction::FCmp: 1718 Code = bitc::CST_CODE_CE_CMP; 1719 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1720 Record.push_back(VE.getValueID(C->getOperand(0))); 1721 Record.push_back(VE.getValueID(C->getOperand(1))); 1722 Record.push_back(CE->getPredicate()); 1723 break; 1724 } 1725 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1726 Code = bitc::CST_CODE_BLOCKADDRESS; 1727 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1728 Record.push_back(VE.getValueID(BA->getFunction())); 1729 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1730 } else { 1731 #ifndef NDEBUG 1732 C->dump(); 1733 #endif 1734 llvm_unreachable("Unknown constant!"); 1735 } 1736 Stream.EmitRecord(Code, Record, AbbrevToUse); 1737 Record.clear(); 1738 } 1739 1740 Stream.ExitBlock(); 1741 } 1742 1743 static void WriteModuleConstants(const ValueEnumerator &VE, 1744 BitstreamWriter &Stream) { 1745 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1746 1747 // Find the first constant to emit, which is the first non-globalvalue value. 1748 // We know globalvalues have been emitted by WriteModuleInfo. 1749 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1750 if (!isa<GlobalValue>(Vals[i].first)) { 1751 WriteConstants(i, Vals.size(), VE, Stream, true); 1752 return; 1753 } 1754 } 1755 } 1756 1757 /// PushValueAndType - The file has to encode both the value and type id for 1758 /// many values, because we need to know what type to create for forward 1759 /// references. However, most operands are not forward references, so this type 1760 /// field is not needed. 1761 /// 1762 /// This function adds V's value ID to Vals. If the value ID is higher than the 1763 /// instruction ID, then it is a forward reference, and it also includes the 1764 /// type ID. The value ID that is written is encoded relative to the InstID. 1765 static bool PushValueAndType(const Value *V, unsigned InstID, 1766 SmallVectorImpl<unsigned> &Vals, 1767 ValueEnumerator &VE) { 1768 unsigned ValID = VE.getValueID(V); 1769 // Make encoding relative to the InstID. 1770 Vals.push_back(InstID - ValID); 1771 if (ValID >= InstID) { 1772 Vals.push_back(VE.getTypeID(V->getType())); 1773 return true; 1774 } 1775 return false; 1776 } 1777 1778 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1779 unsigned InstID, ValueEnumerator &VE) { 1780 SmallVector<unsigned, 64> Record; 1781 LLVMContext &C = CS.getInstruction()->getContext(); 1782 1783 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1784 const auto &Bundle = CS.getOperandBundleAt(i); 1785 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1786 1787 for (auto &Input : Bundle.Inputs) 1788 PushValueAndType(Input, InstID, Record, VE); 1789 1790 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1791 Record.clear(); 1792 } 1793 } 1794 1795 /// pushValue - Like PushValueAndType, but where the type of the value is 1796 /// omitted (perhaps it was already encoded in an earlier operand). 1797 static void pushValue(const Value *V, unsigned InstID, 1798 SmallVectorImpl<unsigned> &Vals, 1799 ValueEnumerator &VE) { 1800 unsigned ValID = VE.getValueID(V); 1801 Vals.push_back(InstID - ValID); 1802 } 1803 1804 static void pushValueSigned(const Value *V, unsigned InstID, 1805 SmallVectorImpl<uint64_t> &Vals, 1806 ValueEnumerator &VE) { 1807 unsigned ValID = VE.getValueID(V); 1808 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1809 emitSignedInt64(Vals, diff); 1810 } 1811 1812 /// WriteInstruction - Emit an instruction to the specified stream. 1813 static void WriteInstruction(const Instruction &I, unsigned InstID, 1814 ValueEnumerator &VE, BitstreamWriter &Stream, 1815 SmallVectorImpl<unsigned> &Vals) { 1816 unsigned Code = 0; 1817 unsigned AbbrevToUse = 0; 1818 VE.setInstructionID(&I); 1819 switch (I.getOpcode()) { 1820 default: 1821 if (Instruction::isCast(I.getOpcode())) { 1822 Code = bitc::FUNC_CODE_INST_CAST; 1823 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1824 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1825 Vals.push_back(VE.getTypeID(I.getType())); 1826 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1827 } else { 1828 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1829 Code = bitc::FUNC_CODE_INST_BINOP; 1830 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1831 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1832 pushValue(I.getOperand(1), InstID, Vals, VE); 1833 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1834 uint64_t Flags = GetOptimizationFlags(&I); 1835 if (Flags != 0) { 1836 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1837 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1838 Vals.push_back(Flags); 1839 } 1840 } 1841 break; 1842 1843 case Instruction::GetElementPtr: { 1844 Code = bitc::FUNC_CODE_INST_GEP; 1845 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1846 auto &GEPInst = cast<GetElementPtrInst>(I); 1847 Vals.push_back(GEPInst.isInBounds()); 1848 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1849 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1850 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1851 break; 1852 } 1853 case Instruction::ExtractValue: { 1854 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1855 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1856 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1857 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1858 break; 1859 } 1860 case Instruction::InsertValue: { 1861 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1862 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1863 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1864 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1865 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1866 break; 1867 } 1868 case Instruction::Select: 1869 Code = bitc::FUNC_CODE_INST_VSELECT; 1870 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1871 pushValue(I.getOperand(2), InstID, Vals, VE); 1872 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1873 break; 1874 case Instruction::ExtractElement: 1875 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1876 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1877 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1878 break; 1879 case Instruction::InsertElement: 1880 Code = bitc::FUNC_CODE_INST_INSERTELT; 1881 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1882 pushValue(I.getOperand(1), InstID, Vals, VE); 1883 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1884 break; 1885 case Instruction::ShuffleVector: 1886 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1887 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1888 pushValue(I.getOperand(1), InstID, Vals, VE); 1889 pushValue(I.getOperand(2), InstID, Vals, VE); 1890 break; 1891 case Instruction::ICmp: 1892 case Instruction::FCmp: { 1893 // compare returning Int1Ty or vector of Int1Ty 1894 Code = bitc::FUNC_CODE_INST_CMP2; 1895 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1896 pushValue(I.getOperand(1), InstID, Vals, VE); 1897 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1898 uint64_t Flags = GetOptimizationFlags(&I); 1899 if (Flags != 0) 1900 Vals.push_back(Flags); 1901 break; 1902 } 1903 1904 case Instruction::Ret: 1905 { 1906 Code = bitc::FUNC_CODE_INST_RET; 1907 unsigned NumOperands = I.getNumOperands(); 1908 if (NumOperands == 0) 1909 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1910 else if (NumOperands == 1) { 1911 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1912 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1913 } else { 1914 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1915 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1916 } 1917 } 1918 break; 1919 case Instruction::Br: 1920 { 1921 Code = bitc::FUNC_CODE_INST_BR; 1922 const BranchInst &II = cast<BranchInst>(I); 1923 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1924 if (II.isConditional()) { 1925 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1926 pushValue(II.getCondition(), InstID, Vals, VE); 1927 } 1928 } 1929 break; 1930 case Instruction::Switch: 1931 { 1932 Code = bitc::FUNC_CODE_INST_SWITCH; 1933 const SwitchInst &SI = cast<SwitchInst>(I); 1934 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1935 pushValue(SI.getCondition(), InstID, Vals, VE); 1936 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1937 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 1938 Vals.push_back(VE.getValueID(Case.getCaseValue())); 1939 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 1940 } 1941 } 1942 break; 1943 case Instruction::IndirectBr: 1944 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1945 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1946 // Encode the address operand as relative, but not the basic blocks. 1947 pushValue(I.getOperand(0), InstID, Vals, VE); 1948 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1949 Vals.push_back(VE.getValueID(I.getOperand(i))); 1950 break; 1951 1952 case Instruction::Invoke: { 1953 const InvokeInst *II = cast<InvokeInst>(&I); 1954 const Value *Callee = II->getCalledValue(); 1955 FunctionType *FTy = II->getFunctionType(); 1956 1957 if (II->hasOperandBundles()) 1958 WriteOperandBundles(Stream, II, InstID, VE); 1959 1960 Code = bitc::FUNC_CODE_INST_INVOKE; 1961 1962 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1963 Vals.push_back(II->getCallingConv() | 1 << 13); 1964 Vals.push_back(VE.getValueID(II->getNormalDest())); 1965 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1966 Vals.push_back(VE.getTypeID(FTy)); 1967 PushValueAndType(Callee, InstID, Vals, VE); 1968 1969 // Emit value #'s for the fixed parameters. 1970 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1971 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1972 1973 // Emit type/value pairs for varargs params. 1974 if (FTy->isVarArg()) { 1975 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1976 i != e; ++i) 1977 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1978 } 1979 break; 1980 } 1981 case Instruction::Resume: 1982 Code = bitc::FUNC_CODE_INST_RESUME; 1983 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1984 break; 1985 case Instruction::CleanupRet: { 1986 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 1987 const auto &CRI = cast<CleanupReturnInst>(I); 1988 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 1989 if (CRI.hasUnwindDest()) 1990 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 1991 break; 1992 } 1993 case Instruction::CatchRet: { 1994 Code = bitc::FUNC_CODE_INST_CATCHRET; 1995 const auto &CRI = cast<CatchReturnInst>(I); 1996 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 1997 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 1998 break; 1999 } 2000 case Instruction::CleanupPad: 2001 case Instruction::CatchPad: { 2002 const auto &FuncletPad = cast<FuncletPadInst>(I); 2003 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2004 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2005 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2006 2007 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2008 Vals.push_back(NumArgOperands); 2009 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2010 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2011 break; 2012 } 2013 case Instruction::CatchSwitch: { 2014 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2015 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2016 2017 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2018 2019 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2020 Vals.push_back(NumHandlers); 2021 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2022 Vals.push_back(VE.getValueID(CatchPadBB)); 2023 2024 if (CatchSwitch.hasUnwindDest()) 2025 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2026 break; 2027 } 2028 case Instruction::TerminatePad: { 2029 Code = bitc::FUNC_CODE_INST_TERMINATEPAD; 2030 const auto &TPI = cast<TerminatePadInst>(I); 2031 2032 pushValue(TPI.getParentPad(), InstID, Vals, VE); 2033 2034 unsigned NumArgOperands = TPI.getNumArgOperands(); 2035 Vals.push_back(NumArgOperands); 2036 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2037 PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE); 2038 2039 if (TPI.hasUnwindDest()) 2040 Vals.push_back(VE.getValueID(TPI.getUnwindDest())); 2041 break; 2042 } 2043 case Instruction::Unreachable: 2044 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2045 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2046 break; 2047 2048 case Instruction::PHI: { 2049 const PHINode &PN = cast<PHINode>(I); 2050 Code = bitc::FUNC_CODE_INST_PHI; 2051 // With the newer instruction encoding, forward references could give 2052 // negative valued IDs. This is most common for PHIs, so we use 2053 // signed VBRs. 2054 SmallVector<uint64_t, 128> Vals64; 2055 Vals64.push_back(VE.getTypeID(PN.getType())); 2056 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2057 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2058 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2059 } 2060 // Emit a Vals64 vector and exit. 2061 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2062 Vals64.clear(); 2063 return; 2064 } 2065 2066 case Instruction::LandingPad: { 2067 const LandingPadInst &LP = cast<LandingPadInst>(I); 2068 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2069 Vals.push_back(VE.getTypeID(LP.getType())); 2070 Vals.push_back(LP.isCleanup()); 2071 Vals.push_back(LP.getNumClauses()); 2072 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2073 if (LP.isCatch(I)) 2074 Vals.push_back(LandingPadInst::Catch); 2075 else 2076 Vals.push_back(LandingPadInst::Filter); 2077 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2078 } 2079 break; 2080 } 2081 2082 case Instruction::Alloca: { 2083 Code = bitc::FUNC_CODE_INST_ALLOCA; 2084 const AllocaInst &AI = cast<AllocaInst>(I); 2085 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2086 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2087 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2088 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2089 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2090 "not enough bits for maximum alignment"); 2091 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2092 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2093 AlignRecord |= 1 << 6; 2094 // Reserve bit 7 for SwiftError flag. 2095 // AlignRecord |= AI.isSwiftError() << 7; 2096 Vals.push_back(AlignRecord); 2097 break; 2098 } 2099 2100 case Instruction::Load: 2101 if (cast<LoadInst>(I).isAtomic()) { 2102 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2103 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2104 } else { 2105 Code = bitc::FUNC_CODE_INST_LOAD; 2106 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2107 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2108 } 2109 Vals.push_back(VE.getTypeID(I.getType())); 2110 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2111 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2112 if (cast<LoadInst>(I).isAtomic()) { 2113 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2114 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2115 } 2116 break; 2117 case Instruction::Store: 2118 if (cast<StoreInst>(I).isAtomic()) 2119 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2120 else 2121 Code = bitc::FUNC_CODE_INST_STORE; 2122 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2123 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2124 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2125 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2126 if (cast<StoreInst>(I).isAtomic()) { 2127 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2128 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2129 } 2130 break; 2131 case Instruction::AtomicCmpXchg: 2132 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2133 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2134 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2135 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2136 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2137 Vals.push_back(GetEncodedOrdering( 2138 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2139 Vals.push_back(GetEncodedSynchScope( 2140 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2141 Vals.push_back(GetEncodedOrdering( 2142 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2143 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2144 break; 2145 case Instruction::AtomicRMW: 2146 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2147 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2148 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2149 Vals.push_back(GetEncodedRMWOperation( 2150 cast<AtomicRMWInst>(I).getOperation())); 2151 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2152 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2153 Vals.push_back(GetEncodedSynchScope( 2154 cast<AtomicRMWInst>(I).getSynchScope())); 2155 break; 2156 case Instruction::Fence: 2157 Code = bitc::FUNC_CODE_INST_FENCE; 2158 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2159 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2160 break; 2161 case Instruction::Call: { 2162 const CallInst &CI = cast<CallInst>(I); 2163 FunctionType *FTy = CI.getFunctionType(); 2164 2165 if (CI.hasOperandBundles()) 2166 WriteOperandBundles(Stream, &CI, InstID, VE); 2167 2168 Code = bitc::FUNC_CODE_INST_CALL; 2169 2170 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2171 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2172 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2173 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2174 1 << bitc::CALL_EXPLICIT_TYPE | 2175 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL); 2176 Vals.push_back(VE.getTypeID(FTy)); 2177 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2178 2179 // Emit value #'s for the fixed parameters. 2180 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2181 // Check for labels (can happen with asm labels). 2182 if (FTy->getParamType(i)->isLabelTy()) 2183 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2184 else 2185 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2186 } 2187 2188 // Emit type/value pairs for varargs params. 2189 if (FTy->isVarArg()) { 2190 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2191 i != e; ++i) 2192 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2193 } 2194 break; 2195 } 2196 case Instruction::VAArg: 2197 Code = bitc::FUNC_CODE_INST_VAARG; 2198 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2199 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2200 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2201 break; 2202 } 2203 2204 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2205 Vals.clear(); 2206 } 2207 2208 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 2209 2210 /// Determine the encoding to use for the given string name and length. 2211 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 2212 bool isChar6 = true; 2213 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 2214 if (isChar6) 2215 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2216 if ((unsigned char)*C & 128) 2217 // don't bother scanning the rest. 2218 return SE_Fixed8; 2219 } 2220 if (isChar6) 2221 return SE_Char6; 2222 else 2223 return SE_Fixed7; 2224 } 2225 2226 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2227 /// BitcodeStartBit and FunctionIndex are only passed for the module-level 2228 /// VST, where we are including a function bitcode index and need to 2229 /// backpatch the VST forward declaration record. 2230 static void WriteValueSymbolTable( 2231 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2232 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2233 uint64_t BitcodeStartBit = 0, 2234 DenseMap<const Function *, std::unique_ptr<FunctionInfo>> *FunctionIndex = 2235 nullptr) { 2236 if (VST.empty()) { 2237 // WriteValueSymbolTableForwardDecl should have returned early as 2238 // well. Ensure this handling remains in sync by asserting that 2239 // the placeholder offset is not set. 2240 assert(VSTOffsetPlaceholder == 0); 2241 return; 2242 } 2243 2244 if (VSTOffsetPlaceholder > 0) { 2245 // Get the offset of the VST we are writing, and backpatch it into 2246 // the VST forward declaration record. 2247 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2248 // The BitcodeStartBit was the stream offset of the actual bitcode 2249 // (e.g. excluding any initial darwin header). 2250 VSTOffset -= BitcodeStartBit; 2251 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2252 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2253 } 2254 2255 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2256 2257 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2258 // records, which are not used in the per-function VSTs. 2259 unsigned FnEntry8BitAbbrev; 2260 unsigned FnEntry7BitAbbrev; 2261 unsigned FnEntry6BitAbbrev; 2262 if (VSTOffsetPlaceholder > 0) { 2263 // 8-bit fixed-width VST_FNENTRY function strings. 2264 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2265 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2270 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2271 2272 // 7-bit fixed width VST_FNENTRY function strings. 2273 Abbv = new BitCodeAbbrev(); 2274 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2279 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2280 2281 // 6-bit char6 VST_FNENTRY function strings. 2282 Abbv = new BitCodeAbbrev(); 2283 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2288 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2289 } 2290 2291 // FIXME: Set up the abbrev, we know how many values there are! 2292 // FIXME: We know if the type names can use 7-bit ascii. 2293 SmallVector<unsigned, 64> NameVals; 2294 2295 for (const ValueName &Name : VST) { 2296 // Figure out the encoding to use for the name. 2297 StringEncoding Bits = 2298 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2299 2300 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2301 NameVals.push_back(VE.getValueID(Name.getValue())); 2302 2303 Function *F = dyn_cast<Function>(Name.getValue()); 2304 if (!F) { 2305 // If value is an alias, need to get the aliased base object to 2306 // see if it is a function. 2307 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2308 if (GA && GA->getBaseObject()) 2309 F = dyn_cast<Function>(GA->getBaseObject()); 2310 } 2311 2312 // VST_ENTRY: [valueid, namechar x N] 2313 // VST_FNENTRY: [valueid, funcoffset, namechar x N] 2314 // VST_BBENTRY: [bbid, namechar x N] 2315 unsigned Code; 2316 if (isa<BasicBlock>(Name.getValue())) { 2317 Code = bitc::VST_CODE_BBENTRY; 2318 if (Bits == SE_Char6) 2319 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2320 } else if (F && !F->isDeclaration()) { 2321 // Must be the module-level VST, where we pass in the Index and 2322 // have a VSTOffsetPlaceholder. The function-level VST should not 2323 // contain any Function symbols. 2324 assert(FunctionIndex); 2325 assert(VSTOffsetPlaceholder > 0); 2326 2327 // Save the word offset of the function (from the start of the 2328 // actual bitcode written to the stream). 2329 assert(FunctionIndex->count(F) == 1); 2330 uint64_t BitcodeIndex = 2331 (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2332 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2333 NameVals.push_back(BitcodeIndex / 32); 2334 2335 Code = bitc::VST_CODE_FNENTRY; 2336 AbbrevToUse = FnEntry8BitAbbrev; 2337 if (Bits == SE_Char6) 2338 AbbrevToUse = FnEntry6BitAbbrev; 2339 else if (Bits == SE_Fixed7) 2340 AbbrevToUse = FnEntry7BitAbbrev; 2341 } else { 2342 Code = bitc::VST_CODE_ENTRY; 2343 if (Bits == SE_Char6) 2344 AbbrevToUse = VST_ENTRY_6_ABBREV; 2345 else if (Bits == SE_Fixed7) 2346 AbbrevToUse = VST_ENTRY_7_ABBREV; 2347 } 2348 2349 for (const auto P : Name.getKey()) 2350 NameVals.push_back((unsigned char)P); 2351 2352 // Emit the finished record. 2353 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2354 NameVals.clear(); 2355 } 2356 Stream.ExitBlock(); 2357 } 2358 2359 /// Emit function names and summary offsets for the combined index 2360 /// used by ThinLTO. 2361 static void WriteCombinedValueSymbolTable(const FunctionInfoIndex &Index, 2362 BitstreamWriter &Stream) { 2363 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2364 2365 // 8-bit fixed-width VST_COMBINED_FNENTRY function strings. 2366 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2367 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY)); 2368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2371 unsigned FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2372 2373 // 7-bit fixed width VST_COMBINED_FNENTRY function strings. 2374 Abbv = new BitCodeAbbrev(); 2375 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY)); 2376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2379 unsigned FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2380 2381 // 6-bit char6 VST_COMBINED_FNENTRY function strings. 2382 Abbv = new BitCodeAbbrev(); 2383 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY)); 2384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2387 unsigned FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2388 2389 // FIXME: We know if the type names can use 7-bit ascii. 2390 SmallVector<unsigned, 64> NameVals; 2391 2392 for (const auto &FII : Index) { 2393 for (const auto &FI : FII.getValue()) { 2394 NameVals.push_back(FI->bitcodeIndex()); 2395 2396 StringRef FuncName = FII.first(); 2397 2398 // Figure out the encoding to use for the name. 2399 StringEncoding Bits = getStringEncoding(FuncName.data(), FuncName.size()); 2400 2401 // VST_COMBINED_FNENTRY: [funcsumoffset, namechar x N] 2402 unsigned AbbrevToUse = FnEntry8BitAbbrev; 2403 if (Bits == SE_Char6) 2404 AbbrevToUse = FnEntry6BitAbbrev; 2405 else if (Bits == SE_Fixed7) 2406 AbbrevToUse = FnEntry7BitAbbrev; 2407 2408 for (const auto P : FuncName) 2409 NameVals.push_back((unsigned char)P); 2410 2411 // Emit the finished record. 2412 Stream.EmitRecord(bitc::VST_CODE_COMBINED_FNENTRY, NameVals, AbbrevToUse); 2413 NameVals.clear(); 2414 } 2415 } 2416 Stream.ExitBlock(); 2417 } 2418 2419 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2420 BitstreamWriter &Stream) { 2421 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2422 unsigned Code; 2423 if (isa<BasicBlock>(Order.V)) 2424 Code = bitc::USELIST_CODE_BB; 2425 else 2426 Code = bitc::USELIST_CODE_DEFAULT; 2427 2428 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2429 Record.push_back(VE.getValueID(Order.V)); 2430 Stream.EmitRecord(Code, Record); 2431 } 2432 2433 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2434 BitstreamWriter &Stream) { 2435 assert(VE.shouldPreserveUseListOrder() && 2436 "Expected to be preserving use-list order"); 2437 2438 auto hasMore = [&]() { 2439 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2440 }; 2441 if (!hasMore()) 2442 // Nothing to do. 2443 return; 2444 2445 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2446 while (hasMore()) { 2447 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2448 VE.UseListOrders.pop_back(); 2449 } 2450 Stream.ExitBlock(); 2451 } 2452 2453 /// \brief Save information for the given function into the function index. 2454 /// 2455 /// At a minimum this saves the bitcode index of the function record that 2456 /// was just written. However, if we are emitting function summary information, 2457 /// for example for ThinLTO, then a \a FunctionSummary object is created 2458 /// to hold the provided summary information. 2459 static void SaveFunctionInfo( 2460 const Function &F, 2461 DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex, 2462 unsigned NumInsts, uint64_t BitcodeIndex, bool EmitFunctionSummary) { 2463 std::unique_ptr<FunctionSummary> FuncSummary; 2464 if (EmitFunctionSummary) { 2465 FuncSummary = llvm::make_unique<FunctionSummary>(NumInsts); 2466 FuncSummary->setLocalFunction(F.hasLocalLinkage()); 2467 } 2468 FunctionIndex[&F] = 2469 llvm::make_unique<FunctionInfo>(BitcodeIndex, std::move(FuncSummary)); 2470 } 2471 2472 /// Emit a function body to the module stream. 2473 static void WriteFunction( 2474 const Function &F, ValueEnumerator &VE, BitstreamWriter &Stream, 2475 DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex, 2476 bool EmitFunctionSummary) { 2477 // Save the bitcode index of the start of this function block for recording 2478 // in the VST. 2479 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2480 2481 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2482 VE.incorporateFunction(F); 2483 2484 SmallVector<unsigned, 64> Vals; 2485 2486 // Emit the number of basic blocks, so the reader can create them ahead of 2487 // time. 2488 Vals.push_back(VE.getBasicBlocks().size()); 2489 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2490 Vals.clear(); 2491 2492 // If there are function-local constants, emit them now. 2493 unsigned CstStart, CstEnd; 2494 VE.getFunctionConstantRange(CstStart, CstEnd); 2495 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2496 2497 // If there is function-local metadata, emit it now. 2498 WriteFunctionLocalMetadata(F, VE, Stream); 2499 2500 // Keep a running idea of what the instruction ID is. 2501 unsigned InstID = CstEnd; 2502 2503 bool NeedsMetadataAttachment = F.hasMetadata(); 2504 2505 DILocation *LastDL = nullptr; 2506 unsigned NumInsts = 0; 2507 2508 // Finally, emit all the instructions, in order. 2509 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2510 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2511 I != E; ++I) { 2512 WriteInstruction(*I, InstID, VE, Stream, Vals); 2513 2514 if (!isa<DbgInfoIntrinsic>(I)) 2515 ++NumInsts; 2516 2517 if (!I->getType()->isVoidTy()) 2518 ++InstID; 2519 2520 // If the instruction has metadata, write a metadata attachment later. 2521 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2522 2523 // If the instruction has a debug location, emit it. 2524 DILocation *DL = I->getDebugLoc(); 2525 if (!DL) 2526 continue; 2527 2528 if (DL == LastDL) { 2529 // Just repeat the same debug loc as last time. 2530 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2531 continue; 2532 } 2533 2534 Vals.push_back(DL->getLine()); 2535 Vals.push_back(DL->getColumn()); 2536 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2537 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2538 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2539 Vals.clear(); 2540 2541 LastDL = DL; 2542 } 2543 2544 // Emit names for all the instructions etc. 2545 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2546 2547 if (NeedsMetadataAttachment) 2548 WriteMetadataAttachment(F, VE, Stream); 2549 if (VE.shouldPreserveUseListOrder()) 2550 WriteUseListBlock(&F, VE, Stream); 2551 VE.purgeFunction(); 2552 Stream.ExitBlock(); 2553 2554 SaveFunctionInfo(F, FunctionIndex, NumInsts, BitcodeIndex, 2555 EmitFunctionSummary); 2556 } 2557 2558 // Emit blockinfo, which defines the standard abbreviations etc. 2559 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2560 // We only want to emit block info records for blocks that have multiple 2561 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2562 // Other blocks can define their abbrevs inline. 2563 Stream.EnterBlockInfoBlock(2); 2564 2565 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2566 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2571 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2572 Abbv) != VST_ENTRY_8_ABBREV) 2573 llvm_unreachable("Unexpected abbrev ordering!"); 2574 } 2575 2576 { // 7-bit fixed width VST_ENTRY strings. 2577 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2578 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2582 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2583 Abbv) != VST_ENTRY_7_ABBREV) 2584 llvm_unreachable("Unexpected abbrev ordering!"); 2585 } 2586 { // 6-bit char6 VST_ENTRY strings. 2587 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2588 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2592 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2593 Abbv) != VST_ENTRY_6_ABBREV) 2594 llvm_unreachable("Unexpected abbrev ordering!"); 2595 } 2596 { // 6-bit char6 VST_BBENTRY strings. 2597 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2598 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2602 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2603 Abbv) != VST_BBENTRY_6_ABBREV) 2604 llvm_unreachable("Unexpected abbrev ordering!"); 2605 } 2606 2607 2608 2609 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2610 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2611 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2613 VE.computeBitsRequiredForTypeIndicies())); 2614 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2615 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2616 llvm_unreachable("Unexpected abbrev ordering!"); 2617 } 2618 2619 { // INTEGER abbrev for CONSTANTS_BLOCK. 2620 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2621 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2623 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2624 Abbv) != CONSTANTS_INTEGER_ABBREV) 2625 llvm_unreachable("Unexpected abbrev ordering!"); 2626 } 2627 2628 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2629 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2630 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2633 VE.computeBitsRequiredForTypeIndicies())); 2634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2635 2636 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2637 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2638 llvm_unreachable("Unexpected abbrev ordering!"); 2639 } 2640 { // NULL abbrev for CONSTANTS_BLOCK. 2641 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2642 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2643 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2644 Abbv) != CONSTANTS_NULL_Abbrev) 2645 llvm_unreachable("Unexpected abbrev ordering!"); 2646 } 2647 2648 // FIXME: This should only use space for first class types! 2649 2650 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2651 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2652 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2655 VE.computeBitsRequiredForTypeIndicies())); 2656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2658 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2659 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2660 llvm_unreachable("Unexpected abbrev ordering!"); 2661 } 2662 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2663 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2664 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2668 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2669 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2670 llvm_unreachable("Unexpected abbrev ordering!"); 2671 } 2672 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2673 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2674 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2679 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2680 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2681 llvm_unreachable("Unexpected abbrev ordering!"); 2682 } 2683 { // INST_CAST abbrev for FUNCTION_BLOCK. 2684 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2685 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2688 VE.computeBitsRequiredForTypeIndicies())); 2689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2690 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2691 Abbv) != FUNCTION_INST_CAST_ABBREV) 2692 llvm_unreachable("Unexpected abbrev ordering!"); 2693 } 2694 2695 { // INST_RET abbrev for FUNCTION_BLOCK. 2696 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2697 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2698 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2699 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2700 llvm_unreachable("Unexpected abbrev ordering!"); 2701 } 2702 { // INST_RET abbrev for FUNCTION_BLOCK. 2703 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2704 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2706 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2707 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2708 llvm_unreachable("Unexpected abbrev ordering!"); 2709 } 2710 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2711 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2712 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2713 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2714 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2715 llvm_unreachable("Unexpected abbrev ordering!"); 2716 } 2717 { 2718 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2719 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2722 Log2_32_Ceil(VE.getTypes().size() + 1))); 2723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2725 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2726 FUNCTION_INST_GEP_ABBREV) 2727 llvm_unreachable("Unexpected abbrev ordering!"); 2728 } 2729 2730 Stream.ExitBlock(); 2731 } 2732 2733 /// Write the module path strings, currently only used when generating 2734 /// a combined index file. 2735 static void WriteModStrings(const FunctionInfoIndex &I, 2736 BitstreamWriter &Stream) { 2737 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2738 2739 // TODO: See which abbrev sizes we actually need to emit 2740 2741 // 8-bit fixed-width MST_ENTRY strings. 2742 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2743 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2747 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2748 2749 // 7-bit fixed width MST_ENTRY strings. 2750 Abbv = new BitCodeAbbrev(); 2751 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2755 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2756 2757 // 6-bit char6 MST_ENTRY strings. 2758 Abbv = new BitCodeAbbrev(); 2759 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2763 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2764 2765 SmallVector<unsigned, 64> NameVals; 2766 for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) { 2767 StringEncoding Bits = 2768 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2769 unsigned AbbrevToUse = Abbrev8Bit; 2770 if (Bits == SE_Char6) 2771 AbbrevToUse = Abbrev6Bit; 2772 else if (Bits == SE_Fixed7) 2773 AbbrevToUse = Abbrev7Bit; 2774 2775 NameVals.push_back(MPSE.getValue()); 2776 2777 for (const auto P : MPSE.getKey()) 2778 NameVals.push_back((unsigned char)P); 2779 2780 // Emit the finished record. 2781 Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse); 2782 NameVals.clear(); 2783 } 2784 Stream.ExitBlock(); 2785 } 2786 2787 // Helper to emit a single function summary record. 2788 static void WritePerModuleFunctionSummaryRecord( 2789 SmallVector<unsigned, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2790 unsigned FSAbbrev, BitstreamWriter &Stream) { 2791 assert(FS); 2792 NameVals.push_back(ValueID); 2793 NameVals.push_back(FS->isLocalFunction()); 2794 NameVals.push_back(FS->instCount()); 2795 2796 // Emit the finished record. 2797 Stream.EmitRecord(bitc::FS_CODE_PERMODULE_ENTRY, NameVals, FSAbbrev); 2798 NameVals.clear(); 2799 } 2800 2801 /// Emit the per-module function summary section alongside the rest of 2802 /// the module's bitcode. 2803 static void WritePerModuleFunctionSummary( 2804 DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex, 2805 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2806 Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3); 2807 2808 // Abbrev for FS_CODE_PERMODULE_ENTRY. 2809 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2810 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_PERMODULE_ENTRY)); 2811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // islocal 2813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2814 unsigned FSAbbrev = Stream.EmitAbbrev(Abbv); 2815 2816 SmallVector<unsigned, 64> NameVals; 2817 for (auto &I : FunctionIndex) { 2818 // Skip anonymous functions. We will emit a function summary for 2819 // any aliases below. 2820 if (!I.first->hasName()) 2821 continue; 2822 2823 WritePerModuleFunctionSummaryRecord( 2824 NameVals, I.second->functionSummary(), 2825 VE.getValueID(M->getValueSymbolTable().lookup(I.first->getName())), 2826 FSAbbrev, Stream); 2827 } 2828 2829 for (const GlobalAlias &A : M->aliases()) { 2830 if (!A.getBaseObject()) 2831 continue; 2832 const Function *F = dyn_cast<Function>(A.getBaseObject()); 2833 if (!F || F->isDeclaration()) 2834 continue; 2835 2836 assert(FunctionIndex.count(F) == 1); 2837 WritePerModuleFunctionSummaryRecord( 2838 NameVals, FunctionIndex[F]->functionSummary(), 2839 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), FSAbbrev, 2840 Stream); 2841 } 2842 2843 Stream.ExitBlock(); 2844 } 2845 2846 /// Emit the combined function summary section into the combined index 2847 /// file. 2848 static void WriteCombinedFunctionSummary(const FunctionInfoIndex &I, 2849 BitstreamWriter &Stream) { 2850 Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3); 2851 2852 // Abbrev for FS_CODE_COMBINED_ENTRY. 2853 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2854 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_COMBINED_ENTRY)); 2855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 2856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2857 unsigned FSAbbrev = Stream.EmitAbbrev(Abbv); 2858 2859 SmallVector<unsigned, 64> NameVals; 2860 for (const auto &FII : I) { 2861 for (auto &FI : FII.getValue()) { 2862 FunctionSummary *FS = FI->functionSummary(); 2863 assert(FS); 2864 2865 NameVals.push_back(I.getModuleId(FS->modulePath())); 2866 NameVals.push_back(FS->instCount()); 2867 2868 // Record the starting offset of this summary entry for use 2869 // in the VST entry. Add the current code size since the 2870 // reader will invoke readRecord after the abbrev id read. 2871 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 2872 2873 // Emit the finished record. 2874 Stream.EmitRecord(bitc::FS_CODE_COMBINED_ENTRY, NameVals, FSAbbrev); 2875 NameVals.clear(); 2876 } 2877 } 2878 2879 Stream.ExitBlock(); 2880 } 2881 2882 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 2883 // current llvm version, and a record for the epoch number. 2884 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 2885 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 2886 2887 // Write the "user readable" string identifying the bitcode producer 2888 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2889 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 2890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2892 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 2893 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 2894 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 2895 2896 // Write the epoch version 2897 Abbv = new BitCodeAbbrev(); 2898 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2900 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 2901 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 2902 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 2903 Stream.ExitBlock(); 2904 } 2905 2906 /// WriteModule - Emit the specified module to the bitstream. 2907 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2908 bool ShouldPreserveUseListOrder, 2909 uint64_t BitcodeStartBit, bool EmitFunctionSummary) { 2910 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2911 2912 SmallVector<unsigned, 1> Vals; 2913 unsigned CurVersion = 1; 2914 Vals.push_back(CurVersion); 2915 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2916 2917 // Analyze the module, enumerating globals, functions, etc. 2918 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2919 2920 // Emit blockinfo, which defines the standard abbreviations etc. 2921 WriteBlockInfo(VE, Stream); 2922 2923 // Emit information about attribute groups. 2924 WriteAttributeGroupTable(VE, Stream); 2925 2926 // Emit information about parameter attributes. 2927 WriteAttributeTable(VE, Stream); 2928 2929 // Emit information describing all of the types in the module. 2930 WriteTypeTable(VE, Stream); 2931 2932 writeComdats(VE, Stream); 2933 2934 // Emit top-level description of module, including target triple, inline asm, 2935 // descriptors for global variables, and function prototype info. 2936 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 2937 2938 // Emit constants. 2939 WriteModuleConstants(VE, Stream); 2940 2941 // Emit metadata. 2942 WriteModuleMetadata(M, VE, Stream); 2943 2944 // Emit metadata. 2945 WriteModuleMetadataStore(M, Stream); 2946 2947 // Emit module-level use-lists. 2948 if (VE.shouldPreserveUseListOrder()) 2949 WriteUseListBlock(nullptr, VE, Stream); 2950 2951 WriteOperandBundleTags(M, Stream); 2952 2953 // Emit function bodies. 2954 DenseMap<const Function *, std::unique_ptr<FunctionInfo>> FunctionIndex; 2955 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2956 if (!F->isDeclaration()) 2957 WriteFunction(*F, VE, Stream, FunctionIndex, EmitFunctionSummary); 2958 2959 // Need to write after the above call to WriteFunction which populates 2960 // the summary information in the index. 2961 if (EmitFunctionSummary) 2962 WritePerModuleFunctionSummary(FunctionIndex, M, VE, Stream); 2963 2964 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 2965 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 2966 2967 Stream.ExitBlock(); 2968 } 2969 2970 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2971 /// header and trailer to make it compatible with the system archiver. To do 2972 /// this we emit the following header, and then emit a trailer that pads the 2973 /// file out to be a multiple of 16 bytes. 2974 /// 2975 /// struct bc_header { 2976 /// uint32_t Magic; // 0x0B17C0DE 2977 /// uint32_t Version; // Version, currently always 0. 2978 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2979 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2980 /// uint32_t CPUType; // CPU specifier. 2981 /// ... potentially more later ... 2982 /// }; 2983 enum { 2984 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2985 DarwinBCHeaderSize = 5*4 2986 }; 2987 2988 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2989 uint32_t &Position) { 2990 support::endian::write32le(&Buffer[Position], Value); 2991 Position += 4; 2992 } 2993 2994 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2995 const Triple &TT) { 2996 unsigned CPUType = ~0U; 2997 2998 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2999 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3000 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3001 // specific constants here because they are implicitly part of the Darwin ABI. 3002 enum { 3003 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3004 DARWIN_CPU_TYPE_X86 = 7, 3005 DARWIN_CPU_TYPE_ARM = 12, 3006 DARWIN_CPU_TYPE_POWERPC = 18 3007 }; 3008 3009 Triple::ArchType Arch = TT.getArch(); 3010 if (Arch == Triple::x86_64) 3011 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3012 else if (Arch == Triple::x86) 3013 CPUType = DARWIN_CPU_TYPE_X86; 3014 else if (Arch == Triple::ppc) 3015 CPUType = DARWIN_CPU_TYPE_POWERPC; 3016 else if (Arch == Triple::ppc64) 3017 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3018 else if (Arch == Triple::arm || Arch == Triple::thumb) 3019 CPUType = DARWIN_CPU_TYPE_ARM; 3020 3021 // Traditional Bitcode starts after header. 3022 assert(Buffer.size() >= DarwinBCHeaderSize && 3023 "Expected header size to be reserved"); 3024 unsigned BCOffset = DarwinBCHeaderSize; 3025 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 3026 3027 // Write the magic and version. 3028 unsigned Position = 0; 3029 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3030 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3031 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3032 WriteInt32ToBuffer(BCSize , Buffer, Position); 3033 WriteInt32ToBuffer(CPUType , Buffer, Position); 3034 3035 // If the file is not a multiple of 16 bytes, insert dummy padding. 3036 while (Buffer.size() & 15) 3037 Buffer.push_back(0); 3038 } 3039 3040 /// Helper to write the header common to all bitcode files. 3041 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3042 // Emit the file header. 3043 Stream.Emit((unsigned)'B', 8); 3044 Stream.Emit((unsigned)'C', 8); 3045 Stream.Emit(0x0, 4); 3046 Stream.Emit(0xC, 4); 3047 Stream.Emit(0xE, 4); 3048 Stream.Emit(0xD, 4); 3049 } 3050 3051 /// WriteBitcodeToFile - Write the specified module to the specified output 3052 /// stream. 3053 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3054 bool ShouldPreserveUseListOrder, 3055 bool EmitFunctionSummary) { 3056 SmallVector<char, 0> Buffer; 3057 Buffer.reserve(256*1024); 3058 3059 // If this is darwin or another generic macho target, reserve space for the 3060 // header. 3061 Triple TT(M->getTargetTriple()); 3062 if (TT.isOSDarwin()) 3063 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 3064 3065 // Emit the module into the buffer. 3066 { 3067 BitstreamWriter Stream(Buffer); 3068 // Save the start bit of the actual bitcode, in case there is space 3069 // saved at the start for the darwin header above. The reader stream 3070 // will start at the bitcode, and we need the offset of the VST 3071 // to line up. 3072 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3073 3074 // Emit the file header. 3075 WriteBitcodeHeader(Stream); 3076 3077 WriteIdentificationBlock(M, Stream); 3078 3079 // Emit the module. 3080 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3081 EmitFunctionSummary); 3082 } 3083 3084 if (TT.isOSDarwin()) 3085 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3086 3087 // Write the generated bitstream to "Out". 3088 Out.write((char*)&Buffer.front(), Buffer.size()); 3089 } 3090 3091 // Write the specified function summary index to the given raw output stream, 3092 // where it will be written in a new bitcode block. This is used when 3093 // writing the combined index file for ThinLTO. 3094 void llvm::WriteFunctionSummaryToFile(const FunctionInfoIndex &Index, 3095 raw_ostream &Out) { 3096 SmallVector<char, 0> Buffer; 3097 Buffer.reserve(256 * 1024); 3098 3099 BitstreamWriter Stream(Buffer); 3100 3101 // Emit the bitcode header. 3102 WriteBitcodeHeader(Stream); 3103 3104 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3105 3106 SmallVector<unsigned, 1> Vals; 3107 unsigned CurVersion = 1; 3108 Vals.push_back(CurVersion); 3109 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3110 3111 // Write the module paths in the combined index. 3112 WriteModStrings(Index, Stream); 3113 3114 // Write the function summary combined index records. 3115 WriteCombinedFunctionSummary(Index, Stream); 3116 3117 // Need a special VST writer for the combined index (we don't have a 3118 // real VST and real values when this is invoked). 3119 WriteCombinedValueSymbolTable(Index, Stream); 3120 3121 Stream.ExitBlock(); 3122 3123 Out.write((char *)&Buffer.front(), Buffer.size()); 3124 } 3125