1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::Builtin: 166 return bitc::ATTR_KIND_BUILTIN; 167 case Attribute::ByVal: 168 return bitc::ATTR_KIND_BY_VAL; 169 case Attribute::Convergent: 170 return bitc::ATTR_KIND_CONVERGENT; 171 case Attribute::InAlloca: 172 return bitc::ATTR_KIND_IN_ALLOCA; 173 case Attribute::Cold: 174 return bitc::ATTR_KIND_COLD; 175 case Attribute::InlineHint: 176 return bitc::ATTR_KIND_INLINE_HINT; 177 case Attribute::InReg: 178 return bitc::ATTR_KIND_IN_REG; 179 case Attribute::JumpTable: 180 return bitc::ATTR_KIND_JUMP_TABLE; 181 case Attribute::MinSize: 182 return bitc::ATTR_KIND_MIN_SIZE; 183 case Attribute::Naked: 184 return bitc::ATTR_KIND_NAKED; 185 case Attribute::Nest: 186 return bitc::ATTR_KIND_NEST; 187 case Attribute::NoAlias: 188 return bitc::ATTR_KIND_NO_ALIAS; 189 case Attribute::NoBuiltin: 190 return bitc::ATTR_KIND_NO_BUILTIN; 191 case Attribute::NoCapture: 192 return bitc::ATTR_KIND_NO_CAPTURE; 193 case Attribute::NoDuplicate: 194 return bitc::ATTR_KIND_NO_DUPLICATE; 195 case Attribute::NoImplicitFloat: 196 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 197 case Attribute::NoInline: 198 return bitc::ATTR_KIND_NO_INLINE; 199 case Attribute::NonLazyBind: 200 return bitc::ATTR_KIND_NON_LAZY_BIND; 201 case Attribute::NonNull: 202 return bitc::ATTR_KIND_NON_NULL; 203 case Attribute::Dereferenceable: 204 return bitc::ATTR_KIND_DEREFERENCEABLE; 205 case Attribute::DereferenceableOrNull: 206 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 207 case Attribute::NoRedZone: 208 return bitc::ATTR_KIND_NO_RED_ZONE; 209 case Attribute::NoReturn: 210 return bitc::ATTR_KIND_NO_RETURN; 211 case Attribute::NoUnwind: 212 return bitc::ATTR_KIND_NO_UNWIND; 213 case Attribute::OptimizeForSize: 214 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 215 case Attribute::OptimizeNone: 216 return bitc::ATTR_KIND_OPTIMIZE_NONE; 217 case Attribute::ReadNone: 218 return bitc::ATTR_KIND_READ_NONE; 219 case Attribute::ReadOnly: 220 return bitc::ATTR_KIND_READ_ONLY; 221 case Attribute::Returned: 222 return bitc::ATTR_KIND_RETURNED; 223 case Attribute::ReturnsTwice: 224 return bitc::ATTR_KIND_RETURNS_TWICE; 225 case Attribute::SExt: 226 return bitc::ATTR_KIND_S_EXT; 227 case Attribute::StackAlignment: 228 return bitc::ATTR_KIND_STACK_ALIGNMENT; 229 case Attribute::StackProtect: 230 return bitc::ATTR_KIND_STACK_PROTECT; 231 case Attribute::StackProtectReq: 232 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 233 case Attribute::StackProtectStrong: 234 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 235 case Attribute::StructRet: 236 return bitc::ATTR_KIND_STRUCT_RET; 237 case Attribute::SanitizeAddress: 238 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 239 case Attribute::SanitizeThread: 240 return bitc::ATTR_KIND_SANITIZE_THREAD; 241 case Attribute::SanitizeMemory: 242 return bitc::ATTR_KIND_SANITIZE_MEMORY; 243 case Attribute::UWTable: 244 return bitc::ATTR_KIND_UW_TABLE; 245 case Attribute::ZExt: 246 return bitc::ATTR_KIND_Z_EXT; 247 case Attribute::EndAttrKinds: 248 llvm_unreachable("Can not encode end-attribute kinds marker."); 249 case Attribute::None: 250 llvm_unreachable("Can not encode none-attribute."); 251 } 252 253 llvm_unreachable("Trying to encode unknown attribute"); 254 } 255 256 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 257 BitstreamWriter &Stream) { 258 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 259 if (AttrGrps.empty()) return; 260 261 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 262 263 SmallVector<uint64_t, 64> Record; 264 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 265 AttributeSet AS = AttrGrps[i]; 266 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 267 AttributeSet A = AS.getSlotAttributes(i); 268 269 Record.push_back(VE.getAttributeGroupID(A)); 270 Record.push_back(AS.getSlotIndex(i)); 271 272 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 273 I != E; ++I) { 274 Attribute Attr = *I; 275 if (Attr.isEnumAttribute()) { 276 Record.push_back(0); 277 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 278 } else if (Attr.isIntAttribute()) { 279 Record.push_back(1); 280 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 281 Record.push_back(Attr.getValueAsInt()); 282 } else { 283 StringRef Kind = Attr.getKindAsString(); 284 StringRef Val = Attr.getValueAsString(); 285 286 Record.push_back(Val.empty() ? 3 : 4); 287 Record.append(Kind.begin(), Kind.end()); 288 Record.push_back(0); 289 if (!Val.empty()) { 290 Record.append(Val.begin(), Val.end()); 291 Record.push_back(0); 292 } 293 } 294 } 295 296 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 297 Record.clear(); 298 } 299 } 300 301 Stream.ExitBlock(); 302 } 303 304 static void WriteAttributeTable(const ValueEnumerator &VE, 305 BitstreamWriter &Stream) { 306 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 307 if (Attrs.empty()) return; 308 309 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 310 311 SmallVector<uint64_t, 64> Record; 312 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 313 const AttributeSet &A = Attrs[i]; 314 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 315 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 316 317 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 318 Record.clear(); 319 } 320 321 Stream.ExitBlock(); 322 } 323 324 /// WriteTypeTable - Write out the type table for a module. 325 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 326 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 327 328 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 329 SmallVector<uint64_t, 64> TypeVals; 330 331 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 332 333 // Abbrev for TYPE_CODE_POINTER. 334 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 335 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 337 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 338 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 339 340 // Abbrev for TYPE_CODE_FUNCTION. 341 Abbv = new BitCodeAbbrev(); 342 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 346 347 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 348 349 // Abbrev for TYPE_CODE_STRUCT_ANON. 350 Abbv = new BitCodeAbbrev(); 351 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 355 356 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 357 358 // Abbrev for TYPE_CODE_STRUCT_NAME. 359 Abbv = new BitCodeAbbrev(); 360 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 363 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 364 365 // Abbrev for TYPE_CODE_STRUCT_NAMED. 366 Abbv = new BitCodeAbbrev(); 367 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 371 372 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 373 374 // Abbrev for TYPE_CODE_ARRAY. 375 Abbv = new BitCodeAbbrev(); 376 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 379 380 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 381 382 // Emit an entry count so the reader can reserve space. 383 TypeVals.push_back(TypeList.size()); 384 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 385 TypeVals.clear(); 386 387 // Loop over all of the types, emitting each in turn. 388 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 389 Type *T = TypeList[i]; 390 int AbbrevToUse = 0; 391 unsigned Code = 0; 392 393 switch (T->getTypeID()) { 394 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 395 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 396 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 397 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 398 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 399 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 400 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 401 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 402 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 403 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 404 case Type::IntegerTyID: 405 // INTEGER: [width] 406 Code = bitc::TYPE_CODE_INTEGER; 407 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 408 break; 409 case Type::PointerTyID: { 410 PointerType *PTy = cast<PointerType>(T); 411 // POINTER: [pointee type, address space] 412 Code = bitc::TYPE_CODE_POINTER; 413 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 414 unsigned AddressSpace = PTy->getAddressSpace(); 415 TypeVals.push_back(AddressSpace); 416 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 417 break; 418 } 419 case Type::FunctionTyID: { 420 FunctionType *FT = cast<FunctionType>(T); 421 // FUNCTION: [isvararg, retty, paramty x N] 422 Code = bitc::TYPE_CODE_FUNCTION; 423 TypeVals.push_back(FT->isVarArg()); 424 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 425 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 426 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 427 AbbrevToUse = FunctionAbbrev; 428 break; 429 } 430 case Type::StructTyID: { 431 StructType *ST = cast<StructType>(T); 432 // STRUCT: [ispacked, eltty x N] 433 TypeVals.push_back(ST->isPacked()); 434 // Output all of the element types. 435 for (StructType::element_iterator I = ST->element_begin(), 436 E = ST->element_end(); I != E; ++I) 437 TypeVals.push_back(VE.getTypeID(*I)); 438 439 if (ST->isLiteral()) { 440 Code = bitc::TYPE_CODE_STRUCT_ANON; 441 AbbrevToUse = StructAnonAbbrev; 442 } else { 443 if (ST->isOpaque()) { 444 Code = bitc::TYPE_CODE_OPAQUE; 445 } else { 446 Code = bitc::TYPE_CODE_STRUCT_NAMED; 447 AbbrevToUse = StructNamedAbbrev; 448 } 449 450 // Emit the name if it is present. 451 if (!ST->getName().empty()) 452 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 453 StructNameAbbrev, Stream); 454 } 455 break; 456 } 457 case Type::ArrayTyID: { 458 ArrayType *AT = cast<ArrayType>(T); 459 // ARRAY: [numelts, eltty] 460 Code = bitc::TYPE_CODE_ARRAY; 461 TypeVals.push_back(AT->getNumElements()); 462 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 463 AbbrevToUse = ArrayAbbrev; 464 break; 465 } 466 case Type::VectorTyID: { 467 VectorType *VT = cast<VectorType>(T); 468 // VECTOR [numelts, eltty] 469 Code = bitc::TYPE_CODE_VECTOR; 470 TypeVals.push_back(VT->getNumElements()); 471 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 472 break; 473 } 474 } 475 476 // Emit the finished record. 477 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 478 TypeVals.clear(); 479 } 480 481 Stream.ExitBlock(); 482 } 483 484 static unsigned getEncodedLinkage(const GlobalValue &GV) { 485 switch (GV.getLinkage()) { 486 case GlobalValue::ExternalLinkage: 487 return 0; 488 case GlobalValue::WeakAnyLinkage: 489 return 16; 490 case GlobalValue::AppendingLinkage: 491 return 2; 492 case GlobalValue::InternalLinkage: 493 return 3; 494 case GlobalValue::LinkOnceAnyLinkage: 495 return 18; 496 case GlobalValue::ExternalWeakLinkage: 497 return 7; 498 case GlobalValue::CommonLinkage: 499 return 8; 500 case GlobalValue::PrivateLinkage: 501 return 9; 502 case GlobalValue::WeakODRLinkage: 503 return 17; 504 case GlobalValue::LinkOnceODRLinkage: 505 return 19; 506 case GlobalValue::AvailableExternallyLinkage: 507 return 12; 508 } 509 llvm_unreachable("Invalid linkage"); 510 } 511 512 static unsigned getEncodedVisibility(const GlobalValue &GV) { 513 switch (GV.getVisibility()) { 514 case GlobalValue::DefaultVisibility: return 0; 515 case GlobalValue::HiddenVisibility: return 1; 516 case GlobalValue::ProtectedVisibility: return 2; 517 } 518 llvm_unreachable("Invalid visibility"); 519 } 520 521 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 522 switch (GV.getDLLStorageClass()) { 523 case GlobalValue::DefaultStorageClass: return 0; 524 case GlobalValue::DLLImportStorageClass: return 1; 525 case GlobalValue::DLLExportStorageClass: return 2; 526 } 527 llvm_unreachable("Invalid DLL storage class"); 528 } 529 530 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 531 switch (GV.getThreadLocalMode()) { 532 case GlobalVariable::NotThreadLocal: return 0; 533 case GlobalVariable::GeneralDynamicTLSModel: return 1; 534 case GlobalVariable::LocalDynamicTLSModel: return 2; 535 case GlobalVariable::InitialExecTLSModel: return 3; 536 case GlobalVariable::LocalExecTLSModel: return 4; 537 } 538 llvm_unreachable("Invalid TLS model"); 539 } 540 541 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 542 switch (C.getSelectionKind()) { 543 case Comdat::Any: 544 return bitc::COMDAT_SELECTION_KIND_ANY; 545 case Comdat::ExactMatch: 546 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 547 case Comdat::Largest: 548 return bitc::COMDAT_SELECTION_KIND_LARGEST; 549 case Comdat::NoDuplicates: 550 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 551 case Comdat::SameSize: 552 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 553 } 554 llvm_unreachable("Invalid selection kind"); 555 } 556 557 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 558 SmallVector<uint16_t, 64> Vals; 559 for (const Comdat *C : VE.getComdats()) { 560 // COMDAT: [selection_kind, name] 561 Vals.push_back(getEncodedComdatSelectionKind(*C)); 562 size_t Size = C->getName().size(); 563 assert(isUInt<16>(Size)); 564 Vals.push_back(Size); 565 for (char Chr : C->getName()) 566 Vals.push_back((unsigned char)Chr); 567 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 568 Vals.clear(); 569 } 570 } 571 572 // Emit top-level description of module, including target triple, inline asm, 573 // descriptors for global variables, and function prototype info. 574 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 575 BitstreamWriter &Stream) { 576 // Emit various pieces of data attached to a module. 577 if (!M->getTargetTriple().empty()) 578 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 579 0/*TODO*/, Stream); 580 const std::string &DL = M->getDataLayoutStr(); 581 if (!DL.empty()) 582 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 583 if (!M->getModuleInlineAsm().empty()) 584 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 585 0/*TODO*/, Stream); 586 587 // Emit information about sections and GC, computing how many there are. Also 588 // compute the maximum alignment value. 589 std::map<std::string, unsigned> SectionMap; 590 std::map<std::string, unsigned> GCMap; 591 unsigned MaxAlignment = 0; 592 unsigned MaxGlobalType = 0; 593 for (const GlobalValue &GV : M->globals()) { 594 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 595 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 596 if (GV.hasSection()) { 597 // Give section names unique ID's. 598 unsigned &Entry = SectionMap[GV.getSection()]; 599 if (!Entry) { 600 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 601 0/*TODO*/, Stream); 602 Entry = SectionMap.size(); 603 } 604 } 605 } 606 for (const Function &F : *M) { 607 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 608 if (F.hasSection()) { 609 // Give section names unique ID's. 610 unsigned &Entry = SectionMap[F.getSection()]; 611 if (!Entry) { 612 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 613 0/*TODO*/, Stream); 614 Entry = SectionMap.size(); 615 } 616 } 617 if (F.hasGC()) { 618 // Same for GC names. 619 unsigned &Entry = GCMap[F.getGC()]; 620 if (!Entry) { 621 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 622 0/*TODO*/, Stream); 623 Entry = GCMap.size(); 624 } 625 } 626 } 627 628 // Emit abbrev for globals, now that we know # sections and max alignment. 629 unsigned SimpleGVarAbbrev = 0; 630 if (!M->global_empty()) { 631 // Add an abbrev for common globals with no visibility or thread localness. 632 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 633 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 635 Log2_32_Ceil(MaxGlobalType+1))); 636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 637 //| explicitType << 1 638 //| constant 639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 641 if (MaxAlignment == 0) // Alignment. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else { 644 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 646 Log2_32_Ceil(MaxEncAlignment+1))); 647 } 648 if (SectionMap.empty()) // Section. 649 Abbv->Add(BitCodeAbbrevOp(0)); 650 else 651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 652 Log2_32_Ceil(SectionMap.size()+1))); 653 // Don't bother emitting vis + thread local. 654 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 655 } 656 657 // Emit the global variable information. 658 SmallVector<unsigned, 64> Vals; 659 for (const GlobalVariable &GV : M->globals()) { 660 unsigned AbbrevToUse = 0; 661 662 // GLOBALVAR: [type, isconst, initid, 663 // linkage, alignment, section, visibility, threadlocal, 664 // unnamed_addr, externally_initialized, dllstorageclass, 665 // comdat] 666 Vals.push_back(VE.getTypeID(GV.getValueType())); 667 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 668 Vals.push_back(GV.isDeclaration() ? 0 : 669 (VE.getValueID(GV.getInitializer()) + 1)); 670 Vals.push_back(getEncodedLinkage(GV)); 671 Vals.push_back(Log2_32(GV.getAlignment())+1); 672 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 673 if (GV.isThreadLocal() || 674 GV.getVisibility() != GlobalValue::DefaultVisibility || 675 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 676 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 677 GV.hasComdat()) { 678 Vals.push_back(getEncodedVisibility(GV)); 679 Vals.push_back(getEncodedThreadLocalMode(GV)); 680 Vals.push_back(GV.hasUnnamedAddr()); 681 Vals.push_back(GV.isExternallyInitialized()); 682 Vals.push_back(getEncodedDLLStorageClass(GV)); 683 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 684 } else { 685 AbbrevToUse = SimpleGVarAbbrev; 686 } 687 688 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 689 Vals.clear(); 690 } 691 692 // Emit the function proto information. 693 for (const Function &F : *M) { 694 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 695 // section, visibility, gc, unnamed_addr, prologuedata, 696 // dllstorageclass, comdat, prefixdata] 697 Vals.push_back(VE.getTypeID(F.getFunctionType())); 698 Vals.push_back(F.getCallingConv()); 699 Vals.push_back(F.isDeclaration()); 700 Vals.push_back(getEncodedLinkage(F)); 701 Vals.push_back(VE.getAttributeID(F.getAttributes())); 702 Vals.push_back(Log2_32(F.getAlignment())+1); 703 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 704 Vals.push_back(getEncodedVisibility(F)); 705 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 706 Vals.push_back(F.hasUnnamedAddr()); 707 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 708 : 0); 709 Vals.push_back(getEncodedDLLStorageClass(F)); 710 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 711 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 712 : 0); 713 714 unsigned AbbrevToUse = 0; 715 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 716 Vals.clear(); 717 } 718 719 // Emit the alias information. 720 for (const GlobalAlias &A : M->aliases()) { 721 // ALIAS: [alias type, aliasee val#, linkage, visibility] 722 Vals.push_back(VE.getTypeID(A.getType())); 723 Vals.push_back(VE.getValueID(A.getAliasee())); 724 Vals.push_back(getEncodedLinkage(A)); 725 Vals.push_back(getEncodedVisibility(A)); 726 Vals.push_back(getEncodedDLLStorageClass(A)); 727 Vals.push_back(getEncodedThreadLocalMode(A)); 728 Vals.push_back(A.hasUnnamedAddr()); 729 unsigned AbbrevToUse = 0; 730 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 731 Vals.clear(); 732 } 733 } 734 735 static uint64_t GetOptimizationFlags(const Value *V) { 736 uint64_t Flags = 0; 737 738 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 739 if (OBO->hasNoSignedWrap()) 740 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 741 if (OBO->hasNoUnsignedWrap()) 742 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 743 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 744 if (PEO->isExact()) 745 Flags |= 1 << bitc::PEO_EXACT; 746 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 747 if (FPMO->hasUnsafeAlgebra()) 748 Flags |= FastMathFlags::UnsafeAlgebra; 749 if (FPMO->hasNoNaNs()) 750 Flags |= FastMathFlags::NoNaNs; 751 if (FPMO->hasNoInfs()) 752 Flags |= FastMathFlags::NoInfs; 753 if (FPMO->hasNoSignedZeros()) 754 Flags |= FastMathFlags::NoSignedZeros; 755 if (FPMO->hasAllowReciprocal()) 756 Flags |= FastMathFlags::AllowReciprocal; 757 } 758 759 return Flags; 760 } 761 762 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 763 const ValueEnumerator &VE, 764 BitstreamWriter &Stream, 765 SmallVectorImpl<uint64_t> &Record) { 766 // Mimic an MDNode with a value as one operand. 767 Value *V = MD->getValue(); 768 Record.push_back(VE.getTypeID(V->getType())); 769 Record.push_back(VE.getValueID(V)); 770 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 771 Record.clear(); 772 } 773 774 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 775 BitstreamWriter &Stream, 776 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 777 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 778 Metadata *MD = N->getOperand(i); 779 assert(!(MD && isa<LocalAsMetadata>(MD)) && 780 "Unexpected function-local metadata"); 781 Record.push_back(VE.getMetadataOrNullID(MD)); 782 } 783 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 784 : bitc::METADATA_NODE, 785 Record, Abbrev); 786 Record.clear(); 787 } 788 789 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 790 BitstreamWriter &Stream, 791 SmallVectorImpl<uint64_t> &Record, 792 unsigned Abbrev) { 793 Record.push_back(N->isDistinct()); 794 Record.push_back(N->getLine()); 795 Record.push_back(N->getColumn()); 796 Record.push_back(VE.getMetadataID(N->getScope())); 797 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 798 799 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 800 Record.clear(); 801 } 802 803 static void WriteGenericDINode(const GenericDINode *N, 804 const ValueEnumerator &VE, 805 BitstreamWriter &Stream, 806 SmallVectorImpl<uint64_t> &Record, 807 unsigned Abbrev) { 808 Record.push_back(N->isDistinct()); 809 Record.push_back(N->getTag()); 810 Record.push_back(0); // Per-tag version field; unused for now. 811 812 for (auto &I : N->operands()) 813 Record.push_back(VE.getMetadataOrNullID(I)); 814 815 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 816 Record.clear(); 817 } 818 819 static uint64_t rotateSign(int64_t I) { 820 uint64_t U = I; 821 return I < 0 ? ~(U << 1) : U << 1; 822 } 823 824 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 825 BitstreamWriter &Stream, 826 SmallVectorImpl<uint64_t> &Record, 827 unsigned Abbrev) { 828 Record.push_back(N->isDistinct()); 829 Record.push_back(N->getCount()); 830 Record.push_back(rotateSign(N->getLowerBound())); 831 832 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 833 Record.clear(); 834 } 835 836 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 837 BitstreamWriter &Stream, 838 SmallVectorImpl<uint64_t> &Record, 839 unsigned Abbrev) { 840 Record.push_back(N->isDistinct()); 841 Record.push_back(rotateSign(N->getValue())); 842 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 843 844 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 845 Record.clear(); 846 } 847 848 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 849 BitstreamWriter &Stream, 850 SmallVectorImpl<uint64_t> &Record, 851 unsigned Abbrev) { 852 Record.push_back(N->isDistinct()); 853 Record.push_back(N->getTag()); 854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 855 Record.push_back(N->getSizeInBits()); 856 Record.push_back(N->getAlignInBits()); 857 Record.push_back(N->getEncoding()); 858 859 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 860 Record.clear(); 861 } 862 863 static void WriteDIDerivedType(const DIDerivedType *N, 864 const ValueEnumerator &VE, 865 BitstreamWriter &Stream, 866 SmallVectorImpl<uint64_t> &Record, 867 unsigned Abbrev) { 868 Record.push_back(N->isDistinct()); 869 Record.push_back(N->getTag()); 870 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 871 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 872 Record.push_back(N->getLine()); 873 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 874 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 875 Record.push_back(N->getSizeInBits()); 876 Record.push_back(N->getAlignInBits()); 877 Record.push_back(N->getOffsetInBits()); 878 Record.push_back(N->getFlags()); 879 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 880 881 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 882 Record.clear(); 883 } 884 885 static void WriteDICompositeType(const DICompositeType *N, 886 const ValueEnumerator &VE, 887 BitstreamWriter &Stream, 888 SmallVectorImpl<uint64_t> &Record, 889 unsigned Abbrev) { 890 Record.push_back(N->isDistinct()); 891 Record.push_back(N->getTag()); 892 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 893 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 894 Record.push_back(N->getLine()); 895 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 896 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 897 Record.push_back(N->getSizeInBits()); 898 Record.push_back(N->getAlignInBits()); 899 Record.push_back(N->getOffsetInBits()); 900 Record.push_back(N->getFlags()); 901 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 902 Record.push_back(N->getRuntimeLang()); 903 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 904 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 905 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 906 907 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 908 Record.clear(); 909 } 910 911 static void WriteDISubroutineType(const DISubroutineType *N, 912 const ValueEnumerator &VE, 913 BitstreamWriter &Stream, 914 SmallVectorImpl<uint64_t> &Record, 915 unsigned Abbrev) { 916 Record.push_back(N->isDistinct()); 917 Record.push_back(N->getFlags()); 918 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 919 920 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 921 Record.clear(); 922 } 923 924 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 925 BitstreamWriter &Stream, 926 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 927 Record.push_back(N->isDistinct()); 928 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 929 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 930 931 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 932 Record.clear(); 933 } 934 935 static void WriteDICompileUnit(const DICompileUnit *N, 936 const ValueEnumerator &VE, 937 BitstreamWriter &Stream, 938 SmallVectorImpl<uint64_t> &Record, 939 unsigned Abbrev) { 940 Record.push_back(N->isDistinct()); 941 Record.push_back(N->getSourceLanguage()); 942 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 943 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 944 Record.push_back(N->isOptimized()); 945 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 946 Record.push_back(N->getRuntimeVersion()); 947 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 948 Record.push_back(N->getEmissionKind()); 949 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 950 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 951 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 952 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 953 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 954 Record.push_back(N->getDWOId()); 955 956 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 957 Record.clear(); 958 } 959 960 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 961 BitstreamWriter &Stream, 962 SmallVectorImpl<uint64_t> &Record, 963 unsigned Abbrev) { 964 Record.push_back(N->isDistinct()); 965 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 966 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 967 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 968 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 969 Record.push_back(N->getLine()); 970 Record.push_back(VE.getMetadataOrNullID(N->getType())); 971 Record.push_back(N->isLocalToUnit()); 972 Record.push_back(N->isDefinition()); 973 Record.push_back(N->getScopeLine()); 974 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 975 Record.push_back(N->getVirtuality()); 976 Record.push_back(N->getVirtualIndex()); 977 Record.push_back(N->getFlags()); 978 Record.push_back(N->isOptimized()); 979 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 980 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 981 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 982 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 983 984 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 985 Record.clear(); 986 } 987 988 static void WriteDILexicalBlock(const DILexicalBlock *N, 989 const ValueEnumerator &VE, 990 BitstreamWriter &Stream, 991 SmallVectorImpl<uint64_t> &Record, 992 unsigned Abbrev) { 993 Record.push_back(N->isDistinct()); 994 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 995 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 996 Record.push_back(N->getLine()); 997 Record.push_back(N->getColumn()); 998 999 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1000 Record.clear(); 1001 } 1002 1003 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1004 const ValueEnumerator &VE, 1005 BitstreamWriter &Stream, 1006 SmallVectorImpl<uint64_t> &Record, 1007 unsigned Abbrev) { 1008 Record.push_back(N->isDistinct()); 1009 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1010 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1011 Record.push_back(N->getDiscriminator()); 1012 1013 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1014 Record.clear(); 1015 } 1016 1017 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1018 BitstreamWriter &Stream, 1019 SmallVectorImpl<uint64_t> &Record, 1020 unsigned Abbrev) { 1021 Record.push_back(N->isDistinct()); 1022 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1023 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1024 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1025 Record.push_back(N->getLine()); 1026 1027 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1028 Record.clear(); 1029 } 1030 1031 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1032 const ValueEnumerator &VE, 1033 BitstreamWriter &Stream, 1034 SmallVectorImpl<uint64_t> &Record, 1035 unsigned Abbrev) { 1036 Record.push_back(N->isDistinct()); 1037 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1038 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1039 1040 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1041 Record.clear(); 1042 } 1043 1044 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1045 const ValueEnumerator &VE, 1046 BitstreamWriter &Stream, 1047 SmallVectorImpl<uint64_t> &Record, 1048 unsigned Abbrev) { 1049 Record.push_back(N->isDistinct()); 1050 Record.push_back(N->getTag()); 1051 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1052 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1053 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1054 1055 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1056 Record.clear(); 1057 } 1058 1059 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1060 const ValueEnumerator &VE, 1061 BitstreamWriter &Stream, 1062 SmallVectorImpl<uint64_t> &Record, 1063 unsigned Abbrev) { 1064 Record.push_back(N->isDistinct()); 1065 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1066 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1067 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1068 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1069 Record.push_back(N->getLine()); 1070 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1071 Record.push_back(N->isLocalToUnit()); 1072 Record.push_back(N->isDefinition()); 1073 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1074 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1075 1076 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1077 Record.clear(); 1078 } 1079 1080 static void WriteDILocalVariable(const DILocalVariable *N, 1081 const ValueEnumerator &VE, 1082 BitstreamWriter &Stream, 1083 SmallVectorImpl<uint64_t> &Record, 1084 unsigned Abbrev) { 1085 Record.push_back(N->isDistinct()); 1086 Record.push_back(N->getTag()); 1087 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1088 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1090 Record.push_back(N->getLine()); 1091 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1092 Record.push_back(N->getArg()); 1093 Record.push_back(N->getFlags()); 1094 1095 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1096 Record.clear(); 1097 } 1098 1099 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1100 BitstreamWriter &Stream, 1101 SmallVectorImpl<uint64_t> &Record, 1102 unsigned Abbrev) { 1103 Record.reserve(N->getElements().size() + 1); 1104 1105 Record.push_back(N->isDistinct()); 1106 Record.append(N->elements_begin(), N->elements_end()); 1107 1108 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1109 Record.clear(); 1110 } 1111 1112 static void WriteDIObjCProperty(const DIObjCProperty *N, 1113 const ValueEnumerator &VE, 1114 BitstreamWriter &Stream, 1115 SmallVectorImpl<uint64_t> &Record, 1116 unsigned Abbrev) { 1117 Record.push_back(N->isDistinct()); 1118 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1120 Record.push_back(N->getLine()); 1121 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1122 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1123 Record.push_back(N->getAttributes()); 1124 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1125 1126 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1127 Record.clear(); 1128 } 1129 1130 static void WriteDIImportedEntity(const DIImportedEntity *N, 1131 const ValueEnumerator &VE, 1132 BitstreamWriter &Stream, 1133 SmallVectorImpl<uint64_t> &Record, 1134 unsigned Abbrev) { 1135 Record.push_back(N->isDistinct()); 1136 Record.push_back(N->getTag()); 1137 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1138 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1139 Record.push_back(N->getLine()); 1140 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1141 1142 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1143 Record.clear(); 1144 } 1145 1146 static void WriteModuleMetadata(const Module *M, 1147 const ValueEnumerator &VE, 1148 BitstreamWriter &Stream) { 1149 const auto &MDs = VE.getMDs(); 1150 if (MDs.empty() && M->named_metadata_empty()) 1151 return; 1152 1153 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1154 1155 unsigned MDSAbbrev = 0; 1156 if (VE.hasMDString()) { 1157 // Abbrev for METADATA_STRING. 1158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1159 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1162 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1163 } 1164 1165 // Initialize MDNode abbreviations. 1166 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1167 #include "llvm/IR/Metadata.def" 1168 1169 if (VE.hasDILocation()) { 1170 // Abbrev for METADATA_LOCATION. 1171 // 1172 // Assume the column is usually under 128, and always output the inlined-at 1173 // location (it's never more expensive than building an array size 1). 1174 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1175 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1181 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1182 } 1183 1184 if (VE.hasGenericDINode()) { 1185 // Abbrev for METADATA_GENERIC_DEBUG. 1186 // 1187 // Assume the column is usually under 128, and always output the inlined-at 1188 // location (it's never more expensive than building an array size 1). 1189 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1190 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1197 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1198 } 1199 1200 unsigned NameAbbrev = 0; 1201 if (!M->named_metadata_empty()) { 1202 // Abbrev for METADATA_NAME. 1203 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1204 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1207 NameAbbrev = Stream.EmitAbbrev(Abbv); 1208 } 1209 1210 SmallVector<uint64_t, 64> Record; 1211 for (const Metadata *MD : MDs) { 1212 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1213 assert(N->isResolved() && "Expected forward references to be resolved"); 1214 1215 switch (N->getMetadataID()) { 1216 default: 1217 llvm_unreachable("Invalid MDNode subclass"); 1218 #define HANDLE_MDNODE_LEAF(CLASS) \ 1219 case Metadata::CLASS##Kind: \ 1220 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1221 continue; 1222 #include "llvm/IR/Metadata.def" 1223 } 1224 } 1225 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1226 WriteValueAsMetadata(MDC, VE, Stream, Record); 1227 continue; 1228 } 1229 const MDString *MDS = cast<MDString>(MD); 1230 // Code: [strchar x N] 1231 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1232 1233 // Emit the finished record. 1234 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1235 Record.clear(); 1236 } 1237 1238 // Write named metadata. 1239 for (const NamedMDNode &NMD : M->named_metadata()) { 1240 // Write name. 1241 StringRef Str = NMD.getName(); 1242 Record.append(Str.bytes_begin(), Str.bytes_end()); 1243 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1244 Record.clear(); 1245 1246 // Write named metadata operands. 1247 for (const MDNode *N : NMD.operands()) 1248 Record.push_back(VE.getMetadataID(N)); 1249 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1250 Record.clear(); 1251 } 1252 1253 Stream.ExitBlock(); 1254 } 1255 1256 static void WriteFunctionLocalMetadata(const Function &F, 1257 const ValueEnumerator &VE, 1258 BitstreamWriter &Stream) { 1259 bool StartedMetadataBlock = false; 1260 SmallVector<uint64_t, 64> Record; 1261 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1262 VE.getFunctionLocalMDs(); 1263 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1264 assert(MDs[i] && "Expected valid function-local metadata"); 1265 if (!StartedMetadataBlock) { 1266 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1267 StartedMetadataBlock = true; 1268 } 1269 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1270 } 1271 1272 if (StartedMetadataBlock) 1273 Stream.ExitBlock(); 1274 } 1275 1276 static void WriteMetadataAttachment(const Function &F, 1277 const ValueEnumerator &VE, 1278 BitstreamWriter &Stream) { 1279 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1280 1281 SmallVector<uint64_t, 64> Record; 1282 1283 // Write metadata attachments 1284 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1285 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1286 F.getAllMetadata(MDs); 1287 if (!MDs.empty()) { 1288 for (const auto &I : MDs) { 1289 Record.push_back(I.first); 1290 Record.push_back(VE.getMetadataID(I.second)); 1291 } 1292 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1293 Record.clear(); 1294 } 1295 1296 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1297 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1298 I != E; ++I) { 1299 MDs.clear(); 1300 I->getAllMetadataOtherThanDebugLoc(MDs); 1301 1302 // If no metadata, ignore instruction. 1303 if (MDs.empty()) continue; 1304 1305 Record.push_back(VE.getInstructionID(I)); 1306 1307 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1308 Record.push_back(MDs[i].first); 1309 Record.push_back(VE.getMetadataID(MDs[i].second)); 1310 } 1311 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1312 Record.clear(); 1313 } 1314 1315 Stream.ExitBlock(); 1316 } 1317 1318 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1319 SmallVector<uint64_t, 64> Record; 1320 1321 // Write metadata kinds 1322 // METADATA_KIND - [n x [id, name]] 1323 SmallVector<StringRef, 8> Names; 1324 M->getMDKindNames(Names); 1325 1326 if (Names.empty()) return; 1327 1328 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1329 1330 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1331 Record.push_back(MDKindID); 1332 StringRef KName = Names[MDKindID]; 1333 Record.append(KName.begin(), KName.end()); 1334 1335 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1336 Record.clear(); 1337 } 1338 1339 Stream.ExitBlock(); 1340 } 1341 1342 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1343 if ((int64_t)V >= 0) 1344 Vals.push_back(V << 1); 1345 else 1346 Vals.push_back((-V << 1) | 1); 1347 } 1348 1349 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1350 const ValueEnumerator &VE, 1351 BitstreamWriter &Stream, bool isGlobal) { 1352 if (FirstVal == LastVal) return; 1353 1354 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1355 1356 unsigned AggregateAbbrev = 0; 1357 unsigned String8Abbrev = 0; 1358 unsigned CString7Abbrev = 0; 1359 unsigned CString6Abbrev = 0; 1360 // If this is a constant pool for the module, emit module-specific abbrevs. 1361 if (isGlobal) { 1362 // Abbrev for CST_CODE_AGGREGATE. 1363 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1364 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1367 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1368 1369 // Abbrev for CST_CODE_STRING. 1370 Abbv = new BitCodeAbbrev(); 1371 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1374 String8Abbrev = Stream.EmitAbbrev(Abbv); 1375 // Abbrev for CST_CODE_CSTRING. 1376 Abbv = new BitCodeAbbrev(); 1377 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1380 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1381 // Abbrev for CST_CODE_CSTRING. 1382 Abbv = new BitCodeAbbrev(); 1383 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1386 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1387 } 1388 1389 SmallVector<uint64_t, 64> Record; 1390 1391 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1392 Type *LastTy = nullptr; 1393 for (unsigned i = FirstVal; i != LastVal; ++i) { 1394 const Value *V = Vals[i].first; 1395 // If we need to switch types, do so now. 1396 if (V->getType() != LastTy) { 1397 LastTy = V->getType(); 1398 Record.push_back(VE.getTypeID(LastTy)); 1399 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1400 CONSTANTS_SETTYPE_ABBREV); 1401 Record.clear(); 1402 } 1403 1404 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1405 Record.push_back(unsigned(IA->hasSideEffects()) | 1406 unsigned(IA->isAlignStack()) << 1 | 1407 unsigned(IA->getDialect()&1) << 2); 1408 1409 // Add the asm string. 1410 const std::string &AsmStr = IA->getAsmString(); 1411 Record.push_back(AsmStr.size()); 1412 Record.append(AsmStr.begin(), AsmStr.end()); 1413 1414 // Add the constraint string. 1415 const std::string &ConstraintStr = IA->getConstraintString(); 1416 Record.push_back(ConstraintStr.size()); 1417 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1418 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1419 Record.clear(); 1420 continue; 1421 } 1422 const Constant *C = cast<Constant>(V); 1423 unsigned Code = -1U; 1424 unsigned AbbrevToUse = 0; 1425 if (C->isNullValue()) { 1426 Code = bitc::CST_CODE_NULL; 1427 } else if (isa<UndefValue>(C)) { 1428 Code = bitc::CST_CODE_UNDEF; 1429 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1430 if (IV->getBitWidth() <= 64) { 1431 uint64_t V = IV->getSExtValue(); 1432 emitSignedInt64(Record, V); 1433 Code = bitc::CST_CODE_INTEGER; 1434 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1435 } else { // Wide integers, > 64 bits in size. 1436 // We have an arbitrary precision integer value to write whose 1437 // bit width is > 64. However, in canonical unsigned integer 1438 // format it is likely that the high bits are going to be zero. 1439 // So, we only write the number of active words. 1440 unsigned NWords = IV->getValue().getActiveWords(); 1441 const uint64_t *RawWords = IV->getValue().getRawData(); 1442 for (unsigned i = 0; i != NWords; ++i) { 1443 emitSignedInt64(Record, RawWords[i]); 1444 } 1445 Code = bitc::CST_CODE_WIDE_INTEGER; 1446 } 1447 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1448 Code = bitc::CST_CODE_FLOAT; 1449 Type *Ty = CFP->getType(); 1450 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1451 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1452 } else if (Ty->isX86_FP80Ty()) { 1453 // api needed to prevent premature destruction 1454 // bits are not in the same order as a normal i80 APInt, compensate. 1455 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1456 const uint64_t *p = api.getRawData(); 1457 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1458 Record.push_back(p[0] & 0xffffLL); 1459 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1460 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1461 const uint64_t *p = api.getRawData(); 1462 Record.push_back(p[0]); 1463 Record.push_back(p[1]); 1464 } else { 1465 assert (0 && "Unknown FP type!"); 1466 } 1467 } else if (isa<ConstantDataSequential>(C) && 1468 cast<ConstantDataSequential>(C)->isString()) { 1469 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1470 // Emit constant strings specially. 1471 unsigned NumElts = Str->getNumElements(); 1472 // If this is a null-terminated string, use the denser CSTRING encoding. 1473 if (Str->isCString()) { 1474 Code = bitc::CST_CODE_CSTRING; 1475 --NumElts; // Don't encode the null, which isn't allowed by char6. 1476 } else { 1477 Code = bitc::CST_CODE_STRING; 1478 AbbrevToUse = String8Abbrev; 1479 } 1480 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1481 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1482 for (unsigned i = 0; i != NumElts; ++i) { 1483 unsigned char V = Str->getElementAsInteger(i); 1484 Record.push_back(V); 1485 isCStr7 &= (V & 128) == 0; 1486 if (isCStrChar6) 1487 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1488 } 1489 1490 if (isCStrChar6) 1491 AbbrevToUse = CString6Abbrev; 1492 else if (isCStr7) 1493 AbbrevToUse = CString7Abbrev; 1494 } else if (const ConstantDataSequential *CDS = 1495 dyn_cast<ConstantDataSequential>(C)) { 1496 Code = bitc::CST_CODE_DATA; 1497 Type *EltTy = CDS->getType()->getElementType(); 1498 if (isa<IntegerType>(EltTy)) { 1499 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1500 Record.push_back(CDS->getElementAsInteger(i)); 1501 } else if (EltTy->isFloatTy()) { 1502 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1503 union { float F; uint32_t I; }; 1504 F = CDS->getElementAsFloat(i); 1505 Record.push_back(I); 1506 } 1507 } else { 1508 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1509 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1510 union { double F; uint64_t I; }; 1511 F = CDS->getElementAsDouble(i); 1512 Record.push_back(I); 1513 } 1514 } 1515 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1516 isa<ConstantVector>(C)) { 1517 Code = bitc::CST_CODE_AGGREGATE; 1518 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1519 Record.push_back(VE.getValueID(C->getOperand(i))); 1520 AbbrevToUse = AggregateAbbrev; 1521 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1522 switch (CE->getOpcode()) { 1523 default: 1524 if (Instruction::isCast(CE->getOpcode())) { 1525 Code = bitc::CST_CODE_CE_CAST; 1526 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1527 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1528 Record.push_back(VE.getValueID(C->getOperand(0))); 1529 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1530 } else { 1531 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1532 Code = bitc::CST_CODE_CE_BINOP; 1533 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1534 Record.push_back(VE.getValueID(C->getOperand(0))); 1535 Record.push_back(VE.getValueID(C->getOperand(1))); 1536 uint64_t Flags = GetOptimizationFlags(CE); 1537 if (Flags != 0) 1538 Record.push_back(Flags); 1539 } 1540 break; 1541 case Instruction::GetElementPtr: { 1542 Code = bitc::CST_CODE_CE_GEP; 1543 const auto *GO = cast<GEPOperator>(C); 1544 if (GO->isInBounds()) 1545 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1546 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1547 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1548 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1549 Record.push_back(VE.getValueID(C->getOperand(i))); 1550 } 1551 break; 1552 } 1553 case Instruction::Select: 1554 Code = bitc::CST_CODE_CE_SELECT; 1555 Record.push_back(VE.getValueID(C->getOperand(0))); 1556 Record.push_back(VE.getValueID(C->getOperand(1))); 1557 Record.push_back(VE.getValueID(C->getOperand(2))); 1558 break; 1559 case Instruction::ExtractElement: 1560 Code = bitc::CST_CODE_CE_EXTRACTELT; 1561 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1562 Record.push_back(VE.getValueID(C->getOperand(0))); 1563 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1564 Record.push_back(VE.getValueID(C->getOperand(1))); 1565 break; 1566 case Instruction::InsertElement: 1567 Code = bitc::CST_CODE_CE_INSERTELT; 1568 Record.push_back(VE.getValueID(C->getOperand(0))); 1569 Record.push_back(VE.getValueID(C->getOperand(1))); 1570 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1571 Record.push_back(VE.getValueID(C->getOperand(2))); 1572 break; 1573 case Instruction::ShuffleVector: 1574 // If the return type and argument types are the same, this is a 1575 // standard shufflevector instruction. If the types are different, 1576 // then the shuffle is widening or truncating the input vectors, and 1577 // the argument type must also be encoded. 1578 if (C->getType() == C->getOperand(0)->getType()) { 1579 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1580 } else { 1581 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1582 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1583 } 1584 Record.push_back(VE.getValueID(C->getOperand(0))); 1585 Record.push_back(VE.getValueID(C->getOperand(1))); 1586 Record.push_back(VE.getValueID(C->getOperand(2))); 1587 break; 1588 case Instruction::ICmp: 1589 case Instruction::FCmp: 1590 Code = bitc::CST_CODE_CE_CMP; 1591 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1592 Record.push_back(VE.getValueID(C->getOperand(0))); 1593 Record.push_back(VE.getValueID(C->getOperand(1))); 1594 Record.push_back(CE->getPredicate()); 1595 break; 1596 } 1597 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1598 Code = bitc::CST_CODE_BLOCKADDRESS; 1599 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1600 Record.push_back(VE.getValueID(BA->getFunction())); 1601 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1602 } else { 1603 #ifndef NDEBUG 1604 C->dump(); 1605 #endif 1606 llvm_unreachable("Unknown constant!"); 1607 } 1608 Stream.EmitRecord(Code, Record, AbbrevToUse); 1609 Record.clear(); 1610 } 1611 1612 Stream.ExitBlock(); 1613 } 1614 1615 static void WriteModuleConstants(const ValueEnumerator &VE, 1616 BitstreamWriter &Stream) { 1617 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1618 1619 // Find the first constant to emit, which is the first non-globalvalue value. 1620 // We know globalvalues have been emitted by WriteModuleInfo. 1621 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1622 if (!isa<GlobalValue>(Vals[i].first)) { 1623 WriteConstants(i, Vals.size(), VE, Stream, true); 1624 return; 1625 } 1626 } 1627 } 1628 1629 /// PushValueAndType - The file has to encode both the value and type id for 1630 /// many values, because we need to know what type to create for forward 1631 /// references. However, most operands are not forward references, so this type 1632 /// field is not needed. 1633 /// 1634 /// This function adds V's value ID to Vals. If the value ID is higher than the 1635 /// instruction ID, then it is a forward reference, and it also includes the 1636 /// type ID. The value ID that is written is encoded relative to the InstID. 1637 static bool PushValueAndType(const Value *V, unsigned InstID, 1638 SmallVectorImpl<unsigned> &Vals, 1639 ValueEnumerator &VE) { 1640 unsigned ValID = VE.getValueID(V); 1641 // Make encoding relative to the InstID. 1642 Vals.push_back(InstID - ValID); 1643 if (ValID >= InstID) { 1644 Vals.push_back(VE.getTypeID(V->getType())); 1645 return true; 1646 } 1647 return false; 1648 } 1649 1650 /// pushValue - Like PushValueAndType, but where the type of the value is 1651 /// omitted (perhaps it was already encoded in an earlier operand). 1652 static void pushValue(const Value *V, unsigned InstID, 1653 SmallVectorImpl<unsigned> &Vals, 1654 ValueEnumerator &VE) { 1655 unsigned ValID = VE.getValueID(V); 1656 Vals.push_back(InstID - ValID); 1657 } 1658 1659 static void pushValueSigned(const Value *V, unsigned InstID, 1660 SmallVectorImpl<uint64_t> &Vals, 1661 ValueEnumerator &VE) { 1662 unsigned ValID = VE.getValueID(V); 1663 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1664 emitSignedInt64(Vals, diff); 1665 } 1666 1667 /// WriteInstruction - Emit an instruction to the specified stream. 1668 static void WriteInstruction(const Instruction &I, unsigned InstID, 1669 ValueEnumerator &VE, BitstreamWriter &Stream, 1670 SmallVectorImpl<unsigned> &Vals) { 1671 unsigned Code = 0; 1672 unsigned AbbrevToUse = 0; 1673 VE.setInstructionID(&I); 1674 switch (I.getOpcode()) { 1675 default: 1676 if (Instruction::isCast(I.getOpcode())) { 1677 Code = bitc::FUNC_CODE_INST_CAST; 1678 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1679 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1680 Vals.push_back(VE.getTypeID(I.getType())); 1681 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1682 } else { 1683 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1684 Code = bitc::FUNC_CODE_INST_BINOP; 1685 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1686 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1687 pushValue(I.getOperand(1), InstID, Vals, VE); 1688 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1689 uint64_t Flags = GetOptimizationFlags(&I); 1690 if (Flags != 0) { 1691 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1692 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1693 Vals.push_back(Flags); 1694 } 1695 } 1696 break; 1697 1698 case Instruction::GetElementPtr: { 1699 Code = bitc::FUNC_CODE_INST_GEP; 1700 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1701 auto &GEPInst = cast<GetElementPtrInst>(I); 1702 Vals.push_back(GEPInst.isInBounds()); 1703 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1704 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1705 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1706 break; 1707 } 1708 case Instruction::ExtractValue: { 1709 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1710 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1711 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1712 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1713 break; 1714 } 1715 case Instruction::InsertValue: { 1716 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1717 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1718 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1719 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1720 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1721 break; 1722 } 1723 case Instruction::Select: 1724 Code = bitc::FUNC_CODE_INST_VSELECT; 1725 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1726 pushValue(I.getOperand(2), InstID, Vals, VE); 1727 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1728 break; 1729 case Instruction::ExtractElement: 1730 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1731 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1732 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1733 break; 1734 case Instruction::InsertElement: 1735 Code = bitc::FUNC_CODE_INST_INSERTELT; 1736 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1737 pushValue(I.getOperand(1), InstID, Vals, VE); 1738 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1739 break; 1740 case Instruction::ShuffleVector: 1741 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1742 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1743 pushValue(I.getOperand(1), InstID, Vals, VE); 1744 pushValue(I.getOperand(2), InstID, Vals, VE); 1745 break; 1746 case Instruction::ICmp: 1747 case Instruction::FCmp: 1748 // compare returning Int1Ty or vector of Int1Ty 1749 Code = bitc::FUNC_CODE_INST_CMP2; 1750 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1751 pushValue(I.getOperand(1), InstID, Vals, VE); 1752 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1753 break; 1754 1755 case Instruction::Ret: 1756 { 1757 Code = bitc::FUNC_CODE_INST_RET; 1758 unsigned NumOperands = I.getNumOperands(); 1759 if (NumOperands == 0) 1760 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1761 else if (NumOperands == 1) { 1762 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1763 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1764 } else { 1765 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1766 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1767 } 1768 } 1769 break; 1770 case Instruction::Br: 1771 { 1772 Code = bitc::FUNC_CODE_INST_BR; 1773 const BranchInst &II = cast<BranchInst>(I); 1774 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1775 if (II.isConditional()) { 1776 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1777 pushValue(II.getCondition(), InstID, Vals, VE); 1778 } 1779 } 1780 break; 1781 case Instruction::Switch: 1782 { 1783 Code = bitc::FUNC_CODE_INST_SWITCH; 1784 const SwitchInst &SI = cast<SwitchInst>(I); 1785 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1786 pushValue(SI.getCondition(), InstID, Vals, VE); 1787 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1788 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1789 i != e; ++i) { 1790 Vals.push_back(VE.getValueID(i.getCaseValue())); 1791 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1792 } 1793 } 1794 break; 1795 case Instruction::IndirectBr: 1796 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1797 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1798 // Encode the address operand as relative, but not the basic blocks. 1799 pushValue(I.getOperand(0), InstID, Vals, VE); 1800 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1801 Vals.push_back(VE.getValueID(I.getOperand(i))); 1802 break; 1803 1804 case Instruction::Invoke: { 1805 const InvokeInst *II = cast<InvokeInst>(&I); 1806 const Value *Callee = II->getCalledValue(); 1807 FunctionType *FTy = II->getFunctionType(); 1808 Code = bitc::FUNC_CODE_INST_INVOKE; 1809 1810 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1811 Vals.push_back(II->getCallingConv() | 1 << 13); 1812 Vals.push_back(VE.getValueID(II->getNormalDest())); 1813 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1814 Vals.push_back(VE.getTypeID(FTy)); 1815 PushValueAndType(Callee, InstID, Vals, VE); 1816 1817 // Emit value #'s for the fixed parameters. 1818 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1819 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1820 1821 // Emit type/value pairs for varargs params. 1822 if (FTy->isVarArg()) { 1823 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1824 i != e; ++i) 1825 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1826 } 1827 break; 1828 } 1829 case Instruction::Resume: 1830 Code = bitc::FUNC_CODE_INST_RESUME; 1831 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1832 break; 1833 case Instruction::Unreachable: 1834 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1835 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1836 break; 1837 1838 case Instruction::PHI: { 1839 const PHINode &PN = cast<PHINode>(I); 1840 Code = bitc::FUNC_CODE_INST_PHI; 1841 // With the newer instruction encoding, forward references could give 1842 // negative valued IDs. This is most common for PHIs, so we use 1843 // signed VBRs. 1844 SmallVector<uint64_t, 128> Vals64; 1845 Vals64.push_back(VE.getTypeID(PN.getType())); 1846 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1847 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1848 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1849 } 1850 // Emit a Vals64 vector and exit. 1851 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1852 Vals64.clear(); 1853 return; 1854 } 1855 1856 case Instruction::LandingPad: { 1857 const LandingPadInst &LP = cast<LandingPadInst>(I); 1858 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1859 Vals.push_back(VE.getTypeID(LP.getType())); 1860 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1861 Vals.push_back(LP.isCleanup()); 1862 Vals.push_back(LP.getNumClauses()); 1863 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1864 if (LP.isCatch(I)) 1865 Vals.push_back(LandingPadInst::Catch); 1866 else 1867 Vals.push_back(LandingPadInst::Filter); 1868 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1869 } 1870 break; 1871 } 1872 1873 case Instruction::Alloca: { 1874 Code = bitc::FUNC_CODE_INST_ALLOCA; 1875 const AllocaInst &AI = cast<AllocaInst>(I); 1876 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1877 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1878 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1879 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1880 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1881 "not enough bits for maximum alignment"); 1882 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1883 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1884 AlignRecord |= 1 << 6; 1885 Vals.push_back(AlignRecord); 1886 break; 1887 } 1888 1889 case Instruction::Load: 1890 if (cast<LoadInst>(I).isAtomic()) { 1891 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1892 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1893 } else { 1894 Code = bitc::FUNC_CODE_INST_LOAD; 1895 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1896 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1897 } 1898 Vals.push_back(VE.getTypeID(I.getType())); 1899 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1900 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1901 if (cast<LoadInst>(I).isAtomic()) { 1902 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1903 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1904 } 1905 break; 1906 case Instruction::Store: 1907 if (cast<StoreInst>(I).isAtomic()) 1908 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1909 else 1910 Code = bitc::FUNC_CODE_INST_STORE; 1911 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1912 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1913 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1914 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1915 if (cast<StoreInst>(I).isAtomic()) { 1916 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1917 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1918 } 1919 break; 1920 case Instruction::AtomicCmpXchg: 1921 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1922 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1923 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 1924 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1925 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1926 Vals.push_back(GetEncodedOrdering( 1927 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1928 Vals.push_back(GetEncodedSynchScope( 1929 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1930 Vals.push_back(GetEncodedOrdering( 1931 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1932 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1933 break; 1934 case Instruction::AtomicRMW: 1935 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1936 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1937 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1938 Vals.push_back(GetEncodedRMWOperation( 1939 cast<AtomicRMWInst>(I).getOperation())); 1940 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1941 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1942 Vals.push_back(GetEncodedSynchScope( 1943 cast<AtomicRMWInst>(I).getSynchScope())); 1944 break; 1945 case Instruction::Fence: 1946 Code = bitc::FUNC_CODE_INST_FENCE; 1947 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1948 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1949 break; 1950 case Instruction::Call: { 1951 const CallInst &CI = cast<CallInst>(I); 1952 FunctionType *FTy = CI.getFunctionType(); 1953 1954 Code = bitc::FUNC_CODE_INST_CALL; 1955 1956 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1957 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1958 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 1959 Vals.push_back(VE.getTypeID(FTy)); 1960 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1961 1962 // Emit value #'s for the fixed parameters. 1963 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1964 // Check for labels (can happen with asm labels). 1965 if (FTy->getParamType(i)->isLabelTy()) 1966 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1967 else 1968 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1969 } 1970 1971 // Emit type/value pairs for varargs params. 1972 if (FTy->isVarArg()) { 1973 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1974 i != e; ++i) 1975 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1976 } 1977 break; 1978 } 1979 case Instruction::VAArg: 1980 Code = bitc::FUNC_CODE_INST_VAARG; 1981 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1982 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1983 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1984 break; 1985 } 1986 1987 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1988 Vals.clear(); 1989 } 1990 1991 // Emit names for globals/functions etc. 1992 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1993 const ValueEnumerator &VE, 1994 BitstreamWriter &Stream) { 1995 if (VST.empty()) return; 1996 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1997 1998 // FIXME: Set up the abbrev, we know how many values there are! 1999 // FIXME: We know if the type names can use 7-bit ascii. 2000 SmallVector<unsigned, 64> NameVals; 2001 2002 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 2003 SI != SE; ++SI) { 2004 2005 const ValueName &Name = *SI; 2006 2007 // Figure out the encoding to use for the name. 2008 bool is7Bit = true; 2009 bool isChar6 = true; 2010 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2011 C != E; ++C) { 2012 if (isChar6) 2013 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2014 if ((unsigned char)*C & 128) { 2015 is7Bit = false; 2016 break; // don't bother scanning the rest. 2017 } 2018 } 2019 2020 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2021 2022 // VST_ENTRY: [valueid, namechar x N] 2023 // VST_BBENTRY: [bbid, namechar x N] 2024 unsigned Code; 2025 if (isa<BasicBlock>(SI->getValue())) { 2026 Code = bitc::VST_CODE_BBENTRY; 2027 if (isChar6) 2028 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2029 } else { 2030 Code = bitc::VST_CODE_ENTRY; 2031 if (isChar6) 2032 AbbrevToUse = VST_ENTRY_6_ABBREV; 2033 else if (is7Bit) 2034 AbbrevToUse = VST_ENTRY_7_ABBREV; 2035 } 2036 2037 NameVals.push_back(VE.getValueID(SI->getValue())); 2038 for (const char *P = Name.getKeyData(), 2039 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2040 NameVals.push_back((unsigned char)*P); 2041 2042 // Emit the finished record. 2043 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2044 NameVals.clear(); 2045 } 2046 Stream.ExitBlock(); 2047 } 2048 2049 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2050 BitstreamWriter &Stream) { 2051 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2052 unsigned Code; 2053 if (isa<BasicBlock>(Order.V)) 2054 Code = bitc::USELIST_CODE_BB; 2055 else 2056 Code = bitc::USELIST_CODE_DEFAULT; 2057 2058 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2059 Record.push_back(VE.getValueID(Order.V)); 2060 Stream.EmitRecord(Code, Record); 2061 } 2062 2063 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2064 BitstreamWriter &Stream) { 2065 assert(VE.shouldPreserveUseListOrder() && 2066 "Expected to be preserving use-list order"); 2067 2068 auto hasMore = [&]() { 2069 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2070 }; 2071 if (!hasMore()) 2072 // Nothing to do. 2073 return; 2074 2075 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2076 while (hasMore()) { 2077 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2078 VE.UseListOrders.pop_back(); 2079 } 2080 Stream.ExitBlock(); 2081 } 2082 2083 /// WriteFunction - Emit a function body to the module stream. 2084 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2085 BitstreamWriter &Stream) { 2086 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2087 VE.incorporateFunction(F); 2088 2089 SmallVector<unsigned, 64> Vals; 2090 2091 // Emit the number of basic blocks, so the reader can create them ahead of 2092 // time. 2093 Vals.push_back(VE.getBasicBlocks().size()); 2094 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2095 Vals.clear(); 2096 2097 // If there are function-local constants, emit them now. 2098 unsigned CstStart, CstEnd; 2099 VE.getFunctionConstantRange(CstStart, CstEnd); 2100 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2101 2102 // If there is function-local metadata, emit it now. 2103 WriteFunctionLocalMetadata(F, VE, Stream); 2104 2105 // Keep a running idea of what the instruction ID is. 2106 unsigned InstID = CstEnd; 2107 2108 bool NeedsMetadataAttachment = F.hasMetadata(); 2109 2110 DILocation *LastDL = nullptr; 2111 2112 // Finally, emit all the instructions, in order. 2113 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2114 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2115 I != E; ++I) { 2116 WriteInstruction(*I, InstID, VE, Stream, Vals); 2117 2118 if (!I->getType()->isVoidTy()) 2119 ++InstID; 2120 2121 // If the instruction has metadata, write a metadata attachment later. 2122 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2123 2124 // If the instruction has a debug location, emit it. 2125 DILocation *DL = I->getDebugLoc(); 2126 if (!DL) 2127 continue; 2128 2129 if (DL == LastDL) { 2130 // Just repeat the same debug loc as last time. 2131 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2132 continue; 2133 } 2134 2135 Vals.push_back(DL->getLine()); 2136 Vals.push_back(DL->getColumn()); 2137 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2138 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2139 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2140 Vals.clear(); 2141 2142 LastDL = DL; 2143 } 2144 2145 // Emit names for all the instructions etc. 2146 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2147 2148 if (NeedsMetadataAttachment) 2149 WriteMetadataAttachment(F, VE, Stream); 2150 if (VE.shouldPreserveUseListOrder()) 2151 WriteUseListBlock(&F, VE, Stream); 2152 VE.purgeFunction(); 2153 Stream.ExitBlock(); 2154 } 2155 2156 // Emit blockinfo, which defines the standard abbreviations etc. 2157 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2158 // We only want to emit block info records for blocks that have multiple 2159 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2160 // Other blocks can define their abbrevs inline. 2161 Stream.EnterBlockInfoBlock(2); 2162 2163 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2164 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2169 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2170 Abbv) != VST_ENTRY_8_ABBREV) 2171 llvm_unreachable("Unexpected abbrev ordering!"); 2172 } 2173 2174 { // 7-bit fixed width VST_ENTRY strings. 2175 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2176 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2180 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2181 Abbv) != VST_ENTRY_7_ABBREV) 2182 llvm_unreachable("Unexpected abbrev ordering!"); 2183 } 2184 { // 6-bit char6 VST_ENTRY strings. 2185 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2186 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2190 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2191 Abbv) != VST_ENTRY_6_ABBREV) 2192 llvm_unreachable("Unexpected abbrev ordering!"); 2193 } 2194 { // 6-bit char6 VST_BBENTRY strings. 2195 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2196 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2200 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2201 Abbv) != VST_BBENTRY_6_ABBREV) 2202 llvm_unreachable("Unexpected abbrev ordering!"); 2203 } 2204 2205 2206 2207 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2208 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2209 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2211 VE.computeBitsRequiredForTypeIndicies())); 2212 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2213 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2214 llvm_unreachable("Unexpected abbrev ordering!"); 2215 } 2216 2217 { // INTEGER abbrev for CONSTANTS_BLOCK. 2218 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2219 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2221 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2222 Abbv) != CONSTANTS_INTEGER_ABBREV) 2223 llvm_unreachable("Unexpected abbrev ordering!"); 2224 } 2225 2226 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2227 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2228 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2231 VE.computeBitsRequiredForTypeIndicies())); 2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2233 2234 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2235 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2236 llvm_unreachable("Unexpected abbrev ordering!"); 2237 } 2238 { // NULL abbrev for CONSTANTS_BLOCK. 2239 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2240 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2241 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2242 Abbv) != CONSTANTS_NULL_Abbrev) 2243 llvm_unreachable("Unexpected abbrev ordering!"); 2244 } 2245 2246 // FIXME: This should only use space for first class types! 2247 2248 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2249 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2250 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2253 VE.computeBitsRequiredForTypeIndicies())); 2254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2256 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2257 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2258 llvm_unreachable("Unexpected abbrev ordering!"); 2259 } 2260 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2261 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2262 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2266 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2267 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2268 llvm_unreachable("Unexpected abbrev ordering!"); 2269 } 2270 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2271 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2272 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2277 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2278 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2279 llvm_unreachable("Unexpected abbrev ordering!"); 2280 } 2281 { // INST_CAST abbrev for FUNCTION_BLOCK. 2282 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2283 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2286 VE.computeBitsRequiredForTypeIndicies())); 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2288 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2289 Abbv) != FUNCTION_INST_CAST_ABBREV) 2290 llvm_unreachable("Unexpected abbrev ordering!"); 2291 } 2292 2293 { // INST_RET abbrev for FUNCTION_BLOCK. 2294 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2295 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2296 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2297 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2298 llvm_unreachable("Unexpected abbrev ordering!"); 2299 } 2300 { // INST_RET abbrev for FUNCTION_BLOCK. 2301 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2302 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2304 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2305 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2306 llvm_unreachable("Unexpected abbrev ordering!"); 2307 } 2308 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2309 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2310 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2311 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2312 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2313 llvm_unreachable("Unexpected abbrev ordering!"); 2314 } 2315 { 2316 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2317 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2320 Log2_32_Ceil(VE.getTypes().size() + 1))); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2323 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2324 FUNCTION_INST_GEP_ABBREV) 2325 llvm_unreachable("Unexpected abbrev ordering!"); 2326 } 2327 2328 Stream.ExitBlock(); 2329 } 2330 2331 /// WriteModule - Emit the specified module to the bitstream. 2332 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2333 bool ShouldPreserveUseListOrder) { 2334 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2335 2336 SmallVector<unsigned, 1> Vals; 2337 unsigned CurVersion = 1; 2338 Vals.push_back(CurVersion); 2339 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2340 2341 // Analyze the module, enumerating globals, functions, etc. 2342 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2343 2344 // Emit blockinfo, which defines the standard abbreviations etc. 2345 WriteBlockInfo(VE, Stream); 2346 2347 // Emit information about attribute groups. 2348 WriteAttributeGroupTable(VE, Stream); 2349 2350 // Emit information about parameter attributes. 2351 WriteAttributeTable(VE, Stream); 2352 2353 // Emit information describing all of the types in the module. 2354 WriteTypeTable(VE, Stream); 2355 2356 writeComdats(VE, Stream); 2357 2358 // Emit top-level description of module, including target triple, inline asm, 2359 // descriptors for global variables, and function prototype info. 2360 WriteModuleInfo(M, VE, Stream); 2361 2362 // Emit constants. 2363 WriteModuleConstants(VE, Stream); 2364 2365 // Emit metadata. 2366 WriteModuleMetadata(M, VE, Stream); 2367 2368 // Emit metadata. 2369 WriteModuleMetadataStore(M, Stream); 2370 2371 // Emit names for globals/functions etc. 2372 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2373 2374 // Emit module-level use-lists. 2375 if (VE.shouldPreserveUseListOrder()) 2376 WriteUseListBlock(nullptr, VE, Stream); 2377 2378 // Emit function bodies. 2379 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2380 if (!F->isDeclaration()) 2381 WriteFunction(*F, VE, Stream); 2382 2383 Stream.ExitBlock(); 2384 } 2385 2386 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2387 /// header and trailer to make it compatible with the system archiver. To do 2388 /// this we emit the following header, and then emit a trailer that pads the 2389 /// file out to be a multiple of 16 bytes. 2390 /// 2391 /// struct bc_header { 2392 /// uint32_t Magic; // 0x0B17C0DE 2393 /// uint32_t Version; // Version, currently always 0. 2394 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2395 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2396 /// uint32_t CPUType; // CPU specifier. 2397 /// ... potentially more later ... 2398 /// }; 2399 enum { 2400 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2401 DarwinBCHeaderSize = 5*4 2402 }; 2403 2404 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2405 uint32_t &Position) { 2406 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2407 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2408 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2409 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2410 Position += 4; 2411 } 2412 2413 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2414 const Triple &TT) { 2415 unsigned CPUType = ~0U; 2416 2417 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2418 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2419 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2420 // specific constants here because they are implicitly part of the Darwin ABI. 2421 enum { 2422 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2423 DARWIN_CPU_TYPE_X86 = 7, 2424 DARWIN_CPU_TYPE_ARM = 12, 2425 DARWIN_CPU_TYPE_POWERPC = 18 2426 }; 2427 2428 Triple::ArchType Arch = TT.getArch(); 2429 if (Arch == Triple::x86_64) 2430 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2431 else if (Arch == Triple::x86) 2432 CPUType = DARWIN_CPU_TYPE_X86; 2433 else if (Arch == Triple::ppc) 2434 CPUType = DARWIN_CPU_TYPE_POWERPC; 2435 else if (Arch == Triple::ppc64) 2436 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2437 else if (Arch == Triple::arm || Arch == Triple::thumb) 2438 CPUType = DARWIN_CPU_TYPE_ARM; 2439 2440 // Traditional Bitcode starts after header. 2441 assert(Buffer.size() >= DarwinBCHeaderSize && 2442 "Expected header size to be reserved"); 2443 unsigned BCOffset = DarwinBCHeaderSize; 2444 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2445 2446 // Write the magic and version. 2447 unsigned Position = 0; 2448 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2449 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2450 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2451 WriteInt32ToBuffer(BCSize , Buffer, Position); 2452 WriteInt32ToBuffer(CPUType , Buffer, Position); 2453 2454 // If the file is not a multiple of 16 bytes, insert dummy padding. 2455 while (Buffer.size() & 15) 2456 Buffer.push_back(0); 2457 } 2458 2459 /// WriteBitcodeToFile - Write the specified module to the specified output 2460 /// stream. 2461 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2462 bool ShouldPreserveUseListOrder) { 2463 SmallVector<char, 0> Buffer; 2464 Buffer.reserve(256*1024); 2465 2466 // If this is darwin or another generic macho target, reserve space for the 2467 // header. 2468 Triple TT(M->getTargetTriple()); 2469 if (TT.isOSDarwin()) 2470 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2471 2472 // Emit the module into the buffer. 2473 { 2474 BitstreamWriter Stream(Buffer); 2475 2476 // Emit the file header. 2477 Stream.Emit((unsigned)'B', 8); 2478 Stream.Emit((unsigned)'C', 8); 2479 Stream.Emit(0x0, 4); 2480 Stream.Emit(0xC, 4); 2481 Stream.Emit(0xE, 4); 2482 Stream.Emit(0xD, 4); 2483 2484 // Emit the module. 2485 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2486 } 2487 2488 if (TT.isOSDarwin()) 2489 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2490 2491 // Write the generated bitstream to "Out". 2492 Out.write((char*)&Buffer.front(), Buffer.size()); 2493 } 2494