1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::Builtin: 166 return bitc::ATTR_KIND_BUILTIN; 167 case Attribute::ByVal: 168 return bitc::ATTR_KIND_BY_VAL; 169 case Attribute::Convergent: 170 return bitc::ATTR_KIND_CONVERGENT; 171 case Attribute::InAlloca: 172 return bitc::ATTR_KIND_IN_ALLOCA; 173 case Attribute::Cold: 174 return bitc::ATTR_KIND_COLD; 175 case Attribute::InlineHint: 176 return bitc::ATTR_KIND_INLINE_HINT; 177 case Attribute::InReg: 178 return bitc::ATTR_KIND_IN_REG; 179 case Attribute::JumpTable: 180 return bitc::ATTR_KIND_JUMP_TABLE; 181 case Attribute::MinSize: 182 return bitc::ATTR_KIND_MIN_SIZE; 183 case Attribute::Naked: 184 return bitc::ATTR_KIND_NAKED; 185 case Attribute::Nest: 186 return bitc::ATTR_KIND_NEST; 187 case Attribute::NoAlias: 188 return bitc::ATTR_KIND_NO_ALIAS; 189 case Attribute::NoBuiltin: 190 return bitc::ATTR_KIND_NO_BUILTIN; 191 case Attribute::NoCapture: 192 return bitc::ATTR_KIND_NO_CAPTURE; 193 case Attribute::NoDuplicate: 194 return bitc::ATTR_KIND_NO_DUPLICATE; 195 case Attribute::NoImplicitFloat: 196 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 197 case Attribute::NoInline: 198 return bitc::ATTR_KIND_NO_INLINE; 199 case Attribute::NonLazyBind: 200 return bitc::ATTR_KIND_NON_LAZY_BIND; 201 case Attribute::NonNull: 202 return bitc::ATTR_KIND_NON_NULL; 203 case Attribute::Dereferenceable: 204 return bitc::ATTR_KIND_DEREFERENCEABLE; 205 case Attribute::DereferenceableOrNull: 206 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 207 case Attribute::NoRedZone: 208 return bitc::ATTR_KIND_NO_RED_ZONE; 209 case Attribute::NoReturn: 210 return bitc::ATTR_KIND_NO_RETURN; 211 case Attribute::NoUnwind: 212 return bitc::ATTR_KIND_NO_UNWIND; 213 case Attribute::OptimizeForSize: 214 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 215 case Attribute::OptimizeNone: 216 return bitc::ATTR_KIND_OPTIMIZE_NONE; 217 case Attribute::ReadNone: 218 return bitc::ATTR_KIND_READ_NONE; 219 case Attribute::ReadOnly: 220 return bitc::ATTR_KIND_READ_ONLY; 221 case Attribute::Returned: 222 return bitc::ATTR_KIND_RETURNED; 223 case Attribute::ReturnsTwice: 224 return bitc::ATTR_KIND_RETURNS_TWICE; 225 case Attribute::SExt: 226 return bitc::ATTR_KIND_S_EXT; 227 case Attribute::StackAlignment: 228 return bitc::ATTR_KIND_STACK_ALIGNMENT; 229 case Attribute::StackProtect: 230 return bitc::ATTR_KIND_STACK_PROTECT; 231 case Attribute::StackProtectReq: 232 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 233 case Attribute::StackProtectStrong: 234 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 235 case Attribute::SafeStack: 236 return bitc::ATTR_KIND_SAFESTACK; 237 case Attribute::StructRet: 238 return bitc::ATTR_KIND_STRUCT_RET; 239 case Attribute::SanitizeAddress: 240 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 241 case Attribute::SanitizeThread: 242 return bitc::ATTR_KIND_SANITIZE_THREAD; 243 case Attribute::SanitizeMemory: 244 return bitc::ATTR_KIND_SANITIZE_MEMORY; 245 case Attribute::UWTable: 246 return bitc::ATTR_KIND_UW_TABLE; 247 case Attribute::ZExt: 248 return bitc::ATTR_KIND_Z_EXT; 249 case Attribute::EndAttrKinds: 250 llvm_unreachable("Can not encode end-attribute kinds marker."); 251 case Attribute::None: 252 llvm_unreachable("Can not encode none-attribute."); 253 } 254 255 llvm_unreachable("Trying to encode unknown attribute"); 256 } 257 258 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 259 BitstreamWriter &Stream) { 260 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 261 if (AttrGrps.empty()) return; 262 263 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 264 265 SmallVector<uint64_t, 64> Record; 266 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 267 AttributeSet AS = AttrGrps[i]; 268 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 269 AttributeSet A = AS.getSlotAttributes(i); 270 271 Record.push_back(VE.getAttributeGroupID(A)); 272 Record.push_back(AS.getSlotIndex(i)); 273 274 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 275 I != E; ++I) { 276 Attribute Attr = *I; 277 if (Attr.isEnumAttribute()) { 278 Record.push_back(0); 279 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 280 } else if (Attr.isIntAttribute()) { 281 Record.push_back(1); 282 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 283 Record.push_back(Attr.getValueAsInt()); 284 } else { 285 StringRef Kind = Attr.getKindAsString(); 286 StringRef Val = Attr.getValueAsString(); 287 288 Record.push_back(Val.empty() ? 3 : 4); 289 Record.append(Kind.begin(), Kind.end()); 290 Record.push_back(0); 291 if (!Val.empty()) { 292 Record.append(Val.begin(), Val.end()); 293 Record.push_back(0); 294 } 295 } 296 } 297 298 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 299 Record.clear(); 300 } 301 } 302 303 Stream.ExitBlock(); 304 } 305 306 static void WriteAttributeTable(const ValueEnumerator &VE, 307 BitstreamWriter &Stream) { 308 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 309 if (Attrs.empty()) return; 310 311 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 312 313 SmallVector<uint64_t, 64> Record; 314 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 315 const AttributeSet &A = Attrs[i]; 316 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 317 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 318 319 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 320 Record.clear(); 321 } 322 323 Stream.ExitBlock(); 324 } 325 326 /// WriteTypeTable - Write out the type table for a module. 327 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 328 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 329 330 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 331 SmallVector<uint64_t, 64> TypeVals; 332 333 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 334 335 // Abbrev for TYPE_CODE_POINTER. 336 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 339 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 340 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 341 342 // Abbrev for TYPE_CODE_FUNCTION. 343 Abbv = new BitCodeAbbrev(); 344 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 348 349 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 350 351 // Abbrev for TYPE_CODE_STRUCT_ANON. 352 Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 357 358 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAME. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 365 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 366 367 // Abbrev for TYPE_CODE_STRUCT_NAMED. 368 Abbv = new BitCodeAbbrev(); 369 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Abbrev for TYPE_CODE_ARRAY. 377 Abbv = new BitCodeAbbrev(); 378 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 381 382 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Emit an entry count so the reader can reserve space. 385 TypeVals.push_back(TypeList.size()); 386 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 387 TypeVals.clear(); 388 389 // Loop over all of the types, emitting each in turn. 390 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 391 Type *T = TypeList[i]; 392 int AbbrevToUse = 0; 393 unsigned Code = 0; 394 395 switch (T->getTypeID()) { 396 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 397 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 398 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 399 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 400 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 401 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 402 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 403 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 404 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 405 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 406 case Type::IntegerTyID: 407 // INTEGER: [width] 408 Code = bitc::TYPE_CODE_INTEGER; 409 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 410 break; 411 case Type::PointerTyID: { 412 PointerType *PTy = cast<PointerType>(T); 413 // POINTER: [pointee type, address space] 414 Code = bitc::TYPE_CODE_POINTER; 415 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 416 unsigned AddressSpace = PTy->getAddressSpace(); 417 TypeVals.push_back(AddressSpace); 418 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 419 break; 420 } 421 case Type::FunctionTyID: { 422 FunctionType *FT = cast<FunctionType>(T); 423 // FUNCTION: [isvararg, retty, paramty x N] 424 Code = bitc::TYPE_CODE_FUNCTION; 425 TypeVals.push_back(FT->isVarArg()); 426 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 427 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 428 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 429 AbbrevToUse = FunctionAbbrev; 430 break; 431 } 432 case Type::StructTyID: { 433 StructType *ST = cast<StructType>(T); 434 // STRUCT: [ispacked, eltty x N] 435 TypeVals.push_back(ST->isPacked()); 436 // Output all of the element types. 437 for (StructType::element_iterator I = ST->element_begin(), 438 E = ST->element_end(); I != E; ++I) 439 TypeVals.push_back(VE.getTypeID(*I)); 440 441 if (ST->isLiteral()) { 442 Code = bitc::TYPE_CODE_STRUCT_ANON; 443 AbbrevToUse = StructAnonAbbrev; 444 } else { 445 if (ST->isOpaque()) { 446 Code = bitc::TYPE_CODE_OPAQUE; 447 } else { 448 Code = bitc::TYPE_CODE_STRUCT_NAMED; 449 AbbrevToUse = StructNamedAbbrev; 450 } 451 452 // Emit the name if it is present. 453 if (!ST->getName().empty()) 454 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 455 StructNameAbbrev, Stream); 456 } 457 break; 458 } 459 case Type::ArrayTyID: { 460 ArrayType *AT = cast<ArrayType>(T); 461 // ARRAY: [numelts, eltty] 462 Code = bitc::TYPE_CODE_ARRAY; 463 TypeVals.push_back(AT->getNumElements()); 464 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 465 AbbrevToUse = ArrayAbbrev; 466 break; 467 } 468 case Type::VectorTyID: { 469 VectorType *VT = cast<VectorType>(T); 470 // VECTOR [numelts, eltty] 471 Code = bitc::TYPE_CODE_VECTOR; 472 TypeVals.push_back(VT->getNumElements()); 473 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 474 break; 475 } 476 } 477 478 // Emit the finished record. 479 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 480 TypeVals.clear(); 481 } 482 483 Stream.ExitBlock(); 484 } 485 486 static unsigned getEncodedLinkage(const GlobalValue &GV) { 487 switch (GV.getLinkage()) { 488 case GlobalValue::ExternalLinkage: 489 return 0; 490 case GlobalValue::WeakAnyLinkage: 491 return 16; 492 case GlobalValue::AppendingLinkage: 493 return 2; 494 case GlobalValue::InternalLinkage: 495 return 3; 496 case GlobalValue::LinkOnceAnyLinkage: 497 return 18; 498 case GlobalValue::ExternalWeakLinkage: 499 return 7; 500 case GlobalValue::CommonLinkage: 501 return 8; 502 case GlobalValue::PrivateLinkage: 503 return 9; 504 case GlobalValue::WeakODRLinkage: 505 return 17; 506 case GlobalValue::LinkOnceODRLinkage: 507 return 19; 508 case GlobalValue::AvailableExternallyLinkage: 509 return 12; 510 } 511 llvm_unreachable("Invalid linkage"); 512 } 513 514 static unsigned getEncodedVisibility(const GlobalValue &GV) { 515 switch (GV.getVisibility()) { 516 case GlobalValue::DefaultVisibility: return 0; 517 case GlobalValue::HiddenVisibility: return 1; 518 case GlobalValue::ProtectedVisibility: return 2; 519 } 520 llvm_unreachable("Invalid visibility"); 521 } 522 523 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 524 switch (GV.getDLLStorageClass()) { 525 case GlobalValue::DefaultStorageClass: return 0; 526 case GlobalValue::DLLImportStorageClass: return 1; 527 case GlobalValue::DLLExportStorageClass: return 2; 528 } 529 llvm_unreachable("Invalid DLL storage class"); 530 } 531 532 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 533 switch (GV.getThreadLocalMode()) { 534 case GlobalVariable::NotThreadLocal: return 0; 535 case GlobalVariable::GeneralDynamicTLSModel: return 1; 536 case GlobalVariable::LocalDynamicTLSModel: return 2; 537 case GlobalVariable::InitialExecTLSModel: return 3; 538 case GlobalVariable::LocalExecTLSModel: return 4; 539 } 540 llvm_unreachable("Invalid TLS model"); 541 } 542 543 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 544 switch (C.getSelectionKind()) { 545 case Comdat::Any: 546 return bitc::COMDAT_SELECTION_KIND_ANY; 547 case Comdat::ExactMatch: 548 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 549 case Comdat::Largest: 550 return bitc::COMDAT_SELECTION_KIND_LARGEST; 551 case Comdat::NoDuplicates: 552 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 553 case Comdat::SameSize: 554 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 555 } 556 llvm_unreachable("Invalid selection kind"); 557 } 558 559 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 560 SmallVector<uint16_t, 64> Vals; 561 for (const Comdat *C : VE.getComdats()) { 562 // COMDAT: [selection_kind, name] 563 Vals.push_back(getEncodedComdatSelectionKind(*C)); 564 size_t Size = C->getName().size(); 565 assert(isUInt<16>(Size)); 566 Vals.push_back(Size); 567 for (char Chr : C->getName()) 568 Vals.push_back((unsigned char)Chr); 569 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 570 Vals.clear(); 571 } 572 } 573 574 // Emit top-level description of module, including target triple, inline asm, 575 // descriptors for global variables, and function prototype info. 576 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 577 BitstreamWriter &Stream) { 578 // Emit various pieces of data attached to a module. 579 if (!M->getTargetTriple().empty()) 580 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 581 0/*TODO*/, Stream); 582 const std::string &DL = M->getDataLayoutStr(); 583 if (!DL.empty()) 584 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 585 if (!M->getModuleInlineAsm().empty()) 586 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 587 0/*TODO*/, Stream); 588 589 // Emit information about sections and GC, computing how many there are. Also 590 // compute the maximum alignment value. 591 std::map<std::string, unsigned> SectionMap; 592 std::map<std::string, unsigned> GCMap; 593 unsigned MaxAlignment = 0; 594 unsigned MaxGlobalType = 0; 595 for (const GlobalValue &GV : M->globals()) { 596 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 597 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 598 if (GV.hasSection()) { 599 // Give section names unique ID's. 600 unsigned &Entry = SectionMap[GV.getSection()]; 601 if (!Entry) { 602 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 603 0/*TODO*/, Stream); 604 Entry = SectionMap.size(); 605 } 606 } 607 } 608 for (const Function &F : *M) { 609 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 610 if (F.hasSection()) { 611 // Give section names unique ID's. 612 unsigned &Entry = SectionMap[F.getSection()]; 613 if (!Entry) { 614 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 615 0/*TODO*/, Stream); 616 Entry = SectionMap.size(); 617 } 618 } 619 if (F.hasGC()) { 620 // Same for GC names. 621 unsigned &Entry = GCMap[F.getGC()]; 622 if (!Entry) { 623 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 624 0/*TODO*/, Stream); 625 Entry = GCMap.size(); 626 } 627 } 628 } 629 630 // Emit abbrev for globals, now that we know # sections and max alignment. 631 unsigned SimpleGVarAbbrev = 0; 632 if (!M->global_empty()) { 633 // Add an abbrev for common globals with no visibility or thread localness. 634 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 635 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 637 Log2_32_Ceil(MaxGlobalType+1))); 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 639 //| explicitType << 1 640 //| constant 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 643 if (MaxAlignment == 0) // Alignment. 644 Abbv->Add(BitCodeAbbrevOp(0)); 645 else { 646 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 648 Log2_32_Ceil(MaxEncAlignment+1))); 649 } 650 if (SectionMap.empty()) // Section. 651 Abbv->Add(BitCodeAbbrevOp(0)); 652 else 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 654 Log2_32_Ceil(SectionMap.size()+1))); 655 // Don't bother emitting vis + thread local. 656 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 657 } 658 659 // Emit the global variable information. 660 SmallVector<unsigned, 64> Vals; 661 for (const GlobalVariable &GV : M->globals()) { 662 unsigned AbbrevToUse = 0; 663 664 // GLOBALVAR: [type, isconst, initid, 665 // linkage, alignment, section, visibility, threadlocal, 666 // unnamed_addr, externally_initialized, dllstorageclass, 667 // comdat] 668 Vals.push_back(VE.getTypeID(GV.getValueType())); 669 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 670 Vals.push_back(GV.isDeclaration() ? 0 : 671 (VE.getValueID(GV.getInitializer()) + 1)); 672 Vals.push_back(getEncodedLinkage(GV)); 673 Vals.push_back(Log2_32(GV.getAlignment())+1); 674 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 675 if (GV.isThreadLocal() || 676 GV.getVisibility() != GlobalValue::DefaultVisibility || 677 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 678 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 679 GV.hasComdat()) { 680 Vals.push_back(getEncodedVisibility(GV)); 681 Vals.push_back(getEncodedThreadLocalMode(GV)); 682 Vals.push_back(GV.hasUnnamedAddr()); 683 Vals.push_back(GV.isExternallyInitialized()); 684 Vals.push_back(getEncodedDLLStorageClass(GV)); 685 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 686 } else { 687 AbbrevToUse = SimpleGVarAbbrev; 688 } 689 690 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 691 Vals.clear(); 692 } 693 694 // Emit the function proto information. 695 for (const Function &F : *M) { 696 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 697 // section, visibility, gc, unnamed_addr, prologuedata, 698 // dllstorageclass, comdat, prefixdata] 699 Vals.push_back(VE.getTypeID(F.getFunctionType())); 700 Vals.push_back(F.getCallingConv()); 701 Vals.push_back(F.isDeclaration()); 702 Vals.push_back(getEncodedLinkage(F)); 703 Vals.push_back(VE.getAttributeID(F.getAttributes())); 704 Vals.push_back(Log2_32(F.getAlignment())+1); 705 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 706 Vals.push_back(getEncodedVisibility(F)); 707 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 708 Vals.push_back(F.hasUnnamedAddr()); 709 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 710 : 0); 711 Vals.push_back(getEncodedDLLStorageClass(F)); 712 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 713 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 714 : 0); 715 716 unsigned AbbrevToUse = 0; 717 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 718 Vals.clear(); 719 } 720 721 // Emit the alias information. 722 for (const GlobalAlias &A : M->aliases()) { 723 // ALIAS: [alias type, aliasee val#, linkage, visibility] 724 Vals.push_back(VE.getTypeID(A.getType())); 725 Vals.push_back(VE.getValueID(A.getAliasee())); 726 Vals.push_back(getEncodedLinkage(A)); 727 Vals.push_back(getEncodedVisibility(A)); 728 Vals.push_back(getEncodedDLLStorageClass(A)); 729 Vals.push_back(getEncodedThreadLocalMode(A)); 730 Vals.push_back(A.hasUnnamedAddr()); 731 unsigned AbbrevToUse = 0; 732 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 733 Vals.clear(); 734 } 735 } 736 737 static uint64_t GetOptimizationFlags(const Value *V) { 738 uint64_t Flags = 0; 739 740 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 741 if (OBO->hasNoSignedWrap()) 742 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 743 if (OBO->hasNoUnsignedWrap()) 744 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 745 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 746 if (PEO->isExact()) 747 Flags |= 1 << bitc::PEO_EXACT; 748 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 749 if (FPMO->hasUnsafeAlgebra()) 750 Flags |= FastMathFlags::UnsafeAlgebra; 751 if (FPMO->hasNoNaNs()) 752 Flags |= FastMathFlags::NoNaNs; 753 if (FPMO->hasNoInfs()) 754 Flags |= FastMathFlags::NoInfs; 755 if (FPMO->hasNoSignedZeros()) 756 Flags |= FastMathFlags::NoSignedZeros; 757 if (FPMO->hasAllowReciprocal()) 758 Flags |= FastMathFlags::AllowReciprocal; 759 } 760 761 return Flags; 762 } 763 764 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 765 const ValueEnumerator &VE, 766 BitstreamWriter &Stream, 767 SmallVectorImpl<uint64_t> &Record) { 768 // Mimic an MDNode with a value as one operand. 769 Value *V = MD->getValue(); 770 Record.push_back(VE.getTypeID(V->getType())); 771 Record.push_back(VE.getValueID(V)); 772 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 773 Record.clear(); 774 } 775 776 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 777 BitstreamWriter &Stream, 778 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 779 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 780 Metadata *MD = N->getOperand(i); 781 assert(!(MD && isa<LocalAsMetadata>(MD)) && 782 "Unexpected function-local metadata"); 783 Record.push_back(VE.getMetadataOrNullID(MD)); 784 } 785 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 786 : bitc::METADATA_NODE, 787 Record, Abbrev); 788 Record.clear(); 789 } 790 791 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 792 BitstreamWriter &Stream, 793 SmallVectorImpl<uint64_t> &Record, 794 unsigned Abbrev) { 795 Record.push_back(N->isDistinct()); 796 Record.push_back(N->getLine()); 797 Record.push_back(N->getColumn()); 798 Record.push_back(VE.getMetadataID(N->getScope())); 799 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 800 801 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 802 Record.clear(); 803 } 804 805 static void WriteGenericDINode(const GenericDINode *N, 806 const ValueEnumerator &VE, 807 BitstreamWriter &Stream, 808 SmallVectorImpl<uint64_t> &Record, 809 unsigned Abbrev) { 810 Record.push_back(N->isDistinct()); 811 Record.push_back(N->getTag()); 812 Record.push_back(0); // Per-tag version field; unused for now. 813 814 for (auto &I : N->operands()) 815 Record.push_back(VE.getMetadataOrNullID(I)); 816 817 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 818 Record.clear(); 819 } 820 821 static uint64_t rotateSign(int64_t I) { 822 uint64_t U = I; 823 return I < 0 ? ~(U << 1) : U << 1; 824 } 825 826 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 827 BitstreamWriter &Stream, 828 SmallVectorImpl<uint64_t> &Record, 829 unsigned Abbrev) { 830 Record.push_back(N->isDistinct()); 831 Record.push_back(N->getCount()); 832 Record.push_back(rotateSign(N->getLowerBound())); 833 834 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 835 Record.clear(); 836 } 837 838 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 839 BitstreamWriter &Stream, 840 SmallVectorImpl<uint64_t> &Record, 841 unsigned Abbrev) { 842 Record.push_back(N->isDistinct()); 843 Record.push_back(rotateSign(N->getValue())); 844 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 845 846 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 847 Record.clear(); 848 } 849 850 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 851 BitstreamWriter &Stream, 852 SmallVectorImpl<uint64_t> &Record, 853 unsigned Abbrev) { 854 Record.push_back(N->isDistinct()); 855 Record.push_back(N->getTag()); 856 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 857 Record.push_back(N->getSizeInBits()); 858 Record.push_back(N->getAlignInBits()); 859 Record.push_back(N->getEncoding()); 860 861 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 862 Record.clear(); 863 } 864 865 static void WriteDIDerivedType(const DIDerivedType *N, 866 const ValueEnumerator &VE, 867 BitstreamWriter &Stream, 868 SmallVectorImpl<uint64_t> &Record, 869 unsigned Abbrev) { 870 Record.push_back(N->isDistinct()); 871 Record.push_back(N->getTag()); 872 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 873 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 874 Record.push_back(N->getLine()); 875 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 876 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 877 Record.push_back(N->getSizeInBits()); 878 Record.push_back(N->getAlignInBits()); 879 Record.push_back(N->getOffsetInBits()); 880 Record.push_back(N->getFlags()); 881 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 882 883 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 884 Record.clear(); 885 } 886 887 static void WriteDICompositeType(const DICompositeType *N, 888 const ValueEnumerator &VE, 889 BitstreamWriter &Stream, 890 SmallVectorImpl<uint64_t> &Record, 891 unsigned Abbrev) { 892 Record.push_back(N->isDistinct()); 893 Record.push_back(N->getTag()); 894 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 895 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 896 Record.push_back(N->getLine()); 897 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 898 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 899 Record.push_back(N->getSizeInBits()); 900 Record.push_back(N->getAlignInBits()); 901 Record.push_back(N->getOffsetInBits()); 902 Record.push_back(N->getFlags()); 903 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 904 Record.push_back(N->getRuntimeLang()); 905 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 906 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 907 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 908 909 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 910 Record.clear(); 911 } 912 913 static void WriteDISubroutineType(const DISubroutineType *N, 914 const ValueEnumerator &VE, 915 BitstreamWriter &Stream, 916 SmallVectorImpl<uint64_t> &Record, 917 unsigned Abbrev) { 918 Record.push_back(N->isDistinct()); 919 Record.push_back(N->getFlags()); 920 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 921 922 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 923 Record.clear(); 924 } 925 926 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 927 BitstreamWriter &Stream, 928 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 929 Record.push_back(N->isDistinct()); 930 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 931 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 932 933 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 934 Record.clear(); 935 } 936 937 static void WriteDICompileUnit(const DICompileUnit *N, 938 const ValueEnumerator &VE, 939 BitstreamWriter &Stream, 940 SmallVectorImpl<uint64_t> &Record, 941 unsigned Abbrev) { 942 Record.push_back(N->isDistinct()); 943 Record.push_back(N->getSourceLanguage()); 944 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 945 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 946 Record.push_back(N->isOptimized()); 947 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 948 Record.push_back(N->getRuntimeVersion()); 949 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 950 Record.push_back(N->getEmissionKind()); 951 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 952 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 953 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 954 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 955 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 956 Record.push_back(N->getDWOId()); 957 958 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 959 Record.clear(); 960 } 961 962 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 963 BitstreamWriter &Stream, 964 SmallVectorImpl<uint64_t> &Record, 965 unsigned Abbrev) { 966 Record.push_back(N->isDistinct()); 967 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 968 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 969 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 970 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 971 Record.push_back(N->getLine()); 972 Record.push_back(VE.getMetadataOrNullID(N->getType())); 973 Record.push_back(N->isLocalToUnit()); 974 Record.push_back(N->isDefinition()); 975 Record.push_back(N->getScopeLine()); 976 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 977 Record.push_back(N->getVirtuality()); 978 Record.push_back(N->getVirtualIndex()); 979 Record.push_back(N->getFlags()); 980 Record.push_back(N->isOptimized()); 981 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 982 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 983 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 984 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 985 986 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 987 Record.clear(); 988 } 989 990 static void WriteDILexicalBlock(const DILexicalBlock *N, 991 const ValueEnumerator &VE, 992 BitstreamWriter &Stream, 993 SmallVectorImpl<uint64_t> &Record, 994 unsigned Abbrev) { 995 Record.push_back(N->isDistinct()); 996 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 997 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 998 Record.push_back(N->getLine()); 999 Record.push_back(N->getColumn()); 1000 1001 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1002 Record.clear(); 1003 } 1004 1005 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1006 const ValueEnumerator &VE, 1007 BitstreamWriter &Stream, 1008 SmallVectorImpl<uint64_t> &Record, 1009 unsigned Abbrev) { 1010 Record.push_back(N->isDistinct()); 1011 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1012 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1013 Record.push_back(N->getDiscriminator()); 1014 1015 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1016 Record.clear(); 1017 } 1018 1019 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1020 BitstreamWriter &Stream, 1021 SmallVectorImpl<uint64_t> &Record, 1022 unsigned Abbrev) { 1023 Record.push_back(N->isDistinct()); 1024 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1025 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1026 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1027 Record.push_back(N->getLine()); 1028 1029 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1030 Record.clear(); 1031 } 1032 1033 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1034 const ValueEnumerator &VE, 1035 BitstreamWriter &Stream, 1036 SmallVectorImpl<uint64_t> &Record, 1037 unsigned Abbrev) { 1038 Record.push_back(N->isDistinct()); 1039 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1040 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1041 1042 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1043 Record.clear(); 1044 } 1045 1046 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1047 const ValueEnumerator &VE, 1048 BitstreamWriter &Stream, 1049 SmallVectorImpl<uint64_t> &Record, 1050 unsigned Abbrev) { 1051 Record.push_back(N->isDistinct()); 1052 Record.push_back(N->getTag()); 1053 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1054 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1055 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1056 1057 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1058 Record.clear(); 1059 } 1060 1061 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1062 const ValueEnumerator &VE, 1063 BitstreamWriter &Stream, 1064 SmallVectorImpl<uint64_t> &Record, 1065 unsigned Abbrev) { 1066 Record.push_back(N->isDistinct()); 1067 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1068 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1069 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1070 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1071 Record.push_back(N->getLine()); 1072 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1073 Record.push_back(N->isLocalToUnit()); 1074 Record.push_back(N->isDefinition()); 1075 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1076 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1077 1078 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1079 Record.clear(); 1080 } 1081 1082 static void WriteDILocalVariable(const DILocalVariable *N, 1083 const ValueEnumerator &VE, 1084 BitstreamWriter &Stream, 1085 SmallVectorImpl<uint64_t> &Record, 1086 unsigned Abbrev) { 1087 Record.push_back(N->isDistinct()); 1088 Record.push_back(N->getTag()); 1089 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1090 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1091 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1092 Record.push_back(N->getLine()); 1093 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1094 Record.push_back(N->getArg()); 1095 Record.push_back(N->getFlags()); 1096 1097 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1098 Record.clear(); 1099 } 1100 1101 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1102 BitstreamWriter &Stream, 1103 SmallVectorImpl<uint64_t> &Record, 1104 unsigned Abbrev) { 1105 Record.reserve(N->getElements().size() + 1); 1106 1107 Record.push_back(N->isDistinct()); 1108 Record.append(N->elements_begin(), N->elements_end()); 1109 1110 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1111 Record.clear(); 1112 } 1113 1114 static void WriteDIObjCProperty(const DIObjCProperty *N, 1115 const ValueEnumerator &VE, 1116 BitstreamWriter &Stream, 1117 SmallVectorImpl<uint64_t> &Record, 1118 unsigned Abbrev) { 1119 Record.push_back(N->isDistinct()); 1120 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1121 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1122 Record.push_back(N->getLine()); 1123 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1124 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1125 Record.push_back(N->getAttributes()); 1126 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1127 1128 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1129 Record.clear(); 1130 } 1131 1132 static void WriteDIImportedEntity(const DIImportedEntity *N, 1133 const ValueEnumerator &VE, 1134 BitstreamWriter &Stream, 1135 SmallVectorImpl<uint64_t> &Record, 1136 unsigned Abbrev) { 1137 Record.push_back(N->isDistinct()); 1138 Record.push_back(N->getTag()); 1139 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1140 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1141 Record.push_back(N->getLine()); 1142 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1143 1144 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1145 Record.clear(); 1146 } 1147 1148 static void WriteModuleMetadata(const Module *M, 1149 const ValueEnumerator &VE, 1150 BitstreamWriter &Stream) { 1151 const auto &MDs = VE.getMDs(); 1152 if (MDs.empty() && M->named_metadata_empty()) 1153 return; 1154 1155 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1156 1157 unsigned MDSAbbrev = 0; 1158 if (VE.hasMDString()) { 1159 // Abbrev for METADATA_STRING. 1160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1161 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1164 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1165 } 1166 1167 // Initialize MDNode abbreviations. 1168 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1169 #include "llvm/IR/Metadata.def" 1170 1171 if (VE.hasDILocation()) { 1172 // Abbrev for METADATA_LOCATION. 1173 // 1174 // Assume the column is usually under 128, and always output the inlined-at 1175 // location (it's never more expensive than building an array size 1). 1176 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1177 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1183 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1184 } 1185 1186 if (VE.hasGenericDINode()) { 1187 // Abbrev for METADATA_GENERIC_DEBUG. 1188 // 1189 // Assume the column is usually under 128, and always output the inlined-at 1190 // location (it's never more expensive than building an array size 1). 1191 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1192 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1199 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1200 } 1201 1202 unsigned NameAbbrev = 0; 1203 if (!M->named_metadata_empty()) { 1204 // Abbrev for METADATA_NAME. 1205 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1206 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1209 NameAbbrev = Stream.EmitAbbrev(Abbv); 1210 } 1211 1212 SmallVector<uint64_t, 64> Record; 1213 for (const Metadata *MD : MDs) { 1214 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1215 assert(N->isResolved() && "Expected forward references to be resolved"); 1216 1217 switch (N->getMetadataID()) { 1218 default: 1219 llvm_unreachable("Invalid MDNode subclass"); 1220 #define HANDLE_MDNODE_LEAF(CLASS) \ 1221 case Metadata::CLASS##Kind: \ 1222 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1223 continue; 1224 #include "llvm/IR/Metadata.def" 1225 } 1226 } 1227 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1228 WriteValueAsMetadata(MDC, VE, Stream, Record); 1229 continue; 1230 } 1231 const MDString *MDS = cast<MDString>(MD); 1232 // Code: [strchar x N] 1233 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1234 1235 // Emit the finished record. 1236 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1237 Record.clear(); 1238 } 1239 1240 // Write named metadata. 1241 for (const NamedMDNode &NMD : M->named_metadata()) { 1242 // Write name. 1243 StringRef Str = NMD.getName(); 1244 Record.append(Str.bytes_begin(), Str.bytes_end()); 1245 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1246 Record.clear(); 1247 1248 // Write named metadata operands. 1249 for (const MDNode *N : NMD.operands()) 1250 Record.push_back(VE.getMetadataID(N)); 1251 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1252 Record.clear(); 1253 } 1254 1255 Stream.ExitBlock(); 1256 } 1257 1258 static void WriteFunctionLocalMetadata(const Function &F, 1259 const ValueEnumerator &VE, 1260 BitstreamWriter &Stream) { 1261 bool StartedMetadataBlock = false; 1262 SmallVector<uint64_t, 64> Record; 1263 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1264 VE.getFunctionLocalMDs(); 1265 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1266 assert(MDs[i] && "Expected valid function-local metadata"); 1267 if (!StartedMetadataBlock) { 1268 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1269 StartedMetadataBlock = true; 1270 } 1271 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1272 } 1273 1274 if (StartedMetadataBlock) 1275 Stream.ExitBlock(); 1276 } 1277 1278 static void WriteMetadataAttachment(const Function &F, 1279 const ValueEnumerator &VE, 1280 BitstreamWriter &Stream) { 1281 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1282 1283 SmallVector<uint64_t, 64> Record; 1284 1285 // Write metadata attachments 1286 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1287 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1288 F.getAllMetadata(MDs); 1289 if (!MDs.empty()) { 1290 for (const auto &I : MDs) { 1291 Record.push_back(I.first); 1292 Record.push_back(VE.getMetadataID(I.second)); 1293 } 1294 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1295 Record.clear(); 1296 } 1297 1298 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1299 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1300 I != E; ++I) { 1301 MDs.clear(); 1302 I->getAllMetadataOtherThanDebugLoc(MDs); 1303 1304 // If no metadata, ignore instruction. 1305 if (MDs.empty()) continue; 1306 1307 Record.push_back(VE.getInstructionID(I)); 1308 1309 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1310 Record.push_back(MDs[i].first); 1311 Record.push_back(VE.getMetadataID(MDs[i].second)); 1312 } 1313 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1314 Record.clear(); 1315 } 1316 1317 Stream.ExitBlock(); 1318 } 1319 1320 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1321 SmallVector<uint64_t, 64> Record; 1322 1323 // Write metadata kinds 1324 // METADATA_KIND - [n x [id, name]] 1325 SmallVector<StringRef, 8> Names; 1326 M->getMDKindNames(Names); 1327 1328 if (Names.empty()) return; 1329 1330 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1331 1332 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1333 Record.push_back(MDKindID); 1334 StringRef KName = Names[MDKindID]; 1335 Record.append(KName.begin(), KName.end()); 1336 1337 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1338 Record.clear(); 1339 } 1340 1341 Stream.ExitBlock(); 1342 } 1343 1344 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1345 if ((int64_t)V >= 0) 1346 Vals.push_back(V << 1); 1347 else 1348 Vals.push_back((-V << 1) | 1); 1349 } 1350 1351 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1352 const ValueEnumerator &VE, 1353 BitstreamWriter &Stream, bool isGlobal) { 1354 if (FirstVal == LastVal) return; 1355 1356 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1357 1358 unsigned AggregateAbbrev = 0; 1359 unsigned String8Abbrev = 0; 1360 unsigned CString7Abbrev = 0; 1361 unsigned CString6Abbrev = 0; 1362 // If this is a constant pool for the module, emit module-specific abbrevs. 1363 if (isGlobal) { 1364 // Abbrev for CST_CODE_AGGREGATE. 1365 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1366 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1369 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1370 1371 // Abbrev for CST_CODE_STRING. 1372 Abbv = new BitCodeAbbrev(); 1373 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1376 String8Abbrev = Stream.EmitAbbrev(Abbv); 1377 // Abbrev for CST_CODE_CSTRING. 1378 Abbv = new BitCodeAbbrev(); 1379 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1382 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1383 // Abbrev for CST_CODE_CSTRING. 1384 Abbv = new BitCodeAbbrev(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1388 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1389 } 1390 1391 SmallVector<uint64_t, 64> Record; 1392 1393 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1394 Type *LastTy = nullptr; 1395 for (unsigned i = FirstVal; i != LastVal; ++i) { 1396 const Value *V = Vals[i].first; 1397 // If we need to switch types, do so now. 1398 if (V->getType() != LastTy) { 1399 LastTy = V->getType(); 1400 Record.push_back(VE.getTypeID(LastTy)); 1401 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1402 CONSTANTS_SETTYPE_ABBREV); 1403 Record.clear(); 1404 } 1405 1406 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1407 Record.push_back(unsigned(IA->hasSideEffects()) | 1408 unsigned(IA->isAlignStack()) << 1 | 1409 unsigned(IA->getDialect()&1) << 2); 1410 1411 // Add the asm string. 1412 const std::string &AsmStr = IA->getAsmString(); 1413 Record.push_back(AsmStr.size()); 1414 Record.append(AsmStr.begin(), AsmStr.end()); 1415 1416 // Add the constraint string. 1417 const std::string &ConstraintStr = IA->getConstraintString(); 1418 Record.push_back(ConstraintStr.size()); 1419 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1420 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1421 Record.clear(); 1422 continue; 1423 } 1424 const Constant *C = cast<Constant>(V); 1425 unsigned Code = -1U; 1426 unsigned AbbrevToUse = 0; 1427 if (C->isNullValue()) { 1428 Code = bitc::CST_CODE_NULL; 1429 } else if (isa<UndefValue>(C)) { 1430 Code = bitc::CST_CODE_UNDEF; 1431 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1432 if (IV->getBitWidth() <= 64) { 1433 uint64_t V = IV->getSExtValue(); 1434 emitSignedInt64(Record, V); 1435 Code = bitc::CST_CODE_INTEGER; 1436 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1437 } else { // Wide integers, > 64 bits in size. 1438 // We have an arbitrary precision integer value to write whose 1439 // bit width is > 64. However, in canonical unsigned integer 1440 // format it is likely that the high bits are going to be zero. 1441 // So, we only write the number of active words. 1442 unsigned NWords = IV->getValue().getActiveWords(); 1443 const uint64_t *RawWords = IV->getValue().getRawData(); 1444 for (unsigned i = 0; i != NWords; ++i) { 1445 emitSignedInt64(Record, RawWords[i]); 1446 } 1447 Code = bitc::CST_CODE_WIDE_INTEGER; 1448 } 1449 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1450 Code = bitc::CST_CODE_FLOAT; 1451 Type *Ty = CFP->getType(); 1452 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1453 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1454 } else if (Ty->isX86_FP80Ty()) { 1455 // api needed to prevent premature destruction 1456 // bits are not in the same order as a normal i80 APInt, compensate. 1457 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1458 const uint64_t *p = api.getRawData(); 1459 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1460 Record.push_back(p[0] & 0xffffLL); 1461 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1462 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1463 const uint64_t *p = api.getRawData(); 1464 Record.push_back(p[0]); 1465 Record.push_back(p[1]); 1466 } else { 1467 assert (0 && "Unknown FP type!"); 1468 } 1469 } else if (isa<ConstantDataSequential>(C) && 1470 cast<ConstantDataSequential>(C)->isString()) { 1471 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1472 // Emit constant strings specially. 1473 unsigned NumElts = Str->getNumElements(); 1474 // If this is a null-terminated string, use the denser CSTRING encoding. 1475 if (Str->isCString()) { 1476 Code = bitc::CST_CODE_CSTRING; 1477 --NumElts; // Don't encode the null, which isn't allowed by char6. 1478 } else { 1479 Code = bitc::CST_CODE_STRING; 1480 AbbrevToUse = String8Abbrev; 1481 } 1482 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1483 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1484 for (unsigned i = 0; i != NumElts; ++i) { 1485 unsigned char V = Str->getElementAsInteger(i); 1486 Record.push_back(V); 1487 isCStr7 &= (V & 128) == 0; 1488 if (isCStrChar6) 1489 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1490 } 1491 1492 if (isCStrChar6) 1493 AbbrevToUse = CString6Abbrev; 1494 else if (isCStr7) 1495 AbbrevToUse = CString7Abbrev; 1496 } else if (const ConstantDataSequential *CDS = 1497 dyn_cast<ConstantDataSequential>(C)) { 1498 Code = bitc::CST_CODE_DATA; 1499 Type *EltTy = CDS->getType()->getElementType(); 1500 if (isa<IntegerType>(EltTy)) { 1501 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1502 Record.push_back(CDS->getElementAsInteger(i)); 1503 } else if (EltTy->isFloatTy()) { 1504 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1505 union { float F; uint32_t I; }; 1506 F = CDS->getElementAsFloat(i); 1507 Record.push_back(I); 1508 } 1509 } else { 1510 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1511 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1512 union { double F; uint64_t I; }; 1513 F = CDS->getElementAsDouble(i); 1514 Record.push_back(I); 1515 } 1516 } 1517 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1518 isa<ConstantVector>(C)) { 1519 Code = bitc::CST_CODE_AGGREGATE; 1520 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1521 Record.push_back(VE.getValueID(C->getOperand(i))); 1522 AbbrevToUse = AggregateAbbrev; 1523 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1524 switch (CE->getOpcode()) { 1525 default: 1526 if (Instruction::isCast(CE->getOpcode())) { 1527 Code = bitc::CST_CODE_CE_CAST; 1528 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1529 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1530 Record.push_back(VE.getValueID(C->getOperand(0))); 1531 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1532 } else { 1533 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1534 Code = bitc::CST_CODE_CE_BINOP; 1535 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1536 Record.push_back(VE.getValueID(C->getOperand(0))); 1537 Record.push_back(VE.getValueID(C->getOperand(1))); 1538 uint64_t Flags = GetOptimizationFlags(CE); 1539 if (Flags != 0) 1540 Record.push_back(Flags); 1541 } 1542 break; 1543 case Instruction::GetElementPtr: { 1544 Code = bitc::CST_CODE_CE_GEP; 1545 const auto *GO = cast<GEPOperator>(C); 1546 if (GO->isInBounds()) 1547 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1548 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1549 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1550 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1551 Record.push_back(VE.getValueID(C->getOperand(i))); 1552 } 1553 break; 1554 } 1555 case Instruction::Select: 1556 Code = bitc::CST_CODE_CE_SELECT; 1557 Record.push_back(VE.getValueID(C->getOperand(0))); 1558 Record.push_back(VE.getValueID(C->getOperand(1))); 1559 Record.push_back(VE.getValueID(C->getOperand(2))); 1560 break; 1561 case Instruction::ExtractElement: 1562 Code = bitc::CST_CODE_CE_EXTRACTELT; 1563 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1564 Record.push_back(VE.getValueID(C->getOperand(0))); 1565 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1566 Record.push_back(VE.getValueID(C->getOperand(1))); 1567 break; 1568 case Instruction::InsertElement: 1569 Code = bitc::CST_CODE_CE_INSERTELT; 1570 Record.push_back(VE.getValueID(C->getOperand(0))); 1571 Record.push_back(VE.getValueID(C->getOperand(1))); 1572 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1573 Record.push_back(VE.getValueID(C->getOperand(2))); 1574 break; 1575 case Instruction::ShuffleVector: 1576 // If the return type and argument types are the same, this is a 1577 // standard shufflevector instruction. If the types are different, 1578 // then the shuffle is widening or truncating the input vectors, and 1579 // the argument type must also be encoded. 1580 if (C->getType() == C->getOperand(0)->getType()) { 1581 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1582 } else { 1583 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1584 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1585 } 1586 Record.push_back(VE.getValueID(C->getOperand(0))); 1587 Record.push_back(VE.getValueID(C->getOperand(1))); 1588 Record.push_back(VE.getValueID(C->getOperand(2))); 1589 break; 1590 case Instruction::ICmp: 1591 case Instruction::FCmp: 1592 Code = bitc::CST_CODE_CE_CMP; 1593 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1594 Record.push_back(VE.getValueID(C->getOperand(0))); 1595 Record.push_back(VE.getValueID(C->getOperand(1))); 1596 Record.push_back(CE->getPredicate()); 1597 break; 1598 } 1599 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1600 Code = bitc::CST_CODE_BLOCKADDRESS; 1601 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1602 Record.push_back(VE.getValueID(BA->getFunction())); 1603 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1604 } else { 1605 #ifndef NDEBUG 1606 C->dump(); 1607 #endif 1608 llvm_unreachable("Unknown constant!"); 1609 } 1610 Stream.EmitRecord(Code, Record, AbbrevToUse); 1611 Record.clear(); 1612 } 1613 1614 Stream.ExitBlock(); 1615 } 1616 1617 static void WriteModuleConstants(const ValueEnumerator &VE, 1618 BitstreamWriter &Stream) { 1619 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1620 1621 // Find the first constant to emit, which is the first non-globalvalue value. 1622 // We know globalvalues have been emitted by WriteModuleInfo. 1623 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1624 if (!isa<GlobalValue>(Vals[i].first)) { 1625 WriteConstants(i, Vals.size(), VE, Stream, true); 1626 return; 1627 } 1628 } 1629 } 1630 1631 /// PushValueAndType - The file has to encode both the value and type id for 1632 /// many values, because we need to know what type to create for forward 1633 /// references. However, most operands are not forward references, so this type 1634 /// field is not needed. 1635 /// 1636 /// This function adds V's value ID to Vals. If the value ID is higher than the 1637 /// instruction ID, then it is a forward reference, and it also includes the 1638 /// type ID. The value ID that is written is encoded relative to the InstID. 1639 static bool PushValueAndType(const Value *V, unsigned InstID, 1640 SmallVectorImpl<unsigned> &Vals, 1641 ValueEnumerator &VE) { 1642 unsigned ValID = VE.getValueID(V); 1643 // Make encoding relative to the InstID. 1644 Vals.push_back(InstID - ValID); 1645 if (ValID >= InstID) { 1646 Vals.push_back(VE.getTypeID(V->getType())); 1647 return true; 1648 } 1649 return false; 1650 } 1651 1652 /// pushValue - Like PushValueAndType, but where the type of the value is 1653 /// omitted (perhaps it was already encoded in an earlier operand). 1654 static void pushValue(const Value *V, unsigned InstID, 1655 SmallVectorImpl<unsigned> &Vals, 1656 ValueEnumerator &VE) { 1657 unsigned ValID = VE.getValueID(V); 1658 Vals.push_back(InstID - ValID); 1659 } 1660 1661 static void pushValueSigned(const Value *V, unsigned InstID, 1662 SmallVectorImpl<uint64_t> &Vals, 1663 ValueEnumerator &VE) { 1664 unsigned ValID = VE.getValueID(V); 1665 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1666 emitSignedInt64(Vals, diff); 1667 } 1668 1669 /// WriteInstruction - Emit an instruction to the specified stream. 1670 static void WriteInstruction(const Instruction &I, unsigned InstID, 1671 ValueEnumerator &VE, BitstreamWriter &Stream, 1672 SmallVectorImpl<unsigned> &Vals) { 1673 unsigned Code = 0; 1674 unsigned AbbrevToUse = 0; 1675 VE.setInstructionID(&I); 1676 switch (I.getOpcode()) { 1677 default: 1678 if (Instruction::isCast(I.getOpcode())) { 1679 Code = bitc::FUNC_CODE_INST_CAST; 1680 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1681 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1682 Vals.push_back(VE.getTypeID(I.getType())); 1683 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1684 } else { 1685 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1686 Code = bitc::FUNC_CODE_INST_BINOP; 1687 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1688 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1689 pushValue(I.getOperand(1), InstID, Vals, VE); 1690 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1691 uint64_t Flags = GetOptimizationFlags(&I); 1692 if (Flags != 0) { 1693 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1694 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1695 Vals.push_back(Flags); 1696 } 1697 } 1698 break; 1699 1700 case Instruction::GetElementPtr: { 1701 Code = bitc::FUNC_CODE_INST_GEP; 1702 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1703 auto &GEPInst = cast<GetElementPtrInst>(I); 1704 Vals.push_back(GEPInst.isInBounds()); 1705 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1706 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1707 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1708 break; 1709 } 1710 case Instruction::ExtractValue: { 1711 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1712 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1713 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1714 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1715 break; 1716 } 1717 case Instruction::InsertValue: { 1718 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1719 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1720 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1721 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1722 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1723 break; 1724 } 1725 case Instruction::Select: 1726 Code = bitc::FUNC_CODE_INST_VSELECT; 1727 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1728 pushValue(I.getOperand(2), InstID, Vals, VE); 1729 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1730 break; 1731 case Instruction::ExtractElement: 1732 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1733 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1734 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1735 break; 1736 case Instruction::InsertElement: 1737 Code = bitc::FUNC_CODE_INST_INSERTELT; 1738 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1739 pushValue(I.getOperand(1), InstID, Vals, VE); 1740 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1741 break; 1742 case Instruction::ShuffleVector: 1743 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1744 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1745 pushValue(I.getOperand(1), InstID, Vals, VE); 1746 pushValue(I.getOperand(2), InstID, Vals, VE); 1747 break; 1748 case Instruction::ICmp: 1749 case Instruction::FCmp: 1750 // compare returning Int1Ty or vector of Int1Ty 1751 Code = bitc::FUNC_CODE_INST_CMP2; 1752 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1753 pushValue(I.getOperand(1), InstID, Vals, VE); 1754 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1755 break; 1756 1757 case Instruction::Ret: 1758 { 1759 Code = bitc::FUNC_CODE_INST_RET; 1760 unsigned NumOperands = I.getNumOperands(); 1761 if (NumOperands == 0) 1762 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1763 else if (NumOperands == 1) { 1764 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1765 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1766 } else { 1767 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1768 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1769 } 1770 } 1771 break; 1772 case Instruction::Br: 1773 { 1774 Code = bitc::FUNC_CODE_INST_BR; 1775 const BranchInst &II = cast<BranchInst>(I); 1776 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1777 if (II.isConditional()) { 1778 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1779 pushValue(II.getCondition(), InstID, Vals, VE); 1780 } 1781 } 1782 break; 1783 case Instruction::Switch: 1784 { 1785 Code = bitc::FUNC_CODE_INST_SWITCH; 1786 const SwitchInst &SI = cast<SwitchInst>(I); 1787 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1788 pushValue(SI.getCondition(), InstID, Vals, VE); 1789 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1790 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1791 i != e; ++i) { 1792 Vals.push_back(VE.getValueID(i.getCaseValue())); 1793 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1794 } 1795 } 1796 break; 1797 case Instruction::IndirectBr: 1798 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1799 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1800 // Encode the address operand as relative, but not the basic blocks. 1801 pushValue(I.getOperand(0), InstID, Vals, VE); 1802 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1803 Vals.push_back(VE.getValueID(I.getOperand(i))); 1804 break; 1805 1806 case Instruction::Invoke: { 1807 const InvokeInst *II = cast<InvokeInst>(&I); 1808 const Value *Callee = II->getCalledValue(); 1809 FunctionType *FTy = II->getFunctionType(); 1810 Code = bitc::FUNC_CODE_INST_INVOKE; 1811 1812 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1813 Vals.push_back(II->getCallingConv() | 1 << 13); 1814 Vals.push_back(VE.getValueID(II->getNormalDest())); 1815 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1816 Vals.push_back(VE.getTypeID(FTy)); 1817 PushValueAndType(Callee, InstID, Vals, VE); 1818 1819 // Emit value #'s for the fixed parameters. 1820 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1821 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1822 1823 // Emit type/value pairs for varargs params. 1824 if (FTy->isVarArg()) { 1825 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1826 i != e; ++i) 1827 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1828 } 1829 break; 1830 } 1831 case Instruction::Resume: 1832 Code = bitc::FUNC_CODE_INST_RESUME; 1833 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1834 break; 1835 case Instruction::Unreachable: 1836 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1837 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1838 break; 1839 1840 case Instruction::PHI: { 1841 const PHINode &PN = cast<PHINode>(I); 1842 Code = bitc::FUNC_CODE_INST_PHI; 1843 // With the newer instruction encoding, forward references could give 1844 // negative valued IDs. This is most common for PHIs, so we use 1845 // signed VBRs. 1846 SmallVector<uint64_t, 128> Vals64; 1847 Vals64.push_back(VE.getTypeID(PN.getType())); 1848 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1849 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1850 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1851 } 1852 // Emit a Vals64 vector and exit. 1853 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1854 Vals64.clear(); 1855 return; 1856 } 1857 1858 case Instruction::LandingPad: { 1859 const LandingPadInst &LP = cast<LandingPadInst>(I); 1860 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1861 Vals.push_back(VE.getTypeID(LP.getType())); 1862 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1863 Vals.push_back(LP.isCleanup()); 1864 Vals.push_back(LP.getNumClauses()); 1865 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1866 if (LP.isCatch(I)) 1867 Vals.push_back(LandingPadInst::Catch); 1868 else 1869 Vals.push_back(LandingPadInst::Filter); 1870 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1871 } 1872 break; 1873 } 1874 1875 case Instruction::Alloca: { 1876 Code = bitc::FUNC_CODE_INST_ALLOCA; 1877 const AllocaInst &AI = cast<AllocaInst>(I); 1878 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1879 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1880 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1881 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1882 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1883 "not enough bits for maximum alignment"); 1884 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1885 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1886 AlignRecord |= 1 << 6; 1887 Vals.push_back(AlignRecord); 1888 break; 1889 } 1890 1891 case Instruction::Load: 1892 if (cast<LoadInst>(I).isAtomic()) { 1893 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1894 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1895 } else { 1896 Code = bitc::FUNC_CODE_INST_LOAD; 1897 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1898 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1899 } 1900 Vals.push_back(VE.getTypeID(I.getType())); 1901 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1902 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1903 if (cast<LoadInst>(I).isAtomic()) { 1904 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1905 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1906 } 1907 break; 1908 case Instruction::Store: 1909 if (cast<StoreInst>(I).isAtomic()) 1910 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1911 else 1912 Code = bitc::FUNC_CODE_INST_STORE; 1913 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1914 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1915 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1916 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1917 if (cast<StoreInst>(I).isAtomic()) { 1918 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1919 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1920 } 1921 break; 1922 case Instruction::AtomicCmpXchg: 1923 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1924 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1925 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 1926 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1927 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1928 Vals.push_back(GetEncodedOrdering( 1929 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1930 Vals.push_back(GetEncodedSynchScope( 1931 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1932 Vals.push_back(GetEncodedOrdering( 1933 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1934 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1935 break; 1936 case Instruction::AtomicRMW: 1937 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1938 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1939 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1940 Vals.push_back(GetEncodedRMWOperation( 1941 cast<AtomicRMWInst>(I).getOperation())); 1942 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1943 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1944 Vals.push_back(GetEncodedSynchScope( 1945 cast<AtomicRMWInst>(I).getSynchScope())); 1946 break; 1947 case Instruction::Fence: 1948 Code = bitc::FUNC_CODE_INST_FENCE; 1949 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1950 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1951 break; 1952 case Instruction::Call: { 1953 const CallInst &CI = cast<CallInst>(I); 1954 FunctionType *FTy = CI.getFunctionType(); 1955 1956 Code = bitc::FUNC_CODE_INST_CALL; 1957 1958 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1959 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1960 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 1961 Vals.push_back(VE.getTypeID(FTy)); 1962 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1963 1964 // Emit value #'s for the fixed parameters. 1965 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1966 // Check for labels (can happen with asm labels). 1967 if (FTy->getParamType(i)->isLabelTy()) 1968 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1969 else 1970 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1971 } 1972 1973 // Emit type/value pairs for varargs params. 1974 if (FTy->isVarArg()) { 1975 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1976 i != e; ++i) 1977 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1978 } 1979 break; 1980 } 1981 case Instruction::VAArg: 1982 Code = bitc::FUNC_CODE_INST_VAARG; 1983 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1984 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1985 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1986 break; 1987 } 1988 1989 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1990 Vals.clear(); 1991 } 1992 1993 // Emit names for globals/functions etc. 1994 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1995 const ValueEnumerator &VE, 1996 BitstreamWriter &Stream) { 1997 if (VST.empty()) return; 1998 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1999 2000 // FIXME: Set up the abbrev, we know how many values there are! 2001 // FIXME: We know if the type names can use 7-bit ascii. 2002 SmallVector<unsigned, 64> NameVals; 2003 2004 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 2005 SI != SE; ++SI) { 2006 2007 const ValueName &Name = *SI; 2008 2009 // Figure out the encoding to use for the name. 2010 bool is7Bit = true; 2011 bool isChar6 = true; 2012 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2013 C != E; ++C) { 2014 if (isChar6) 2015 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2016 if ((unsigned char)*C & 128) { 2017 is7Bit = false; 2018 break; // don't bother scanning the rest. 2019 } 2020 } 2021 2022 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2023 2024 // VST_ENTRY: [valueid, namechar x N] 2025 // VST_BBENTRY: [bbid, namechar x N] 2026 unsigned Code; 2027 if (isa<BasicBlock>(SI->getValue())) { 2028 Code = bitc::VST_CODE_BBENTRY; 2029 if (isChar6) 2030 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2031 } else { 2032 Code = bitc::VST_CODE_ENTRY; 2033 if (isChar6) 2034 AbbrevToUse = VST_ENTRY_6_ABBREV; 2035 else if (is7Bit) 2036 AbbrevToUse = VST_ENTRY_7_ABBREV; 2037 } 2038 2039 NameVals.push_back(VE.getValueID(SI->getValue())); 2040 for (const char *P = Name.getKeyData(), 2041 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2042 NameVals.push_back((unsigned char)*P); 2043 2044 // Emit the finished record. 2045 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2046 NameVals.clear(); 2047 } 2048 Stream.ExitBlock(); 2049 } 2050 2051 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2052 BitstreamWriter &Stream) { 2053 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2054 unsigned Code; 2055 if (isa<BasicBlock>(Order.V)) 2056 Code = bitc::USELIST_CODE_BB; 2057 else 2058 Code = bitc::USELIST_CODE_DEFAULT; 2059 2060 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2061 Record.push_back(VE.getValueID(Order.V)); 2062 Stream.EmitRecord(Code, Record); 2063 } 2064 2065 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2066 BitstreamWriter &Stream) { 2067 assert(VE.shouldPreserveUseListOrder() && 2068 "Expected to be preserving use-list order"); 2069 2070 auto hasMore = [&]() { 2071 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2072 }; 2073 if (!hasMore()) 2074 // Nothing to do. 2075 return; 2076 2077 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2078 while (hasMore()) { 2079 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2080 VE.UseListOrders.pop_back(); 2081 } 2082 Stream.ExitBlock(); 2083 } 2084 2085 /// WriteFunction - Emit a function body to the module stream. 2086 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2087 BitstreamWriter &Stream) { 2088 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2089 VE.incorporateFunction(F); 2090 2091 SmallVector<unsigned, 64> Vals; 2092 2093 // Emit the number of basic blocks, so the reader can create them ahead of 2094 // time. 2095 Vals.push_back(VE.getBasicBlocks().size()); 2096 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2097 Vals.clear(); 2098 2099 // If there are function-local constants, emit them now. 2100 unsigned CstStart, CstEnd; 2101 VE.getFunctionConstantRange(CstStart, CstEnd); 2102 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2103 2104 // If there is function-local metadata, emit it now. 2105 WriteFunctionLocalMetadata(F, VE, Stream); 2106 2107 // Keep a running idea of what the instruction ID is. 2108 unsigned InstID = CstEnd; 2109 2110 bool NeedsMetadataAttachment = F.hasMetadata(); 2111 2112 DILocation *LastDL = nullptr; 2113 2114 // Finally, emit all the instructions, in order. 2115 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2116 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2117 I != E; ++I) { 2118 WriteInstruction(*I, InstID, VE, Stream, Vals); 2119 2120 if (!I->getType()->isVoidTy()) 2121 ++InstID; 2122 2123 // If the instruction has metadata, write a metadata attachment later. 2124 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2125 2126 // If the instruction has a debug location, emit it. 2127 DILocation *DL = I->getDebugLoc(); 2128 if (!DL) 2129 continue; 2130 2131 if (DL == LastDL) { 2132 // Just repeat the same debug loc as last time. 2133 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2134 continue; 2135 } 2136 2137 Vals.push_back(DL->getLine()); 2138 Vals.push_back(DL->getColumn()); 2139 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2140 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2141 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2142 Vals.clear(); 2143 2144 LastDL = DL; 2145 } 2146 2147 // Emit names for all the instructions etc. 2148 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2149 2150 if (NeedsMetadataAttachment) 2151 WriteMetadataAttachment(F, VE, Stream); 2152 if (VE.shouldPreserveUseListOrder()) 2153 WriteUseListBlock(&F, VE, Stream); 2154 VE.purgeFunction(); 2155 Stream.ExitBlock(); 2156 } 2157 2158 // Emit blockinfo, which defines the standard abbreviations etc. 2159 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2160 // We only want to emit block info records for blocks that have multiple 2161 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2162 // Other blocks can define their abbrevs inline. 2163 Stream.EnterBlockInfoBlock(2); 2164 2165 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2166 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2171 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2172 Abbv) != VST_ENTRY_8_ABBREV) 2173 llvm_unreachable("Unexpected abbrev ordering!"); 2174 } 2175 2176 { // 7-bit fixed width VST_ENTRY strings. 2177 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2178 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2182 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2183 Abbv) != VST_ENTRY_7_ABBREV) 2184 llvm_unreachable("Unexpected abbrev ordering!"); 2185 } 2186 { // 6-bit char6 VST_ENTRY strings. 2187 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2188 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2192 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2193 Abbv) != VST_ENTRY_6_ABBREV) 2194 llvm_unreachable("Unexpected abbrev ordering!"); 2195 } 2196 { // 6-bit char6 VST_BBENTRY strings. 2197 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2198 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2202 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2203 Abbv) != VST_BBENTRY_6_ABBREV) 2204 llvm_unreachable("Unexpected abbrev ordering!"); 2205 } 2206 2207 2208 2209 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2210 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2211 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2213 VE.computeBitsRequiredForTypeIndicies())); 2214 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2215 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2216 llvm_unreachable("Unexpected abbrev ordering!"); 2217 } 2218 2219 { // INTEGER abbrev for CONSTANTS_BLOCK. 2220 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2221 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2223 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2224 Abbv) != CONSTANTS_INTEGER_ABBREV) 2225 llvm_unreachable("Unexpected abbrev ordering!"); 2226 } 2227 2228 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2229 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2230 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2233 VE.computeBitsRequiredForTypeIndicies())); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2235 2236 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2237 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2238 llvm_unreachable("Unexpected abbrev ordering!"); 2239 } 2240 { // NULL abbrev for CONSTANTS_BLOCK. 2241 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2242 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2243 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2244 Abbv) != CONSTANTS_NULL_Abbrev) 2245 llvm_unreachable("Unexpected abbrev ordering!"); 2246 } 2247 2248 // FIXME: This should only use space for first class types! 2249 2250 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2251 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2252 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2255 VE.computeBitsRequiredForTypeIndicies())); 2256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2258 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2259 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2260 llvm_unreachable("Unexpected abbrev ordering!"); 2261 } 2262 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2263 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2264 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2268 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2269 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2270 llvm_unreachable("Unexpected abbrev ordering!"); 2271 } 2272 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2273 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2274 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2279 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2280 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2281 llvm_unreachable("Unexpected abbrev ordering!"); 2282 } 2283 { // INST_CAST abbrev for FUNCTION_BLOCK. 2284 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2285 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2288 VE.computeBitsRequiredForTypeIndicies())); 2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2290 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2291 Abbv) != FUNCTION_INST_CAST_ABBREV) 2292 llvm_unreachable("Unexpected abbrev ordering!"); 2293 } 2294 2295 { // INST_RET abbrev for FUNCTION_BLOCK. 2296 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2297 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2298 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2299 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2300 llvm_unreachable("Unexpected abbrev ordering!"); 2301 } 2302 { // INST_RET abbrev for FUNCTION_BLOCK. 2303 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2304 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2306 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2307 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2308 llvm_unreachable("Unexpected abbrev ordering!"); 2309 } 2310 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2311 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2312 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2313 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2314 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2315 llvm_unreachable("Unexpected abbrev ordering!"); 2316 } 2317 { 2318 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2319 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2322 Log2_32_Ceil(VE.getTypes().size() + 1))); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2325 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2326 FUNCTION_INST_GEP_ABBREV) 2327 llvm_unreachable("Unexpected abbrev ordering!"); 2328 } 2329 2330 Stream.ExitBlock(); 2331 } 2332 2333 /// WriteModule - Emit the specified module to the bitstream. 2334 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2335 bool ShouldPreserveUseListOrder) { 2336 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2337 2338 SmallVector<unsigned, 1> Vals; 2339 unsigned CurVersion = 1; 2340 Vals.push_back(CurVersion); 2341 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2342 2343 // Analyze the module, enumerating globals, functions, etc. 2344 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2345 2346 // Emit blockinfo, which defines the standard abbreviations etc. 2347 WriteBlockInfo(VE, Stream); 2348 2349 // Emit information about attribute groups. 2350 WriteAttributeGroupTable(VE, Stream); 2351 2352 // Emit information about parameter attributes. 2353 WriteAttributeTable(VE, Stream); 2354 2355 // Emit information describing all of the types in the module. 2356 WriteTypeTable(VE, Stream); 2357 2358 writeComdats(VE, Stream); 2359 2360 // Emit top-level description of module, including target triple, inline asm, 2361 // descriptors for global variables, and function prototype info. 2362 WriteModuleInfo(M, VE, Stream); 2363 2364 // Emit constants. 2365 WriteModuleConstants(VE, Stream); 2366 2367 // Emit metadata. 2368 WriteModuleMetadata(M, VE, Stream); 2369 2370 // Emit metadata. 2371 WriteModuleMetadataStore(M, Stream); 2372 2373 // Emit names for globals/functions etc. 2374 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2375 2376 // Emit module-level use-lists. 2377 if (VE.shouldPreserveUseListOrder()) 2378 WriteUseListBlock(nullptr, VE, Stream); 2379 2380 // Emit function bodies. 2381 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2382 if (!F->isDeclaration()) 2383 WriteFunction(*F, VE, Stream); 2384 2385 Stream.ExitBlock(); 2386 } 2387 2388 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2389 /// header and trailer to make it compatible with the system archiver. To do 2390 /// this we emit the following header, and then emit a trailer that pads the 2391 /// file out to be a multiple of 16 bytes. 2392 /// 2393 /// struct bc_header { 2394 /// uint32_t Magic; // 0x0B17C0DE 2395 /// uint32_t Version; // Version, currently always 0. 2396 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2397 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2398 /// uint32_t CPUType; // CPU specifier. 2399 /// ... potentially more later ... 2400 /// }; 2401 enum { 2402 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2403 DarwinBCHeaderSize = 5*4 2404 }; 2405 2406 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2407 uint32_t &Position) { 2408 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2409 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2410 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2411 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2412 Position += 4; 2413 } 2414 2415 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2416 const Triple &TT) { 2417 unsigned CPUType = ~0U; 2418 2419 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2420 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2421 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2422 // specific constants here because they are implicitly part of the Darwin ABI. 2423 enum { 2424 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2425 DARWIN_CPU_TYPE_X86 = 7, 2426 DARWIN_CPU_TYPE_ARM = 12, 2427 DARWIN_CPU_TYPE_POWERPC = 18 2428 }; 2429 2430 Triple::ArchType Arch = TT.getArch(); 2431 if (Arch == Triple::x86_64) 2432 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2433 else if (Arch == Triple::x86) 2434 CPUType = DARWIN_CPU_TYPE_X86; 2435 else if (Arch == Triple::ppc) 2436 CPUType = DARWIN_CPU_TYPE_POWERPC; 2437 else if (Arch == Triple::ppc64) 2438 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2439 else if (Arch == Triple::arm || Arch == Triple::thumb) 2440 CPUType = DARWIN_CPU_TYPE_ARM; 2441 2442 // Traditional Bitcode starts after header. 2443 assert(Buffer.size() >= DarwinBCHeaderSize && 2444 "Expected header size to be reserved"); 2445 unsigned BCOffset = DarwinBCHeaderSize; 2446 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2447 2448 // Write the magic and version. 2449 unsigned Position = 0; 2450 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2451 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2452 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2453 WriteInt32ToBuffer(BCSize , Buffer, Position); 2454 WriteInt32ToBuffer(CPUType , Buffer, Position); 2455 2456 // If the file is not a multiple of 16 bytes, insert dummy padding. 2457 while (Buffer.size() & 15) 2458 Buffer.push_back(0); 2459 } 2460 2461 /// WriteBitcodeToFile - Write the specified module to the specified output 2462 /// stream. 2463 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2464 bool ShouldPreserveUseListOrder) { 2465 SmallVector<char, 0> Buffer; 2466 Buffer.reserve(256*1024); 2467 2468 // If this is darwin or another generic macho target, reserve space for the 2469 // header. 2470 Triple TT(M->getTargetTriple()); 2471 if (TT.isOSDarwin()) 2472 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2473 2474 // Emit the module into the buffer. 2475 { 2476 BitstreamWriter Stream(Buffer); 2477 2478 // Emit the file header. 2479 Stream.Emit((unsigned)'B', 8); 2480 Stream.Emit((unsigned)'C', 8); 2481 Stream.Emit(0x0, 4); 2482 Stream.Emit(0xC, 4); 2483 Stream.Emit(0xE, 4); 2484 Stream.Emit(0xD, 4); 2485 2486 // Emit the module. 2487 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2488 } 2489 2490 if (TT.isOSDarwin()) 2491 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2492 2493 // Write the generated bitstream to "Out". 2494 Out.write((char*)&Buffer.front(), Buffer.size()); 2495 } 2496