1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/BlockFrequencyInfo.h" 19 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Bitcode/BitstreamWriter.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/Bitcode/ReaderWriter.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/UseListOrder.h" 37 #include "llvm/IR/ValueSymbolTable.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Program.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Support/SHA1.h" 44 #include <cctype> 45 #include <map> 46 using namespace llvm; 47 48 /// These are manifest constants used by the bitcode writer. They do not need to 49 /// be kept in sync with the reader, but need to be consistent within this file. 50 enum { 51 // VALUE_SYMTAB_BLOCK abbrev id's. 52 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 VST_ENTRY_7_ABBREV, 54 VST_ENTRY_6_ABBREV, 55 VST_BBENTRY_6_ABBREV, 56 57 // CONSTANTS_BLOCK abbrev id's. 58 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 59 CONSTANTS_INTEGER_ABBREV, 60 CONSTANTS_CE_CAST_Abbrev, 61 CONSTANTS_NULL_Abbrev, 62 63 // FUNCTION_BLOCK abbrev id's. 64 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 65 FUNCTION_INST_BINOP_ABBREV, 66 FUNCTION_INST_BINOP_FLAGS_ABBREV, 67 FUNCTION_INST_CAST_ABBREV, 68 FUNCTION_INST_RET_VOID_ABBREV, 69 FUNCTION_INST_RET_VAL_ABBREV, 70 FUNCTION_INST_UNREACHABLE_ABBREV, 71 FUNCTION_INST_GEP_ABBREV, 72 }; 73 74 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: llvm_unreachable("Unknown cast instruction!"); 77 case Instruction::Trunc : return bitc::CAST_TRUNC; 78 case Instruction::ZExt : return bitc::CAST_ZEXT; 79 case Instruction::SExt : return bitc::CAST_SEXT; 80 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 81 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 82 case Instruction::UIToFP : return bitc::CAST_UITOFP; 83 case Instruction::SIToFP : return bitc::CAST_SITOFP; 84 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 85 case Instruction::FPExt : return bitc::CAST_FPEXT; 86 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 87 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 88 case Instruction::BitCast : return bitc::CAST_BITCAST; 89 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 90 } 91 } 92 93 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 94 switch (Opcode) { 95 default: llvm_unreachable("Unknown binary instruction!"); 96 case Instruction::Add: 97 case Instruction::FAdd: return bitc::BINOP_ADD; 98 case Instruction::Sub: 99 case Instruction::FSub: return bitc::BINOP_SUB; 100 case Instruction::Mul: 101 case Instruction::FMul: return bitc::BINOP_MUL; 102 case Instruction::UDiv: return bitc::BINOP_UDIV; 103 case Instruction::FDiv: 104 case Instruction::SDiv: return bitc::BINOP_SDIV; 105 case Instruction::URem: return bitc::BINOP_UREM; 106 case Instruction::FRem: 107 case Instruction::SRem: return bitc::BINOP_SREM; 108 case Instruction::Shl: return bitc::BINOP_SHL; 109 case Instruction::LShr: return bitc::BINOP_LSHR; 110 case Instruction::AShr: return bitc::BINOP_ASHR; 111 case Instruction::And: return bitc::BINOP_AND; 112 case Instruction::Or: return bitc::BINOP_OR; 113 case Instruction::Xor: return bitc::BINOP_XOR; 114 } 115 } 116 117 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 118 switch (Op) { 119 default: llvm_unreachable("Unknown RMW operation!"); 120 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 121 case AtomicRMWInst::Add: return bitc::RMW_ADD; 122 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 123 case AtomicRMWInst::And: return bitc::RMW_AND; 124 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 125 case AtomicRMWInst::Or: return bitc::RMW_OR; 126 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 127 case AtomicRMWInst::Max: return bitc::RMW_MAX; 128 case AtomicRMWInst::Min: return bitc::RMW_MIN; 129 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 130 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 131 } 132 } 133 134 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 135 switch (Ordering) { 136 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 137 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 138 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 139 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 140 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 141 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 142 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 143 } 144 llvm_unreachable("Invalid ordering"); 145 } 146 147 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 148 switch (SynchScope) { 149 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 150 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 151 } 152 llvm_unreachable("Invalid synch scope"); 153 } 154 155 static void WriteStringRecord(unsigned Code, StringRef Str, 156 unsigned AbbrevToUse, BitstreamWriter &Stream) { 157 SmallVector<unsigned, 64> Vals; 158 159 // Code: [strchar x N] 160 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 161 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 162 AbbrevToUse = 0; 163 Vals.push_back(Str[i]); 164 } 165 166 // Emit the finished record. 167 Stream.EmitRecord(Code, Vals, AbbrevToUse); 168 } 169 170 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 171 switch (Kind) { 172 case Attribute::Alignment: 173 return bitc::ATTR_KIND_ALIGNMENT; 174 case Attribute::AlwaysInline: 175 return bitc::ATTR_KIND_ALWAYS_INLINE; 176 case Attribute::ArgMemOnly: 177 return bitc::ATTR_KIND_ARGMEMONLY; 178 case Attribute::Builtin: 179 return bitc::ATTR_KIND_BUILTIN; 180 case Attribute::ByVal: 181 return bitc::ATTR_KIND_BY_VAL; 182 case Attribute::Convergent: 183 return bitc::ATTR_KIND_CONVERGENT; 184 case Attribute::InAlloca: 185 return bitc::ATTR_KIND_IN_ALLOCA; 186 case Attribute::Cold: 187 return bitc::ATTR_KIND_COLD; 188 case Attribute::InaccessibleMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 190 case Attribute::InaccessibleMemOrArgMemOnly: 191 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 192 case Attribute::InlineHint: 193 return bitc::ATTR_KIND_INLINE_HINT; 194 case Attribute::InReg: 195 return bitc::ATTR_KIND_IN_REG; 196 case Attribute::JumpTable: 197 return bitc::ATTR_KIND_JUMP_TABLE; 198 case Attribute::MinSize: 199 return bitc::ATTR_KIND_MIN_SIZE; 200 case Attribute::Naked: 201 return bitc::ATTR_KIND_NAKED; 202 case Attribute::Nest: 203 return bitc::ATTR_KIND_NEST; 204 case Attribute::NoAlias: 205 return bitc::ATTR_KIND_NO_ALIAS; 206 case Attribute::NoBuiltin: 207 return bitc::ATTR_KIND_NO_BUILTIN; 208 case Attribute::NoCapture: 209 return bitc::ATTR_KIND_NO_CAPTURE; 210 case Attribute::NoDuplicate: 211 return bitc::ATTR_KIND_NO_DUPLICATE; 212 case Attribute::NoImplicitFloat: 213 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 214 case Attribute::NoInline: 215 return bitc::ATTR_KIND_NO_INLINE; 216 case Attribute::NoRecurse: 217 return bitc::ATTR_KIND_NO_RECURSE; 218 case Attribute::NonLazyBind: 219 return bitc::ATTR_KIND_NON_LAZY_BIND; 220 case Attribute::NonNull: 221 return bitc::ATTR_KIND_NON_NULL; 222 case Attribute::Dereferenceable: 223 return bitc::ATTR_KIND_DEREFERENCEABLE; 224 case Attribute::DereferenceableOrNull: 225 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 226 case Attribute::NoRedZone: 227 return bitc::ATTR_KIND_NO_RED_ZONE; 228 case Attribute::NoReturn: 229 return bitc::ATTR_KIND_NO_RETURN; 230 case Attribute::NoUnwind: 231 return bitc::ATTR_KIND_NO_UNWIND; 232 case Attribute::OptimizeForSize: 233 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 234 case Attribute::OptimizeNone: 235 return bitc::ATTR_KIND_OPTIMIZE_NONE; 236 case Attribute::ReadNone: 237 return bitc::ATTR_KIND_READ_NONE; 238 case Attribute::ReadOnly: 239 return bitc::ATTR_KIND_READ_ONLY; 240 case Attribute::Returned: 241 return bitc::ATTR_KIND_RETURNED; 242 case Attribute::ReturnsTwice: 243 return bitc::ATTR_KIND_RETURNS_TWICE; 244 case Attribute::SExt: 245 return bitc::ATTR_KIND_S_EXT; 246 case Attribute::StackAlignment: 247 return bitc::ATTR_KIND_STACK_ALIGNMENT; 248 case Attribute::StackProtect: 249 return bitc::ATTR_KIND_STACK_PROTECT; 250 case Attribute::StackProtectReq: 251 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 252 case Attribute::StackProtectStrong: 253 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 254 case Attribute::SafeStack: 255 return bitc::ATTR_KIND_SAFESTACK; 256 case Attribute::StructRet: 257 return bitc::ATTR_KIND_STRUCT_RET; 258 case Attribute::SanitizeAddress: 259 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 260 case Attribute::SanitizeThread: 261 return bitc::ATTR_KIND_SANITIZE_THREAD; 262 case Attribute::SanitizeMemory: 263 return bitc::ATTR_KIND_SANITIZE_MEMORY; 264 case Attribute::SwiftError: 265 return bitc::ATTR_KIND_SWIFT_ERROR; 266 case Attribute::SwiftSelf: 267 return bitc::ATTR_KIND_SWIFT_SELF; 268 case Attribute::UWTable: 269 return bitc::ATTR_KIND_UW_TABLE; 270 case Attribute::ZExt: 271 return bitc::ATTR_KIND_Z_EXT; 272 case Attribute::EndAttrKinds: 273 llvm_unreachable("Can not encode end-attribute kinds marker."); 274 case Attribute::None: 275 llvm_unreachable("Can not encode none-attribute."); 276 } 277 278 llvm_unreachable("Trying to encode unknown attribute"); 279 } 280 281 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 282 BitstreamWriter &Stream) { 283 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 284 if (AttrGrps.empty()) return; 285 286 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 287 288 SmallVector<uint64_t, 64> Record; 289 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 290 AttributeSet AS = AttrGrps[i]; 291 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 292 AttributeSet A = AS.getSlotAttributes(i); 293 294 Record.push_back(VE.getAttributeGroupID(A)); 295 Record.push_back(AS.getSlotIndex(i)); 296 297 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 298 I != E; ++I) { 299 Attribute Attr = *I; 300 if (Attr.isEnumAttribute()) { 301 Record.push_back(0); 302 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 303 } else if (Attr.isIntAttribute()) { 304 Record.push_back(1); 305 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 306 Record.push_back(Attr.getValueAsInt()); 307 } else { 308 StringRef Kind = Attr.getKindAsString(); 309 StringRef Val = Attr.getValueAsString(); 310 311 Record.push_back(Val.empty() ? 3 : 4); 312 Record.append(Kind.begin(), Kind.end()); 313 Record.push_back(0); 314 if (!Val.empty()) { 315 Record.append(Val.begin(), Val.end()); 316 Record.push_back(0); 317 } 318 } 319 } 320 321 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 322 Record.clear(); 323 } 324 } 325 326 Stream.ExitBlock(); 327 } 328 329 static void WriteAttributeTable(const ValueEnumerator &VE, 330 BitstreamWriter &Stream) { 331 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 332 if (Attrs.empty()) return; 333 334 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 335 336 SmallVector<uint64_t, 64> Record; 337 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 338 const AttributeSet &A = Attrs[i]; 339 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 340 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 341 342 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 343 Record.clear(); 344 } 345 346 Stream.ExitBlock(); 347 } 348 349 /// WriteTypeTable - Write out the type table for a module. 350 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 351 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 352 353 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 354 SmallVector<uint64_t, 64> TypeVals; 355 356 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 357 358 // Abbrev for TYPE_CODE_POINTER. 359 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 360 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 362 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 363 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 364 365 // Abbrev for TYPE_CODE_FUNCTION. 366 Abbv = new BitCodeAbbrev(); 367 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 371 372 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 373 374 // Abbrev for TYPE_CODE_STRUCT_ANON. 375 Abbv = new BitCodeAbbrev(); 376 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 380 381 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 382 383 // Abbrev for TYPE_CODE_STRUCT_NAME. 384 Abbv = new BitCodeAbbrev(); 385 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 388 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 389 390 // Abbrev for TYPE_CODE_STRUCT_NAMED. 391 Abbv = new BitCodeAbbrev(); 392 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 396 397 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 398 399 // Abbrev for TYPE_CODE_ARRAY. 400 Abbv = new BitCodeAbbrev(); 401 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 404 405 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 406 407 // Emit an entry count so the reader can reserve space. 408 TypeVals.push_back(TypeList.size()); 409 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 410 TypeVals.clear(); 411 412 // Loop over all of the types, emitting each in turn. 413 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 414 Type *T = TypeList[i]; 415 int AbbrevToUse = 0; 416 unsigned Code = 0; 417 418 switch (T->getTypeID()) { 419 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 420 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 421 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 422 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 423 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 424 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 425 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 426 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 427 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 428 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 429 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 430 case Type::IntegerTyID: 431 // INTEGER: [width] 432 Code = bitc::TYPE_CODE_INTEGER; 433 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 434 break; 435 case Type::PointerTyID: { 436 PointerType *PTy = cast<PointerType>(T); 437 // POINTER: [pointee type, address space] 438 Code = bitc::TYPE_CODE_POINTER; 439 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 440 unsigned AddressSpace = PTy->getAddressSpace(); 441 TypeVals.push_back(AddressSpace); 442 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 443 break; 444 } 445 case Type::FunctionTyID: { 446 FunctionType *FT = cast<FunctionType>(T); 447 // FUNCTION: [isvararg, retty, paramty x N] 448 Code = bitc::TYPE_CODE_FUNCTION; 449 TypeVals.push_back(FT->isVarArg()); 450 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 451 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 452 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 453 AbbrevToUse = FunctionAbbrev; 454 break; 455 } 456 case Type::StructTyID: { 457 StructType *ST = cast<StructType>(T); 458 // STRUCT: [ispacked, eltty x N] 459 TypeVals.push_back(ST->isPacked()); 460 // Output all of the element types. 461 for (StructType::element_iterator I = ST->element_begin(), 462 E = ST->element_end(); I != E; ++I) 463 TypeVals.push_back(VE.getTypeID(*I)); 464 465 if (ST->isLiteral()) { 466 Code = bitc::TYPE_CODE_STRUCT_ANON; 467 AbbrevToUse = StructAnonAbbrev; 468 } else { 469 if (ST->isOpaque()) { 470 Code = bitc::TYPE_CODE_OPAQUE; 471 } else { 472 Code = bitc::TYPE_CODE_STRUCT_NAMED; 473 AbbrevToUse = StructNamedAbbrev; 474 } 475 476 // Emit the name if it is present. 477 if (!ST->getName().empty()) 478 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 479 StructNameAbbrev, Stream); 480 } 481 break; 482 } 483 case Type::ArrayTyID: { 484 ArrayType *AT = cast<ArrayType>(T); 485 // ARRAY: [numelts, eltty] 486 Code = bitc::TYPE_CODE_ARRAY; 487 TypeVals.push_back(AT->getNumElements()); 488 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 489 AbbrevToUse = ArrayAbbrev; 490 break; 491 } 492 case Type::VectorTyID: { 493 VectorType *VT = cast<VectorType>(T); 494 // VECTOR [numelts, eltty] 495 Code = bitc::TYPE_CODE_VECTOR; 496 TypeVals.push_back(VT->getNumElements()); 497 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 498 break; 499 } 500 } 501 502 // Emit the finished record. 503 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 504 TypeVals.clear(); 505 } 506 507 Stream.ExitBlock(); 508 } 509 510 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 511 switch (Linkage) { 512 case GlobalValue::ExternalLinkage: 513 return 0; 514 case GlobalValue::WeakAnyLinkage: 515 return 16; 516 case GlobalValue::AppendingLinkage: 517 return 2; 518 case GlobalValue::InternalLinkage: 519 return 3; 520 case GlobalValue::LinkOnceAnyLinkage: 521 return 18; 522 case GlobalValue::ExternalWeakLinkage: 523 return 7; 524 case GlobalValue::CommonLinkage: 525 return 8; 526 case GlobalValue::PrivateLinkage: 527 return 9; 528 case GlobalValue::WeakODRLinkage: 529 return 17; 530 case GlobalValue::LinkOnceODRLinkage: 531 return 19; 532 case GlobalValue::AvailableExternallyLinkage: 533 return 12; 534 } 535 llvm_unreachable("Invalid linkage"); 536 } 537 538 static unsigned getEncodedLinkage(const GlobalValue &GV) { 539 return getEncodedLinkage(GV.getLinkage()); 540 } 541 542 static unsigned getEncodedVisibility(const GlobalValue &GV) { 543 switch (GV.getVisibility()) { 544 case GlobalValue::DefaultVisibility: return 0; 545 case GlobalValue::HiddenVisibility: return 1; 546 case GlobalValue::ProtectedVisibility: return 2; 547 } 548 llvm_unreachable("Invalid visibility"); 549 } 550 551 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 552 switch (GV.getDLLStorageClass()) { 553 case GlobalValue::DefaultStorageClass: return 0; 554 case GlobalValue::DLLImportStorageClass: return 1; 555 case GlobalValue::DLLExportStorageClass: return 2; 556 } 557 llvm_unreachable("Invalid DLL storage class"); 558 } 559 560 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 561 switch (GV.getThreadLocalMode()) { 562 case GlobalVariable::NotThreadLocal: return 0; 563 case GlobalVariable::GeneralDynamicTLSModel: return 1; 564 case GlobalVariable::LocalDynamicTLSModel: return 2; 565 case GlobalVariable::InitialExecTLSModel: return 3; 566 case GlobalVariable::LocalExecTLSModel: return 4; 567 } 568 llvm_unreachable("Invalid TLS model"); 569 } 570 571 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 572 switch (C.getSelectionKind()) { 573 case Comdat::Any: 574 return bitc::COMDAT_SELECTION_KIND_ANY; 575 case Comdat::ExactMatch: 576 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 577 case Comdat::Largest: 578 return bitc::COMDAT_SELECTION_KIND_LARGEST; 579 case Comdat::NoDuplicates: 580 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 581 case Comdat::SameSize: 582 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 583 } 584 llvm_unreachable("Invalid selection kind"); 585 } 586 587 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 588 SmallVector<unsigned, 64> Vals; 589 for (const Comdat *C : VE.getComdats()) { 590 // COMDAT: [selection_kind, name] 591 Vals.push_back(getEncodedComdatSelectionKind(*C)); 592 size_t Size = C->getName().size(); 593 assert(isUInt<32>(Size)); 594 Vals.push_back(Size); 595 for (char Chr : C->getName()) 596 Vals.push_back((unsigned char)Chr); 597 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 598 Vals.clear(); 599 } 600 } 601 602 /// Write a record that will eventually hold the word offset of the 603 /// module-level VST. For now the offset is 0, which will be backpatched 604 /// after the real VST is written. Returns the bit offset to backpatch. 605 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 606 // Write a placeholder value in for the offset of the real VST, 607 // which is written after the function blocks so that it can include 608 // the offset of each function. The placeholder offset will be 609 // updated when the real VST is written. 610 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 611 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 612 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 613 // hold the real VST offset. Must use fixed instead of VBR as we don't 614 // know how many VBR chunks to reserve ahead of time. 615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 616 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 617 618 // Emit the placeholder 619 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 620 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 621 622 // Compute and return the bit offset to the placeholder, which will be 623 // patched when the real VST is written. We can simply subtract the 32-bit 624 // fixed size from the current bit number to get the location to backpatch. 625 return Stream.GetCurrentBitNo() - 32; 626 } 627 628 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 629 630 /// Determine the encoding to use for the given string name and length. 631 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 632 bool isChar6 = true; 633 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 634 if (isChar6) 635 isChar6 = BitCodeAbbrevOp::isChar6(*C); 636 if ((unsigned char)*C & 128) 637 // don't bother scanning the rest. 638 return SE_Fixed8; 639 } 640 if (isChar6) 641 return SE_Char6; 642 else 643 return SE_Fixed7; 644 } 645 646 /// Emit top-level description of module, including target triple, inline asm, 647 /// descriptors for global variables, and function prototype info. 648 /// Returns the bit offset to backpatch with the location of the real VST. 649 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 650 BitstreamWriter &Stream) { 651 // Emit various pieces of data attached to a module. 652 if (!M->getTargetTriple().empty()) 653 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 654 0/*TODO*/, Stream); 655 const std::string &DL = M->getDataLayoutStr(); 656 if (!DL.empty()) 657 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 658 if (!M->getModuleInlineAsm().empty()) 659 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 660 0/*TODO*/, Stream); 661 662 // Emit information about sections and GC, computing how many there are. Also 663 // compute the maximum alignment value. 664 std::map<std::string, unsigned> SectionMap; 665 std::map<std::string, unsigned> GCMap; 666 unsigned MaxAlignment = 0; 667 unsigned MaxGlobalType = 0; 668 for (const GlobalValue &GV : M->globals()) { 669 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 670 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 671 if (GV.hasSection()) { 672 // Give section names unique ID's. 673 unsigned &Entry = SectionMap[GV.getSection()]; 674 if (!Entry) { 675 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 676 0/*TODO*/, Stream); 677 Entry = SectionMap.size(); 678 } 679 } 680 } 681 for (const Function &F : *M) { 682 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 683 if (F.hasSection()) { 684 // Give section names unique ID's. 685 unsigned &Entry = SectionMap[F.getSection()]; 686 if (!Entry) { 687 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 688 0/*TODO*/, Stream); 689 Entry = SectionMap.size(); 690 } 691 } 692 if (F.hasGC()) { 693 // Same for GC names. 694 unsigned &Entry = GCMap[F.getGC()]; 695 if (!Entry) { 696 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 697 0/*TODO*/, Stream); 698 Entry = GCMap.size(); 699 } 700 } 701 } 702 703 // Emit abbrev for globals, now that we know # sections and max alignment. 704 unsigned SimpleGVarAbbrev = 0; 705 if (!M->global_empty()) { 706 // Add an abbrev for common globals with no visibility or thread localness. 707 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 708 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 710 Log2_32_Ceil(MaxGlobalType+1))); 711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 712 //| explicitType << 1 713 //| constant 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 716 if (MaxAlignment == 0) // Alignment. 717 Abbv->Add(BitCodeAbbrevOp(0)); 718 else { 719 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 721 Log2_32_Ceil(MaxEncAlignment+1))); 722 } 723 if (SectionMap.empty()) // Section. 724 Abbv->Add(BitCodeAbbrevOp(0)); 725 else 726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 727 Log2_32_Ceil(SectionMap.size()+1))); 728 // Don't bother emitting vis + thread local. 729 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 730 } 731 732 // Emit the global variable information. 733 SmallVector<unsigned, 64> Vals; 734 for (const GlobalVariable &GV : M->globals()) { 735 unsigned AbbrevToUse = 0; 736 737 // GLOBALVAR: [type, isconst, initid, 738 // linkage, alignment, section, visibility, threadlocal, 739 // unnamed_addr, externally_initialized, dllstorageclass, 740 // comdat] 741 Vals.push_back(VE.getTypeID(GV.getValueType())); 742 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 743 Vals.push_back(GV.isDeclaration() ? 0 : 744 (VE.getValueID(GV.getInitializer()) + 1)); 745 Vals.push_back(getEncodedLinkage(GV)); 746 Vals.push_back(Log2_32(GV.getAlignment())+1); 747 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 748 if (GV.isThreadLocal() || 749 GV.getVisibility() != GlobalValue::DefaultVisibility || 750 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 751 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 752 GV.hasComdat()) { 753 Vals.push_back(getEncodedVisibility(GV)); 754 Vals.push_back(getEncodedThreadLocalMode(GV)); 755 Vals.push_back(GV.hasUnnamedAddr()); 756 Vals.push_back(GV.isExternallyInitialized()); 757 Vals.push_back(getEncodedDLLStorageClass(GV)); 758 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 759 } else { 760 AbbrevToUse = SimpleGVarAbbrev; 761 } 762 763 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 764 Vals.clear(); 765 } 766 767 // Emit the function proto information. 768 for (const Function &F : *M) { 769 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 770 // section, visibility, gc, unnamed_addr, prologuedata, 771 // dllstorageclass, comdat, prefixdata, personalityfn] 772 Vals.push_back(VE.getTypeID(F.getFunctionType())); 773 Vals.push_back(F.getCallingConv()); 774 Vals.push_back(F.isDeclaration()); 775 Vals.push_back(getEncodedLinkage(F)); 776 Vals.push_back(VE.getAttributeID(F.getAttributes())); 777 Vals.push_back(Log2_32(F.getAlignment())+1); 778 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 779 Vals.push_back(getEncodedVisibility(F)); 780 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 781 Vals.push_back(F.hasUnnamedAddr()); 782 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 783 : 0); 784 Vals.push_back(getEncodedDLLStorageClass(F)); 785 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 786 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 787 : 0); 788 Vals.push_back( 789 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 790 791 unsigned AbbrevToUse = 0; 792 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 793 Vals.clear(); 794 } 795 796 // Emit the alias information. 797 for (const GlobalAlias &A : M->aliases()) { 798 // ALIAS: [alias type, aliasee val#, linkage, visibility] 799 Vals.push_back(VE.getTypeID(A.getValueType())); 800 Vals.push_back(A.getType()->getAddressSpace()); 801 Vals.push_back(VE.getValueID(A.getAliasee())); 802 Vals.push_back(getEncodedLinkage(A)); 803 Vals.push_back(getEncodedVisibility(A)); 804 Vals.push_back(getEncodedDLLStorageClass(A)); 805 Vals.push_back(getEncodedThreadLocalMode(A)); 806 Vals.push_back(A.hasUnnamedAddr()); 807 unsigned AbbrevToUse = 0; 808 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 809 Vals.clear(); 810 } 811 812 // Emit the module's source file name. 813 { 814 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 815 M->getSourceFileName().size()); 816 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 817 if (Bits == SE_Char6) 818 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 819 else if (Bits == SE_Fixed7) 820 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 821 822 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 823 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 824 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 826 Abbv->Add(AbbrevOpToUse); 827 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 828 829 for (const auto P : M->getSourceFileName()) 830 Vals.push_back((unsigned char)P); 831 832 // Emit the finished record. 833 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 834 Vals.clear(); 835 } 836 837 // If we have a VST, write the VSTOFFSET record placeholder and return 838 // its offset. 839 if (M->getValueSymbolTable().empty()) 840 return 0; 841 return WriteValueSymbolTableForwardDecl(Stream); 842 } 843 844 static uint64_t GetOptimizationFlags(const Value *V) { 845 uint64_t Flags = 0; 846 847 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 848 if (OBO->hasNoSignedWrap()) 849 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 850 if (OBO->hasNoUnsignedWrap()) 851 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 852 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 853 if (PEO->isExact()) 854 Flags |= 1 << bitc::PEO_EXACT; 855 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 856 if (FPMO->hasUnsafeAlgebra()) 857 Flags |= FastMathFlags::UnsafeAlgebra; 858 if (FPMO->hasNoNaNs()) 859 Flags |= FastMathFlags::NoNaNs; 860 if (FPMO->hasNoInfs()) 861 Flags |= FastMathFlags::NoInfs; 862 if (FPMO->hasNoSignedZeros()) 863 Flags |= FastMathFlags::NoSignedZeros; 864 if (FPMO->hasAllowReciprocal()) 865 Flags |= FastMathFlags::AllowReciprocal; 866 } 867 868 return Flags; 869 } 870 871 static void writeValueAsMetadata(const ValueAsMetadata *MD, 872 const ValueEnumerator &VE, 873 BitstreamWriter &Stream, 874 SmallVectorImpl<uint64_t> &Record) { 875 // Mimic an MDNode with a value as one operand. 876 Value *V = MD->getValue(); 877 Record.push_back(VE.getTypeID(V->getType())); 878 Record.push_back(VE.getValueID(V)); 879 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 880 Record.clear(); 881 } 882 883 static void writeMDTuple(const MDTuple *N, const ValueEnumerator &VE, 884 BitstreamWriter &Stream, 885 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 886 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 887 Metadata *MD = N->getOperand(i); 888 assert(!(MD && isa<LocalAsMetadata>(MD)) && 889 "Unexpected function-local metadata"); 890 Record.push_back(VE.getMetadataOrNullID(MD)); 891 } 892 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 893 : bitc::METADATA_NODE, 894 Record, Abbrev); 895 Record.clear(); 896 } 897 898 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 899 // Assume the column is usually under 128, and always output the inlined-at 900 // location (it's never more expensive than building an array size 1). 901 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 908 return Stream.EmitAbbrev(Abbv); 909 } 910 911 static void writeDILocation(const DILocation *N, const ValueEnumerator &VE, 912 BitstreamWriter &Stream, 913 SmallVectorImpl<uint64_t> &Record, 914 unsigned &Abbrev) { 915 if (!Abbrev) 916 Abbrev = createDILocationAbbrev(Stream); 917 918 Record.push_back(N->isDistinct()); 919 Record.push_back(N->getLine()); 920 Record.push_back(N->getColumn()); 921 Record.push_back(VE.getMetadataID(N->getScope())); 922 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 923 924 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) { 929 // Assume the column is usually under 128, and always output the inlined-at 930 // location (it's never more expensive than building an array size 1). 931 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 932 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 939 return Stream.EmitAbbrev(Abbv); 940 } 941 942 static void writeGenericDINode(const GenericDINode *N, 943 const ValueEnumerator &VE, 944 BitstreamWriter &Stream, 945 SmallVectorImpl<uint64_t> &Record, 946 unsigned &Abbrev) { 947 if (!Abbrev) 948 Abbrev = createGenericDINodeAbbrev(Stream); 949 950 Record.push_back(N->isDistinct()); 951 Record.push_back(N->getTag()); 952 Record.push_back(0); // Per-tag version field; unused for now. 953 954 for (auto &I : N->operands()) 955 Record.push_back(VE.getMetadataOrNullID(I)); 956 957 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 958 Record.clear(); 959 } 960 961 static uint64_t rotateSign(int64_t I) { 962 uint64_t U = I; 963 return I < 0 ? ~(U << 1) : U << 1; 964 } 965 966 static void writeDISubrange(const DISubrange *N, const ValueEnumerator &, 967 BitstreamWriter &Stream, 968 SmallVectorImpl<uint64_t> &Record, 969 unsigned Abbrev) { 970 Record.push_back(N->isDistinct()); 971 Record.push_back(N->getCount()); 972 Record.push_back(rotateSign(N->getLowerBound())); 973 974 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 975 Record.clear(); 976 } 977 978 static void writeDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 979 BitstreamWriter &Stream, 980 SmallVectorImpl<uint64_t> &Record, 981 unsigned Abbrev) { 982 Record.push_back(N->isDistinct()); 983 Record.push_back(rotateSign(N->getValue())); 984 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 985 986 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 987 Record.clear(); 988 } 989 990 static void writeDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 991 BitstreamWriter &Stream, 992 SmallVectorImpl<uint64_t> &Record, 993 unsigned Abbrev) { 994 Record.push_back(N->isDistinct()); 995 Record.push_back(N->getTag()); 996 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 997 Record.push_back(N->getSizeInBits()); 998 Record.push_back(N->getAlignInBits()); 999 Record.push_back(N->getEncoding()); 1000 1001 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1002 Record.clear(); 1003 } 1004 1005 static void writeDIDerivedType(const DIDerivedType *N, 1006 const ValueEnumerator &VE, 1007 BitstreamWriter &Stream, 1008 SmallVectorImpl<uint64_t> &Record, 1009 unsigned Abbrev) { 1010 Record.push_back(N->isDistinct()); 1011 Record.push_back(N->getTag()); 1012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1013 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1014 Record.push_back(N->getLine()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1016 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1017 Record.push_back(N->getSizeInBits()); 1018 Record.push_back(N->getAlignInBits()); 1019 Record.push_back(N->getOffsetInBits()); 1020 Record.push_back(N->getFlags()); 1021 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1022 1023 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1024 Record.clear(); 1025 } 1026 1027 static void writeDICompositeType(const DICompositeType *N, 1028 const ValueEnumerator &VE, 1029 BitstreamWriter &Stream, 1030 SmallVectorImpl<uint64_t> &Record, 1031 unsigned Abbrev) { 1032 Record.push_back(N->isDistinct()); 1033 Record.push_back(N->getTag()); 1034 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1035 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1036 Record.push_back(N->getLine()); 1037 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1038 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1039 Record.push_back(N->getSizeInBits()); 1040 Record.push_back(N->getAlignInBits()); 1041 Record.push_back(N->getOffsetInBits()); 1042 Record.push_back(N->getFlags()); 1043 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1044 Record.push_back(N->getRuntimeLang()); 1045 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1046 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1047 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1048 1049 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1050 Record.clear(); 1051 } 1052 1053 static void writeDISubroutineType(const DISubroutineType *N, 1054 const ValueEnumerator &VE, 1055 BitstreamWriter &Stream, 1056 SmallVectorImpl<uint64_t> &Record, 1057 unsigned Abbrev) { 1058 Record.push_back(N->isDistinct()); 1059 Record.push_back(N->getFlags()); 1060 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1061 1062 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1063 Record.clear(); 1064 } 1065 1066 static void writeDIFile(const DIFile *N, const ValueEnumerator &VE, 1067 BitstreamWriter &Stream, 1068 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1069 Record.push_back(N->isDistinct()); 1070 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1071 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1072 1073 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1074 Record.clear(); 1075 } 1076 1077 static void writeDICompileUnit(const DICompileUnit *N, 1078 const ValueEnumerator &VE, 1079 BitstreamWriter &Stream, 1080 SmallVectorImpl<uint64_t> &Record, 1081 unsigned Abbrev) { 1082 assert(N->isDistinct() && "Expected distinct compile units"); 1083 Record.push_back(/* IsDistinct */ true); 1084 Record.push_back(N->getSourceLanguage()); 1085 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1086 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1087 Record.push_back(N->isOptimized()); 1088 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1089 Record.push_back(N->getRuntimeVersion()); 1090 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1091 Record.push_back(N->getEmissionKind()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1093 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1094 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1095 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1096 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1097 Record.push_back(N->getDWOId()); 1098 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1099 1100 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1101 Record.clear(); 1102 } 1103 1104 static void writeDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1105 BitstreamWriter &Stream, 1106 SmallVectorImpl<uint64_t> &Record, 1107 unsigned Abbrev) { 1108 Record.push_back(N->isDistinct()); 1109 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1110 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1111 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1112 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1113 Record.push_back(N->getLine()); 1114 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1115 Record.push_back(N->isLocalToUnit()); 1116 Record.push_back(N->isDefinition()); 1117 Record.push_back(N->getScopeLine()); 1118 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1119 Record.push_back(N->getVirtuality()); 1120 Record.push_back(N->getVirtualIndex()); 1121 Record.push_back(N->getFlags()); 1122 Record.push_back(N->isOptimized()); 1123 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1124 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1125 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1126 1127 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1128 Record.clear(); 1129 } 1130 1131 static void writeDILexicalBlock(const DILexicalBlock *N, 1132 const ValueEnumerator &VE, 1133 BitstreamWriter &Stream, 1134 SmallVectorImpl<uint64_t> &Record, 1135 unsigned Abbrev) { 1136 Record.push_back(N->isDistinct()); 1137 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1138 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1139 Record.push_back(N->getLine()); 1140 Record.push_back(N->getColumn()); 1141 1142 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1143 Record.clear(); 1144 } 1145 1146 static void writeDILexicalBlockFile(const DILexicalBlockFile *N, 1147 const ValueEnumerator &VE, 1148 BitstreamWriter &Stream, 1149 SmallVectorImpl<uint64_t> &Record, 1150 unsigned Abbrev) { 1151 Record.push_back(N->isDistinct()); 1152 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1153 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1154 Record.push_back(N->getDiscriminator()); 1155 1156 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1157 Record.clear(); 1158 } 1159 1160 static void writeDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1161 BitstreamWriter &Stream, 1162 SmallVectorImpl<uint64_t> &Record, 1163 unsigned Abbrev) { 1164 Record.push_back(N->isDistinct()); 1165 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1166 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1167 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1168 Record.push_back(N->getLine()); 1169 1170 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1171 Record.clear(); 1172 } 1173 1174 static void writeDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1175 BitstreamWriter &Stream, 1176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1177 Record.push_back(N->isDistinct()); 1178 Record.push_back(N->getMacinfoType()); 1179 Record.push_back(N->getLine()); 1180 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1181 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1182 1183 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1184 Record.clear(); 1185 } 1186 1187 static void writeDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1188 BitstreamWriter &Stream, 1189 SmallVectorImpl<uint64_t> &Record, 1190 unsigned Abbrev) { 1191 Record.push_back(N->isDistinct()); 1192 Record.push_back(N->getMacinfoType()); 1193 Record.push_back(N->getLine()); 1194 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1195 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1196 1197 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1198 Record.clear(); 1199 } 1200 1201 static void writeDIModule(const DIModule *N, const ValueEnumerator &VE, 1202 BitstreamWriter &Stream, 1203 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1204 Record.push_back(N->isDistinct()); 1205 for (auto &I : N->operands()) 1206 Record.push_back(VE.getMetadataOrNullID(I)); 1207 1208 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1209 Record.clear(); 1210 } 1211 1212 static void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 1213 const ValueEnumerator &VE, 1214 BitstreamWriter &Stream, 1215 SmallVectorImpl<uint64_t> &Record, 1216 unsigned Abbrev) { 1217 Record.push_back(N->isDistinct()); 1218 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1219 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1220 1221 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1222 Record.clear(); 1223 } 1224 1225 static void writeDITemplateValueParameter(const DITemplateValueParameter *N, 1226 const ValueEnumerator &VE, 1227 BitstreamWriter &Stream, 1228 SmallVectorImpl<uint64_t> &Record, 1229 unsigned Abbrev) { 1230 Record.push_back(N->isDistinct()); 1231 Record.push_back(N->getTag()); 1232 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1233 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1234 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1235 1236 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1237 Record.clear(); 1238 } 1239 1240 static void writeDIGlobalVariable(const DIGlobalVariable *N, 1241 const ValueEnumerator &VE, 1242 BitstreamWriter &Stream, 1243 SmallVectorImpl<uint64_t> &Record, 1244 unsigned Abbrev) { 1245 Record.push_back(N->isDistinct()); 1246 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1247 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1248 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1249 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1250 Record.push_back(N->getLine()); 1251 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1252 Record.push_back(N->isLocalToUnit()); 1253 Record.push_back(N->isDefinition()); 1254 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1255 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1256 1257 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1258 Record.clear(); 1259 } 1260 1261 static void writeDILocalVariable(const DILocalVariable *N, 1262 const ValueEnumerator &VE, 1263 BitstreamWriter &Stream, 1264 SmallVectorImpl<uint64_t> &Record, 1265 unsigned Abbrev) { 1266 Record.push_back(N->isDistinct()); 1267 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1268 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1269 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1270 Record.push_back(N->getLine()); 1271 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1272 Record.push_back(N->getArg()); 1273 Record.push_back(N->getFlags()); 1274 1275 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1276 Record.clear(); 1277 } 1278 1279 static void writeDIExpression(const DIExpression *N, const ValueEnumerator &, 1280 BitstreamWriter &Stream, 1281 SmallVectorImpl<uint64_t> &Record, 1282 unsigned Abbrev) { 1283 Record.reserve(N->getElements().size() + 1); 1284 1285 Record.push_back(N->isDistinct()); 1286 Record.append(N->elements_begin(), N->elements_end()); 1287 1288 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1289 Record.clear(); 1290 } 1291 1292 static void writeDIObjCProperty(const DIObjCProperty *N, 1293 const ValueEnumerator &VE, 1294 BitstreamWriter &Stream, 1295 SmallVectorImpl<uint64_t> &Record, 1296 unsigned Abbrev) { 1297 Record.push_back(N->isDistinct()); 1298 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1299 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1300 Record.push_back(N->getLine()); 1301 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1302 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1303 Record.push_back(N->getAttributes()); 1304 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1305 1306 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1307 Record.clear(); 1308 } 1309 1310 static void writeDIImportedEntity(const DIImportedEntity *N, 1311 const ValueEnumerator &VE, 1312 BitstreamWriter &Stream, 1313 SmallVectorImpl<uint64_t> &Record, 1314 unsigned Abbrev) { 1315 Record.push_back(N->isDistinct()); 1316 Record.push_back(N->getTag()); 1317 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1318 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1319 Record.push_back(N->getLine()); 1320 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1321 1322 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1323 Record.clear(); 1324 } 1325 1326 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1327 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1328 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1331 return Stream.EmitAbbrev(Abbv); 1332 } 1333 1334 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1335 BitstreamWriter &Stream, 1336 SmallVectorImpl<uint64_t> &Record) { 1337 if (M.named_metadata_empty()) 1338 return; 1339 1340 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1341 for (const NamedMDNode &NMD : M.named_metadata()) { 1342 // Write name. 1343 StringRef Str = NMD.getName(); 1344 Record.append(Str.bytes_begin(), Str.bytes_end()); 1345 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1346 Record.clear(); 1347 1348 // Write named metadata operands. 1349 for (const MDNode *N : NMD.operands()) 1350 Record.push_back(VE.getMetadataID(N)); 1351 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1352 Record.clear(); 1353 } 1354 } 1355 1356 static unsigned createMetadataStringsAbbrev(BitstreamWriter &Stream) { 1357 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1358 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1362 return Stream.EmitAbbrev(Abbv); 1363 } 1364 1365 /// Write out a record for MDString. 1366 /// 1367 /// All the metadata strings in a metadata block are emitted in a single 1368 /// record. The sizes and strings themselves are shoved into a blob. 1369 static void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 1370 BitstreamWriter &Stream, 1371 SmallVectorImpl<uint64_t> &Record) { 1372 if (Strings.empty()) 1373 return; 1374 1375 // Start the record with the number of strings. 1376 Record.push_back(bitc::METADATA_STRINGS); 1377 Record.push_back(Strings.size()); 1378 1379 // Emit the sizes of the strings in the blob. 1380 SmallString<256> Blob; 1381 { 1382 BitstreamWriter W(Blob); 1383 for (const Metadata *MD : Strings) 1384 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1385 W.FlushToWord(); 1386 } 1387 1388 // Add the offset to the strings to the record. 1389 Record.push_back(Blob.size()); 1390 1391 // Add the strings to the blob. 1392 for (const Metadata *MD : Strings) 1393 Blob.append(cast<MDString>(MD)->getString()); 1394 1395 // Emit the final record. 1396 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(Stream), Record, Blob); 1397 Record.clear(); 1398 } 1399 1400 static void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1401 const ValueEnumerator &VE, 1402 BitstreamWriter &Stream, 1403 SmallVectorImpl<uint64_t> &Record) { 1404 if (MDs.empty()) 1405 return; 1406 1407 // Initialize MDNode abbreviations. 1408 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1409 #include "llvm/IR/Metadata.def" 1410 1411 for (const Metadata *MD : MDs) { 1412 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1413 assert(N->isResolved() && "Expected forward references to be resolved"); 1414 1415 switch (N->getMetadataID()) { 1416 default: 1417 llvm_unreachable("Invalid MDNode subclass"); 1418 #define HANDLE_MDNODE_LEAF(CLASS) \ 1419 case Metadata::CLASS##Kind: \ 1420 write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1421 continue; 1422 #include "llvm/IR/Metadata.def" 1423 } 1424 } 1425 writeValueAsMetadata(cast<ValueAsMetadata>(MD), VE, Stream, Record); 1426 } 1427 } 1428 1429 static void writeModuleMetadata(const Module &M, 1430 const ValueEnumerator &VE, 1431 BitstreamWriter &Stream) { 1432 if (!VE.hasMDs() && M.named_metadata_empty()) 1433 return; 1434 1435 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1436 SmallVector<uint64_t, 64> Record; 1437 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1438 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1439 writeNamedMetadata(M, VE, Stream, Record); 1440 Stream.ExitBlock(); 1441 } 1442 1443 static void writeFunctionMetadata(const Function &F, const ValueEnumerator &VE, 1444 BitstreamWriter &Stream) { 1445 if (!VE.hasMDs()) 1446 return; 1447 1448 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1449 SmallVector<uint64_t, 64> Record; 1450 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1451 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1452 Stream.ExitBlock(); 1453 } 1454 1455 static void WriteMetadataAttachment(const Function &F, 1456 const ValueEnumerator &VE, 1457 BitstreamWriter &Stream) { 1458 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1459 1460 SmallVector<uint64_t, 64> Record; 1461 1462 // Write metadata attachments 1463 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1464 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1465 F.getAllMetadata(MDs); 1466 if (!MDs.empty()) { 1467 for (const auto &I : MDs) { 1468 Record.push_back(I.first); 1469 Record.push_back(VE.getMetadataID(I.second)); 1470 } 1471 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1472 Record.clear(); 1473 } 1474 1475 for (const BasicBlock &BB : F) 1476 for (const Instruction &I : BB) { 1477 MDs.clear(); 1478 I.getAllMetadataOtherThanDebugLoc(MDs); 1479 1480 // If no metadata, ignore instruction. 1481 if (MDs.empty()) continue; 1482 1483 Record.push_back(VE.getInstructionID(&I)); 1484 1485 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1486 Record.push_back(MDs[i].first); 1487 Record.push_back(VE.getMetadataID(MDs[i].second)); 1488 } 1489 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1490 Record.clear(); 1491 } 1492 1493 Stream.ExitBlock(); 1494 } 1495 1496 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1497 SmallVector<uint64_t, 64> Record; 1498 1499 // Write metadata kinds 1500 // METADATA_KIND - [n x [id, name]] 1501 SmallVector<StringRef, 8> Names; 1502 M->getMDKindNames(Names); 1503 1504 if (Names.empty()) return; 1505 1506 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1507 1508 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1509 Record.push_back(MDKindID); 1510 StringRef KName = Names[MDKindID]; 1511 Record.append(KName.begin(), KName.end()); 1512 1513 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1514 Record.clear(); 1515 } 1516 1517 Stream.ExitBlock(); 1518 } 1519 1520 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1521 // Write metadata kinds 1522 // 1523 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1524 // 1525 // OPERAND_BUNDLE_TAG - [strchr x N] 1526 1527 SmallVector<StringRef, 8> Tags; 1528 M->getOperandBundleTags(Tags); 1529 1530 if (Tags.empty()) 1531 return; 1532 1533 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1534 1535 SmallVector<uint64_t, 64> Record; 1536 1537 for (auto Tag : Tags) { 1538 Record.append(Tag.begin(), Tag.end()); 1539 1540 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1541 Record.clear(); 1542 } 1543 1544 Stream.ExitBlock(); 1545 } 1546 1547 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1548 if ((int64_t)V >= 0) 1549 Vals.push_back(V << 1); 1550 else 1551 Vals.push_back((-V << 1) | 1); 1552 } 1553 1554 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1555 const ValueEnumerator &VE, 1556 BitstreamWriter &Stream, bool isGlobal) { 1557 if (FirstVal == LastVal) return; 1558 1559 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1560 1561 unsigned AggregateAbbrev = 0; 1562 unsigned String8Abbrev = 0; 1563 unsigned CString7Abbrev = 0; 1564 unsigned CString6Abbrev = 0; 1565 // If this is a constant pool for the module, emit module-specific abbrevs. 1566 if (isGlobal) { 1567 // Abbrev for CST_CODE_AGGREGATE. 1568 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1569 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1572 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1573 1574 // Abbrev for CST_CODE_STRING. 1575 Abbv = new BitCodeAbbrev(); 1576 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1579 String8Abbrev = Stream.EmitAbbrev(Abbv); 1580 // Abbrev for CST_CODE_CSTRING. 1581 Abbv = new BitCodeAbbrev(); 1582 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1585 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1586 // Abbrev for CST_CODE_CSTRING. 1587 Abbv = new BitCodeAbbrev(); 1588 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1591 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1592 } 1593 1594 SmallVector<uint64_t, 64> Record; 1595 1596 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1597 Type *LastTy = nullptr; 1598 for (unsigned i = FirstVal; i != LastVal; ++i) { 1599 const Value *V = Vals[i].first; 1600 // If we need to switch types, do so now. 1601 if (V->getType() != LastTy) { 1602 LastTy = V->getType(); 1603 Record.push_back(VE.getTypeID(LastTy)); 1604 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1605 CONSTANTS_SETTYPE_ABBREV); 1606 Record.clear(); 1607 } 1608 1609 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1610 Record.push_back(unsigned(IA->hasSideEffects()) | 1611 unsigned(IA->isAlignStack()) << 1 | 1612 unsigned(IA->getDialect()&1) << 2); 1613 1614 // Add the asm string. 1615 const std::string &AsmStr = IA->getAsmString(); 1616 Record.push_back(AsmStr.size()); 1617 Record.append(AsmStr.begin(), AsmStr.end()); 1618 1619 // Add the constraint string. 1620 const std::string &ConstraintStr = IA->getConstraintString(); 1621 Record.push_back(ConstraintStr.size()); 1622 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1623 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1624 Record.clear(); 1625 continue; 1626 } 1627 const Constant *C = cast<Constant>(V); 1628 unsigned Code = -1U; 1629 unsigned AbbrevToUse = 0; 1630 if (C->isNullValue()) { 1631 Code = bitc::CST_CODE_NULL; 1632 } else if (isa<UndefValue>(C)) { 1633 Code = bitc::CST_CODE_UNDEF; 1634 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1635 if (IV->getBitWidth() <= 64) { 1636 uint64_t V = IV->getSExtValue(); 1637 emitSignedInt64(Record, V); 1638 Code = bitc::CST_CODE_INTEGER; 1639 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1640 } else { // Wide integers, > 64 bits in size. 1641 // We have an arbitrary precision integer value to write whose 1642 // bit width is > 64. However, in canonical unsigned integer 1643 // format it is likely that the high bits are going to be zero. 1644 // So, we only write the number of active words. 1645 unsigned NWords = IV->getValue().getActiveWords(); 1646 const uint64_t *RawWords = IV->getValue().getRawData(); 1647 for (unsigned i = 0; i != NWords; ++i) { 1648 emitSignedInt64(Record, RawWords[i]); 1649 } 1650 Code = bitc::CST_CODE_WIDE_INTEGER; 1651 } 1652 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1653 Code = bitc::CST_CODE_FLOAT; 1654 Type *Ty = CFP->getType(); 1655 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1656 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1657 } else if (Ty->isX86_FP80Ty()) { 1658 // api needed to prevent premature destruction 1659 // bits are not in the same order as a normal i80 APInt, compensate. 1660 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1661 const uint64_t *p = api.getRawData(); 1662 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1663 Record.push_back(p[0] & 0xffffLL); 1664 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1665 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1666 const uint64_t *p = api.getRawData(); 1667 Record.push_back(p[0]); 1668 Record.push_back(p[1]); 1669 } else { 1670 assert (0 && "Unknown FP type!"); 1671 } 1672 } else if (isa<ConstantDataSequential>(C) && 1673 cast<ConstantDataSequential>(C)->isString()) { 1674 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1675 // Emit constant strings specially. 1676 unsigned NumElts = Str->getNumElements(); 1677 // If this is a null-terminated string, use the denser CSTRING encoding. 1678 if (Str->isCString()) { 1679 Code = bitc::CST_CODE_CSTRING; 1680 --NumElts; // Don't encode the null, which isn't allowed by char6. 1681 } else { 1682 Code = bitc::CST_CODE_STRING; 1683 AbbrevToUse = String8Abbrev; 1684 } 1685 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1686 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1687 for (unsigned i = 0; i != NumElts; ++i) { 1688 unsigned char V = Str->getElementAsInteger(i); 1689 Record.push_back(V); 1690 isCStr7 &= (V & 128) == 0; 1691 if (isCStrChar6) 1692 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1693 } 1694 1695 if (isCStrChar6) 1696 AbbrevToUse = CString6Abbrev; 1697 else if (isCStr7) 1698 AbbrevToUse = CString7Abbrev; 1699 } else if (const ConstantDataSequential *CDS = 1700 dyn_cast<ConstantDataSequential>(C)) { 1701 Code = bitc::CST_CODE_DATA; 1702 Type *EltTy = CDS->getType()->getElementType(); 1703 if (isa<IntegerType>(EltTy)) { 1704 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1705 Record.push_back(CDS->getElementAsInteger(i)); 1706 } else { 1707 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1708 Record.push_back( 1709 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1710 } 1711 } else if (isa<ConstantAggregate>(C)) { 1712 Code = bitc::CST_CODE_AGGREGATE; 1713 for (const Value *Op : C->operands()) 1714 Record.push_back(VE.getValueID(Op)); 1715 AbbrevToUse = AggregateAbbrev; 1716 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1717 switch (CE->getOpcode()) { 1718 default: 1719 if (Instruction::isCast(CE->getOpcode())) { 1720 Code = bitc::CST_CODE_CE_CAST; 1721 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1722 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1723 Record.push_back(VE.getValueID(C->getOperand(0))); 1724 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1725 } else { 1726 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1727 Code = bitc::CST_CODE_CE_BINOP; 1728 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1729 Record.push_back(VE.getValueID(C->getOperand(0))); 1730 Record.push_back(VE.getValueID(C->getOperand(1))); 1731 uint64_t Flags = GetOptimizationFlags(CE); 1732 if (Flags != 0) 1733 Record.push_back(Flags); 1734 } 1735 break; 1736 case Instruction::GetElementPtr: { 1737 Code = bitc::CST_CODE_CE_GEP; 1738 const auto *GO = cast<GEPOperator>(C); 1739 if (GO->isInBounds()) 1740 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1741 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1742 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1743 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1744 Record.push_back(VE.getValueID(C->getOperand(i))); 1745 } 1746 break; 1747 } 1748 case Instruction::Select: 1749 Code = bitc::CST_CODE_CE_SELECT; 1750 Record.push_back(VE.getValueID(C->getOperand(0))); 1751 Record.push_back(VE.getValueID(C->getOperand(1))); 1752 Record.push_back(VE.getValueID(C->getOperand(2))); 1753 break; 1754 case Instruction::ExtractElement: 1755 Code = bitc::CST_CODE_CE_EXTRACTELT; 1756 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1757 Record.push_back(VE.getValueID(C->getOperand(0))); 1758 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1759 Record.push_back(VE.getValueID(C->getOperand(1))); 1760 break; 1761 case Instruction::InsertElement: 1762 Code = bitc::CST_CODE_CE_INSERTELT; 1763 Record.push_back(VE.getValueID(C->getOperand(0))); 1764 Record.push_back(VE.getValueID(C->getOperand(1))); 1765 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1766 Record.push_back(VE.getValueID(C->getOperand(2))); 1767 break; 1768 case Instruction::ShuffleVector: 1769 // If the return type and argument types are the same, this is a 1770 // standard shufflevector instruction. If the types are different, 1771 // then the shuffle is widening or truncating the input vectors, and 1772 // the argument type must also be encoded. 1773 if (C->getType() == C->getOperand(0)->getType()) { 1774 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1775 } else { 1776 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1777 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1778 } 1779 Record.push_back(VE.getValueID(C->getOperand(0))); 1780 Record.push_back(VE.getValueID(C->getOperand(1))); 1781 Record.push_back(VE.getValueID(C->getOperand(2))); 1782 break; 1783 case Instruction::ICmp: 1784 case Instruction::FCmp: 1785 Code = bitc::CST_CODE_CE_CMP; 1786 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1787 Record.push_back(VE.getValueID(C->getOperand(0))); 1788 Record.push_back(VE.getValueID(C->getOperand(1))); 1789 Record.push_back(CE->getPredicate()); 1790 break; 1791 } 1792 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1793 Code = bitc::CST_CODE_BLOCKADDRESS; 1794 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1795 Record.push_back(VE.getValueID(BA->getFunction())); 1796 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1797 } else { 1798 #ifndef NDEBUG 1799 C->dump(); 1800 #endif 1801 llvm_unreachable("Unknown constant!"); 1802 } 1803 Stream.EmitRecord(Code, Record, AbbrevToUse); 1804 Record.clear(); 1805 } 1806 1807 Stream.ExitBlock(); 1808 } 1809 1810 static void WriteModuleConstants(const ValueEnumerator &VE, 1811 BitstreamWriter &Stream) { 1812 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1813 1814 // Find the first constant to emit, which is the first non-globalvalue value. 1815 // We know globalvalues have been emitted by WriteModuleInfo. 1816 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1817 if (!isa<GlobalValue>(Vals[i].first)) { 1818 WriteConstants(i, Vals.size(), VE, Stream, true); 1819 return; 1820 } 1821 } 1822 } 1823 1824 /// PushValueAndType - The file has to encode both the value and type id for 1825 /// many values, because we need to know what type to create for forward 1826 /// references. However, most operands are not forward references, so this type 1827 /// field is not needed. 1828 /// 1829 /// This function adds V's value ID to Vals. If the value ID is higher than the 1830 /// instruction ID, then it is a forward reference, and it also includes the 1831 /// type ID. The value ID that is written is encoded relative to the InstID. 1832 static bool PushValueAndType(const Value *V, unsigned InstID, 1833 SmallVectorImpl<unsigned> &Vals, 1834 ValueEnumerator &VE) { 1835 unsigned ValID = VE.getValueID(V); 1836 // Make encoding relative to the InstID. 1837 Vals.push_back(InstID - ValID); 1838 if (ValID >= InstID) { 1839 Vals.push_back(VE.getTypeID(V->getType())); 1840 return true; 1841 } 1842 return false; 1843 } 1844 1845 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1846 unsigned InstID, ValueEnumerator &VE) { 1847 SmallVector<unsigned, 64> Record; 1848 LLVMContext &C = CS.getInstruction()->getContext(); 1849 1850 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1851 const auto &Bundle = CS.getOperandBundleAt(i); 1852 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1853 1854 for (auto &Input : Bundle.Inputs) 1855 PushValueAndType(Input, InstID, Record, VE); 1856 1857 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1858 Record.clear(); 1859 } 1860 } 1861 1862 /// pushValue - Like PushValueAndType, but where the type of the value is 1863 /// omitted (perhaps it was already encoded in an earlier operand). 1864 static void pushValue(const Value *V, unsigned InstID, 1865 SmallVectorImpl<unsigned> &Vals, 1866 ValueEnumerator &VE) { 1867 unsigned ValID = VE.getValueID(V); 1868 Vals.push_back(InstID - ValID); 1869 } 1870 1871 static void pushValueSigned(const Value *V, unsigned InstID, 1872 SmallVectorImpl<uint64_t> &Vals, 1873 ValueEnumerator &VE) { 1874 unsigned ValID = VE.getValueID(V); 1875 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1876 emitSignedInt64(Vals, diff); 1877 } 1878 1879 /// WriteInstruction - Emit an instruction to the specified stream. 1880 static void WriteInstruction(const Instruction &I, unsigned InstID, 1881 ValueEnumerator &VE, BitstreamWriter &Stream, 1882 SmallVectorImpl<unsigned> &Vals) { 1883 unsigned Code = 0; 1884 unsigned AbbrevToUse = 0; 1885 VE.setInstructionID(&I); 1886 switch (I.getOpcode()) { 1887 default: 1888 if (Instruction::isCast(I.getOpcode())) { 1889 Code = bitc::FUNC_CODE_INST_CAST; 1890 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1891 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1892 Vals.push_back(VE.getTypeID(I.getType())); 1893 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1894 } else { 1895 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1896 Code = bitc::FUNC_CODE_INST_BINOP; 1897 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1898 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1899 pushValue(I.getOperand(1), InstID, Vals, VE); 1900 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1901 uint64_t Flags = GetOptimizationFlags(&I); 1902 if (Flags != 0) { 1903 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1904 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1905 Vals.push_back(Flags); 1906 } 1907 } 1908 break; 1909 1910 case Instruction::GetElementPtr: { 1911 Code = bitc::FUNC_CODE_INST_GEP; 1912 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1913 auto &GEPInst = cast<GetElementPtrInst>(I); 1914 Vals.push_back(GEPInst.isInBounds()); 1915 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1916 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1917 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1918 break; 1919 } 1920 case Instruction::ExtractValue: { 1921 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1922 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1923 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1924 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1925 break; 1926 } 1927 case Instruction::InsertValue: { 1928 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1929 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1930 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1931 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1932 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1933 break; 1934 } 1935 case Instruction::Select: 1936 Code = bitc::FUNC_CODE_INST_VSELECT; 1937 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1938 pushValue(I.getOperand(2), InstID, Vals, VE); 1939 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1940 break; 1941 case Instruction::ExtractElement: 1942 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1943 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1944 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1945 break; 1946 case Instruction::InsertElement: 1947 Code = bitc::FUNC_CODE_INST_INSERTELT; 1948 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1949 pushValue(I.getOperand(1), InstID, Vals, VE); 1950 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1951 break; 1952 case Instruction::ShuffleVector: 1953 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1954 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1955 pushValue(I.getOperand(1), InstID, Vals, VE); 1956 pushValue(I.getOperand(2), InstID, Vals, VE); 1957 break; 1958 case Instruction::ICmp: 1959 case Instruction::FCmp: { 1960 // compare returning Int1Ty or vector of Int1Ty 1961 Code = bitc::FUNC_CODE_INST_CMP2; 1962 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1963 pushValue(I.getOperand(1), InstID, Vals, VE); 1964 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1965 uint64_t Flags = GetOptimizationFlags(&I); 1966 if (Flags != 0) 1967 Vals.push_back(Flags); 1968 break; 1969 } 1970 1971 case Instruction::Ret: 1972 { 1973 Code = bitc::FUNC_CODE_INST_RET; 1974 unsigned NumOperands = I.getNumOperands(); 1975 if (NumOperands == 0) 1976 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1977 else if (NumOperands == 1) { 1978 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1979 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1980 } else { 1981 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1982 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1983 } 1984 } 1985 break; 1986 case Instruction::Br: 1987 { 1988 Code = bitc::FUNC_CODE_INST_BR; 1989 const BranchInst &II = cast<BranchInst>(I); 1990 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1991 if (II.isConditional()) { 1992 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1993 pushValue(II.getCondition(), InstID, Vals, VE); 1994 } 1995 } 1996 break; 1997 case Instruction::Switch: 1998 { 1999 Code = bitc::FUNC_CODE_INST_SWITCH; 2000 const SwitchInst &SI = cast<SwitchInst>(I); 2001 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2002 pushValue(SI.getCondition(), InstID, Vals, VE); 2003 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2004 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2005 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2006 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2007 } 2008 } 2009 break; 2010 case Instruction::IndirectBr: 2011 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2012 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2013 // Encode the address operand as relative, but not the basic blocks. 2014 pushValue(I.getOperand(0), InstID, Vals, VE); 2015 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2016 Vals.push_back(VE.getValueID(I.getOperand(i))); 2017 break; 2018 2019 case Instruction::Invoke: { 2020 const InvokeInst *II = cast<InvokeInst>(&I); 2021 const Value *Callee = II->getCalledValue(); 2022 FunctionType *FTy = II->getFunctionType(); 2023 2024 if (II->hasOperandBundles()) 2025 WriteOperandBundles(Stream, II, InstID, VE); 2026 2027 Code = bitc::FUNC_CODE_INST_INVOKE; 2028 2029 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2030 Vals.push_back(II->getCallingConv() | 1 << 13); 2031 Vals.push_back(VE.getValueID(II->getNormalDest())); 2032 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2033 Vals.push_back(VE.getTypeID(FTy)); 2034 PushValueAndType(Callee, InstID, Vals, VE); 2035 2036 // Emit value #'s for the fixed parameters. 2037 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2038 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2039 2040 // Emit type/value pairs for varargs params. 2041 if (FTy->isVarArg()) { 2042 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2043 i != e; ++i) 2044 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2045 } 2046 break; 2047 } 2048 case Instruction::Resume: 2049 Code = bitc::FUNC_CODE_INST_RESUME; 2050 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2051 break; 2052 case Instruction::CleanupRet: { 2053 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2054 const auto &CRI = cast<CleanupReturnInst>(I); 2055 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2056 if (CRI.hasUnwindDest()) 2057 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2058 break; 2059 } 2060 case Instruction::CatchRet: { 2061 Code = bitc::FUNC_CODE_INST_CATCHRET; 2062 const auto &CRI = cast<CatchReturnInst>(I); 2063 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2064 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2065 break; 2066 } 2067 case Instruction::CleanupPad: 2068 case Instruction::CatchPad: { 2069 const auto &FuncletPad = cast<FuncletPadInst>(I); 2070 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2071 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2072 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2073 2074 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2075 Vals.push_back(NumArgOperands); 2076 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2077 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2078 break; 2079 } 2080 case Instruction::CatchSwitch: { 2081 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2082 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2083 2084 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2085 2086 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2087 Vals.push_back(NumHandlers); 2088 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2089 Vals.push_back(VE.getValueID(CatchPadBB)); 2090 2091 if (CatchSwitch.hasUnwindDest()) 2092 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2093 break; 2094 } 2095 case Instruction::Unreachable: 2096 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2097 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2098 break; 2099 2100 case Instruction::PHI: { 2101 const PHINode &PN = cast<PHINode>(I); 2102 Code = bitc::FUNC_CODE_INST_PHI; 2103 // With the newer instruction encoding, forward references could give 2104 // negative valued IDs. This is most common for PHIs, so we use 2105 // signed VBRs. 2106 SmallVector<uint64_t, 128> Vals64; 2107 Vals64.push_back(VE.getTypeID(PN.getType())); 2108 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2109 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2110 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2111 } 2112 // Emit a Vals64 vector and exit. 2113 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2114 Vals64.clear(); 2115 return; 2116 } 2117 2118 case Instruction::LandingPad: { 2119 const LandingPadInst &LP = cast<LandingPadInst>(I); 2120 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2121 Vals.push_back(VE.getTypeID(LP.getType())); 2122 Vals.push_back(LP.isCleanup()); 2123 Vals.push_back(LP.getNumClauses()); 2124 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2125 if (LP.isCatch(I)) 2126 Vals.push_back(LandingPadInst::Catch); 2127 else 2128 Vals.push_back(LandingPadInst::Filter); 2129 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2130 } 2131 break; 2132 } 2133 2134 case Instruction::Alloca: { 2135 Code = bitc::FUNC_CODE_INST_ALLOCA; 2136 const AllocaInst &AI = cast<AllocaInst>(I); 2137 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2138 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2139 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2140 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2141 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2142 "not enough bits for maximum alignment"); 2143 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2144 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2145 AlignRecord |= 1 << 6; 2146 AlignRecord |= AI.isSwiftError() << 7; 2147 Vals.push_back(AlignRecord); 2148 break; 2149 } 2150 2151 case Instruction::Load: 2152 if (cast<LoadInst>(I).isAtomic()) { 2153 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2154 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2155 } else { 2156 Code = bitc::FUNC_CODE_INST_LOAD; 2157 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2158 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2159 } 2160 Vals.push_back(VE.getTypeID(I.getType())); 2161 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2162 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2163 if (cast<LoadInst>(I).isAtomic()) { 2164 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2165 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2166 } 2167 break; 2168 case Instruction::Store: 2169 if (cast<StoreInst>(I).isAtomic()) 2170 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2171 else 2172 Code = bitc::FUNC_CODE_INST_STORE; 2173 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2174 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2175 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2176 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2177 if (cast<StoreInst>(I).isAtomic()) { 2178 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2179 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2180 } 2181 break; 2182 case Instruction::AtomicCmpXchg: 2183 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2184 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2185 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2186 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2187 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2188 Vals.push_back(GetEncodedOrdering( 2189 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2190 Vals.push_back(GetEncodedSynchScope( 2191 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2192 Vals.push_back(GetEncodedOrdering( 2193 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2194 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2195 break; 2196 case Instruction::AtomicRMW: 2197 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2198 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2199 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2200 Vals.push_back(GetEncodedRMWOperation( 2201 cast<AtomicRMWInst>(I).getOperation())); 2202 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2203 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2204 Vals.push_back(GetEncodedSynchScope( 2205 cast<AtomicRMWInst>(I).getSynchScope())); 2206 break; 2207 case Instruction::Fence: 2208 Code = bitc::FUNC_CODE_INST_FENCE; 2209 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2210 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2211 break; 2212 case Instruction::Call: { 2213 const CallInst &CI = cast<CallInst>(I); 2214 FunctionType *FTy = CI.getFunctionType(); 2215 2216 if (CI.hasOperandBundles()) 2217 WriteOperandBundles(Stream, &CI, InstID, VE); 2218 2219 Code = bitc::FUNC_CODE_INST_CALL; 2220 2221 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2222 2223 unsigned Flags = GetOptimizationFlags(&I); 2224 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2225 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2226 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2227 1 << bitc::CALL_EXPLICIT_TYPE | 2228 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2229 unsigned(Flags != 0) << bitc::CALL_FMF); 2230 if (Flags != 0) 2231 Vals.push_back(Flags); 2232 2233 Vals.push_back(VE.getTypeID(FTy)); 2234 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2235 2236 // Emit value #'s for the fixed parameters. 2237 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2238 // Check for labels (can happen with asm labels). 2239 if (FTy->getParamType(i)->isLabelTy()) 2240 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2241 else 2242 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2243 } 2244 2245 // Emit type/value pairs for varargs params. 2246 if (FTy->isVarArg()) { 2247 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2248 i != e; ++i) 2249 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2250 } 2251 break; 2252 } 2253 case Instruction::VAArg: 2254 Code = bitc::FUNC_CODE_INST_VAARG; 2255 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2256 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2257 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2258 break; 2259 } 2260 2261 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2262 Vals.clear(); 2263 } 2264 2265 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2266 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2267 /// VST, where we are including a function bitcode index and need to 2268 /// backpatch the VST forward declaration record. 2269 static void WriteValueSymbolTable( 2270 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2271 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2272 uint64_t BitcodeStartBit = 0, 2273 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> * 2274 GlobalValueIndex = nullptr) { 2275 if (VST.empty()) { 2276 // WriteValueSymbolTableForwardDecl should have returned early as 2277 // well. Ensure this handling remains in sync by asserting that 2278 // the placeholder offset is not set. 2279 assert(VSTOffsetPlaceholder == 0); 2280 return; 2281 } 2282 2283 if (VSTOffsetPlaceholder > 0) { 2284 // Get the offset of the VST we are writing, and backpatch it into 2285 // the VST forward declaration record. 2286 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2287 // The BitcodeStartBit was the stream offset of the actual bitcode 2288 // (e.g. excluding any initial darwin header). 2289 VSTOffset -= BitcodeStartBit; 2290 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2291 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2292 } 2293 2294 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2295 2296 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2297 // records, which are not used in the per-function VSTs. 2298 unsigned FnEntry8BitAbbrev; 2299 unsigned FnEntry7BitAbbrev; 2300 unsigned FnEntry6BitAbbrev; 2301 if (VSTOffsetPlaceholder > 0) { 2302 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2303 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2304 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2309 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2310 2311 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2312 Abbv = new BitCodeAbbrev(); 2313 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2318 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2319 2320 // 6-bit char6 VST_CODE_FNENTRY function strings. 2321 Abbv = new BitCodeAbbrev(); 2322 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2327 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2328 } 2329 2330 // FIXME: Set up the abbrev, we know how many values there are! 2331 // FIXME: We know if the type names can use 7-bit ascii. 2332 SmallVector<unsigned, 64> NameVals; 2333 2334 for (const ValueName &Name : VST) { 2335 // Figure out the encoding to use for the name. 2336 StringEncoding Bits = 2337 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2338 2339 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2340 NameVals.push_back(VE.getValueID(Name.getValue())); 2341 2342 Function *F = dyn_cast<Function>(Name.getValue()); 2343 if (!F) { 2344 // If value is an alias, need to get the aliased base object to 2345 // see if it is a function. 2346 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2347 if (GA && GA->getBaseObject()) 2348 F = dyn_cast<Function>(GA->getBaseObject()); 2349 } 2350 2351 // VST_CODE_ENTRY: [valueid, namechar x N] 2352 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2353 // VST_CODE_BBENTRY: [bbid, namechar x N] 2354 unsigned Code; 2355 if (isa<BasicBlock>(Name.getValue())) { 2356 Code = bitc::VST_CODE_BBENTRY; 2357 if (Bits == SE_Char6) 2358 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2359 } else if (F && !F->isDeclaration()) { 2360 // Must be the module-level VST, where we pass in the Index and 2361 // have a VSTOffsetPlaceholder. The function-level VST should not 2362 // contain any Function symbols. 2363 assert(GlobalValueIndex); 2364 assert(VSTOffsetPlaceholder > 0); 2365 2366 // Save the word offset of the function (from the start of the 2367 // actual bitcode written to the stream). 2368 uint64_t BitcodeIndex = 2369 (*GlobalValueIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2370 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2371 NameVals.push_back(BitcodeIndex / 32); 2372 2373 Code = bitc::VST_CODE_FNENTRY; 2374 AbbrevToUse = FnEntry8BitAbbrev; 2375 if (Bits == SE_Char6) 2376 AbbrevToUse = FnEntry6BitAbbrev; 2377 else if (Bits == SE_Fixed7) 2378 AbbrevToUse = FnEntry7BitAbbrev; 2379 } else { 2380 Code = bitc::VST_CODE_ENTRY; 2381 if (Bits == SE_Char6) 2382 AbbrevToUse = VST_ENTRY_6_ABBREV; 2383 else if (Bits == SE_Fixed7) 2384 AbbrevToUse = VST_ENTRY_7_ABBREV; 2385 } 2386 2387 for (const auto P : Name.getKey()) 2388 NameVals.push_back((unsigned char)P); 2389 2390 // Emit the finished record. 2391 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2392 NameVals.clear(); 2393 } 2394 Stream.ExitBlock(); 2395 } 2396 2397 /// Emit function names and summary offsets for the combined index 2398 /// used by ThinLTO. 2399 static void WriteCombinedValueSymbolTable( 2400 const ModuleSummaryIndex &Index, BitstreamWriter &Stream, 2401 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 2402 uint64_t VSTOffsetPlaceholder) { 2403 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2404 // Get the offset of the VST we are writing, and backpatch it into 2405 // the VST forward declaration record. 2406 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2407 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2408 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2409 2410 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2411 2412 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2413 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2417 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2418 2419 Abbv = new BitCodeAbbrev(); 2420 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2423 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2424 2425 SmallVector<uint64_t, 64> NameVals; 2426 2427 for (const auto &FII : Index) { 2428 GlobalValue::GUID FuncGUID = FII.first; 2429 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2430 assert(VMI != GUIDToValueIdMap.end()); 2431 2432 for (const auto &FI : FII.second) { 2433 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2434 NameVals.push_back(VMI->second); 2435 NameVals.push_back(FI->bitcodeIndex()); 2436 NameVals.push_back(FuncGUID); 2437 2438 // Emit the finished record. 2439 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2440 DefEntryAbbrev); 2441 NameVals.clear(); 2442 } 2443 GUIDToValueIdMap.erase(VMI); 2444 } 2445 for (const auto &GVI : GUIDToValueIdMap) { 2446 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2447 NameVals.push_back(GVI.second); 2448 NameVals.push_back(GVI.first); 2449 2450 // Emit the finished record. 2451 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2452 NameVals.clear(); 2453 } 2454 Stream.ExitBlock(); 2455 } 2456 2457 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2458 BitstreamWriter &Stream) { 2459 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2460 unsigned Code; 2461 if (isa<BasicBlock>(Order.V)) 2462 Code = bitc::USELIST_CODE_BB; 2463 else 2464 Code = bitc::USELIST_CODE_DEFAULT; 2465 2466 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2467 Record.push_back(VE.getValueID(Order.V)); 2468 Stream.EmitRecord(Code, Record); 2469 } 2470 2471 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2472 BitstreamWriter &Stream) { 2473 assert(VE.shouldPreserveUseListOrder() && 2474 "Expected to be preserving use-list order"); 2475 2476 auto hasMore = [&]() { 2477 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2478 }; 2479 if (!hasMore()) 2480 // Nothing to do. 2481 return; 2482 2483 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2484 while (hasMore()) { 2485 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2486 VE.UseListOrders.pop_back(); 2487 } 2488 Stream.ExitBlock(); 2489 } 2490 2491 // Walk through the operands of a given User via worklist iteration and populate 2492 // the set of GlobalValue references encountered. Invoked either on an 2493 // Instruction or a GlobalVariable (which walks its initializer). 2494 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2495 DenseSet<unsigned> &RefEdges, 2496 SmallPtrSet<const User *, 8> &Visited) { 2497 SmallVector<const User *, 32> Worklist; 2498 Worklist.push_back(CurUser); 2499 2500 while (!Worklist.empty()) { 2501 const User *U = Worklist.pop_back_val(); 2502 2503 if (!Visited.insert(U).second) 2504 continue; 2505 2506 ImmutableCallSite CS(U); 2507 2508 for (const auto &OI : U->operands()) { 2509 const User *Operand = dyn_cast<User>(OI); 2510 if (!Operand) 2511 continue; 2512 if (isa<BlockAddress>(Operand)) 2513 continue; 2514 if (isa<GlobalValue>(Operand)) { 2515 // We have a reference to a global value. This should be added to 2516 // the reference set unless it is a callee. Callees are handled 2517 // specially by WriteFunction and are added to a separate list. 2518 if (!(CS && CS.isCallee(&OI))) 2519 RefEdges.insert(VE.getValueID(Operand)); 2520 continue; 2521 } 2522 Worklist.push_back(Operand); 2523 } 2524 } 2525 } 2526 2527 /// Emit a function body to the module stream. 2528 static void 2529 WriteFunction(const Function &F, const Module *M, ValueEnumerator &VE, 2530 BitstreamWriter &Stream, 2531 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> & 2532 GlobalValueIndex, 2533 bool EmitSummaryIndex) { 2534 // Save the bitcode index of the start of this function block for recording 2535 // in the VST. 2536 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2537 2538 bool HasProfileData = F.getEntryCount().hasValue(); 2539 std::unique_ptr<BlockFrequencyInfo> BFI; 2540 if (EmitSummaryIndex && HasProfileData) { 2541 Function &Func = const_cast<Function &>(F); 2542 LoopInfo LI{DominatorTree(Func)}; 2543 BranchProbabilityInfo BPI{Func, LI}; 2544 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2545 } 2546 2547 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2548 VE.incorporateFunction(F); 2549 2550 SmallVector<unsigned, 64> Vals; 2551 2552 // Emit the number of basic blocks, so the reader can create them ahead of 2553 // time. 2554 Vals.push_back(VE.getBasicBlocks().size()); 2555 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2556 Vals.clear(); 2557 2558 // If there are function-local constants, emit them now. 2559 unsigned CstStart, CstEnd; 2560 VE.getFunctionConstantRange(CstStart, CstEnd); 2561 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2562 2563 // If there is function-local metadata, emit it now. 2564 writeFunctionMetadata(F, VE, Stream); 2565 2566 // Keep a running idea of what the instruction ID is. 2567 unsigned InstID = CstEnd; 2568 2569 bool NeedsMetadataAttachment = F.hasMetadata(); 2570 2571 DILocation *LastDL = nullptr; 2572 unsigned NumInsts = 0; 2573 // Map from callee ValueId to profile count. Used to accumulate profile 2574 // counts for all static calls to a given callee. 2575 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2576 DenseSet<unsigned> RefEdges; 2577 2578 SmallPtrSet<const User *, 8> Visited; 2579 // Finally, emit all the instructions, in order. 2580 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2581 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2582 I != E; ++I) { 2583 WriteInstruction(*I, InstID, VE, Stream, Vals); 2584 2585 if (!isa<DbgInfoIntrinsic>(I)) 2586 ++NumInsts; 2587 2588 if (!I->getType()->isVoidTy()) 2589 ++InstID; 2590 2591 if (EmitSummaryIndex) { 2592 if (auto CS = ImmutableCallSite(&*I)) { 2593 auto *CalledFunction = CS.getCalledFunction(); 2594 if (CalledFunction && CalledFunction->hasName() && 2595 !CalledFunction->isIntrinsic()) { 2596 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2597 unsigned CalleeId = VE.getValueID( 2598 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2599 CallGraphEdges[CalleeId] += 2600 (ScaledCount ? ScaledCount.getValue() : 0); 2601 } 2602 } 2603 findRefEdges(&*I, VE, RefEdges, Visited); 2604 } 2605 2606 // If the instruction has metadata, write a metadata attachment later. 2607 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2608 2609 // If the instruction has a debug location, emit it. 2610 DILocation *DL = I->getDebugLoc(); 2611 if (!DL) 2612 continue; 2613 2614 if (DL == LastDL) { 2615 // Just repeat the same debug loc as last time. 2616 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2617 continue; 2618 } 2619 2620 Vals.push_back(DL->getLine()); 2621 Vals.push_back(DL->getColumn()); 2622 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2623 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2624 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2625 Vals.clear(); 2626 2627 LastDL = DL; 2628 } 2629 2630 std::unique_ptr<FunctionSummary> FuncSummary; 2631 if (EmitSummaryIndex) { 2632 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2633 FuncSummary->addCallGraphEdges(CallGraphEdges); 2634 FuncSummary->addRefEdges(RefEdges); 2635 } 2636 GlobalValueIndex[&F] = 2637 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2638 2639 // Emit names for all the instructions etc. 2640 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2641 2642 if (NeedsMetadataAttachment) 2643 WriteMetadataAttachment(F, VE, Stream); 2644 if (VE.shouldPreserveUseListOrder()) 2645 WriteUseListBlock(&F, VE, Stream); 2646 VE.purgeFunction(); 2647 Stream.ExitBlock(); 2648 } 2649 2650 // Emit blockinfo, which defines the standard abbreviations etc. 2651 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2652 // We only want to emit block info records for blocks that have multiple 2653 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2654 // Other blocks can define their abbrevs inline. 2655 Stream.EnterBlockInfoBlock(2); 2656 2657 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2658 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2663 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2664 Abbv) != VST_ENTRY_8_ABBREV) 2665 llvm_unreachable("Unexpected abbrev ordering!"); 2666 } 2667 2668 { // 7-bit fixed width VST_CODE_ENTRY strings. 2669 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2670 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2674 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2675 Abbv) != VST_ENTRY_7_ABBREV) 2676 llvm_unreachable("Unexpected abbrev ordering!"); 2677 } 2678 { // 6-bit char6 VST_CODE_ENTRY strings. 2679 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2680 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2684 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2685 Abbv) != VST_ENTRY_6_ABBREV) 2686 llvm_unreachable("Unexpected abbrev ordering!"); 2687 } 2688 { // 6-bit char6 VST_CODE_BBENTRY strings. 2689 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2690 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2694 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2695 Abbv) != VST_BBENTRY_6_ABBREV) 2696 llvm_unreachable("Unexpected abbrev ordering!"); 2697 } 2698 2699 2700 2701 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2703 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2705 VE.computeBitsRequiredForTypeIndicies())); 2706 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2707 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2708 llvm_unreachable("Unexpected abbrev ordering!"); 2709 } 2710 2711 { // INTEGER abbrev for CONSTANTS_BLOCK. 2712 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2713 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2715 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2716 Abbv) != CONSTANTS_INTEGER_ABBREV) 2717 llvm_unreachable("Unexpected abbrev ordering!"); 2718 } 2719 2720 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2721 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2722 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2725 VE.computeBitsRequiredForTypeIndicies())); 2726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2727 2728 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2729 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2730 llvm_unreachable("Unexpected abbrev ordering!"); 2731 } 2732 { // NULL abbrev for CONSTANTS_BLOCK. 2733 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2734 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2735 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2736 Abbv) != CONSTANTS_NULL_Abbrev) 2737 llvm_unreachable("Unexpected abbrev ordering!"); 2738 } 2739 2740 // FIXME: This should only use space for first class types! 2741 2742 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2743 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2744 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2747 VE.computeBitsRequiredForTypeIndicies())); 2748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2750 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2751 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2752 llvm_unreachable("Unexpected abbrev ordering!"); 2753 } 2754 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2755 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2756 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2760 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2761 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2762 llvm_unreachable("Unexpected abbrev ordering!"); 2763 } 2764 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2765 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2766 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2771 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2772 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2773 llvm_unreachable("Unexpected abbrev ordering!"); 2774 } 2775 { // INST_CAST abbrev for FUNCTION_BLOCK. 2776 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2777 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2780 VE.computeBitsRequiredForTypeIndicies())); 2781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2782 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2783 Abbv) != FUNCTION_INST_CAST_ABBREV) 2784 llvm_unreachable("Unexpected abbrev ordering!"); 2785 } 2786 2787 { // INST_RET abbrev for FUNCTION_BLOCK. 2788 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2789 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2790 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2791 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2792 llvm_unreachable("Unexpected abbrev ordering!"); 2793 } 2794 { // INST_RET abbrev for FUNCTION_BLOCK. 2795 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2796 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2799 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2800 llvm_unreachable("Unexpected abbrev ordering!"); 2801 } 2802 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2803 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2804 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2805 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2806 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2807 llvm_unreachable("Unexpected abbrev ordering!"); 2808 } 2809 { 2810 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2811 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2814 Log2_32_Ceil(VE.getTypes().size() + 1))); 2815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2818 FUNCTION_INST_GEP_ABBREV) 2819 llvm_unreachable("Unexpected abbrev ordering!"); 2820 } 2821 2822 Stream.ExitBlock(); 2823 } 2824 2825 /// Write the module path strings, currently only used when generating 2826 /// a combined index file. 2827 static void WriteModStrings(const ModuleSummaryIndex &I, 2828 BitstreamWriter &Stream) { 2829 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2830 2831 // TODO: See which abbrev sizes we actually need to emit 2832 2833 // 8-bit fixed-width MST_ENTRY strings. 2834 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2835 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2839 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2840 2841 // 7-bit fixed width MST_ENTRY strings. 2842 Abbv = new BitCodeAbbrev(); 2843 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2847 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2848 2849 // 6-bit char6 MST_ENTRY strings. 2850 Abbv = new BitCodeAbbrev(); 2851 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2855 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2856 2857 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 2858 Abbv = new BitCodeAbbrev(); 2859 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 2860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2865 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 2866 2867 SmallVector<unsigned, 64> Vals; 2868 for (const auto &MPSE : I.modulePaths()) { 2869 StringEncoding Bits = 2870 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2871 unsigned AbbrevToUse = Abbrev8Bit; 2872 if (Bits == SE_Char6) 2873 AbbrevToUse = Abbrev6Bit; 2874 else if (Bits == SE_Fixed7) 2875 AbbrevToUse = Abbrev7Bit; 2876 2877 Vals.push_back(MPSE.getValue().first); 2878 2879 for (const auto P : MPSE.getKey()) 2880 Vals.push_back((unsigned char)P); 2881 2882 // Emit the finished record. 2883 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 2884 2885 Vals.clear(); 2886 // Emit an optional hash for the module now 2887 auto &Hash = MPSE.getValue().second; 2888 bool AllZero = true; // Detect if the hash is empty, and do not generate it 2889 for (auto Val : Hash) { 2890 if (Val) 2891 AllZero = false; 2892 Vals.push_back(Val); 2893 } 2894 if (!AllZero) { 2895 // Emit the hash record. 2896 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 2897 } 2898 2899 Vals.clear(); 2900 } 2901 Stream.ExitBlock(); 2902 } 2903 2904 // Helper to emit a single function summary record. 2905 static void WritePerModuleFunctionSummaryRecord( 2906 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2907 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2908 BitstreamWriter &Stream, const Function &F) { 2909 assert(FS); 2910 NameVals.push_back(ValueID); 2911 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2912 NameVals.push_back(FS->instCount()); 2913 NameVals.push_back(FS->refs().size()); 2914 2915 for (auto &RI : FS->refs()) 2916 NameVals.push_back(RI); 2917 2918 bool HasProfileData = F.getEntryCount().hasValue(); 2919 for (auto &ECI : FS->calls()) { 2920 NameVals.push_back(ECI.first); 2921 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2922 NameVals.push_back(ECI.second.CallsiteCount); 2923 if (HasProfileData) 2924 NameVals.push_back(ECI.second.ProfileCount); 2925 } 2926 2927 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2928 unsigned Code = 2929 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2930 2931 // Emit the finished record. 2932 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2933 NameVals.clear(); 2934 } 2935 2936 // Collect the global value references in the given variable's initializer, 2937 // and emit them in a summary record. 2938 static void WriteModuleLevelReferences(const GlobalVariable &V, 2939 const ValueEnumerator &VE, 2940 SmallVector<uint64_t, 64> &NameVals, 2941 unsigned FSModRefsAbbrev, 2942 BitstreamWriter &Stream) { 2943 // Only interested in recording variable defs in the summary. 2944 if (V.isDeclaration()) 2945 return; 2946 DenseSet<unsigned> RefEdges; 2947 SmallPtrSet<const User *, 8> Visited; 2948 findRefEdges(&V, VE, RefEdges, Visited); 2949 NameVals.push_back(VE.getValueID(&V)); 2950 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2951 for (auto RefId : RefEdges) { 2952 NameVals.push_back(RefId); 2953 } 2954 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2955 FSModRefsAbbrev); 2956 NameVals.clear(); 2957 } 2958 2959 /// Emit the per-module summary section alongside the rest of 2960 /// the module's bitcode. 2961 static void WritePerModuleGlobalValueSummary( 2962 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> & 2963 GlobalValueIndex, 2964 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2965 if (M->empty()) 2966 return; 2967 2968 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2969 2970 // Abbrev for FS_PERMODULE. 2971 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2972 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2977 // numrefs x valueid, n x (valueid, callsitecount) 2978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2980 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2981 2982 // Abbrev for FS_PERMODULE_PROFILE. 2983 Abbv = new BitCodeAbbrev(); 2984 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2989 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2992 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2993 2994 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2995 Abbv = new BitCodeAbbrev(); 2996 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3001 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3002 3003 SmallVector<uint64_t, 64> NameVals; 3004 // Iterate over the list of functions instead of the GlobalValueIndex map to 3005 // ensure the ordering is stable. 3006 for (const Function &F : *M) { 3007 if (F.isDeclaration()) 3008 continue; 3009 // Skip anonymous functions. We will emit a function summary for 3010 // any aliases below. 3011 if (!F.hasName()) 3012 continue; 3013 3014 assert(GlobalValueIndex.count(&F) == 1); 3015 3016 WritePerModuleFunctionSummaryRecord( 3017 NameVals, cast<FunctionSummary>(GlobalValueIndex[&F]->summary()), 3018 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 3019 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 3020 } 3021 3022 for (const GlobalAlias &A : M->aliases()) { 3023 if (!A.getBaseObject()) 3024 continue; 3025 const Function *F = dyn_cast<Function>(A.getBaseObject()); 3026 if (!F || F->isDeclaration()) 3027 continue; 3028 3029 assert(GlobalValueIndex.count(F) == 1); 3030 FunctionSummary *FS = cast<FunctionSummary>(GlobalValueIndex[F]->summary()); 3031 // Add the alias to the reference list of aliasee function. 3032 FS->addRefEdge( 3033 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 3034 WritePerModuleFunctionSummaryRecord( 3035 NameVals, FS, 3036 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 3037 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 3038 } 3039 3040 // Capture references from GlobalVariable initializers, which are outside 3041 // of a function scope. 3042 for (const GlobalVariable &G : M->globals()) 3043 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3044 for (const GlobalAlias &A : M->aliases()) 3045 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3046 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3047 3048 Stream.ExitBlock(); 3049 } 3050 3051 /// Emit the combined summary section into the combined index file. 3052 static void WriteCombinedGlobalValueSummary( 3053 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3054 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 3055 unsigned GlobalValueId) { 3056 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3057 3058 // Abbrev for FS_COMBINED. 3059 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3060 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3065 // numrefs x valueid, n x (valueid, callsitecount) 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3068 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3069 3070 // Abbrev for FS_COMBINED_PROFILE. 3071 Abbv = new BitCodeAbbrev(); 3072 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3077 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3080 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3081 3082 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3083 Abbv = new BitCodeAbbrev(); 3084 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3089 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3090 3091 SmallVector<uint64_t, 64> NameVals; 3092 for (const auto &FII : I) { 3093 for (auto &FI : FII.second) { 3094 GlobalValueSummary *S = FI->summary(); 3095 assert(S); 3096 3097 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3098 NameVals.push_back(I.getModuleId(VS->modulePath())); 3099 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3100 for (auto &RI : VS->refs()) { 3101 const auto &VMI = GUIDToValueIdMap.find(RI); 3102 unsigned RefId; 3103 // If this GUID doesn't have an entry, assign one. 3104 if (VMI == GUIDToValueIdMap.end()) { 3105 GUIDToValueIdMap[RI] = ++GlobalValueId; 3106 RefId = GlobalValueId; 3107 } else { 3108 RefId = VMI->second; 3109 } 3110 NameVals.push_back(RefId); 3111 } 3112 3113 // Record the starting offset of this summary entry for use 3114 // in the VST entry. Add the current code size since the 3115 // reader will invoke readRecord after the abbrev id read. 3116 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3117 Stream.GetAbbrevIDWidth()); 3118 3119 // Emit the finished record. 3120 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3121 FSModRefsAbbrev); 3122 NameVals.clear(); 3123 continue; 3124 } 3125 3126 auto *FS = cast<FunctionSummary>(S); 3127 NameVals.push_back(I.getModuleId(FS->modulePath())); 3128 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3129 NameVals.push_back(FS->instCount()); 3130 NameVals.push_back(FS->refs().size()); 3131 3132 for (auto &RI : FS->refs()) { 3133 const auto &VMI = GUIDToValueIdMap.find(RI); 3134 unsigned RefId; 3135 // If this GUID doesn't have an entry, assign one. 3136 if (VMI == GUIDToValueIdMap.end()) { 3137 GUIDToValueIdMap[RI] = ++GlobalValueId; 3138 RefId = GlobalValueId; 3139 } else { 3140 RefId = VMI->second; 3141 } 3142 NameVals.push_back(RefId); 3143 } 3144 3145 bool HasProfileData = false; 3146 for (auto &EI : FS->calls()) { 3147 HasProfileData |= EI.second.ProfileCount != 0; 3148 if (HasProfileData) 3149 break; 3150 } 3151 3152 for (auto &EI : FS->calls()) { 3153 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3154 // If this GUID doesn't have an entry, it doesn't have a function 3155 // summary and we don't need to record any calls to it. 3156 if (VMI == GUIDToValueIdMap.end()) 3157 continue; 3158 NameVals.push_back(VMI->second); 3159 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3160 NameVals.push_back(EI.second.CallsiteCount); 3161 if (HasProfileData) 3162 NameVals.push_back(EI.second.ProfileCount); 3163 } 3164 3165 // Record the starting offset of this summary entry for use 3166 // in the VST entry. Add the current code size since the 3167 // reader will invoke readRecord after the abbrev id read. 3168 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3169 3170 unsigned FSAbbrev = 3171 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3172 unsigned Code = 3173 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3174 3175 // Emit the finished record. 3176 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3177 NameVals.clear(); 3178 } 3179 } 3180 3181 Stream.ExitBlock(); 3182 } 3183 3184 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3185 // current llvm version, and a record for the epoch number. 3186 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3187 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3188 3189 // Write the "user readable" string identifying the bitcode producer 3190 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3191 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3194 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3195 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3196 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3197 3198 // Write the epoch version 3199 Abbv = new BitCodeAbbrev(); 3200 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3202 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3203 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3204 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3205 Stream.ExitBlock(); 3206 } 3207 3208 static void writeModuleHash(BitstreamWriter &Stream, 3209 SmallVectorImpl<char> &Buffer, 3210 size_t BlockStartPos) { 3211 // Emit the module's hash. 3212 // MODULE_CODE_HASH: [5*i32] 3213 SHA1 Hasher; 3214 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&Buffer[BlockStartPos], 3215 Buffer.size() - BlockStartPos)); 3216 auto Hash = Hasher.result(); 3217 SmallVector<uint64_t, 20> Vals; 3218 auto LShift = [&](unsigned char Val, unsigned Amount) 3219 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3220 for (int Pos = 0; Pos < 20; Pos += 4) { 3221 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3222 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3223 (unsigned)(unsigned char)Hash[Pos + 3]; 3224 Vals.push_back(SubHash); 3225 } 3226 3227 // Emit the finished record. 3228 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3229 } 3230 3231 /// WriteModule - Emit the specified module to the bitstream. 3232 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3233 bool ShouldPreserveUseListOrder, 3234 uint64_t BitcodeStartBit, bool EmitSummaryIndex, 3235 bool GenerateHash, SmallVectorImpl<char> &Buffer) { 3236 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3237 size_t BlockStartPos = Buffer.size(); 3238 3239 SmallVector<unsigned, 1> Vals; 3240 unsigned CurVersion = 1; 3241 Vals.push_back(CurVersion); 3242 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3243 3244 // Analyze the module, enumerating globals, functions, etc. 3245 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3246 3247 // Emit blockinfo, which defines the standard abbreviations etc. 3248 WriteBlockInfo(VE, Stream); 3249 3250 // Emit information about attribute groups. 3251 WriteAttributeGroupTable(VE, Stream); 3252 3253 // Emit information about parameter attributes. 3254 WriteAttributeTable(VE, Stream); 3255 3256 // Emit information describing all of the types in the module. 3257 WriteTypeTable(VE, Stream); 3258 3259 writeComdats(VE, Stream); 3260 3261 // Emit top-level description of module, including target triple, inline asm, 3262 // descriptors for global variables, and function prototype info. 3263 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3264 3265 // Emit constants. 3266 WriteModuleConstants(VE, Stream); 3267 3268 // Emit metadata. 3269 writeModuleMetadata(*M, VE, Stream); 3270 3271 // Emit metadata. 3272 WriteModuleMetadataStore(M, Stream); 3273 3274 // Emit module-level use-lists. 3275 if (VE.shouldPreserveUseListOrder()) 3276 WriteUseListBlock(nullptr, VE, Stream); 3277 3278 WriteOperandBundleTags(M, Stream); 3279 3280 // Emit function bodies. 3281 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> GlobalValueIndex; 3282 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3283 if (!F->isDeclaration()) 3284 WriteFunction(*F, M, VE, Stream, GlobalValueIndex, EmitSummaryIndex); 3285 3286 // Need to write after the above call to WriteFunction which populates 3287 // the summary information in the index. 3288 if (EmitSummaryIndex) 3289 WritePerModuleGlobalValueSummary(GlobalValueIndex, M, VE, Stream); 3290 3291 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3292 VSTOffsetPlaceholder, BitcodeStartBit, 3293 &GlobalValueIndex); 3294 3295 if (GenerateHash) { 3296 writeModuleHash(Stream, Buffer, BlockStartPos); 3297 } 3298 3299 Stream.ExitBlock(); 3300 } 3301 3302 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3303 /// header and trailer to make it compatible with the system archiver. To do 3304 /// this we emit the following header, and then emit a trailer that pads the 3305 /// file out to be a multiple of 16 bytes. 3306 /// 3307 /// struct bc_header { 3308 /// uint32_t Magic; // 0x0B17C0DE 3309 /// uint32_t Version; // Version, currently always 0. 3310 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3311 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3312 /// uint32_t CPUType; // CPU specifier. 3313 /// ... potentially more later ... 3314 /// }; 3315 3316 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3317 uint32_t &Position) { 3318 support::endian::write32le(&Buffer[Position], Value); 3319 Position += 4; 3320 } 3321 3322 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3323 const Triple &TT) { 3324 unsigned CPUType = ~0U; 3325 3326 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3327 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3328 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3329 // specific constants here because they are implicitly part of the Darwin ABI. 3330 enum { 3331 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3332 DARWIN_CPU_TYPE_X86 = 7, 3333 DARWIN_CPU_TYPE_ARM = 12, 3334 DARWIN_CPU_TYPE_POWERPC = 18 3335 }; 3336 3337 Triple::ArchType Arch = TT.getArch(); 3338 if (Arch == Triple::x86_64) 3339 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3340 else if (Arch == Triple::x86) 3341 CPUType = DARWIN_CPU_TYPE_X86; 3342 else if (Arch == Triple::ppc) 3343 CPUType = DARWIN_CPU_TYPE_POWERPC; 3344 else if (Arch == Triple::ppc64) 3345 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3346 else if (Arch == Triple::arm || Arch == Triple::thumb) 3347 CPUType = DARWIN_CPU_TYPE_ARM; 3348 3349 // Traditional Bitcode starts after header. 3350 assert(Buffer.size() >= BWH_HeaderSize && 3351 "Expected header size to be reserved"); 3352 unsigned BCOffset = BWH_HeaderSize; 3353 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3354 3355 // Write the magic and version. 3356 unsigned Position = 0; 3357 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3358 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3359 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3360 WriteInt32ToBuffer(BCSize , Buffer, Position); 3361 WriteInt32ToBuffer(CPUType , Buffer, Position); 3362 3363 // If the file is not a multiple of 16 bytes, insert dummy padding. 3364 while (Buffer.size() & 15) 3365 Buffer.push_back(0); 3366 } 3367 3368 /// Helper to write the header common to all bitcode files. 3369 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3370 // Emit the file header. 3371 Stream.Emit((unsigned)'B', 8); 3372 Stream.Emit((unsigned)'C', 8); 3373 Stream.Emit(0x0, 4); 3374 Stream.Emit(0xC, 4); 3375 Stream.Emit(0xE, 4); 3376 Stream.Emit(0xD, 4); 3377 } 3378 3379 /// WriteBitcodeToFile - Write the specified module to the specified output 3380 /// stream. 3381 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3382 bool ShouldPreserveUseListOrder, 3383 bool EmitSummaryIndex, bool GenerateHash) { 3384 SmallVector<char, 0> Buffer; 3385 Buffer.reserve(256*1024); 3386 3387 // If this is darwin or another generic macho target, reserve space for the 3388 // header. 3389 Triple TT(M->getTargetTriple()); 3390 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3391 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3392 3393 // Emit the module into the buffer. 3394 { 3395 BitstreamWriter Stream(Buffer); 3396 // Save the start bit of the actual bitcode, in case there is space 3397 // saved at the start for the darwin header above. The reader stream 3398 // will start at the bitcode, and we need the offset of the VST 3399 // to line up. 3400 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3401 3402 // Emit the file header. 3403 WriteBitcodeHeader(Stream); 3404 3405 WriteIdentificationBlock(M, Stream); 3406 3407 // Emit the module. 3408 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3409 EmitSummaryIndex, GenerateHash, Buffer); 3410 } 3411 3412 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3413 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3414 3415 // Write the generated bitstream to "Out". 3416 Out.write((char*)&Buffer.front(), Buffer.size()); 3417 } 3418 3419 // Write the specified module summary index to the given raw output stream, 3420 // where it will be written in a new bitcode block. This is used when 3421 // writing the combined index file for ThinLTO. 3422 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3423 SmallVector<char, 0> Buffer; 3424 Buffer.reserve(256 * 1024); 3425 3426 BitstreamWriter Stream(Buffer); 3427 3428 // Emit the bitcode header. 3429 WriteBitcodeHeader(Stream); 3430 3431 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3432 3433 SmallVector<unsigned, 1> Vals; 3434 unsigned CurVersion = 1; 3435 Vals.push_back(CurVersion); 3436 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3437 3438 // If we have a VST, write the VSTOFFSET record placeholder and record 3439 // its offset. 3440 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3441 3442 // Write the module paths in the combined index. 3443 WriteModStrings(Index, Stream); 3444 3445 // Assign unique value ids to all functions in the index for use 3446 // in writing out the call graph edges. Save the mapping from GUID 3447 // to the new global value id to use when writing those edges, which 3448 // are currently saved in the index in terms of GUID. 3449 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 3450 unsigned GlobalValueId = 0; 3451 for (auto &II : Index) 3452 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3453 3454 // Write the summary combined index records. 3455 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3456 GlobalValueId); 3457 3458 // Need a special VST writer for the combined index (we don't have a 3459 // real VST and real values when this is invoked). 3460 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3461 VSTOffsetPlaceholder); 3462 3463 Stream.ExitBlock(); 3464 3465 Out.write((char *)&Buffer.front(), Buffer.size()); 3466 } 3467