1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::Builtin: 166 return bitc::ATTR_KIND_BUILTIN; 167 case Attribute::ByVal: 168 return bitc::ATTR_KIND_BY_VAL; 169 case Attribute::Convergent: 170 return bitc::ATTR_KIND_CONVERGENT; 171 case Attribute::InAlloca: 172 return bitc::ATTR_KIND_IN_ALLOCA; 173 case Attribute::Cold: 174 return bitc::ATTR_KIND_COLD; 175 case Attribute::InlineHint: 176 return bitc::ATTR_KIND_INLINE_HINT; 177 case Attribute::InReg: 178 return bitc::ATTR_KIND_IN_REG; 179 case Attribute::JumpTable: 180 return bitc::ATTR_KIND_JUMP_TABLE; 181 case Attribute::MinSize: 182 return bitc::ATTR_KIND_MIN_SIZE; 183 case Attribute::Naked: 184 return bitc::ATTR_KIND_NAKED; 185 case Attribute::Nest: 186 return bitc::ATTR_KIND_NEST; 187 case Attribute::NoAlias: 188 return bitc::ATTR_KIND_NO_ALIAS; 189 case Attribute::NoBuiltin: 190 return bitc::ATTR_KIND_NO_BUILTIN; 191 case Attribute::NoCapture: 192 return bitc::ATTR_KIND_NO_CAPTURE; 193 case Attribute::NoDuplicate: 194 return bitc::ATTR_KIND_NO_DUPLICATE; 195 case Attribute::NoImplicitFloat: 196 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 197 case Attribute::NoInline: 198 return bitc::ATTR_KIND_NO_INLINE; 199 case Attribute::NonLazyBind: 200 return bitc::ATTR_KIND_NON_LAZY_BIND; 201 case Attribute::NonNull: 202 return bitc::ATTR_KIND_NON_NULL; 203 case Attribute::Dereferenceable: 204 return bitc::ATTR_KIND_DEREFERENCEABLE; 205 case Attribute::DereferenceableOrNull: 206 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 207 case Attribute::NoRedZone: 208 return bitc::ATTR_KIND_NO_RED_ZONE; 209 case Attribute::NoReturn: 210 return bitc::ATTR_KIND_NO_RETURN; 211 case Attribute::NoUnwind: 212 return bitc::ATTR_KIND_NO_UNWIND; 213 case Attribute::OptimizeForSize: 214 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 215 case Attribute::OptimizeNone: 216 return bitc::ATTR_KIND_OPTIMIZE_NONE; 217 case Attribute::ReadNone: 218 return bitc::ATTR_KIND_READ_NONE; 219 case Attribute::ReadOnly: 220 return bitc::ATTR_KIND_READ_ONLY; 221 case Attribute::Returned: 222 return bitc::ATTR_KIND_RETURNED; 223 case Attribute::ReturnsTwice: 224 return bitc::ATTR_KIND_RETURNS_TWICE; 225 case Attribute::SExt: 226 return bitc::ATTR_KIND_S_EXT; 227 case Attribute::StackAlignment: 228 return bitc::ATTR_KIND_STACK_ALIGNMENT; 229 case Attribute::StackProtect: 230 return bitc::ATTR_KIND_STACK_PROTECT; 231 case Attribute::StackProtectReq: 232 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 233 case Attribute::StackProtectStrong: 234 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 235 case Attribute::SafeStack: 236 return bitc::ATTR_KIND_SAFESTACK; 237 case Attribute::StructRet: 238 return bitc::ATTR_KIND_STRUCT_RET; 239 case Attribute::SanitizeAddress: 240 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 241 case Attribute::SanitizeThread: 242 return bitc::ATTR_KIND_SANITIZE_THREAD; 243 case Attribute::SanitizeMemory: 244 return bitc::ATTR_KIND_SANITIZE_MEMORY; 245 case Attribute::UWTable: 246 return bitc::ATTR_KIND_UW_TABLE; 247 case Attribute::ZExt: 248 return bitc::ATTR_KIND_Z_EXT; 249 case Attribute::EndAttrKinds: 250 llvm_unreachable("Can not encode end-attribute kinds marker."); 251 case Attribute::None: 252 llvm_unreachable("Can not encode none-attribute."); 253 } 254 255 llvm_unreachable("Trying to encode unknown attribute"); 256 } 257 258 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 259 BitstreamWriter &Stream) { 260 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 261 if (AttrGrps.empty()) return; 262 263 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 264 265 SmallVector<uint64_t, 64> Record; 266 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 267 AttributeSet AS = AttrGrps[i]; 268 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 269 AttributeSet A = AS.getSlotAttributes(i); 270 271 Record.push_back(VE.getAttributeGroupID(A)); 272 Record.push_back(AS.getSlotIndex(i)); 273 274 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 275 I != E; ++I) { 276 Attribute Attr = *I; 277 if (Attr.isEnumAttribute()) { 278 Record.push_back(0); 279 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 280 } else if (Attr.isIntAttribute()) { 281 Record.push_back(1); 282 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 283 Record.push_back(Attr.getValueAsInt()); 284 } else { 285 StringRef Kind = Attr.getKindAsString(); 286 StringRef Val = Attr.getValueAsString(); 287 288 Record.push_back(Val.empty() ? 3 : 4); 289 Record.append(Kind.begin(), Kind.end()); 290 Record.push_back(0); 291 if (!Val.empty()) { 292 Record.append(Val.begin(), Val.end()); 293 Record.push_back(0); 294 } 295 } 296 } 297 298 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 299 Record.clear(); 300 } 301 } 302 303 Stream.ExitBlock(); 304 } 305 306 static void WriteAttributeTable(const ValueEnumerator &VE, 307 BitstreamWriter &Stream) { 308 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 309 if (Attrs.empty()) return; 310 311 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 312 313 SmallVector<uint64_t, 64> Record; 314 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 315 const AttributeSet &A = Attrs[i]; 316 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 317 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 318 319 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 320 Record.clear(); 321 } 322 323 Stream.ExitBlock(); 324 } 325 326 /// WriteTypeTable - Write out the type table for a module. 327 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 328 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 329 330 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 331 SmallVector<uint64_t, 64> TypeVals; 332 333 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 334 335 // Abbrev for TYPE_CODE_POINTER. 336 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 339 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 340 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 341 342 // Abbrev for TYPE_CODE_FUNCTION. 343 Abbv = new BitCodeAbbrev(); 344 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 348 349 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 350 351 // Abbrev for TYPE_CODE_STRUCT_ANON. 352 Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 357 358 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAME. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 365 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 366 367 // Abbrev for TYPE_CODE_STRUCT_NAMED. 368 Abbv = new BitCodeAbbrev(); 369 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Abbrev for TYPE_CODE_ARRAY. 377 Abbv = new BitCodeAbbrev(); 378 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 381 382 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Emit an entry count so the reader can reserve space. 385 TypeVals.push_back(TypeList.size()); 386 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 387 TypeVals.clear(); 388 389 // Loop over all of the types, emitting each in turn. 390 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 391 Type *T = TypeList[i]; 392 int AbbrevToUse = 0; 393 unsigned Code = 0; 394 395 switch (T->getTypeID()) { 396 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 397 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 398 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 399 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 400 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 401 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 402 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 403 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 404 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 405 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 406 case Type::IntegerTyID: 407 // INTEGER: [width] 408 Code = bitc::TYPE_CODE_INTEGER; 409 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 410 break; 411 case Type::PointerTyID: { 412 PointerType *PTy = cast<PointerType>(T); 413 // POINTER: [pointee type, address space] 414 Code = bitc::TYPE_CODE_POINTER; 415 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 416 unsigned AddressSpace = PTy->getAddressSpace(); 417 TypeVals.push_back(AddressSpace); 418 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 419 break; 420 } 421 case Type::FunctionTyID: { 422 FunctionType *FT = cast<FunctionType>(T); 423 // FUNCTION: [isvararg, retty, paramty x N] 424 Code = bitc::TYPE_CODE_FUNCTION; 425 TypeVals.push_back(FT->isVarArg()); 426 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 427 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 428 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 429 AbbrevToUse = FunctionAbbrev; 430 break; 431 } 432 case Type::StructTyID: { 433 StructType *ST = cast<StructType>(T); 434 // STRUCT: [ispacked, eltty x N] 435 TypeVals.push_back(ST->isPacked()); 436 // Output all of the element types. 437 for (StructType::element_iterator I = ST->element_begin(), 438 E = ST->element_end(); I != E; ++I) 439 TypeVals.push_back(VE.getTypeID(*I)); 440 441 if (ST->isLiteral()) { 442 Code = bitc::TYPE_CODE_STRUCT_ANON; 443 AbbrevToUse = StructAnonAbbrev; 444 } else { 445 if (ST->isOpaque()) { 446 Code = bitc::TYPE_CODE_OPAQUE; 447 } else { 448 Code = bitc::TYPE_CODE_STRUCT_NAMED; 449 AbbrevToUse = StructNamedAbbrev; 450 } 451 452 // Emit the name if it is present. 453 if (!ST->getName().empty()) 454 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 455 StructNameAbbrev, Stream); 456 } 457 break; 458 } 459 case Type::ArrayTyID: { 460 ArrayType *AT = cast<ArrayType>(T); 461 // ARRAY: [numelts, eltty] 462 Code = bitc::TYPE_CODE_ARRAY; 463 TypeVals.push_back(AT->getNumElements()); 464 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 465 AbbrevToUse = ArrayAbbrev; 466 break; 467 } 468 case Type::VectorTyID: { 469 VectorType *VT = cast<VectorType>(T); 470 // VECTOR [numelts, eltty] 471 Code = bitc::TYPE_CODE_VECTOR; 472 TypeVals.push_back(VT->getNumElements()); 473 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 474 break; 475 } 476 } 477 478 // Emit the finished record. 479 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 480 TypeVals.clear(); 481 } 482 483 Stream.ExitBlock(); 484 } 485 486 static unsigned getEncodedLinkage(const GlobalValue &GV) { 487 switch (GV.getLinkage()) { 488 case GlobalValue::ExternalLinkage: 489 return 0; 490 case GlobalValue::WeakAnyLinkage: 491 return 16; 492 case GlobalValue::AppendingLinkage: 493 return 2; 494 case GlobalValue::InternalLinkage: 495 return 3; 496 case GlobalValue::LinkOnceAnyLinkage: 497 return 18; 498 case GlobalValue::ExternalWeakLinkage: 499 return 7; 500 case GlobalValue::CommonLinkage: 501 return 8; 502 case GlobalValue::PrivateLinkage: 503 return 9; 504 case GlobalValue::WeakODRLinkage: 505 return 17; 506 case GlobalValue::LinkOnceODRLinkage: 507 return 19; 508 case GlobalValue::AvailableExternallyLinkage: 509 return 12; 510 } 511 llvm_unreachable("Invalid linkage"); 512 } 513 514 static unsigned getEncodedVisibility(const GlobalValue &GV) { 515 switch (GV.getVisibility()) { 516 case GlobalValue::DefaultVisibility: return 0; 517 case GlobalValue::HiddenVisibility: return 1; 518 case GlobalValue::ProtectedVisibility: return 2; 519 } 520 llvm_unreachable("Invalid visibility"); 521 } 522 523 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 524 switch (GV.getDLLStorageClass()) { 525 case GlobalValue::DefaultStorageClass: return 0; 526 case GlobalValue::DLLImportStorageClass: return 1; 527 case GlobalValue::DLLExportStorageClass: return 2; 528 } 529 llvm_unreachable("Invalid DLL storage class"); 530 } 531 532 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 533 switch (GV.getThreadLocalMode()) { 534 case GlobalVariable::NotThreadLocal: return 0; 535 case GlobalVariable::GeneralDynamicTLSModel: return 1; 536 case GlobalVariable::LocalDynamicTLSModel: return 2; 537 case GlobalVariable::InitialExecTLSModel: return 3; 538 case GlobalVariable::LocalExecTLSModel: return 4; 539 } 540 llvm_unreachable("Invalid TLS model"); 541 } 542 543 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 544 switch (C.getSelectionKind()) { 545 case Comdat::Any: 546 return bitc::COMDAT_SELECTION_KIND_ANY; 547 case Comdat::ExactMatch: 548 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 549 case Comdat::Largest: 550 return bitc::COMDAT_SELECTION_KIND_LARGEST; 551 case Comdat::NoDuplicates: 552 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 553 case Comdat::SameSize: 554 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 555 } 556 llvm_unreachable("Invalid selection kind"); 557 } 558 559 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 560 SmallVector<uint16_t, 64> Vals; 561 for (const Comdat *C : VE.getComdats()) { 562 // COMDAT: [selection_kind, name] 563 Vals.push_back(getEncodedComdatSelectionKind(*C)); 564 size_t Size = C->getName().size(); 565 assert(isUInt<16>(Size)); 566 Vals.push_back(Size); 567 for (char Chr : C->getName()) 568 Vals.push_back((unsigned char)Chr); 569 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 570 Vals.clear(); 571 } 572 } 573 574 // Emit top-level description of module, including target triple, inline asm, 575 // descriptors for global variables, and function prototype info. 576 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 577 BitstreamWriter &Stream) { 578 // Emit various pieces of data attached to a module. 579 if (!M->getTargetTriple().empty()) 580 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 581 0/*TODO*/, Stream); 582 const std::string &DL = M->getDataLayoutStr(); 583 if (!DL.empty()) 584 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 585 if (!M->getModuleInlineAsm().empty()) 586 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 587 0/*TODO*/, Stream); 588 589 // Emit information about sections and GC, computing how many there are. Also 590 // compute the maximum alignment value. 591 std::map<std::string, unsigned> SectionMap; 592 std::map<std::string, unsigned> GCMap; 593 unsigned MaxAlignment = 0; 594 unsigned MaxGlobalType = 0; 595 for (const GlobalValue &GV : M->globals()) { 596 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 597 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 598 if (GV.hasSection()) { 599 // Give section names unique ID's. 600 unsigned &Entry = SectionMap[GV.getSection()]; 601 if (!Entry) { 602 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 603 0/*TODO*/, Stream); 604 Entry = SectionMap.size(); 605 } 606 } 607 } 608 for (const Function &F : *M) { 609 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 610 if (F.hasSection()) { 611 // Give section names unique ID's. 612 unsigned &Entry = SectionMap[F.getSection()]; 613 if (!Entry) { 614 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 615 0/*TODO*/, Stream); 616 Entry = SectionMap.size(); 617 } 618 } 619 if (F.hasGC()) { 620 // Same for GC names. 621 unsigned &Entry = GCMap[F.getGC()]; 622 if (!Entry) { 623 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 624 0/*TODO*/, Stream); 625 Entry = GCMap.size(); 626 } 627 } 628 } 629 630 // Emit abbrev for globals, now that we know # sections and max alignment. 631 unsigned SimpleGVarAbbrev = 0; 632 if (!M->global_empty()) { 633 // Add an abbrev for common globals with no visibility or thread localness. 634 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 635 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 637 Log2_32_Ceil(MaxGlobalType+1))); 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 639 //| explicitType << 1 640 //| constant 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 643 if (MaxAlignment == 0) // Alignment. 644 Abbv->Add(BitCodeAbbrevOp(0)); 645 else { 646 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 648 Log2_32_Ceil(MaxEncAlignment+1))); 649 } 650 if (SectionMap.empty()) // Section. 651 Abbv->Add(BitCodeAbbrevOp(0)); 652 else 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 654 Log2_32_Ceil(SectionMap.size()+1))); 655 // Don't bother emitting vis + thread local. 656 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 657 } 658 659 // Emit the global variable information. 660 SmallVector<unsigned, 64> Vals; 661 for (const GlobalVariable &GV : M->globals()) { 662 unsigned AbbrevToUse = 0; 663 664 // GLOBALVAR: [type, isconst, initid, 665 // linkage, alignment, section, visibility, threadlocal, 666 // unnamed_addr, externally_initialized, dllstorageclass, 667 // comdat] 668 Vals.push_back(VE.getTypeID(GV.getValueType())); 669 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 670 Vals.push_back(GV.isDeclaration() ? 0 : 671 (VE.getValueID(GV.getInitializer()) + 1)); 672 Vals.push_back(getEncodedLinkage(GV)); 673 Vals.push_back(Log2_32(GV.getAlignment())+1); 674 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 675 if (GV.isThreadLocal() || 676 GV.getVisibility() != GlobalValue::DefaultVisibility || 677 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 678 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 679 GV.hasComdat()) { 680 Vals.push_back(getEncodedVisibility(GV)); 681 Vals.push_back(getEncodedThreadLocalMode(GV)); 682 Vals.push_back(GV.hasUnnamedAddr()); 683 Vals.push_back(GV.isExternallyInitialized()); 684 Vals.push_back(getEncodedDLLStorageClass(GV)); 685 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 686 } else { 687 AbbrevToUse = SimpleGVarAbbrev; 688 } 689 690 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 691 Vals.clear(); 692 } 693 694 // Emit the function proto information. 695 for (const Function &F : *M) { 696 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 697 // section, visibility, gc, unnamed_addr, prologuedata, 698 // dllstorageclass, comdat, prefixdata, personalityfn] 699 Vals.push_back(VE.getTypeID(F.getFunctionType())); 700 Vals.push_back(F.getCallingConv()); 701 Vals.push_back(F.isDeclaration()); 702 Vals.push_back(getEncodedLinkage(F)); 703 Vals.push_back(VE.getAttributeID(F.getAttributes())); 704 Vals.push_back(Log2_32(F.getAlignment())+1); 705 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 706 Vals.push_back(getEncodedVisibility(F)); 707 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 708 Vals.push_back(F.hasUnnamedAddr()); 709 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 710 : 0); 711 Vals.push_back(getEncodedDLLStorageClass(F)); 712 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 713 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 714 : 0); 715 Vals.push_back( 716 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 717 718 unsigned AbbrevToUse = 0; 719 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 720 Vals.clear(); 721 } 722 723 // Emit the alias information. 724 for (const GlobalAlias &A : M->aliases()) { 725 // ALIAS: [alias type, aliasee val#, linkage, visibility] 726 Vals.push_back(VE.getTypeID(A.getType())); 727 Vals.push_back(VE.getValueID(A.getAliasee())); 728 Vals.push_back(getEncodedLinkage(A)); 729 Vals.push_back(getEncodedVisibility(A)); 730 Vals.push_back(getEncodedDLLStorageClass(A)); 731 Vals.push_back(getEncodedThreadLocalMode(A)); 732 Vals.push_back(A.hasUnnamedAddr()); 733 unsigned AbbrevToUse = 0; 734 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 735 Vals.clear(); 736 } 737 } 738 739 static uint64_t GetOptimizationFlags(const Value *V) { 740 uint64_t Flags = 0; 741 742 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 743 if (OBO->hasNoSignedWrap()) 744 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 745 if (OBO->hasNoUnsignedWrap()) 746 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 747 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 748 if (PEO->isExact()) 749 Flags |= 1 << bitc::PEO_EXACT; 750 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 751 if (FPMO->hasUnsafeAlgebra()) 752 Flags |= FastMathFlags::UnsafeAlgebra; 753 if (FPMO->hasNoNaNs()) 754 Flags |= FastMathFlags::NoNaNs; 755 if (FPMO->hasNoInfs()) 756 Flags |= FastMathFlags::NoInfs; 757 if (FPMO->hasNoSignedZeros()) 758 Flags |= FastMathFlags::NoSignedZeros; 759 if (FPMO->hasAllowReciprocal()) 760 Flags |= FastMathFlags::AllowReciprocal; 761 } 762 763 return Flags; 764 } 765 766 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 767 const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record) { 770 // Mimic an MDNode with a value as one operand. 771 Value *V = MD->getValue(); 772 Record.push_back(VE.getTypeID(V->getType())); 773 Record.push_back(VE.getValueID(V)); 774 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 775 Record.clear(); 776 } 777 778 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 779 BitstreamWriter &Stream, 780 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 781 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 782 Metadata *MD = N->getOperand(i); 783 assert(!(MD && isa<LocalAsMetadata>(MD)) && 784 "Unexpected function-local metadata"); 785 Record.push_back(VE.getMetadataOrNullID(MD)); 786 } 787 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 788 : bitc::METADATA_NODE, 789 Record, Abbrev); 790 Record.clear(); 791 } 792 793 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 794 BitstreamWriter &Stream, 795 SmallVectorImpl<uint64_t> &Record, 796 unsigned Abbrev) { 797 Record.push_back(N->isDistinct()); 798 Record.push_back(N->getLine()); 799 Record.push_back(N->getColumn()); 800 Record.push_back(VE.getMetadataID(N->getScope())); 801 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 802 803 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 804 Record.clear(); 805 } 806 807 static void WriteGenericDINode(const GenericDINode *N, 808 const ValueEnumerator &VE, 809 BitstreamWriter &Stream, 810 SmallVectorImpl<uint64_t> &Record, 811 unsigned Abbrev) { 812 Record.push_back(N->isDistinct()); 813 Record.push_back(N->getTag()); 814 Record.push_back(0); // Per-tag version field; unused for now. 815 816 for (auto &I : N->operands()) 817 Record.push_back(VE.getMetadataOrNullID(I)); 818 819 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 820 Record.clear(); 821 } 822 823 static uint64_t rotateSign(int64_t I) { 824 uint64_t U = I; 825 return I < 0 ? ~(U << 1) : U << 1; 826 } 827 828 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 829 BitstreamWriter &Stream, 830 SmallVectorImpl<uint64_t> &Record, 831 unsigned Abbrev) { 832 Record.push_back(N->isDistinct()); 833 Record.push_back(N->getCount()); 834 Record.push_back(rotateSign(N->getLowerBound())); 835 836 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 837 Record.clear(); 838 } 839 840 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 841 BitstreamWriter &Stream, 842 SmallVectorImpl<uint64_t> &Record, 843 unsigned Abbrev) { 844 Record.push_back(N->isDistinct()); 845 Record.push_back(rotateSign(N->getValue())); 846 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 847 848 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 849 Record.clear(); 850 } 851 852 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 853 BitstreamWriter &Stream, 854 SmallVectorImpl<uint64_t> &Record, 855 unsigned Abbrev) { 856 Record.push_back(N->isDistinct()); 857 Record.push_back(N->getTag()); 858 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 859 Record.push_back(N->getSizeInBits()); 860 Record.push_back(N->getAlignInBits()); 861 Record.push_back(N->getEncoding()); 862 863 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 864 Record.clear(); 865 } 866 867 static void WriteDIDerivedType(const DIDerivedType *N, 868 const ValueEnumerator &VE, 869 BitstreamWriter &Stream, 870 SmallVectorImpl<uint64_t> &Record, 871 unsigned Abbrev) { 872 Record.push_back(N->isDistinct()); 873 Record.push_back(N->getTag()); 874 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 875 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 876 Record.push_back(N->getLine()); 877 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 878 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 879 Record.push_back(N->getSizeInBits()); 880 Record.push_back(N->getAlignInBits()); 881 Record.push_back(N->getOffsetInBits()); 882 Record.push_back(N->getFlags()); 883 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 884 885 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 886 Record.clear(); 887 } 888 889 static void WriteDICompositeType(const DICompositeType *N, 890 const ValueEnumerator &VE, 891 BitstreamWriter &Stream, 892 SmallVectorImpl<uint64_t> &Record, 893 unsigned Abbrev) { 894 Record.push_back(N->isDistinct()); 895 Record.push_back(N->getTag()); 896 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 897 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 898 Record.push_back(N->getLine()); 899 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 900 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 901 Record.push_back(N->getSizeInBits()); 902 Record.push_back(N->getAlignInBits()); 903 Record.push_back(N->getOffsetInBits()); 904 Record.push_back(N->getFlags()); 905 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 906 Record.push_back(N->getRuntimeLang()); 907 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 908 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 909 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 910 911 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 912 Record.clear(); 913 } 914 915 static void WriteDISubroutineType(const DISubroutineType *N, 916 const ValueEnumerator &VE, 917 BitstreamWriter &Stream, 918 SmallVectorImpl<uint64_t> &Record, 919 unsigned Abbrev) { 920 Record.push_back(N->isDistinct()); 921 Record.push_back(N->getFlags()); 922 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 923 924 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 929 BitstreamWriter &Stream, 930 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 931 Record.push_back(N->isDistinct()); 932 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 933 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 934 935 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 936 Record.clear(); 937 } 938 939 static void WriteDICompileUnit(const DICompileUnit *N, 940 const ValueEnumerator &VE, 941 BitstreamWriter &Stream, 942 SmallVectorImpl<uint64_t> &Record, 943 unsigned Abbrev) { 944 Record.push_back(N->isDistinct()); 945 Record.push_back(N->getSourceLanguage()); 946 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 947 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 948 Record.push_back(N->isOptimized()); 949 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 950 Record.push_back(N->getRuntimeVersion()); 951 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 952 Record.push_back(N->getEmissionKind()); 953 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 954 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 955 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 956 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 957 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 958 Record.push_back(N->getDWOId()); 959 960 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 961 Record.clear(); 962 } 963 964 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 965 BitstreamWriter &Stream, 966 SmallVectorImpl<uint64_t> &Record, 967 unsigned Abbrev) { 968 Record.push_back(N->isDistinct()); 969 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 970 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 971 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 972 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 973 Record.push_back(N->getLine()); 974 Record.push_back(VE.getMetadataOrNullID(N->getType())); 975 Record.push_back(N->isLocalToUnit()); 976 Record.push_back(N->isDefinition()); 977 Record.push_back(N->getScopeLine()); 978 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 979 Record.push_back(N->getVirtuality()); 980 Record.push_back(N->getVirtualIndex()); 981 Record.push_back(N->getFlags()); 982 Record.push_back(N->isOptimized()); 983 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 984 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 985 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 986 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 987 988 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 989 Record.clear(); 990 } 991 992 static void WriteDILexicalBlock(const DILexicalBlock *N, 993 const ValueEnumerator &VE, 994 BitstreamWriter &Stream, 995 SmallVectorImpl<uint64_t> &Record, 996 unsigned Abbrev) { 997 Record.push_back(N->isDistinct()); 998 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 999 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1000 Record.push_back(N->getLine()); 1001 Record.push_back(N->getColumn()); 1002 1003 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1004 Record.clear(); 1005 } 1006 1007 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1008 const ValueEnumerator &VE, 1009 BitstreamWriter &Stream, 1010 SmallVectorImpl<uint64_t> &Record, 1011 unsigned Abbrev) { 1012 Record.push_back(N->isDistinct()); 1013 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1014 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1015 Record.push_back(N->getDiscriminator()); 1016 1017 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1018 Record.clear(); 1019 } 1020 1021 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1022 BitstreamWriter &Stream, 1023 SmallVectorImpl<uint64_t> &Record, 1024 unsigned Abbrev) { 1025 Record.push_back(N->isDistinct()); 1026 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1027 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1028 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1029 Record.push_back(N->getLine()); 1030 1031 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1032 Record.clear(); 1033 } 1034 1035 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1036 const ValueEnumerator &VE, 1037 BitstreamWriter &Stream, 1038 SmallVectorImpl<uint64_t> &Record, 1039 unsigned Abbrev) { 1040 Record.push_back(N->isDistinct()); 1041 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1042 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1043 1044 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1045 Record.clear(); 1046 } 1047 1048 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1049 const ValueEnumerator &VE, 1050 BitstreamWriter &Stream, 1051 SmallVectorImpl<uint64_t> &Record, 1052 unsigned Abbrev) { 1053 Record.push_back(N->isDistinct()); 1054 Record.push_back(N->getTag()); 1055 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1056 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1057 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1058 1059 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1060 Record.clear(); 1061 } 1062 1063 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1064 const ValueEnumerator &VE, 1065 BitstreamWriter &Stream, 1066 SmallVectorImpl<uint64_t> &Record, 1067 unsigned Abbrev) { 1068 Record.push_back(N->isDistinct()); 1069 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1070 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1071 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1072 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1073 Record.push_back(N->getLine()); 1074 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1075 Record.push_back(N->isLocalToUnit()); 1076 Record.push_back(N->isDefinition()); 1077 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1078 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1079 1080 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1081 Record.clear(); 1082 } 1083 1084 static void WriteDILocalVariable(const DILocalVariable *N, 1085 const ValueEnumerator &VE, 1086 BitstreamWriter &Stream, 1087 SmallVectorImpl<uint64_t> &Record, 1088 unsigned Abbrev) { 1089 Record.push_back(N->isDistinct()); 1090 Record.push_back(N->getTag()); 1091 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1092 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1093 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1094 Record.push_back(N->getLine()); 1095 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1096 Record.push_back(N->getArg()); 1097 Record.push_back(N->getFlags()); 1098 1099 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1100 Record.clear(); 1101 } 1102 1103 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1104 BitstreamWriter &Stream, 1105 SmallVectorImpl<uint64_t> &Record, 1106 unsigned Abbrev) { 1107 Record.reserve(N->getElements().size() + 1); 1108 1109 Record.push_back(N->isDistinct()); 1110 Record.append(N->elements_begin(), N->elements_end()); 1111 1112 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1113 Record.clear(); 1114 } 1115 1116 static void WriteDIObjCProperty(const DIObjCProperty *N, 1117 const ValueEnumerator &VE, 1118 BitstreamWriter &Stream, 1119 SmallVectorImpl<uint64_t> &Record, 1120 unsigned Abbrev) { 1121 Record.push_back(N->isDistinct()); 1122 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1123 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1124 Record.push_back(N->getLine()); 1125 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1126 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1127 Record.push_back(N->getAttributes()); 1128 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1129 1130 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1131 Record.clear(); 1132 } 1133 1134 static void WriteDIImportedEntity(const DIImportedEntity *N, 1135 const ValueEnumerator &VE, 1136 BitstreamWriter &Stream, 1137 SmallVectorImpl<uint64_t> &Record, 1138 unsigned Abbrev) { 1139 Record.push_back(N->isDistinct()); 1140 Record.push_back(N->getTag()); 1141 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1142 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1143 Record.push_back(N->getLine()); 1144 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1145 1146 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1147 Record.clear(); 1148 } 1149 1150 static void WriteModuleMetadata(const Module *M, 1151 const ValueEnumerator &VE, 1152 BitstreamWriter &Stream) { 1153 const auto &MDs = VE.getMDs(); 1154 if (MDs.empty() && M->named_metadata_empty()) 1155 return; 1156 1157 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1158 1159 unsigned MDSAbbrev = 0; 1160 if (VE.hasMDString()) { 1161 // Abbrev for METADATA_STRING. 1162 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1163 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1166 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1167 } 1168 1169 // Initialize MDNode abbreviations. 1170 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1171 #include "llvm/IR/Metadata.def" 1172 1173 if (VE.hasDILocation()) { 1174 // Abbrev for METADATA_LOCATION. 1175 // 1176 // Assume the column is usually under 128, and always output the inlined-at 1177 // location (it's never more expensive than building an array size 1). 1178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1185 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1186 } 1187 1188 if (VE.hasGenericDINode()) { 1189 // Abbrev for METADATA_GENERIC_DEBUG. 1190 // 1191 // Assume the column is usually under 128, and always output the inlined-at 1192 // location (it's never more expensive than building an array size 1). 1193 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1194 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1201 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1202 } 1203 1204 unsigned NameAbbrev = 0; 1205 if (!M->named_metadata_empty()) { 1206 // Abbrev for METADATA_NAME. 1207 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1208 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1211 NameAbbrev = Stream.EmitAbbrev(Abbv); 1212 } 1213 1214 SmallVector<uint64_t, 64> Record; 1215 for (const Metadata *MD : MDs) { 1216 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1217 assert(N->isResolved() && "Expected forward references to be resolved"); 1218 1219 switch (N->getMetadataID()) { 1220 default: 1221 llvm_unreachable("Invalid MDNode subclass"); 1222 #define HANDLE_MDNODE_LEAF(CLASS) \ 1223 case Metadata::CLASS##Kind: \ 1224 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1225 continue; 1226 #include "llvm/IR/Metadata.def" 1227 } 1228 } 1229 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1230 WriteValueAsMetadata(MDC, VE, Stream, Record); 1231 continue; 1232 } 1233 const MDString *MDS = cast<MDString>(MD); 1234 // Code: [strchar x N] 1235 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1236 1237 // Emit the finished record. 1238 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1239 Record.clear(); 1240 } 1241 1242 // Write named metadata. 1243 for (const NamedMDNode &NMD : M->named_metadata()) { 1244 // Write name. 1245 StringRef Str = NMD.getName(); 1246 Record.append(Str.bytes_begin(), Str.bytes_end()); 1247 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1248 Record.clear(); 1249 1250 // Write named metadata operands. 1251 for (const MDNode *N : NMD.operands()) 1252 Record.push_back(VE.getMetadataID(N)); 1253 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1254 Record.clear(); 1255 } 1256 1257 Stream.ExitBlock(); 1258 } 1259 1260 static void WriteFunctionLocalMetadata(const Function &F, 1261 const ValueEnumerator &VE, 1262 BitstreamWriter &Stream) { 1263 bool StartedMetadataBlock = false; 1264 SmallVector<uint64_t, 64> Record; 1265 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1266 VE.getFunctionLocalMDs(); 1267 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1268 assert(MDs[i] && "Expected valid function-local metadata"); 1269 if (!StartedMetadataBlock) { 1270 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1271 StartedMetadataBlock = true; 1272 } 1273 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1274 } 1275 1276 if (StartedMetadataBlock) 1277 Stream.ExitBlock(); 1278 } 1279 1280 static void WriteMetadataAttachment(const Function &F, 1281 const ValueEnumerator &VE, 1282 BitstreamWriter &Stream) { 1283 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1284 1285 SmallVector<uint64_t, 64> Record; 1286 1287 // Write metadata attachments 1288 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1289 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1290 F.getAllMetadata(MDs); 1291 if (!MDs.empty()) { 1292 for (const auto &I : MDs) { 1293 Record.push_back(I.first); 1294 Record.push_back(VE.getMetadataID(I.second)); 1295 } 1296 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1297 Record.clear(); 1298 } 1299 1300 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1301 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1302 I != E; ++I) { 1303 MDs.clear(); 1304 I->getAllMetadataOtherThanDebugLoc(MDs); 1305 1306 // If no metadata, ignore instruction. 1307 if (MDs.empty()) continue; 1308 1309 Record.push_back(VE.getInstructionID(I)); 1310 1311 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1312 Record.push_back(MDs[i].first); 1313 Record.push_back(VE.getMetadataID(MDs[i].second)); 1314 } 1315 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1316 Record.clear(); 1317 } 1318 1319 Stream.ExitBlock(); 1320 } 1321 1322 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1323 SmallVector<uint64_t, 64> Record; 1324 1325 // Write metadata kinds 1326 // METADATA_KIND - [n x [id, name]] 1327 SmallVector<StringRef, 8> Names; 1328 M->getMDKindNames(Names); 1329 1330 if (Names.empty()) return; 1331 1332 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1333 1334 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1335 Record.push_back(MDKindID); 1336 StringRef KName = Names[MDKindID]; 1337 Record.append(KName.begin(), KName.end()); 1338 1339 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1340 Record.clear(); 1341 } 1342 1343 Stream.ExitBlock(); 1344 } 1345 1346 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1347 if ((int64_t)V >= 0) 1348 Vals.push_back(V << 1); 1349 else 1350 Vals.push_back((-V << 1) | 1); 1351 } 1352 1353 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1354 const ValueEnumerator &VE, 1355 BitstreamWriter &Stream, bool isGlobal) { 1356 if (FirstVal == LastVal) return; 1357 1358 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1359 1360 unsigned AggregateAbbrev = 0; 1361 unsigned String8Abbrev = 0; 1362 unsigned CString7Abbrev = 0; 1363 unsigned CString6Abbrev = 0; 1364 // If this is a constant pool for the module, emit module-specific abbrevs. 1365 if (isGlobal) { 1366 // Abbrev for CST_CODE_AGGREGATE. 1367 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1368 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1371 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1372 1373 // Abbrev for CST_CODE_STRING. 1374 Abbv = new BitCodeAbbrev(); 1375 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1378 String8Abbrev = Stream.EmitAbbrev(Abbv); 1379 // Abbrev for CST_CODE_CSTRING. 1380 Abbv = new BitCodeAbbrev(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1384 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1385 // Abbrev for CST_CODE_CSTRING. 1386 Abbv = new BitCodeAbbrev(); 1387 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1390 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1391 } 1392 1393 SmallVector<uint64_t, 64> Record; 1394 1395 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1396 Type *LastTy = nullptr; 1397 for (unsigned i = FirstVal; i != LastVal; ++i) { 1398 const Value *V = Vals[i].first; 1399 // If we need to switch types, do so now. 1400 if (V->getType() != LastTy) { 1401 LastTy = V->getType(); 1402 Record.push_back(VE.getTypeID(LastTy)); 1403 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1404 CONSTANTS_SETTYPE_ABBREV); 1405 Record.clear(); 1406 } 1407 1408 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1409 Record.push_back(unsigned(IA->hasSideEffects()) | 1410 unsigned(IA->isAlignStack()) << 1 | 1411 unsigned(IA->getDialect()&1) << 2); 1412 1413 // Add the asm string. 1414 const std::string &AsmStr = IA->getAsmString(); 1415 Record.push_back(AsmStr.size()); 1416 Record.append(AsmStr.begin(), AsmStr.end()); 1417 1418 // Add the constraint string. 1419 const std::string &ConstraintStr = IA->getConstraintString(); 1420 Record.push_back(ConstraintStr.size()); 1421 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1422 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1423 Record.clear(); 1424 continue; 1425 } 1426 const Constant *C = cast<Constant>(V); 1427 unsigned Code = -1U; 1428 unsigned AbbrevToUse = 0; 1429 if (C->isNullValue()) { 1430 Code = bitc::CST_CODE_NULL; 1431 } else if (isa<UndefValue>(C)) { 1432 Code = bitc::CST_CODE_UNDEF; 1433 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1434 if (IV->getBitWidth() <= 64) { 1435 uint64_t V = IV->getSExtValue(); 1436 emitSignedInt64(Record, V); 1437 Code = bitc::CST_CODE_INTEGER; 1438 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1439 } else { // Wide integers, > 64 bits in size. 1440 // We have an arbitrary precision integer value to write whose 1441 // bit width is > 64. However, in canonical unsigned integer 1442 // format it is likely that the high bits are going to be zero. 1443 // So, we only write the number of active words. 1444 unsigned NWords = IV->getValue().getActiveWords(); 1445 const uint64_t *RawWords = IV->getValue().getRawData(); 1446 for (unsigned i = 0; i != NWords; ++i) { 1447 emitSignedInt64(Record, RawWords[i]); 1448 } 1449 Code = bitc::CST_CODE_WIDE_INTEGER; 1450 } 1451 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1452 Code = bitc::CST_CODE_FLOAT; 1453 Type *Ty = CFP->getType(); 1454 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1455 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1456 } else if (Ty->isX86_FP80Ty()) { 1457 // api needed to prevent premature destruction 1458 // bits are not in the same order as a normal i80 APInt, compensate. 1459 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1460 const uint64_t *p = api.getRawData(); 1461 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1462 Record.push_back(p[0] & 0xffffLL); 1463 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1464 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1465 const uint64_t *p = api.getRawData(); 1466 Record.push_back(p[0]); 1467 Record.push_back(p[1]); 1468 } else { 1469 assert (0 && "Unknown FP type!"); 1470 } 1471 } else if (isa<ConstantDataSequential>(C) && 1472 cast<ConstantDataSequential>(C)->isString()) { 1473 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1474 // Emit constant strings specially. 1475 unsigned NumElts = Str->getNumElements(); 1476 // If this is a null-terminated string, use the denser CSTRING encoding. 1477 if (Str->isCString()) { 1478 Code = bitc::CST_CODE_CSTRING; 1479 --NumElts; // Don't encode the null, which isn't allowed by char6. 1480 } else { 1481 Code = bitc::CST_CODE_STRING; 1482 AbbrevToUse = String8Abbrev; 1483 } 1484 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1485 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1486 for (unsigned i = 0; i != NumElts; ++i) { 1487 unsigned char V = Str->getElementAsInteger(i); 1488 Record.push_back(V); 1489 isCStr7 &= (V & 128) == 0; 1490 if (isCStrChar6) 1491 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1492 } 1493 1494 if (isCStrChar6) 1495 AbbrevToUse = CString6Abbrev; 1496 else if (isCStr7) 1497 AbbrevToUse = CString7Abbrev; 1498 } else if (const ConstantDataSequential *CDS = 1499 dyn_cast<ConstantDataSequential>(C)) { 1500 Code = bitc::CST_CODE_DATA; 1501 Type *EltTy = CDS->getType()->getElementType(); 1502 if (isa<IntegerType>(EltTy)) { 1503 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1504 Record.push_back(CDS->getElementAsInteger(i)); 1505 } else if (EltTy->isFloatTy()) { 1506 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1507 union { float F; uint32_t I; }; 1508 F = CDS->getElementAsFloat(i); 1509 Record.push_back(I); 1510 } 1511 } else { 1512 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1513 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1514 union { double F; uint64_t I; }; 1515 F = CDS->getElementAsDouble(i); 1516 Record.push_back(I); 1517 } 1518 } 1519 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1520 isa<ConstantVector>(C)) { 1521 Code = bitc::CST_CODE_AGGREGATE; 1522 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1523 Record.push_back(VE.getValueID(C->getOperand(i))); 1524 AbbrevToUse = AggregateAbbrev; 1525 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1526 switch (CE->getOpcode()) { 1527 default: 1528 if (Instruction::isCast(CE->getOpcode())) { 1529 Code = bitc::CST_CODE_CE_CAST; 1530 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1531 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1532 Record.push_back(VE.getValueID(C->getOperand(0))); 1533 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1534 } else { 1535 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1536 Code = bitc::CST_CODE_CE_BINOP; 1537 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1538 Record.push_back(VE.getValueID(C->getOperand(0))); 1539 Record.push_back(VE.getValueID(C->getOperand(1))); 1540 uint64_t Flags = GetOptimizationFlags(CE); 1541 if (Flags != 0) 1542 Record.push_back(Flags); 1543 } 1544 break; 1545 case Instruction::GetElementPtr: { 1546 Code = bitc::CST_CODE_CE_GEP; 1547 const auto *GO = cast<GEPOperator>(C); 1548 if (GO->isInBounds()) 1549 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1550 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1551 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1552 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1553 Record.push_back(VE.getValueID(C->getOperand(i))); 1554 } 1555 break; 1556 } 1557 case Instruction::Select: 1558 Code = bitc::CST_CODE_CE_SELECT; 1559 Record.push_back(VE.getValueID(C->getOperand(0))); 1560 Record.push_back(VE.getValueID(C->getOperand(1))); 1561 Record.push_back(VE.getValueID(C->getOperand(2))); 1562 break; 1563 case Instruction::ExtractElement: 1564 Code = bitc::CST_CODE_CE_EXTRACTELT; 1565 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1566 Record.push_back(VE.getValueID(C->getOperand(0))); 1567 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1568 Record.push_back(VE.getValueID(C->getOperand(1))); 1569 break; 1570 case Instruction::InsertElement: 1571 Code = bitc::CST_CODE_CE_INSERTELT; 1572 Record.push_back(VE.getValueID(C->getOperand(0))); 1573 Record.push_back(VE.getValueID(C->getOperand(1))); 1574 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1575 Record.push_back(VE.getValueID(C->getOperand(2))); 1576 break; 1577 case Instruction::ShuffleVector: 1578 // If the return type and argument types are the same, this is a 1579 // standard shufflevector instruction. If the types are different, 1580 // then the shuffle is widening or truncating the input vectors, and 1581 // the argument type must also be encoded. 1582 if (C->getType() == C->getOperand(0)->getType()) { 1583 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1584 } else { 1585 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1586 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1587 } 1588 Record.push_back(VE.getValueID(C->getOperand(0))); 1589 Record.push_back(VE.getValueID(C->getOperand(1))); 1590 Record.push_back(VE.getValueID(C->getOperand(2))); 1591 break; 1592 case Instruction::ICmp: 1593 case Instruction::FCmp: 1594 Code = bitc::CST_CODE_CE_CMP; 1595 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1596 Record.push_back(VE.getValueID(C->getOperand(0))); 1597 Record.push_back(VE.getValueID(C->getOperand(1))); 1598 Record.push_back(CE->getPredicate()); 1599 break; 1600 } 1601 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1602 Code = bitc::CST_CODE_BLOCKADDRESS; 1603 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1604 Record.push_back(VE.getValueID(BA->getFunction())); 1605 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1606 } else { 1607 #ifndef NDEBUG 1608 C->dump(); 1609 #endif 1610 llvm_unreachable("Unknown constant!"); 1611 } 1612 Stream.EmitRecord(Code, Record, AbbrevToUse); 1613 Record.clear(); 1614 } 1615 1616 Stream.ExitBlock(); 1617 } 1618 1619 static void WriteModuleConstants(const ValueEnumerator &VE, 1620 BitstreamWriter &Stream) { 1621 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1622 1623 // Find the first constant to emit, which is the first non-globalvalue value. 1624 // We know globalvalues have been emitted by WriteModuleInfo. 1625 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1626 if (!isa<GlobalValue>(Vals[i].first)) { 1627 WriteConstants(i, Vals.size(), VE, Stream, true); 1628 return; 1629 } 1630 } 1631 } 1632 1633 /// PushValueAndType - The file has to encode both the value and type id for 1634 /// many values, because we need to know what type to create for forward 1635 /// references. However, most operands are not forward references, so this type 1636 /// field is not needed. 1637 /// 1638 /// This function adds V's value ID to Vals. If the value ID is higher than the 1639 /// instruction ID, then it is a forward reference, and it also includes the 1640 /// type ID. The value ID that is written is encoded relative to the InstID. 1641 static bool PushValueAndType(const Value *V, unsigned InstID, 1642 SmallVectorImpl<unsigned> &Vals, 1643 ValueEnumerator &VE) { 1644 unsigned ValID = VE.getValueID(V); 1645 // Make encoding relative to the InstID. 1646 Vals.push_back(InstID - ValID); 1647 if (ValID >= InstID) { 1648 Vals.push_back(VE.getTypeID(V->getType())); 1649 return true; 1650 } 1651 return false; 1652 } 1653 1654 /// pushValue - Like PushValueAndType, but where the type of the value is 1655 /// omitted (perhaps it was already encoded in an earlier operand). 1656 static void pushValue(const Value *V, unsigned InstID, 1657 SmallVectorImpl<unsigned> &Vals, 1658 ValueEnumerator &VE) { 1659 unsigned ValID = VE.getValueID(V); 1660 Vals.push_back(InstID - ValID); 1661 } 1662 1663 static void pushValueSigned(const Value *V, unsigned InstID, 1664 SmallVectorImpl<uint64_t> &Vals, 1665 ValueEnumerator &VE) { 1666 unsigned ValID = VE.getValueID(V); 1667 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1668 emitSignedInt64(Vals, diff); 1669 } 1670 1671 /// WriteInstruction - Emit an instruction to the specified stream. 1672 static void WriteInstruction(const Instruction &I, unsigned InstID, 1673 ValueEnumerator &VE, BitstreamWriter &Stream, 1674 SmallVectorImpl<unsigned> &Vals) { 1675 unsigned Code = 0; 1676 unsigned AbbrevToUse = 0; 1677 VE.setInstructionID(&I); 1678 switch (I.getOpcode()) { 1679 default: 1680 if (Instruction::isCast(I.getOpcode())) { 1681 Code = bitc::FUNC_CODE_INST_CAST; 1682 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1683 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1684 Vals.push_back(VE.getTypeID(I.getType())); 1685 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1686 } else { 1687 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1688 Code = bitc::FUNC_CODE_INST_BINOP; 1689 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1690 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1691 pushValue(I.getOperand(1), InstID, Vals, VE); 1692 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1693 uint64_t Flags = GetOptimizationFlags(&I); 1694 if (Flags != 0) { 1695 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1696 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1697 Vals.push_back(Flags); 1698 } 1699 } 1700 break; 1701 1702 case Instruction::GetElementPtr: { 1703 Code = bitc::FUNC_CODE_INST_GEP; 1704 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1705 auto &GEPInst = cast<GetElementPtrInst>(I); 1706 Vals.push_back(GEPInst.isInBounds()); 1707 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1708 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1709 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1710 break; 1711 } 1712 case Instruction::ExtractValue: { 1713 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1714 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1715 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1716 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1717 break; 1718 } 1719 case Instruction::InsertValue: { 1720 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1721 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1722 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1723 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1724 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1725 break; 1726 } 1727 case Instruction::Select: 1728 Code = bitc::FUNC_CODE_INST_VSELECT; 1729 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1730 pushValue(I.getOperand(2), InstID, Vals, VE); 1731 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1732 break; 1733 case Instruction::ExtractElement: 1734 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1735 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1736 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1737 break; 1738 case Instruction::InsertElement: 1739 Code = bitc::FUNC_CODE_INST_INSERTELT; 1740 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1741 pushValue(I.getOperand(1), InstID, Vals, VE); 1742 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1743 break; 1744 case Instruction::ShuffleVector: 1745 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1746 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1747 pushValue(I.getOperand(1), InstID, Vals, VE); 1748 pushValue(I.getOperand(2), InstID, Vals, VE); 1749 break; 1750 case Instruction::ICmp: 1751 case Instruction::FCmp: 1752 // compare returning Int1Ty or vector of Int1Ty 1753 Code = bitc::FUNC_CODE_INST_CMP2; 1754 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1755 pushValue(I.getOperand(1), InstID, Vals, VE); 1756 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1757 break; 1758 1759 case Instruction::Ret: 1760 { 1761 Code = bitc::FUNC_CODE_INST_RET; 1762 unsigned NumOperands = I.getNumOperands(); 1763 if (NumOperands == 0) 1764 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1765 else if (NumOperands == 1) { 1766 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1767 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1768 } else { 1769 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1770 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1771 } 1772 } 1773 break; 1774 case Instruction::Br: 1775 { 1776 Code = bitc::FUNC_CODE_INST_BR; 1777 const BranchInst &II = cast<BranchInst>(I); 1778 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1779 if (II.isConditional()) { 1780 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1781 pushValue(II.getCondition(), InstID, Vals, VE); 1782 } 1783 } 1784 break; 1785 case Instruction::Switch: 1786 { 1787 Code = bitc::FUNC_CODE_INST_SWITCH; 1788 const SwitchInst &SI = cast<SwitchInst>(I); 1789 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1790 pushValue(SI.getCondition(), InstID, Vals, VE); 1791 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1792 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1793 i != e; ++i) { 1794 Vals.push_back(VE.getValueID(i.getCaseValue())); 1795 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1796 } 1797 } 1798 break; 1799 case Instruction::IndirectBr: 1800 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1801 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1802 // Encode the address operand as relative, but not the basic blocks. 1803 pushValue(I.getOperand(0), InstID, Vals, VE); 1804 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1805 Vals.push_back(VE.getValueID(I.getOperand(i))); 1806 break; 1807 1808 case Instruction::Invoke: { 1809 const InvokeInst *II = cast<InvokeInst>(&I); 1810 const Value *Callee = II->getCalledValue(); 1811 FunctionType *FTy = II->getFunctionType(); 1812 Code = bitc::FUNC_CODE_INST_INVOKE; 1813 1814 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1815 Vals.push_back(II->getCallingConv() | 1 << 13); 1816 Vals.push_back(VE.getValueID(II->getNormalDest())); 1817 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1818 Vals.push_back(VE.getTypeID(FTy)); 1819 PushValueAndType(Callee, InstID, Vals, VE); 1820 1821 // Emit value #'s for the fixed parameters. 1822 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1823 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1824 1825 // Emit type/value pairs for varargs params. 1826 if (FTy->isVarArg()) { 1827 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1828 i != e; ++i) 1829 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1830 } 1831 break; 1832 } 1833 case Instruction::Resume: 1834 Code = bitc::FUNC_CODE_INST_RESUME; 1835 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1836 break; 1837 case Instruction::Unreachable: 1838 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1839 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1840 break; 1841 1842 case Instruction::PHI: { 1843 const PHINode &PN = cast<PHINode>(I); 1844 Code = bitc::FUNC_CODE_INST_PHI; 1845 // With the newer instruction encoding, forward references could give 1846 // negative valued IDs. This is most common for PHIs, so we use 1847 // signed VBRs. 1848 SmallVector<uint64_t, 128> Vals64; 1849 Vals64.push_back(VE.getTypeID(PN.getType())); 1850 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1851 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1852 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1853 } 1854 // Emit a Vals64 vector and exit. 1855 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1856 Vals64.clear(); 1857 return; 1858 } 1859 1860 case Instruction::LandingPad: { 1861 const LandingPadInst &LP = cast<LandingPadInst>(I); 1862 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1863 Vals.push_back(VE.getTypeID(LP.getType())); 1864 Vals.push_back(LP.isCleanup()); 1865 Vals.push_back(LP.getNumClauses()); 1866 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1867 if (LP.isCatch(I)) 1868 Vals.push_back(LandingPadInst::Catch); 1869 else 1870 Vals.push_back(LandingPadInst::Filter); 1871 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1872 } 1873 break; 1874 } 1875 1876 case Instruction::Alloca: { 1877 Code = bitc::FUNC_CODE_INST_ALLOCA; 1878 const AllocaInst &AI = cast<AllocaInst>(I); 1879 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1880 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1881 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1882 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1883 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1884 "not enough bits for maximum alignment"); 1885 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1886 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1887 AlignRecord |= 1 << 6; 1888 Vals.push_back(AlignRecord); 1889 break; 1890 } 1891 1892 case Instruction::Load: 1893 if (cast<LoadInst>(I).isAtomic()) { 1894 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1895 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1896 } else { 1897 Code = bitc::FUNC_CODE_INST_LOAD; 1898 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1899 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1900 } 1901 Vals.push_back(VE.getTypeID(I.getType())); 1902 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1903 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1904 if (cast<LoadInst>(I).isAtomic()) { 1905 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1906 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1907 } 1908 break; 1909 case Instruction::Store: 1910 if (cast<StoreInst>(I).isAtomic()) 1911 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1912 else 1913 Code = bitc::FUNC_CODE_INST_STORE; 1914 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1915 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1916 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1917 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1918 if (cast<StoreInst>(I).isAtomic()) { 1919 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1920 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1921 } 1922 break; 1923 case Instruction::AtomicCmpXchg: 1924 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1925 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1926 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 1927 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1928 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1929 Vals.push_back(GetEncodedOrdering( 1930 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1931 Vals.push_back(GetEncodedSynchScope( 1932 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1933 Vals.push_back(GetEncodedOrdering( 1934 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1935 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1936 break; 1937 case Instruction::AtomicRMW: 1938 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1939 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1940 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1941 Vals.push_back(GetEncodedRMWOperation( 1942 cast<AtomicRMWInst>(I).getOperation())); 1943 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1944 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1945 Vals.push_back(GetEncodedSynchScope( 1946 cast<AtomicRMWInst>(I).getSynchScope())); 1947 break; 1948 case Instruction::Fence: 1949 Code = bitc::FUNC_CODE_INST_FENCE; 1950 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1951 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1952 break; 1953 case Instruction::Call: { 1954 const CallInst &CI = cast<CallInst>(I); 1955 FunctionType *FTy = CI.getFunctionType(); 1956 1957 Code = bitc::FUNC_CODE_INST_CALL; 1958 1959 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1960 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1961 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 1962 Vals.push_back(VE.getTypeID(FTy)); 1963 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1964 1965 // Emit value #'s for the fixed parameters. 1966 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1967 // Check for labels (can happen with asm labels). 1968 if (FTy->getParamType(i)->isLabelTy()) 1969 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1970 else 1971 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1972 } 1973 1974 // Emit type/value pairs for varargs params. 1975 if (FTy->isVarArg()) { 1976 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1977 i != e; ++i) 1978 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1979 } 1980 break; 1981 } 1982 case Instruction::VAArg: 1983 Code = bitc::FUNC_CODE_INST_VAARG; 1984 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1985 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1986 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1987 break; 1988 } 1989 1990 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1991 Vals.clear(); 1992 } 1993 1994 // Emit names for globals/functions etc. 1995 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1996 const ValueEnumerator &VE, 1997 BitstreamWriter &Stream) { 1998 if (VST.empty()) return; 1999 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2000 2001 // FIXME: Set up the abbrev, we know how many values there are! 2002 // FIXME: We know if the type names can use 7-bit ascii. 2003 SmallVector<unsigned, 64> NameVals; 2004 2005 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 2006 SI != SE; ++SI) { 2007 2008 const ValueName &Name = *SI; 2009 2010 // Figure out the encoding to use for the name. 2011 bool is7Bit = true; 2012 bool isChar6 = true; 2013 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2014 C != E; ++C) { 2015 if (isChar6) 2016 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2017 if ((unsigned char)*C & 128) { 2018 is7Bit = false; 2019 break; // don't bother scanning the rest. 2020 } 2021 } 2022 2023 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2024 2025 // VST_ENTRY: [valueid, namechar x N] 2026 // VST_BBENTRY: [bbid, namechar x N] 2027 unsigned Code; 2028 if (isa<BasicBlock>(SI->getValue())) { 2029 Code = bitc::VST_CODE_BBENTRY; 2030 if (isChar6) 2031 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2032 } else { 2033 Code = bitc::VST_CODE_ENTRY; 2034 if (isChar6) 2035 AbbrevToUse = VST_ENTRY_6_ABBREV; 2036 else if (is7Bit) 2037 AbbrevToUse = VST_ENTRY_7_ABBREV; 2038 } 2039 2040 NameVals.push_back(VE.getValueID(SI->getValue())); 2041 for (const char *P = Name.getKeyData(), 2042 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2043 NameVals.push_back((unsigned char)*P); 2044 2045 // Emit the finished record. 2046 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2047 NameVals.clear(); 2048 } 2049 Stream.ExitBlock(); 2050 } 2051 2052 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2053 BitstreamWriter &Stream) { 2054 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2055 unsigned Code; 2056 if (isa<BasicBlock>(Order.V)) 2057 Code = bitc::USELIST_CODE_BB; 2058 else 2059 Code = bitc::USELIST_CODE_DEFAULT; 2060 2061 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2062 Record.push_back(VE.getValueID(Order.V)); 2063 Stream.EmitRecord(Code, Record); 2064 } 2065 2066 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2067 BitstreamWriter &Stream) { 2068 assert(VE.shouldPreserveUseListOrder() && 2069 "Expected to be preserving use-list order"); 2070 2071 auto hasMore = [&]() { 2072 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2073 }; 2074 if (!hasMore()) 2075 // Nothing to do. 2076 return; 2077 2078 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2079 while (hasMore()) { 2080 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2081 VE.UseListOrders.pop_back(); 2082 } 2083 Stream.ExitBlock(); 2084 } 2085 2086 /// WriteFunction - Emit a function body to the module stream. 2087 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2088 BitstreamWriter &Stream) { 2089 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2090 VE.incorporateFunction(F); 2091 2092 SmallVector<unsigned, 64> Vals; 2093 2094 // Emit the number of basic blocks, so the reader can create them ahead of 2095 // time. 2096 Vals.push_back(VE.getBasicBlocks().size()); 2097 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2098 Vals.clear(); 2099 2100 // If there are function-local constants, emit them now. 2101 unsigned CstStart, CstEnd; 2102 VE.getFunctionConstantRange(CstStart, CstEnd); 2103 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2104 2105 // If there is function-local metadata, emit it now. 2106 WriteFunctionLocalMetadata(F, VE, Stream); 2107 2108 // Keep a running idea of what the instruction ID is. 2109 unsigned InstID = CstEnd; 2110 2111 bool NeedsMetadataAttachment = F.hasMetadata(); 2112 2113 DILocation *LastDL = nullptr; 2114 2115 // Finally, emit all the instructions, in order. 2116 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2117 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2118 I != E; ++I) { 2119 WriteInstruction(*I, InstID, VE, Stream, Vals); 2120 2121 if (!I->getType()->isVoidTy()) 2122 ++InstID; 2123 2124 // If the instruction has metadata, write a metadata attachment later. 2125 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2126 2127 // If the instruction has a debug location, emit it. 2128 DILocation *DL = I->getDebugLoc(); 2129 if (!DL) 2130 continue; 2131 2132 if (DL == LastDL) { 2133 // Just repeat the same debug loc as last time. 2134 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2135 continue; 2136 } 2137 2138 Vals.push_back(DL->getLine()); 2139 Vals.push_back(DL->getColumn()); 2140 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2141 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2142 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2143 Vals.clear(); 2144 2145 LastDL = DL; 2146 } 2147 2148 // Emit names for all the instructions etc. 2149 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2150 2151 if (NeedsMetadataAttachment) 2152 WriteMetadataAttachment(F, VE, Stream); 2153 if (VE.shouldPreserveUseListOrder()) 2154 WriteUseListBlock(&F, VE, Stream); 2155 VE.purgeFunction(); 2156 Stream.ExitBlock(); 2157 } 2158 2159 // Emit blockinfo, which defines the standard abbreviations etc. 2160 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2161 // We only want to emit block info records for blocks that have multiple 2162 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2163 // Other blocks can define their abbrevs inline. 2164 Stream.EnterBlockInfoBlock(2); 2165 2166 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2167 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2172 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2173 Abbv) != VST_ENTRY_8_ABBREV) 2174 llvm_unreachable("Unexpected abbrev ordering!"); 2175 } 2176 2177 { // 7-bit fixed width VST_ENTRY strings. 2178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2179 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2183 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2184 Abbv) != VST_ENTRY_7_ABBREV) 2185 llvm_unreachable("Unexpected abbrev ordering!"); 2186 } 2187 { // 6-bit char6 VST_ENTRY strings. 2188 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2189 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2193 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2194 Abbv) != VST_ENTRY_6_ABBREV) 2195 llvm_unreachable("Unexpected abbrev ordering!"); 2196 } 2197 { // 6-bit char6 VST_BBENTRY strings. 2198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2199 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2203 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2204 Abbv) != VST_BBENTRY_6_ABBREV) 2205 llvm_unreachable("Unexpected abbrev ordering!"); 2206 } 2207 2208 2209 2210 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2211 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2212 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2214 VE.computeBitsRequiredForTypeIndicies())); 2215 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2216 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2217 llvm_unreachable("Unexpected abbrev ordering!"); 2218 } 2219 2220 { // INTEGER abbrev for CONSTANTS_BLOCK. 2221 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2222 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2224 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2225 Abbv) != CONSTANTS_INTEGER_ABBREV) 2226 llvm_unreachable("Unexpected abbrev ordering!"); 2227 } 2228 2229 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2230 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2231 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2234 VE.computeBitsRequiredForTypeIndicies())); 2235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2236 2237 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2238 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2239 llvm_unreachable("Unexpected abbrev ordering!"); 2240 } 2241 { // NULL abbrev for CONSTANTS_BLOCK. 2242 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2243 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2244 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2245 Abbv) != CONSTANTS_NULL_Abbrev) 2246 llvm_unreachable("Unexpected abbrev ordering!"); 2247 } 2248 2249 // FIXME: This should only use space for first class types! 2250 2251 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2252 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2253 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2256 VE.computeBitsRequiredForTypeIndicies())); 2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2259 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2260 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2261 llvm_unreachable("Unexpected abbrev ordering!"); 2262 } 2263 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2264 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2265 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2269 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2270 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2271 llvm_unreachable("Unexpected abbrev ordering!"); 2272 } 2273 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2274 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2275 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2280 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2281 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2282 llvm_unreachable("Unexpected abbrev ordering!"); 2283 } 2284 { // INST_CAST abbrev for FUNCTION_BLOCK. 2285 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2286 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2289 VE.computeBitsRequiredForTypeIndicies())); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2291 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2292 Abbv) != FUNCTION_INST_CAST_ABBREV) 2293 llvm_unreachable("Unexpected abbrev ordering!"); 2294 } 2295 2296 { // INST_RET abbrev for FUNCTION_BLOCK. 2297 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2298 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2299 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2300 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2301 llvm_unreachable("Unexpected abbrev ordering!"); 2302 } 2303 { // INST_RET abbrev for FUNCTION_BLOCK. 2304 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2305 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2307 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2308 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2309 llvm_unreachable("Unexpected abbrev ordering!"); 2310 } 2311 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2312 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2313 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2314 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2315 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2316 llvm_unreachable("Unexpected abbrev ordering!"); 2317 } 2318 { 2319 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2320 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2323 Log2_32_Ceil(VE.getTypes().size() + 1))); 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2326 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2327 FUNCTION_INST_GEP_ABBREV) 2328 llvm_unreachable("Unexpected abbrev ordering!"); 2329 } 2330 2331 Stream.ExitBlock(); 2332 } 2333 2334 /// WriteModule - Emit the specified module to the bitstream. 2335 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2336 bool ShouldPreserveUseListOrder) { 2337 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2338 2339 SmallVector<unsigned, 1> Vals; 2340 unsigned CurVersion = 1; 2341 Vals.push_back(CurVersion); 2342 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2343 2344 // Analyze the module, enumerating globals, functions, etc. 2345 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2346 2347 // Emit blockinfo, which defines the standard abbreviations etc. 2348 WriteBlockInfo(VE, Stream); 2349 2350 // Emit information about attribute groups. 2351 WriteAttributeGroupTable(VE, Stream); 2352 2353 // Emit information about parameter attributes. 2354 WriteAttributeTable(VE, Stream); 2355 2356 // Emit information describing all of the types in the module. 2357 WriteTypeTable(VE, Stream); 2358 2359 writeComdats(VE, Stream); 2360 2361 // Emit top-level description of module, including target triple, inline asm, 2362 // descriptors for global variables, and function prototype info. 2363 WriteModuleInfo(M, VE, Stream); 2364 2365 // Emit constants. 2366 WriteModuleConstants(VE, Stream); 2367 2368 // Emit metadata. 2369 WriteModuleMetadata(M, VE, Stream); 2370 2371 // Emit metadata. 2372 WriteModuleMetadataStore(M, Stream); 2373 2374 // Emit names for globals/functions etc. 2375 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2376 2377 // Emit module-level use-lists. 2378 if (VE.shouldPreserveUseListOrder()) 2379 WriteUseListBlock(nullptr, VE, Stream); 2380 2381 // Emit function bodies. 2382 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2383 if (!F->isDeclaration()) 2384 WriteFunction(*F, VE, Stream); 2385 2386 Stream.ExitBlock(); 2387 } 2388 2389 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2390 /// header and trailer to make it compatible with the system archiver. To do 2391 /// this we emit the following header, and then emit a trailer that pads the 2392 /// file out to be a multiple of 16 bytes. 2393 /// 2394 /// struct bc_header { 2395 /// uint32_t Magic; // 0x0B17C0DE 2396 /// uint32_t Version; // Version, currently always 0. 2397 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2398 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2399 /// uint32_t CPUType; // CPU specifier. 2400 /// ... potentially more later ... 2401 /// }; 2402 enum { 2403 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2404 DarwinBCHeaderSize = 5*4 2405 }; 2406 2407 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2408 uint32_t &Position) { 2409 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2410 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2411 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2412 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2413 Position += 4; 2414 } 2415 2416 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2417 const Triple &TT) { 2418 unsigned CPUType = ~0U; 2419 2420 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2421 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2422 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2423 // specific constants here because they are implicitly part of the Darwin ABI. 2424 enum { 2425 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2426 DARWIN_CPU_TYPE_X86 = 7, 2427 DARWIN_CPU_TYPE_ARM = 12, 2428 DARWIN_CPU_TYPE_POWERPC = 18 2429 }; 2430 2431 Triple::ArchType Arch = TT.getArch(); 2432 if (Arch == Triple::x86_64) 2433 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2434 else if (Arch == Triple::x86) 2435 CPUType = DARWIN_CPU_TYPE_X86; 2436 else if (Arch == Triple::ppc) 2437 CPUType = DARWIN_CPU_TYPE_POWERPC; 2438 else if (Arch == Triple::ppc64) 2439 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2440 else if (Arch == Triple::arm || Arch == Triple::thumb) 2441 CPUType = DARWIN_CPU_TYPE_ARM; 2442 2443 // Traditional Bitcode starts after header. 2444 assert(Buffer.size() >= DarwinBCHeaderSize && 2445 "Expected header size to be reserved"); 2446 unsigned BCOffset = DarwinBCHeaderSize; 2447 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2448 2449 // Write the magic and version. 2450 unsigned Position = 0; 2451 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2452 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2453 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2454 WriteInt32ToBuffer(BCSize , Buffer, Position); 2455 WriteInt32ToBuffer(CPUType , Buffer, Position); 2456 2457 // If the file is not a multiple of 16 bytes, insert dummy padding. 2458 while (Buffer.size() & 15) 2459 Buffer.push_back(0); 2460 } 2461 2462 /// WriteBitcodeToFile - Write the specified module to the specified output 2463 /// stream. 2464 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2465 bool ShouldPreserveUseListOrder) { 2466 SmallVector<char, 0> Buffer; 2467 Buffer.reserve(256*1024); 2468 2469 // If this is darwin or another generic macho target, reserve space for the 2470 // header. 2471 Triple TT(M->getTargetTriple()); 2472 if (TT.isOSDarwin()) 2473 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2474 2475 // Emit the module into the buffer. 2476 { 2477 BitstreamWriter Stream(Buffer); 2478 2479 // Emit the file header. 2480 Stream.Emit((unsigned)'B', 8); 2481 Stream.Emit((unsigned)'C', 8); 2482 Stream.Emit(0x0, 4); 2483 Stream.Emit(0xC, 4); 2484 Stream.Emit(0xE, 4); 2485 Stream.Emit(0xD, 4); 2486 2487 // Emit the module. 2488 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2489 } 2490 2491 if (TT.isOSDarwin()) 2492 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2493 2494 // Write the generated bitstream to "Out". 2495 Out.write((char*)&Buffer.front(), Buffer.size()); 2496 } 2497